JP2004322253A - Fixed abrasive grain polishing material - Google Patents

Fixed abrasive grain polishing material Download PDF

Info

Publication number
JP2004322253A
JP2004322253A JP2003119511A JP2003119511A JP2004322253A JP 2004322253 A JP2004322253 A JP 2004322253A JP 2003119511 A JP2003119511 A JP 2003119511A JP 2003119511 A JP2003119511 A JP 2003119511A JP 2004322253 A JP2004322253 A JP 2004322253A
Authority
JP
Japan
Prior art keywords
polishing
abrasive
fixed abrasive
oxide particles
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003119511A
Other languages
Japanese (ja)
Inventor
Kenji Takenouchi
研二 竹之内
Yasuhiro Tani
泰弘 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Admatechs Co Ltd
Original Assignee
Admatechs Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Admatechs Co Ltd filed Critical Admatechs Co Ltd
Priority to JP2003119511A priority Critical patent/JP2004322253A/en
Publication of JP2004322253A publication Critical patent/JP2004322253A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fixed abrasive grain polishing material for allowing highly accurate polishing, and hardly sticking abrasive grains to a polishing object surface even after polishing. <P>SOLUTION: This fixed abrasive grain polishing material comprises a base material, and a polishing layer formed on a surface of the base material, and including the abrasive grain. The abrasive grains in the polishing layer includes substantially true-spherical oxide particles having low surface activity. The oxide particle having the low surface activity is small in affinity with the polishing object surface. Thus, the abrasive grain hardly sticks and remains on the polishing object surface even after the polishing. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバーコネクタ端面、半導体ウエーハ表面等の仕上げ研磨に用いられる固定砥粒研磨材に関する。
【0002】
【従来の技術】
光通信の伝達手段として使用される光ファイバーには、近年の大容量化、高効率化の要求に伴い、光損失ができるだけ小さいことが要求される。光ファイバーと光ファイバーとを接続するために、光ファイバーコネクタが用いられる。光ファイバーコネクタは、光ファイバーの接続端部の周囲がフェルールで被覆されてなる。光ファイバーコネクタの接続端面の品質は、光ファイバーの光学特性に影響することから非常に重要である。そのため、光ファイバーコネクタ端面には、複数段階の研磨により鏡面加工がなされる。研磨の最終仕上げとして、微細な砥粒を含む研磨層を備えた研磨シート、研磨テープ、研磨砥石、研磨布等の固定砥粒研磨材を使用した精密な鏡面研磨が行われる。固定砥粒研磨材を使用した精密な鏡面研磨は、半導体ウエーハ等の表面およびエッジ面の研磨においても、最終仕上げとして採用されつつある。
【0003】
精密な鏡面研磨に使用される固定砥粒研磨材として、例えば、砥粒と所定の結着剤とを含む研磨層が支持体上に形成された研磨媒体が開示されている(例えば、特許文献1参照。)。また、基材上に、シリカ粒子と結合剤とを含む研磨層を備えた研磨テープとして、研磨層表面の中心線平均粗さが0.005〜0.5μmである研磨テープが開示されている(例えば、特許文献2参照。)。
【0004】
【特許文献1】
特開2002−254319号公報
【特許文献2】
特開2002−254326号公報
【0005】
【発明が解決しようとする課題】
しかしながら、特許文献1、2に開示されたような固定砥粒研磨材を使用して精密な鏡面研磨を行った場合には、研磨後に、研磨層に含まれる砥粒等が被研磨面に付着残存するという問題がある。そのため、被研磨面の付着物を除去する工程を、別途設ける必要がある。また、付着物が被研磨面に残存すると、目的とする光学特性が得られず、使用の際に不具合を生じるおそれがある。
【0006】
本発明は、上記問題を解決するためになされたものであり、高精度に研磨することができ、かつ、研磨後においても被研磨面に砥粒等が付着し難い固定砥粒研磨材を提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明の固定砥粒研磨材は、基材と、該基材の表面に形成され砥粒を含む研磨層と、を備える固定砥粒研磨材であって、前記砥粒は、表面活性が低く略真球状の酸化物粒子を含むことを特徴とする。
【0008】
すなわち、本発明の固定砥粒研磨材は、研磨層における砥粒に、表面活性が低く略真球状の酸化物粒子を含む。従来より、鏡面研磨等の精密研磨に用いられる砥粒には、二酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)等の酸化物の粒子が用いられてきた。しかし、これら酸化物の粒子は、粒子表面に親水基等の反応基を有し、表面活性が高い。このため、例えば、被研磨面が親水性の酸化物からなる場合には、その表面活性力(親和力)により、被研磨面に砥粒が付着し易いと考えられる。本発明の固定砥粒研磨材の砥粒に含まれる酸化物粒子は、表面活性が低い。そのため、被研磨面との親和力が小さく、研磨後に被研磨面へ付着し難い。したがって、本発明の固定砥粒研磨材を用いれば、研磨後に被研磨面の付着物を除去する工程を省略することができ、研磨工程を簡素化することができる。また、付着物の残存による光学特性の低下のおそれも少ない。
【0009】
固定砥粒研磨材では、砥粒を構成する粒子の形状により、研磨特性が大きく異なる。表面活性が低いという観点から、比表面積ができるだけ小さい粒子を用いることが望まれる。そのため、粒子表面に孔が少ない場合には、できるだけ球状に近い粒子を用いることが望ましい。つまり、砥粒を構成する粒子の形状は、固定砥粒研磨材の重要な要素となる。本発明の固定砥粒研磨材に用いる酸化物粒子は、略真球状をなす。略真球状とは、真球あるいは極めて真球に近い球状を意味する。具体的には、走査型電子顕微鏡(SEM)による観察の結果、観察される長径に対する短径の比が、0.8以上となるような球形の粒子を意味する。粒子形状が略真球状であるため、酸化物粒子の切れ刃部分はなめらかであり、被研磨面との接触面積も小さい。よって、本発明の固定砥粒研磨材を用いることにより、研磨被研磨面の粗さを小さくすることができ、被研磨面の平坦性を向上させることができる。
【0010】
さらに、砥粒として、従来と同様の酸化物を用いることで、従来の研磨と同等の研磨性能、被研磨面の品質等を得ることができる。また、シリカ等の酸化物は比較的安価で入手し易いため、コスト面で有利となる。さらに、酸化物の粒子は、略真球形状に製造し易いという利点もある。
【0011】
【発明の実施の形態】
以下に、本発明の固定砥粒研磨材の実施形態について詳しく説明する。なお、本発明の固定砥粒研磨材は、下記の実施形態に限定されるものではない。本発明の固定砥粒研磨材は、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
【0012】
上述したように、本発明の固定砥粒研磨材は、基材と、該基材の表面に形成され砥粒を含む研磨層とを備える。基材は、必要な弾性および強度を有し、研磨層を保持できるものであればよい。例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等のポリエステル、ポリカーボネート(PC)等からなるフィルム等が好適である。基材の厚さは、特に限定されるものではなく、例えば、25〜150μm程度とすればよい。
【0013】
また、基材と研磨層との接着性の向上、研磨層の表面のパターニング等、目的に応じて、基材の表面に予めバッファー層を形成しておいてもよい。例えば、基材表面に易接着層を形成してバッファー層とすればよい。また、基材表面を熱処理、コロナ処理、プラズマ処理等してバッファー層を形成してもよい。易接着層は、例えば、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂等からなるバッファー塗工液を、基材表面に塗布、乾燥することで形成することができる。
【0014】
研磨層は、表面活性が低く略真球状の酸化物粒子を含む砥粒を有する。砥粒に含まれる酸化物粒子の表面活性を示す指標として、以下の二つが挙げられる。第一の指標は、酸化物粒子の真球度である。酸化物粒子は真球に近いほど、つまり真球度が1に近いほど、表面活性は低くなる。また、真球度が1に近いほど、被研磨面に傷を付け難くなる。真球度を1に近づけるという観点から、酸化物粒子の真球度は0.8以上であることが望ましい。真球度が0.9以上であるとより好適である。酸化物粒子の真球度は、上述したように、SEMによる観察で求めることができる。
【0015】
第二の指標は、酸化物粒子の粒子径である。粒子径がある程度大きいと、粒子の表面活性は低くなる。粒子の大きさを最適化するという観点から、酸化物粒子の平均粒子径は、0.01μm以上10μm以下であることが望ましい。平均粒子径が0.01μm未満の場合には、酸化物粒子の製造時に粒子形状が不定形となり易く、略真球状の粒子を得難い。また、酸化物粒子の付着力も大きくなる。平均粒子径を0.1μm以上とするとより好適である。一方、平均粒子径が10μmを超えると、研磨作用が大きくなり、被研磨面に研磨傷を生じさせる等の損傷を与えるおそれがある。また、光ファイバーコネクタ端面を研磨した場合に、光ファイバーとフェルールとの段差が生じるおそれがある。平均粒子径を1μm以下とするとより好適である。本明細書では、平均粒子径として、レーザー回折法により求めた値を採用する。
【0016】
以上より、本発明の固定砥粒研磨材における砥粒は、真球度が0.8以上であり、平均粒子径が0.01μm以上10μm以下である酸化物粒子を含む態様が特に好適である。
【0017】
酸化物粒子を構成する酸化物の種類は、特に限定されるものではない。例えば、シリカ(SiO)、酸化ケイ素(SiO)、アルミナ(Al)、酸化チタン(チタニア:TiO)、酸化ジルコニウム(ジルコニア:ZrO)、酸化クロム(CrO)等が挙げられる。また、上記単一金属の酸化物の他、SiO−Al、SiO−TiO、SiO−ZrO等の複合酸化物を用いてもよい。なかでも、最終仕上げとしての研磨特性が良好であることから、シリカを用いることが望ましい。
【0018】
表面活性が低く略真球状の酸化物微粒子の製造方法は、特に限定されるものではない。例えば、VMC(Vaperized Metal Combution)法等の金属粉末を酸化させる方法により製造することができる。また、合成酸化物および天然酸化物の少なくとも一種から溶融法により製造することができる。ここで、合成酸化物としては、例えば、コロイダルシリカ、塩化物加水分解シリカ、ゾル・ゲル法シリカ等が挙げられる。また、天然酸化物としては、例えば、SiO、SiO、Al、TiO、ZrO、CrO等が挙げられる。上記二種類の方法では、原料となる金属粉末、合成酸化物等が高温にさらされるため、表面活性の低い酸化物粒子を得ることができる。なお、上記二種類の方法により得られた酸化物粒子を混合して用いてもよい。
【0019】
例えば、VMC法によれば、略真球状の酸化物粒子を、瞬時に大量に得ることができる。VMC法とは、酸素を含む雰囲気内においてバーナーにより化学炎を形成し、この化学炎中に、目的とする酸化物粒子を形成する金属粉末を粉塵雲が形成される程度の量投入し、爆燃を起こさせて酸化物粒子を合成する方法である。例えば、SiO粒子を得る場合には、化学炎中にSi粉末を投入すればよい。なお、投入する粉末の粒子径、投入量、火炎温度等を調整することにより、製造される粒子の粒子径等を調整することができる。
【0020】
砥粒は、上記酸化物粒子の他、他の粒子を含んでいても構わない。例えば、砥粒として通常用いられるシリカ、酸化ケイ素、コロイダルシリカ、オルガノシリカ、アルミナ、チタニア、ジルコニア、酸化鉄、酸化クロム、酸化スズ等の粒子を含むことができる。この場合、被研磨面への砥粒の付着を抑制するという観点から、砥粒における上記酸化物粒子の含有割合を、砥粒全体の重量を100wt%とした場合の3wt%以上とすることが望ましい。10wt%以上とするとより好適である。また、砥粒を上記酸化物粒子のみで構成してもよい。つまり、酸化物粒子の含有割合は100wt%であってもよい。なお、砥粒を構成する材料の中には、後述する結着剤としての役割をも果たすものがある。本明細書では、そのような材料の重量も、砥粒の重量に含めることとする。
【0021】
