JP5289687B2 - Abrasive grains for abrasive, method for producing the same, and abrasive - Google Patents

Abrasive grains for abrasive, method for producing the same, and abrasive Download PDF

Info

Publication number
JP5289687B2
JP5289687B2 JP2006172794A JP2006172794A JP5289687B2 JP 5289687 B2 JP5289687 B2 JP 5289687B2 JP 2006172794 A JP2006172794 A JP 2006172794A JP 2006172794 A JP2006172794 A JP 2006172794A JP 5289687 B2 JP5289687 B2 JP 5289687B2
Authority
JP
Japan
Prior art keywords
fine particles
abrasive
abrasives
silica fine
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006172794A
Other languages
Japanese (ja)
Other versions
JP2008001803A (en
Inventor
美幸 山田
賛 安部
武 楊原
展歩 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Admatechs Co Ltd
Original Assignee
Admatechs Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Admatechs Co Ltd filed Critical Admatechs Co Ltd
Priority to JP2006172794A priority Critical patent/JP5289687B2/en
Publication of JP2008001803A publication Critical patent/JP2008001803A/en
Application granted granted Critical
Publication of JP5289687B2 publication Critical patent/JP5289687B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Description

本発明は、光ファイバーと、その光ファイバーの周囲を被覆するフェルールとからなる光コネクタの端面を研磨する方法に好適に用いることができる研磨材用砥粒及びその製造方法、並びに研磨材に関する。   The present invention relates to abrasive grains for an abrasive, a method for producing the same, and an abrasive that can be suitably used for a method of polishing an end face of an optical connector including an optical fiber and a ferrule that covers the periphery of the optical fiber.

光通信の伝達手段として使用される光ファイバーは、近年の大容量化、高効率化の要求に伴い、光損失ができるだけ小さいことが要求される。光ファイバーと光ファイバーとの接続には、光コネクタが用いられる。光コネクタは、フェルールを有する。フェルールには光ファイバーが挿通される挿通孔が形成されている。光ファイバーは、接着剤等によりフェルールに固定される。   An optical fiber used as a transmission means for optical communication is required to have as little optical loss as possible with the recent demand for higher capacity and higher efficiency. An optical connector is used for connection between the optical fibers. The optical connector has a ferrule. The ferrule is formed with an insertion hole through which an optical fiber is inserted. The optical fiber is fixed to the ferrule with an adhesive or the like.

光コネクタの接続端面の品質は、光ファイバーの光学特性に影響することから、非常に重要となる。そのため、光コネクタ端面には、複数段階の研磨により鏡面加工がなされる。研磨の最終仕上げとして、微細な砥粒を含む研磨層を備えた研磨シート、研磨テープ、研磨砥石、研磨布等の研磨材を使用した精密な鏡面研磨が行われる。   The quality of the connection end face of the optical connector is very important because it affects the optical characteristics of the optical fiber. Therefore, the optical connector end face is mirror-finished by a plurality of stages of polishing. As the final finish of polishing, precise mirror polishing is performed using an abrasive such as a polishing sheet having a polishing layer containing fine abrasive grains, a polishing tape, a polishing grindstone, and a polishing cloth.

精密な鏡面研磨に使用される研磨材として、例えば、砥粒と所定の結合剤とを含む研磨層が支持体上に形成された研磨材が開示されている(特許文献1〜3)。特許文献1及び2に開示された研磨材では研磨層に含まれる砥粒等が被研磨面に付着残存するという問題の解決を目的とする。特許文献3に開示された研磨材では研磨に伴い発生する不具合の1つである光ファイバーとフェルールとの段差(アンダーカット)発生の低減を目的としている。
特開2004−345003号公報 特開2004−322253号公報 特開2003−291068号公報
As an abrasive used for precise mirror polishing, for example, an abrasive in which an abrasive layer containing abrasive grains and a predetermined binder is formed on a support is disclosed (Patent Documents 1 to 3). The abrasives disclosed in Patent Documents 1 and 2 are intended to solve the problem that abrasive grains and the like contained in the polishing layer remain attached to the surface to be polished. The abrasive disclosed in Patent Document 3 aims to reduce the occurrence of a step (undercut) between an optical fiber and a ferrule, which is one of the problems that occur with polishing.
JP 2004-345003 A JP 2004-322253 A Japanese Patent Laid-Open No. 2003-291068

しかしながら、近年の光ファイバーに求められる性能は益々高くなっており、従来技術よりも更に性能が高い研磨材が要求されている。具体的には研磨材に含まれる砥粒(研磨材用砥粒)が脱離して被研磨面に付着残存することの低減や、光ファイバーとフェルールとの段差発生の低減が更に高い水準で要求されている。   However, the performance required for optical fibers in recent years has been increasing, and an abrasive having higher performance than the prior art is required. Specifically, it is required at a higher level that the abrasive grains contained in the abrasive (abrasive grains for abrasive) are detached and remain on the surface to be polished, and that the level difference between the optical fiber and the ferrule is reduced. ing.