研磨層は、上記砥粒に加えて、砥粒どうし、および砥粒と基材とを接着するための結着剤を含む。結着剤の種類は、特に限定されるものではなく、既に公知の材料を用いればよい。例えば、ウレタン樹脂、シリコーン樹脂、塩化ビニル樹脂、アクリル樹脂等が挙げられる。研磨層における結着剤の配合割合は、特に限定されるものではなく、例えば、砥粒の100重量部に対して10〜186重量部程度配合すればよい。また、研磨層は、上記砥粒および結着剤以外に、潤滑剤、砥粒の分散剤等を含んでいても構わない。
【0022】
本発明の固定砥粒研磨材は、上記砥粒、結着剤等を含む塗工剤を基材の表面に塗布、乾燥して製造することができる。具体的には、まず、砥粒および結着剤等を所定の溶剤に分散させた塗工剤を調製する。次いで、バーコータ法、マイクログラビア法、コンマコート法等により、塗工剤を基材表面に塗布した後、塗工剤に応じて、20〜140℃に加熱して乾燥すればよい。形成する研磨層の厚さは、被研磨面の材質や研磨工程に応じて適宜設定すればよい。例えば、3〜15μm程度とすると好適である。このように製造された本発明の固定砥粒研磨材を、シート状、帯状、円形状等、所定の形状に加工して用いればよい。
【0023】
本発明の固定砥粒研磨材の用途は、特に限定されるものではない。本発明の固定砥粒研磨材は、例えば、光ファイバーコネクタ、半導体ウエーハ、光学レンズ、光ディスク基板等の種々の精密部品の研磨に用いることができる。特に、被研磨面が親水性の酸化物からなる場合には、本発明の固定砥粒研磨材による研磨がより効果的である。また、被研磨面が金属からなり、空気中の酸素により被研磨面の表面に自然酸化膜が生じている場合にも、本発明の固定砥粒研磨材による研磨が効果的である。本発明の固定砥粒研磨材は、研磨の最終仕上げ工程の他、研磨の中間工程等においても使用することができる。
【0024】
【実施例】
上記実施形態に基づいて本発明の固定砥粒研磨材を製造した。また、比較例として、砥粒に、表面活性が低く略真球状の酸化物粒子を含まない固定砥粒研磨材を製造した。製造した固定砥粒研磨材を使用して、光ファイバーコネクタのフェルール端面の仕上げ研磨を行い、研磨後の被研磨面を評価した。以下、固定砥粒研磨材の製造、仕上げ研磨および被研磨面の評価について説明する。
【0025】
〈固定砥粒研磨材の製造〉
(1)#11の研磨材
砥粒として、コロイダルシリカ(日産化学工業株式会社製:平均粒子径0.02μm)と、VMC法で製造され表面活性の低いシリカ粒子(商品名「SE1050−WA」、株式会社アドマテックス製:平均粒子径0.2μm、真球度0.98)とを用いた。また、結着剤として、シリコーン樹脂(信越化学工業株式会社製)を用いた。まず、コロイダルシリカ90重量部と、シリカ粒子10重量部と、シリコーン樹脂100重量部とを、溶剤であるメチルエチルケトン(MEK)に分散させ、塗工剤を調製した。砥粒におけるシリカ粒子の割合は10wt%とした。次いで、調製した塗工剤を、バーコータ法により、基材であるポリエステルシート(株式会社パナック製:厚さ75μm)の表面に塗布した。なお、塗工剤を塗布したポリエステルシートの表面には、予め易接着処理を施しておいた。その後、60℃に加熱して、塗布した塗工剤を乾燥させ、研磨層を形成した。形成された研磨層の厚さは、5μmであった。このように製造された固定砥粒研磨材を、円形状に加工して下記の仕上げ研磨に供した。なお、本固定砥粒研磨材を、#11の研磨材と番号付けした。本固定砥粒研磨材は、本発明の固定砥粒研磨材となる。
【0026】
(2)#12の研磨材
上記#11の研磨材における結着剤を、ポリウレタン樹脂(旭電化工業株式会社製)に変更した以外は、上記(1)と同様にして固定砥粒研磨材を製造した。製造された固定砥粒研磨材を、#12の研磨材と番号付けした。本固定砥粒研磨材は、本発明の固定砥粒研磨材となる。
【0027】
(3)#21の研磨材
砥粒として、VMC法で製造され表面活性の低いシリカ粒子を用いずに、固定砥粒研磨材を製造した。すなわち、上記#11の研磨材の製造において、コロイダルシリカのみを砥粒とした以外は、上記(1)と同様にして固定砥粒研磨材を製造した。ちなみに、コロイダルシリカとシリコーン樹脂との配合比は、100重量部:100重量部とした。製造された固定砥粒研磨材を、#21の研磨材と番号付けした。本固定砥粒研磨材は、比較例の固定砥粒研磨材となる。
【0028】
(4)#22の研磨材
上記#21の研磨材と同様、砥粒として、VMC法で製造され表面活性の低いシリカ粒子を用いずに、固定砥粒研磨材を製造した。上記#12の研磨材の製造において、コロイダルシリカのみを砥粒とした以外は、上記(2)と同様にして固定砥粒研磨材を製造した。ちなみに、コロイダルシリカとポリウレタン樹脂との配合比は、100重量部:100重量部とした。製造された固定砥粒研磨材を、#22の研磨材と番号付けした。本固定砥粒研磨材は、比較例の固定砥粒研磨材となる。
【0029】
〈仕上げ研磨および被研磨面の評価〉
(1)仕上げ研磨
製造した上記#11、#12、#21、#22の各研磨材を、研磨機(「OFL−15」、セイコーインスツル株式会社製)に取り付け、光ファイバーコネクタのフェルール端面の仕上げ研磨を180秒間行った。また、比較のため、光ファイバーコネクタのフェルール端面の仕上げ研磨用として市販されている研磨シートAおよびF(A:商品名「ATR−01」:日本ミクロコーティング株式会社製、F:商品名「FOS−01」:大日本印刷株式会社製)をも用いて、同様に仕上げ研磨を行った。なお、光ファイバーコネクタのフェルール端面には、仕上げ研磨までの前研磨として、規定のAPCフェルール用研磨処方を施した。そして、仕上げ研磨直後のフェルール端面を、以下(a)〜(d)の四つの項目にて評価した。
【0030】
(a)フェルール端面への付着物の有無:光学顕微鏡によりフェルール端面を観察し、付着物の有無を調査した。(b)フェルール端面の研磨傷(スクラッチ)の有無、および鏡面状態:光学顕微鏡によりフェルール端面を観察し、研磨傷の有無、および鏡面状態を調査した。(c)光ファイバー部中心線における表面粗さ(Ra):テーラーホブソン株式会社製の表面形状粗さ測定機により、光ファイバー部中心線における表面粗さ;Ra(nm)を測定した。(d)光ファイバーのフェルールに対する凸量:テーラーホブソン株式会社製の超精密段差測定器により、光ファイバーのフェルールに対する凸量(nm)を測定した。
【0031】
(2)被研磨面の評価
(2−1)#11、#12の研磨材
#11の研磨材による研磨と、#12の研磨材による研磨とでは、研磨後のフェルール端面は、ほぼ同じ状態となった。研磨後のフェルール端面の一例として、図1に、#11の研磨材による仕上げ研磨後のフェルール端面の光学顕微鏡写真を示す。図1に示すように、#11の研磨材による研磨では、被研磨面であるフェルール端面において、付着物および研磨屑は観察されなかった。また、フェルール端面には研磨傷は無く、良好な鏡面状態に仕上がっていた。光ファイバー部中心線における表面粗さ(Ra)は、2.0〜2.6nmであった。これは、規格値よりも、0.5〜1.0nm程度小さい値である。これより、被研磨面の鏡面状態が良好であることがわかる。また、光ファイバーのフェルールに対する凸量は5nmとなり、規格値の範囲内であることが確認できた。#12の研磨材による仕上げ研磨においても、上記同様の結果となった。
【0032】
(2−2)#21、#22の研磨材
#21の研磨材による研磨と、#22の研磨材による研磨とでは、研磨後のフェルール端面は、ほぼ同じ状態となった。研磨後のフェルール端面の一例として、図2に、#21の研磨材による仕上げ研磨後のフェルール端面の光学顕微鏡写真を示す。図2に示すように、#21の研磨材による研磨では、フェルール端面のほぼ全体において、雨滴形状の付着物が観察された。この付着物の大きさは、1〜150mm程度であり、長軸方向がほぼ同方向に揃っていることがわかる。また、フェルール端面の周縁部には、研磨屑も観察された。なお、研磨傷は観察されず、鏡面状態に仕上がっていた。光ファイバー部中心線における表面粗さ(Ra)、および光ファイバーのフェルールに対する凸量は、ともに規格値の範囲内であった。#22の研磨材による仕上げ研磨においても、上記同様の結果となった。
【0033】
(2−3)市販の研磨シートA、F
研磨シートAによる研磨と、研磨シートBによる研磨とでは、研磨後のフェルール端面は、ほぼ同じ状態となった。すなわち、研磨シートA、Fによる研磨では、フェルール端面において、上記図2に示したような雨滴形状の付着物が観察された。研磨シートAでは、フェルール端面の全体の7割程度の領域に付着物が観察された。研磨シートFでは、フェルール端面のほぼ全体に付着物が観察された。付着物の大きさは、1〜150mm程度であり、長軸方向がほぼ同方向に揃っていた。被研磨面を、アルコールを含ませた不織布等でこすっても、付着物を除去することはできなかった。これより、付着物は被研磨面に固着していることがわかる。また、フェルール端面の周縁部には、研磨屑も観察された。なお、研磨傷は観察されず、鏡面状態に仕上がっていた。光ファイバー部中心線における表面粗さ(Ra)、および光ファイバーのフェルールに対する凸量は、ともに規格値の範囲内であった。
【0034】
(2−4)まとめ
以上より、表面活性の低い酸化物粒子を含まない比較例の#21、#22の研磨材、および市販の研磨シートA、Fによる研磨では、研磨後、砥粒等や研磨屑が被研磨面に付着残存することがわかった。これに対して、本発明の固定砥粒研磨材である#11、#12の研磨材によれば、被研磨面へ砥粒等や研磨屑を付着残存させずに、光ファイバーコネクタのフェルール端面を高精度に研磨できることが確認できた。
【0035】
【発明の効果】
本発明の固定砥粒研磨材は、研磨層における砥粒中に、表面活性が低く略真球状の酸化物粒子を含む。砥粒に含まれる酸化物粒子は、表面活性が低いため、被研磨面との親和力が小さい。よって、研磨後に、砥粒が被研磨面へ付着残存し難い。したがって、本発明の固定砥粒研磨材を用いれば、研磨後に被研磨面の付着物を除去する工程を省略することができ、研磨工程を簡素化することができる。また、付着物の残存による光学特性の低下のおそれも少ない。さらに、砥粒に含まれる酸化物粒子の粒子形状が略真球状であるため、被研磨面の粗さが小さくなり、被研磨面の平坦性が向上する。
【図面の簡単な説明】
【図1】#11の研磨材による仕上げ研磨後のフェルール端面の光学顕微鏡写真である。
【図2】#21の研磨材による仕上げ研磨後のフェルール端面の光学顕微鏡写真である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fixed abrasive polishing material used for finish polishing of an end face of an optical fiber connector, a surface of a semiconductor wafer, or the like.
[0002]
[Prior art]
Optical fibers used as transmission means for optical communication are required to have as small an optical loss as possible with recent demands for large capacity and high efficiency. An optical fiber connector is used to connect the optical fibers. In the optical fiber connector, the periphery of the connection end of the optical fiber is covered with a ferrule. The quality of the connection end face of the optical fiber connector is very important because it affects the optical characteristics of the optical fiber. Therefore, the end face of the optical fiber connector is mirror-finished by polishing in a plurality of stages. As a final finish of polishing, precise mirror polishing is performed using a fixed abrasive polishing material such as a polishing sheet, a polishing tape, a polishing grindstone, a polishing cloth provided with a polishing layer containing fine abrasive grains. Precise mirror polishing using a fixed abrasive is being used as a final finish in polishing the surface and edge surface of a semiconductor wafer or the like.
[0003]
As a fixed abrasive polishing material used for precise mirror polishing, for example, a polishing medium in which a polishing layer containing abrasive grains and a predetermined binder is formed on a support is disclosed (for example, Patent Document 1). 1). Further, as a polishing tape provided with a polishing layer containing silica particles and a binder on a base material, a polishing tape having a center line average roughness of the polishing layer surface of 0.005 to 0.5 μm is disclosed. (For example, see Patent Document 2).
[0004]
[Patent Document 1]
JP 2002-254319 A [Patent Document 2]
JP-A-2002-254326
[Problems to be solved by the invention]
However, when precise mirror polishing is performed using a fixed abrasive polishing material as disclosed in Patent Literatures 1 and 2, after polishing, abrasives contained in the polishing layer adhere to the surface to be polished. There is a problem that remains. Therefore, it is necessary to separately provide a step of removing the deposits on the surface to be polished. Further, if the adhered substance remains on the surface to be polished, the desired optical characteristics cannot be obtained, and there is a possibility that a problem may occur during use.
[0006]
The present invention has been made in order to solve the above problems, and provides a fixed abrasive polishing material that can be polished with high precision, and in which abrasive grains and the like hardly adhere to a polished surface even after polishing. The task is to
[0007]
[Means for Solving the Problems]
The fixed abrasive polishing material of the present invention is a fixed abrasive polishing material comprising a base material and a polishing layer formed on the surface of the base material and containing abrasive grains, wherein the abrasive grains have low surface activity. It is characterized by containing substantially spherical oxide particles.
[0008]
That is, in the fixed abrasive polishing material of the present invention, the abrasive particles in the polishing layer contain substantially spherical oxide particles having low surface activity. Conventionally, oxide particles such as silicon dioxide (silica) and aluminum oxide (alumina) have been used as abrasive grains used for precision polishing such as mirror polishing. However, these oxide particles have a reactive group such as a hydrophilic group on the particle surface and have high surface activity. For this reason, for example, when the surface to be polished is made of a hydrophilic oxide, it is considered that the abrasive particles easily adhere to the surface to be polished due to its surface activity (affinity). The oxide particles contained in the abrasive grains of the fixed abrasive polishing material of the present invention have low surface activity. Therefore, the affinity for the surface to be polished is small, and it is difficult to adhere to the surface to be polished after polishing. Therefore, if the fixed abrasive polishing material of the present invention is used, the step of removing the deposit on the surface to be polished after polishing can be omitted, and the polishing step can be simplified. In addition, there is little possibility that the optical characteristics are deteriorated due to the remaining of the attached matter.
[0009]
The polishing characteristics of the fixed abrasive polishing material vary greatly depending on the shape of the particles constituting the abrasive grains. From the viewpoint of low surface activity, it is desired to use particles having a specific surface area as small as possible. Therefore, when there are few pores on the particle surface, it is desirable to use particles as spherical as possible. That is, the shape of the particles constituting the abrasive grains is an important element of the fixed abrasive polishing material. The oxide particles used in the fixed abrasive polishing material of the present invention are substantially spherical. The substantially spherical shape means a true sphere or a spherical shape very close to a true sphere. Specifically, it means spherical particles whose ratio of the minor axis to the observed major axis is 0.8 or more as a result of observation with a scanning electron microscope (SEM). Since the particle shape is substantially spherical, the cutting edge portion of the oxide particle is smooth and the contact area with the surface to be polished is small. Therefore, by using the fixed abrasive polishing material of the present invention, the roughness of the surface to be polished can be reduced, and the flatness of the surface to be polished can be improved.
[0010]
Furthermore, by using the same oxide as the conventional one as the abrasive grain, it is possible to obtain the same polishing performance, the quality of the surface to be polished, etc. as in the conventional polishing. Further, oxides such as silica are relatively inexpensive and easily available, which is advantageous in terms of cost. Further, the oxide particles have an advantage that they can be easily manufactured into a substantially spherical shape.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the fixed abrasive polishing material of the present invention will be described in detail. The fixed abrasive polishing material of the present invention is not limited to the following embodiment. The fixed abrasive polishing material of the present invention can be embodied in various forms with modifications, improvements, and the like that can be made by those skilled in the art without departing from the gist of the present invention.
[0012]
As described above, the fixed abrasive polishing material of the present invention includes a base material and a polishing layer formed on the surface of the base material and containing abrasive grains. The substrate may have any necessary elasticity and strength and can hold the polishing layer. For example, a film made of polyester such as polyethylene terephthalate (PET) or polybutylene terephthalate (PBT), a film made of polycarbonate (PC), or the like is suitable. The thickness of the substrate is not particularly limited, and may be, for example, about 25 to 150 μm.
[0013]
Further, a buffer layer may be formed on the surface of the base material in advance according to the purpose, such as improvement in adhesion between the base material and the polishing layer and patterning of the surface of the polishing layer. For example, a buffer layer may be formed by forming an easily adhesive layer on the surface of the base material. Alternatively, the buffer layer may be formed by heat treatment, corona treatment, plasma treatment, or the like on the surface of the base material. The easy-adhesion layer can be formed by, for example, applying a buffer coating solution composed of an epoxy resin, an acrylic resin, a polyester resin, or the like to the surface of the base material and drying the coating solution.
[0014]