本発明は、上記実情に鑑み完成されたものであり、光コネクタ端面を高精度に研磨できる研磨材用砥粒及びその製造方法、並びに研磨材を提供することを解決すべき課題とする。   This invention is completed in view of the said situation, and makes it the subject which should be solved to provide the abrasive grain for abrasives which can grind | polish an optical connector end surface with high precision, its manufacturing method, and an abrasive.

本発明の研磨材用砥粒は光コネクタ端面の研磨に用いられる研磨材に採用される。具体的には光ファイバー及びフェルールの端面が一致した状態で且つ鏡面になるように研磨を行う研磨材に採用される。ここで、光コネクタは光ファイバーと、その光ファイバーの周囲を被覆するフェルールとからなる。フェルールは光ファイバーが挿通できる貫通孔をもち、端面がフェルールの端面と一致するようにその貫通孔内に光ファイバーが挿入されている。   The abrasive grains for abrasives of the present invention are employed in abrasives used for polishing optical connector end faces. Specifically, it is employed as an abrasive that performs polishing so that the end surfaces of the optical fiber and the ferrule are coincident and become a mirror surface. Here, the optical connector includes an optical fiber and a ferrule that covers the periphery of the optical fiber. The ferrule has a through-hole through which an optical fiber can be inserted, and the optical fiber is inserted into the through-hole so that the end surface coincides with the end surface of the ferrule.

上記課題を解決する本発明の研磨材用砥粒は、球状シリカ微粒子と、
該球状シリカ微粒子を100質量部とした場合に0.5質量部以上50質量部以下の破砕シリカ微粒子とを有し、
5μm以上の粒径をもつ粒子を実質的に含有しないことを特徴とする。
Abrasive grains for abrasives of the present invention that solve the above problems are spherical silica fine particles,
When the spherical silica fine particles are taken as 100 parts by mass, 0.5 to 50 parts by mass of crushed silica fine particles,
It is characterized by substantially not containing particles having a particle size of 5 μm or more.

5μm以上の粒径をもつ粒子を含まないことでアンダーカットやスクラッチの発生が低減できる。そして、球状シリカ微粒子の存在により砥粒の脱離が抑制された状態でアンダーカットの発生が少ない研磨を行うことができると共に、所定量の破砕シリカ微粒子を含有させることで研削能力が向上できる。本明細書において「粒径」とはレーザー回折/散乱式粒度分布測定装置(LA−750:堀場製作所製)と動的光散乱式ナノトラック粒度分布計(UPA−EX150:日機装株式会社製)とを組み合わせて測定された値である。   The occurrence of undercuts and scratches can be reduced by not including particles having a particle diameter of 5 μm or more. In addition, it is possible to perform polishing with less occurrence of undercut in the state where the detachment of abrasive grains is suppressed due to the presence of spherical silica fine particles, and the grinding ability can be improved by containing a predetermined amount of crushed silica fine particles. In this specification, “particle size” means a laser diffraction / scattering particle size distribution measuring device (LA-750: manufactured by Horiba Seisakusho), a dynamic light scattering nanotrack particle size distribution analyzer (UPA-EX150: manufactured by Nikkiso Co., Ltd.) Is a value measured in combination.

具体的には、レーザー回折/散乱式粒度分布測定装置を用いて700モードにてスラリー数滴を滴下した流体をフローセル測定することで粒径5μm以上の粒子が実質的に含有されていないことを確認し、動的光散乱式ナノトラック粒度分布計を用いメチルエチルケトンに分散した状態でバッチ式にて測定することで後述する粒径100nm以下の第2微粒子の粒径を確認する。両者の測定結果を組み合わせることで粒度分布を測定する。以下に示す平均粒径も測定した粒径分布に基づき算出した。   Specifically, it is confirmed that particles having a particle size of 5 μm or more are substantially not contained by measuring a fluid obtained by dropping several drops of slurry in 700 mode using a laser diffraction / scattering type particle size distribution measuring device. The particle diameter of the second fine particles having a particle diameter of 100 nm or less, which will be described later, is confirmed by performing a batch measurement using a dynamic light scattering nanotrack particle size distribution meter in a state dispersed in methyl ethyl ketone. The particle size distribution is measured by combining both measurement results. The average particle size shown below was also calculated based on the measured particle size distribution.