The polishing layer has abrasive grains having low surface activity and substantially spherical oxide particles. The following two can be mentioned as indices indicating the surface activity of the oxide particles contained in the abrasive grains. The first index is the sphericity of the oxide particles. The closer the oxide particles are to a true sphere, that is, the closer the sphericity is to 1, the lower the surface activity. Further, the closer the sphericity is to 1, the more difficult it is to scratch the surface to be polished. From the viewpoint of making the sphericity close to 1, the sphericity of the oxide particles is desirably 0.8 or more. It is more preferable that the sphericity is 0.9 or more. The sphericity of the oxide particles can be determined by observation with an SEM as described above.
[0015]
The second index is the particle size of the oxide particles. If the particle size is somewhat large, the surface activity of the particles will be low. From the viewpoint of optimizing the particle size, the average particle diameter of the oxide particles is desirably 0.01 μm or more and 10 μm or less. When the average particle diameter is less than 0.01 μm, the particle shape tends to be irregular when producing oxide particles, and it is difficult to obtain substantially spherical particles. Further, the adhesion of the oxide particles also increases. It is more preferable that the average particle size be 0.1 μm or more. On the other hand, if the average particle diameter exceeds 10 μm, the polishing action becomes large, and there is a possibility that the surface to be polished may be damaged such as causing a polishing scratch. Further, when the end face of the optical fiber connector is polished, a step may be generated between the optical fiber and the ferrule. It is more preferable that the average particle size be 1 μm or less. In this specification, a value obtained by a laser diffraction method is used as the average particle diameter.
[0016]
As described above, the abrasive grains in the fixed abrasive polishing material of the present invention have a sphericity of 0.8 or more, and an embodiment containing oxide particles having an average particle diameter of 0.01 μm or more and 10 μm or less is particularly preferable. .
[0017]
The type of the oxide constituting the oxide particles is not particularly limited. For example, silica (SiO 2 ), silicon oxide (SiO), alumina (Al 2 O 3 ), titanium oxide (titania: TiO 2 ), zirconium oxide (zirconia: ZrO 2 ), chromium oxide (CrO 2 ), and the like can be given. . In addition to the single metal oxide, a composite oxide such as SiO 2 —Al 2 O 3 , SiO 2 —TiO 2 , and SiO 2 —ZrO 2 may be used. Above all, it is desirable to use silica because the polishing properties as the final finish are good.
[0018]
The method for producing substantially spherical oxide fine particles having a low surface activity is not particularly limited. For example, it can be manufactured by a method of oxidizing a metal powder such as a VMC (Vaporized Metal Combination) method. Further, it can be produced from at least one of a synthetic oxide and a natural oxide by a melting method. Here, examples of the synthetic oxide include colloidal silica, chloride hydrolyzed silica, and sol-gel method silica. Examples of the natural oxide include SiO 2 , SiO, Al 2 O 3 , TiO 2 , ZrO 2 , and CrO 2 . In the above two methods, the metal powder, the synthetic oxide and the like as the raw materials are exposed to a high temperature, so that oxide particles having low surface activity can be obtained. The oxide particles obtained by the above two methods may be mixed and used.
[0019]
For example, according to the VMC method, substantially spherical oxide particles can be instantaneously obtained in large quantities. In the VMC method, a chemical flame is formed by a burner in an atmosphere containing oxygen, and metal powder for forming the target oxide particles is introduced into the chemical flame in such an amount that a dust cloud is formed. Is caused to synthesize oxide particles. For example, when obtaining SiO 2 particles, Si powder may be introduced into a chemical flame. The particle size and the like of the particles to be produced can be adjusted by adjusting the particle size, the input amount, the flame temperature and the like of the powder to be charged.
[0020]
The abrasive grains may include other particles in addition to the oxide particles. For example, particles such as silica, silicon oxide, colloidal silica, organosilica, alumina, titania, zirconia, iron oxide, chromium oxide, and tin oxide that are commonly used as abrasive grains can be included. In this case, from the viewpoint of suppressing the attachment of the abrasive grains to the surface to be polished, the content ratio of the oxide particles in the abrasive grains is set to 3 wt% or more when the weight of the entire abrasive grains is 100 wt%. desirable. More preferably, the content is 10% by weight or more. Further, the abrasive grains may be composed only of the oxide particles. That is, the content ratio of the oxide particles may be 100 wt%. Some of the materials constituting the abrasive grains also serve as a binder described later. In the present specification, the weight of such a material is also included in the weight of the abrasive.
[0021]
The polishing layer contains, in addition to the above abrasive grains, abrasive grains and a binder for bonding the abrasive grains to the base material. The type of the binder is not particularly limited, and a known material may be used. For example, a urethane resin, a silicone resin, a vinyl chloride resin, an acrylic resin and the like can be mentioned. The mixing ratio of the binder in the polishing layer is not particularly limited, and for example, may be about 10 to 186 parts by weight based on 100 parts by weight of the abrasive grains. Further, the polishing layer may contain a lubricant, a dispersant for abrasive grains, and the like, in addition to the abrasive grains and the binder.
[0022]