研磨速度と被研磨面の仕上がりとのバランスから、本発明の研磨材用砥粒は体積平均粒子径が300nm以下であることが望ましい。   From the balance between the polishing rate and the finish of the surface to be polished, it is desirable that the abrasive grains for abrasives of the present invention have a volume average particle diameter of 300 nm or less.

更に、無機材料から形成され、体積平均粒子径が1nm以上100nm以下の第2微粒子を有することが望ましい。前記第2微粒子の体積平均粒子径は5nm以上20nm以下であることが望ましい。また、前記第2微粒子を形成する無機材料はシリカであることが望ましい。体積平均粒子径が小さい第2微粒子を有することで表面の鏡面度が高くできる。また、体積平均粒子径が第2微粒子より大きい粒子も含有しているので研磨速度が大きくできる。   Furthermore, it is desirable to have the second fine particles formed of an inorganic material and having a volume average particle diameter of 1 nm to 100 nm. The volume average particle diameter of the second fine particles is preferably 5 nm or more and 20 nm or less. The inorganic material forming the second fine particles is preferably silica. By having the second fine particles having a small volume average particle diameter, the surface specularity can be increased. Moreover, since the volume average particle diameter contains particles larger than the second fine particles, the polishing rate can be increased.

また、上記課題を解決する本発明の研磨材用砥粒の製造方法は、金属ケイ素を酸素と反応して粉砕前球状シリカ微粒子を製造する工程と、該粉砕前球状シリカ微粒子に含まれる粒径が5μm以上の粒子を破砕して破砕シリカとし、残分を球状シリカ微粒子とする工程と、を有することを特徴とし、前記粉砕前球状シリカ微粒子を製造する工程では、前記粉砕前球状シリカ微粒子から前記5μm以上の粒子を除いた残分を100質量部とした場合に前記粒径が5μm以上の粒子が0.5質量部以上50質量部以下である、上述した研磨材用砥粒の製造方法であるThe particle size manufacturing method of the abrasive for abrasive of the present invention for solving the aforementioned problems is included the step of producing the pulverized before spherical silica fine particles by reacting metallic silicon with oxygen before the grinding spherical silica microparticles And crushing particles having a size of 5 μm or more to obtain crushed silica, and the remainder being spherical silica fine particles. In the step of producing the spherical silica fine particles before pulverization, The method for producing abrasive grains for abrasives as described above, wherein the particle having a particle size of 5 μm or more is 0.5 parts by mass or more and 50 parts by mass or less when the remainder excluding the particles of 5 μm or more is 100 parts by mass. It is .

光コネクタ端面の鏡面仕上げに影響を及ぼす所定径以上の粒子を破砕することで、被研磨面である光コネクタ端面の研磨を適正に行うことができる。   By crushing particles having a predetermined diameter or more that affect the mirror finish of the end face of the optical connector, the end face of the optical connector that is the surface to be polished can be properly polished.

上記課題を解決する本発明の研磨材は、支持基材と、上述の研磨材用砥粒又は上述の製造方法にて製造された研磨材用砥粒と、該研磨材用砥粒を結合するバインダー材とをもち該支持基材表面に形成された研磨層と、を有することを特徴とする。   The abrasive of the present invention that solves the above problems combines a support base, the abrasive grains for abrasives described above or the abrasive grains for abrasives produced by the production method described above, and the abrasive grains for abrasive. And a polishing layer having a binder material and formed on the surface of the supporting substrate.

特に前記バインダー材はエポキシ樹脂と、フェノール性水酸基を2つ以上もつ芳香族化合物である硬化剤とを混合して硬化させた樹脂組成物であることが望ましい。エポキシ樹脂を採用することで研磨材用砥粒の脱離が抑制できる。   In particular, the binder material is desirably a resin composition obtained by mixing and curing an epoxy resin and a curing agent that is an aromatic compound having two or more phenolic hydroxyl groups. By adopting the epoxy resin, the detachment of the abrasive grains can be suppressed.