The fixed abrasive polishing material of the present invention can be manufactured by applying a coating agent containing the above-mentioned abrasive particles, binder and the like to the surface of a substrate and drying. Specifically, first, a coating agent in which abrasive grains, a binder and the like are dispersed in a predetermined solvent is prepared. Next, a coating agent is applied to the surface of the base material by a bar coater method, a microgravure method, a comma coat method, or the like, and then heated to 20 to 140 ° C. and dried according to the coating agent. The thickness of the polishing layer to be formed may be appropriately set according to the material of the surface to be polished and the polishing process. For example, the thickness is preferably about 3 to 15 μm. The fixed abrasive polishing material of the present invention thus manufactured may be processed into a predetermined shape such as a sheet shape, a band shape, a circular shape, and used.
[0023]
The use of the fixed abrasive polishing material of the present invention is not particularly limited. The fixed abrasive polishing material of the present invention can be used, for example, for polishing various precision parts such as optical fiber connectors, semiconductor wafers, optical lenses, and optical disk substrates. In particular, when the surface to be polished is made of a hydrophilic oxide, polishing with the fixed abrasive polishing material of the present invention is more effective. Even when the surface to be polished is made of metal and a natural oxide film is formed on the surface of the surface to be polished by oxygen in the air, the polishing using the fixed abrasive polishing material of the present invention is effective. The fixed abrasive polishing material of the present invention can be used not only in the final finishing step of polishing but also in intermediate steps of polishing and the like.
[0024]
【Example】
The fixed abrasive material of the present invention was manufactured based on the above embodiment. In addition, as a comparative example, a fixed abrasive polishing material having low surface activity and substantially no spherical oxide particles was manufactured. Using the manufactured fixed abrasive polishing material, the end face of the ferrule of the optical fiber connector was finish-polished, and the polished surface after polishing was evaluated. Hereinafter, the production of the fixed abrasive, the final polishing, and the evaluation of the polished surface will be described.
[0025]
<Manufacture of fixed abrasives>
(1) As abrasive grains of # 11, colloidal silica (manufactured by Nissan Chemical Industries, Ltd .: average particle size 0.02 μm) and silica particles produced by the VMC method and having low surface activity (trade name “SE1050-WA”) Manufactured by Admatechs Co., Ltd .: average particle diameter 0.2 μm, sphericity 0.98). A silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd.) was used as a binder. First, 90 parts by weight of colloidal silica, 10 parts by weight of silica particles, and 100 parts by weight of a silicone resin were dispersed in methyl ethyl ketone (MEK) as a solvent to prepare a coating agent. The ratio of the silica particles in the abrasive grains was 10 wt%. Next, the prepared coating agent was applied to the surface of a polyester sheet (manufactured by Panac Co., Ltd .: 75 μm in thickness) as a base material by a bar coater method. In addition, the surface of the polyester sheet to which the coating agent was applied was previously subjected to an easy adhesion treatment. Then, it heated at 60 degreeC and dried the applied coating agent, and formed the polishing layer. The thickness of the formed polishing layer was 5 μm. The fixed abrasive abrasive thus manufactured was processed into a circular shape and subjected to the following finish polishing. In addition, this fixed abrasive polishing material was numbered as a polishing material of # 11. The present fixed abrasive polishing material is the fixed abrasive polishing material of the present invention.
[0026]
(2) Abrasive # 12 A fixed abrasive abrasive was prepared in the same manner as (1) except that the binder in the abrasive # 11 was changed to a polyurethane resin (manufactured by Asahi Denka Kogyo Co., Ltd.). Manufactured. The manufactured fixed abrasive abrasive was numbered as # 12 abrasive. The present fixed abrasive polishing material is the fixed abrasive polishing material of the present invention.
[0027]
(3) A fixed-grain abrasive was produced without using the silica particles having a low surface activity produced by the VMC method as the abrasive grains of # 21. That is, a fixed abrasive polishing material was produced in the same manner as in the above (1), except that only the colloidal silica was used in the production of the abrasive material of # 11. Incidentally, the mixing ratio of the colloidal silica and the silicone resin was 100 parts by weight: 100 parts by weight. The manufactured fixed-abrasive abrasive was numbered as # 21 abrasive. This fixed abrasive polishing material is a fixed abrasive polishing material of a comparative example.
[0028]
(4) Abrasive # 22 Similar to the abrasive # 21, a fixed abrasive abrasive was manufactured without using silica particles having a low surface activity manufactured by the VMC method as abrasive grains. A fixed abrasive polishing material was produced in the same manner as in (2) above, except that only the colloidal silica was used as the abrasive particles in the production of the abrasive material # 12. Incidentally, the mixing ratio of colloidal silica and polyurethane resin was 100 parts by weight: 100 parts by weight. The manufactured fixed abrasives were numbered as # 22 abrasives. This fixed abrasive polishing material is a fixed abrasive polishing material of a comparative example.
[0029]
<Evaluation of finish polishing and polished surface>
(1) Each of the abrasives # 11, # 12, # 21, and # 22 manufactured by finish polishing is attached to a polishing machine (“OFL-15”, manufactured by Seiko Instruments Inc.), and the ferrule end face of the optical fiber connector is attached. Finish polishing was performed for 180 seconds. For comparison, polishing sheets A and F (A: trade name “ATR-01”: manufactured by Nihon Micro Coating Co., Ltd., F: trade name “FOS-”) are commercially available for finish polishing of ferrule end faces of optical fiber connectors. 01 ": manufactured by Dai Nippon Printing Co., Ltd.). Note that a prescribed APC ferrule polishing prescription was applied to the ferrule end face of the optical fiber connector as pre-polishing until finish polishing. Then, the ferrule end face immediately after the finish polishing was evaluated by the following four items (a) to (d).
[0030]