本発明の研磨材用砥粒及び製造方法にて製造された研磨材用砥粒並びに研磨材は上述の構成をもつことから以下の作用効果を発揮する。すなわち、球状シリカ微粒子と破砕シリカ微粒子とをバランスよく配合しているので、高い研磨能力を長時間にわたり発揮することが可能になるので、効果的に研磨を行うことが可能になって研磨材用砥粒がバインダー材から脱離することが抑制できる。また、粒径を上述の範囲に制御したことでアンダーカットの発生を抑制できる。   Since the abrasive grains for abrasives and the abrasives produced by the production method of the present invention have the above-described configuration, they exhibit the following effects. In other words, since spherical silica fine particles and crushed silica fine particles are blended in a well-balanced manner, it becomes possible to exhibit high polishing ability over a long period of time, enabling effective polishing and use for abrasives. The abrasive grains can be prevented from being detached from the binder material. Moreover, generation | occurrence | production of undercut can be suppressed by controlling a particle size to the above-mentioned range.

本発明の研磨材用砥粒及びその製造方法並びに研磨材について、以下、詳細に説明する。   The abrasive grains for abrasives according to the present invention, the production method thereof and the abrasives will be described in detail below.

・研磨材
本実施形態の研磨材は支持基材とその表面に形成された研磨層とを有する。研磨層は研磨材用砥粒とその研磨材用砥粒を結合するバインダー材とを有する。本研磨材は光コネクタ端面の研磨に用いられる。光コネクタは1組の光ファイバーの間を接続する部材である。光コネクタは光ファイバーが挿通される挿通孔が形成されているフェルールを有する。フェルールに挿通された光ファイバーの端面がフェルールの端面と一致するように固定されて光コネクタを形成する。光コネクタの端面は研磨により鏡面仕上げされる。
-Abrasive material The abrasive material of this embodiment has a support base material and the abrasive layer formed in the surface. The polishing layer has abrasive grains for abrasives and a binder material that binds the abrasive grains for abrasives. This abrasive is used for polishing the end face of the optical connector. An optical connector is a member that connects a pair of optical fibers. The optical connector has a ferrule in which an insertion hole through which an optical fiber is inserted is formed. An optical connector is formed by fixing the end face of the optical fiber inserted through the ferrule so as to coincide with the end face of the ferrule. The end face of the optical connector is mirror-finished by polishing.

研磨材用砥粒は球状シリカ微粒子と破砕シリカ微粒子とを有する。球状シリカ微粒子とは外観が球状の微粒子であり、真球度(本明細書では、SEMで写真を撮り、その観察される粒子の面積と周囲長から、(真球度)={4π×(面積)÷(周囲長)2}で算出される値として算出する。1に近づくほど真球に近い。具体的には画像処理装置を用いて100個の粒子について測定した平均値を採用する。)が0.8以上(望ましくは0.9以上)のものである。 The abrasive grain for abrasive has spherical silica fine particles and crushed silica fine particles. The spherical silica fine particles are fine particles having a spherical appearance, and the sphericity (in this specification, a photograph is taken with an SEM, and from the area of the observed particle and the circumference, (sphericity) = {4π × ( (Area) ÷ (peripheral length) 2 }, which is closer to a true sphere as it approaches 1. Specifically, an average value measured for 100 particles using an image processing apparatus is employed. ) Is 0.8 or more (preferably 0.9 or more).

球状シリカ微粒子は金属シリコンを酸素と反応させて製造できる。金属シリコンを酸素と反応させて製造する方法によると、平均粒子径が0.05μmから10μm程度の球状シリカ微粒子を容易に得ることができる。   Spherical silica fine particles can be produced by reacting metallic silicon with oxygen. According to the method of producing metal silicon by reacting with oxygen, spherical silica fine particles having an average particle diameter of about 0.05 μm to 10 μm can be easily obtained.

破砕シリカ微粒子とはシリカを破砕して製造され得る微粒子である。外観上の特徴としては角張った表面をもつ。特に、前述の球状シリカ微粒子を破砕して得られ得る形態のものを採用することが望ましい。破砕の方法としては特に限定しない。例えば、ビーズミル、ジェットミル、ボールミル、振動ボールミルが挙げられる。   Crushed silica fine particles are fine particles that can be produced by crushing silica. As an external feature, it has an angular surface. In particular, it is desirable to adopt a form that can be obtained by crushing the aforementioned spherical silica fine particles. The method for crushing is not particularly limited. Examples thereof include a bead mill, a jet mill, a ball mill, and a vibration ball mill.