(A) Presence or absence of attached matter on ferrule end face: The ferrule end face was observed with an optical microscope, and the presence or absence of attached matter was investigated. (B) Presence / absence of polishing flaw (scratch) on ferrule end face and mirror surface state: The ferrule end face was observed with an optical microscope, and the presence / absence of polishing flaw and the mirror surface state were examined. (C) Surface roughness (Ra) at the center line of the optical fiber: Ra (nm) was measured using a surface profile roughness measuring instrument manufactured by Taylor Hobson Co., Ltd. (D) The amount of protrusion of the optical fiber relative to the ferrule: The amount of protrusion (nm) of the optical fiber relative to the ferrule was measured using an ultra-precision level difference meter manufactured by Taylor Hobson.
[0031]
(2) Evaluation of surface to be polished (2-1) Polishing of abrasives # 11 and # 12 with abrasive # 11 and polishing with abrasive of # 12 have substantially the same ferrule end surface after polishing. It became. As an example of the ferrule end face after polishing, FIG. 1 shows an optical microscope photograph of the ferrule end face after finish polishing with the abrasive of # 11. As shown in FIG. 1, in the polishing with the abrasive material of # 11, no deposits and polishing debris were observed on the end surface of the ferrule which was the surface to be polished. Further, there was no polishing flaw on the end face of the ferrule, and the ferrule was finished in a good mirror surface state. The surface roughness (Ra) at the center line of the optical fiber portion was 2.0 to 2.6 nm. This is a value smaller by about 0.5 to 1.0 nm than the standard value. This indicates that the mirror surface condition of the polished surface is good. Also, the convex amount of the optical fiber with respect to the ferrule was 5 nm, and it could be confirmed that it was within the standard value range. The same result as above was obtained in the finish polishing using the abrasive of # 12.
[0032]
(2-2) Polishing of abrasive materials # 21 and # 22 With abrasive material # 21 and polishing with abrasive material of # 22, the ferrule end faces after polishing were almost in the same state. As an example of the ferrule end face after polishing, FIG. 2 shows an optical microscope photograph of the ferrule end face after finish polishing with the abrasive of # 21. As shown in FIG. 2, in the polishing with the abrasive of # 21, a raindrop-shaped deposit was observed on almost the entire end face of the ferrule. The size of the attached matter is about 1 to 150 mm, and it can be seen that the major axis directions are substantially aligned in the same direction. In addition, polishing dust was also observed on the peripheral edge of the ferrule end face. No polishing scratches were observed, and the mirror finished. The surface roughness (Ra) at the center line of the optical fiber and the convexity of the optical fiber with respect to the ferrule were both within the range of the standard value. The same result as above was obtained in the finish polishing using the abrasive of # 22.
[0033]
(2-3) Commercially available polishing sheets A and F
In the polishing using the polishing sheet A and the polishing using the polishing sheet B, the end face of the ferrule after polishing was almost in the same state. That is, in the polishing using the polishing sheets A and F, a raindrop-shaped deposit as shown in FIG. 2 was observed on the end face of the ferrule. In the polishing sheet A, the deposit was observed in about 70% of the entire end face of the ferrule. In the polishing sheet F, adhered matter was observed on almost the entire end face of the ferrule. The size of the attached matter was about 1 to 150 mm, and the major axis directions were almost aligned in the same direction. Even if the surface to be polished was rubbed with a nonwoven fabric or the like impregnated with alcohol, it was not possible to remove the deposits. From this, it can be seen that the deposit is fixed to the surface to be polished. In addition, polishing dust was also observed on the peripheral edge of the ferrule end face. No polishing scratches were observed, and the mirror finished. The surface roughness (Ra) at the center line of the optical fiber and the convexity of the optical fiber with respect to the ferrule were both within the range of the standard value.
[0034]
(2-4) Summary From the above, in the polishing by the abrasives of Comparative Examples # 21 and # 22 containing no oxide particles having low surface activity and the commercially available polishing sheets A and F, after polishing, the abrasive grains and the like were removed. It was found that the polishing debris adhered and remained on the surface to be polished. On the other hand, according to the abrasives # 11 and # 12, which are the fixed abrasive abrasives of the present invention, the ferrule end face of the optical fiber connector can be fixed without leaving abrasive grains or polishing debris on the surface to be polished. It was confirmed that polishing was possible with high precision.
[0035]
【The invention's effect】
The fixed abrasive polishing material of the present invention contains substantially spherical oxide particles having low surface activity in the abrasive grains in the polishing layer. Oxide particles contained in abrasive grains have low surface activity, and thus have low affinity with the surface to be polished. Therefore, after polishing, the abrasive grains hardly remain on the surface to be polished. Therefore, if the fixed abrasive polishing material of the present invention is used, the step of removing the deposit on the surface to be polished after polishing can be omitted, and the polishing step can be simplified. In addition, there is little possibility that the optical characteristics are deteriorated due to the remaining of the attached matter. Furthermore, since the shape of the oxide particles contained in the abrasive grains is substantially spherical, the roughness of the polished surface is reduced, and the flatness of the polished surface is improved.
[Brief description of the drawings]
FIG. 1 is an optical micrograph of an end face of a ferrule after finish polishing with an abrasive of # 11.
FIG. 2 is an optical microscope photograph of a ferrule end face after finish polishing with an abrasive of # 21.

Claims (5)

基材と、
該基材の表面に形成され砥粒を含む研磨層と、
を備える固定砥粒研磨材であって、
前記砥粒は、表面活性が低く略真球状の酸化物粒子を含む固定砥粒研磨材。
A substrate,
A polishing layer formed on the surface of the base material and containing abrasive grains,
A fixed abrasive polishing material comprising:
The abrasive is a fixed-abrasive abrasive having low spherical surface activity and substantially spherical oxide particles.
前記酸化物粒子の平均粒子径は、0.01μm以上10μm以下である請求項1に記載の固定砥粒研磨材。The fixed abrasive polishing material according to claim 1, wherein the oxide particles have an average particle diameter of 0.01 μm or more and 10 μm or less. 前記酸化物粒子の真球度は、0.8以上である請求項1に記載の固定砥粒研磨材。The fixed abrasive polishing material according to claim 1, wherein the sphericity of the oxide particles is 0.8 or more. 前記酸化物粒子は、金属粉末を酸化させる方法により、あるいは合成酸化物および天然酸化物の少なくとも一種から溶融法により製造されたものである請求項1に記載の固定砥粒研磨材。2. The fixed abrasive polishing material according to claim 1, wherein the oxide particles are produced by a method of oxidizing a metal powder or a melting method from at least one of a synthetic oxide and a natural oxide. 3. 前記酸化物粒子は、前記砥粒全体の重量を100wt%とした場合の3wt%以上の割合で含まれる請求項1に記載の固定砥粒研磨材。2. The fixed abrasive polishing material according to claim 1, wherein the oxide particles are contained at a ratio of 3 wt% or more when the total weight of the abrasive particles is 100 wt%. 3.
JP2003119511A 2003-04-24 2003-04-24 Fixed abrasive grain polishing material Pending JP2004322253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003119511A JP2004322253A (en) 2003-04-24 2003-04-24 Fixed abrasive grain polishing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003119511A JP2004322253A (en) 2003-04-24 2003-04-24 Fixed abrasive grain polishing material

Publications (1)

Publication Number Publication Date
JP2004322253A true JP2004322253A (en) 2004-11-18

Family

ID=33498720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003119511A Pending JP2004322253A (en) 2003-04-24 2003-04-24 Fixed abrasive grain polishing material

Country Status (1)

Country Link
JP (1) JP2004322253A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192540A (en) * 2005-01-14 2006-07-27 Tmp Co Ltd Polishing film for liquid crystal color filter
JP2008000847A (en) * 2006-06-22 2008-01-10 Admatechs Co Ltd Polishing material
JP2008260815A (en) * 2007-04-10 2008-10-30 Admatechs Co Ltd Abrasive grain for polishing material, and polishing material
WO2012147312A1 (en) * 2011-04-25 2012-11-01 バンドー化学株式会社 Polishing film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59156670A (en) * 1983-02-22 1984-09-05 ノ−トン カンパニ− Grind stone
JPH07133109A (en) * 1993-11-08 1995-05-23 Mizusawa Ind Chem Ltd Production of granular alumina and spherical alumina particle
JPH11207639A (en) * 1998-01-20 1999-08-03 Kimoto & Co Ltd Abrasive film
JP2000159509A (en) * 1998-11-27 2000-06-13 Kansai Shingijutsu Kenkyusho:Kk Production of inorganic particles and inorganic particles
JP2001225273A (en) * 2000-02-15 2001-08-21 Xebec Technology Co Ltd Polishing/grinding material
JP2002038131A (en) * 2000-07-19 2002-02-06 Rodel Nitta Co Abrasive composition, method for producing abrasive composition and polishing method
JP2002254319A (en) * 2001-02-28 2002-09-10 Fuji Photo Film Co Ltd Polishing medium for optical fiber end surface
JP2002254326A (en) * 1995-04-10 2002-09-10 Dainippon Printing Co Ltd Abrasive tape

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59156670A (en) * 1983-02-22 1984-09-05 ノ−トン カンパニ− Grind stone
JPH07133109A (en) * 1993-11-08 1995-05-23 Mizusawa Ind Chem Ltd Production of granular alumina and spherical alumina particle
JP2002254326A (en) * 1995-04-10 2002-09-10 Dainippon Printing Co Ltd Abrasive tape
JPH11207639A (en) * 1998-01-20 1999-08-03 Kimoto & Co Ltd Abrasive film
JP2000159509A (en) * 1998-11-27 2000-06-13 Kansai Shingijutsu Kenkyusho:Kk Production of inorganic particles and inorganic particles
JP2001225273A (en) * 2000-02-15 2001-08-21 Xebec Technology Co Ltd Polishing/grinding material
JP2002038131A (en) * 2000-07-19 2002-02-06 Rodel Nitta Co Abrasive composition, method for producing abrasive composition and polishing method
JP2002254319A (en) * 2001-02-28 2002-09-10 Fuji Photo Film Co Ltd Polishing medium for optical fiber end surface

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192540A (en) * 2005-01-14 2006-07-27 Tmp Co Ltd Polishing film for liquid crystal color filter
JP2008000847A (en) * 2006-06-22 2008-01-10 Admatechs Co Ltd Polishing material
JP2008260815A (en) * 2007-04-10 2008-10-30 Admatechs Co Ltd Abrasive grain for polishing material, and polishing material
WO2012147312A1 (en) * 2011-04-25 2012-11-01 バンドー化学株式会社 Polishing film

Similar Documents

Publication Publication Date Title
EP0737549B1 (en) Abrasive tape and process for producing it
EP2431772B1 (en) Optical product and eyeglass plastic lens
JP4664277B2 (en) High precision mirror and manufacturing method thereof
JP2003049158A (en) Abrasive particle and abrasive body
TWI572947B (en) Display device with light diffusive glass panel
JP3084471B2 (en) Polishing method of ferrule end face of optical connector
EP2939060B1 (en) Method for the production of an optical article with improved anti-fouling properties
WO2018235808A1 (en) Glass plate
EP2434314A1 (en) Optical product and plastic lens for eyeglass
JP2004322253A (en) Fixed abrasive grain polishing material
JP2008260815A (en) Abrasive grain for polishing material, and polishing material
WO2017098579A1 (en) Polishing sheet equipped with nano-silica polishing particles, and polishing method and manufacturing method for optical fiber connector using polishing sheet
JP3924252B2 (en) Polishing film and method for producing the same
JP5289687B2 (en) Abrasive grains for abrasive, method for producing the same, and abrasive
JP2004083307A (en) Silica fine particle, coating material for low refractive index film formation, low refractive index film and method for manufacturing the same, and antireflection film
JP3978253B2 (en) Polishing film for optical fiber connector and polishing method using the same
JP2003071729A (en) Grinding film
CN106574987A (en) Optical lens comprising a protective removable film
JP4597395B2 (en) Polishing film and method for producing the same
JP2001085371A (en) Glazing abrasive for colloidal sillica
JP7197603B2 (en) Abrasive for multi-core ferrules
JPH1071572A (en) Abrasive tape and its manufacture
GB2281788A (en) Polishing optic fibre end face in a connector
JPH11333731A (en) Abrasive tape, coating liquid for the abrasive tape, and manufacture of the abrasive tape
JP2005234311A (en) Optical element and method of manufacturing optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090416