球状シリカ微粒子及び破砕シリカ微粒子の粒径は特に限定しない。研磨材用砥粒全体として、5μm以上の粒径をもつ粒子を実質的に含まないものであればよい。特に、3μm以上の粒径をもつ粒子を実質的に含まないものが望ましく、更には2μm以上の粒径をもつ粒子を実質的に含まないものが望ましい。ここで、「実質的に含まない」とは規定する粒径をもつ粒子が完全に含まれない場合を含むことはもちろん、痕跡程度の量で不可避的に含む場合であっても排除しないことを意味する。研磨材用砥粒の体積平均粒子径は300μ、以下であることが望ましく、250nm以下であることがより望ましい。特に、200μm以下であることが望ましい。   The particle diameters of the spherical silica particles and the crushed silica particles are not particularly limited. The abrasive grains for abrasives may be anything that does not substantially contain particles having a particle size of 5 μm or more. In particular, those having substantially no particle having a particle diameter of 3 μm or more are desirable, and those having substantially no particle having a particle diameter of 2 μm or more are desirable. Here, “substantially free” includes not only the case where particles having a prescribed particle diameter are not completely contained, but also the case where they are inevitably included in an amount of traces. means. The volume average particle diameter of the abrasive grains for abrasive is desirably 300 μm or less, and more desirably 250 nm or less. In particular, the thickness is desirably 200 μm or less.

球状シリカ微粒子と破砕シリカ微粒子との存在比は特に限定しない。例えば、球状シリカ微粒子を100質量部とした場合に破砕シリカ微粒子を0.5質量部以上50質量部以下含有させることが望ましく、更に、3質量部以上30質量部以下含有させることがより望ましい。   The abundance ratio between the spherical silica particles and the crushed silica particles is not particularly limited. For example, when the spherical silica fine particles are taken as 100 parts by mass, it is desirable to contain 0.5 to 50 parts by mass of crushed silica fine particles, and more desirably 3 to 30 parts by mass.

研磨材用砥粒は、更に、第2微粒子を含有することが望ましい。第2微粒子は、無機材料から形成され、体積平均粒子径が1nm以上100nm以下であり、5nm以上20nm以下であることが望ましい。ナノメートルオーダーの微粒子を含有させることで被研磨面の仕上がりが良好になる。   It is desirable that the abrasive grains further contain second fine particles. The second fine particles are formed of an inorganic material, and preferably have a volume average particle diameter of 1 nm to 100 nm and 5 nm to 20 nm. By adding fine particles of nanometer order, the finish of the polished surface becomes good.

第2微粒子を構成する無機材料は特に限定しない。例えば、シリカ、アルミナ、ジルコニア、酸化鉄、酸化クロム、酸化スズなどの単一元素の酸化物の他、シリカ−アルミナ、シリカ−ジルコニアなどの複合酸化物が採用できる。特に、シリカ(いわゆる、コロイダルシリカ)を採用することが望ましい。第2微粒子を混合する量は、研磨材用砥粒全体を100質量部とした場合に、1質量部以上、67質量部以下とすることが望ましく、9質量部以上、50質量部以下とすることが更に望ましい。   The inorganic material constituting the second fine particles is not particularly limited. For example, in addition to single element oxides such as silica, alumina, zirconia, iron oxide, chromium oxide and tin oxide, composite oxides such as silica-alumina and silica-zirconia can be employed. In particular, it is desirable to employ silica (so-called colloidal silica). The amount of the second fine particles to be mixed is preferably 1 part by mass or more and 67 parts by mass or less, and more preferably 9 parts by mass or more and 50 parts by mass or less when the entire abrasive grains for abrasives are 100 parts by mass. It is further desirable.

バインダー材は樹脂組成物を採用することが望ましい。例えば、エポキシ樹脂、ウレタン樹脂を硬化剤などで硬化させた樹脂組成物が挙げられる。このバインダー材内に前述の研磨材用砥粒を分散させて研磨層を形成する。研磨材用砥粒とバインダー材とを混合する比率としては特に限定しないが、研磨層全体を100質量部とした場合に、研磨材用砥粒の量を10質量部以上、99質量部以下とすることが望ましく、50質量部以上、95質量部以下とすることが更に望ましい。   It is desirable to employ a resin composition as the binder material. For example, the resin composition which hardened the epoxy resin and the urethane resin with the hardening | curing agent etc. is mentioned. The abrasive grains described above are dispersed in the binder material to form a polishing layer. Although it does not specifically limit as a ratio which mixes the abrasive grain for abrasives and a binder material, When the whole grinding | polishing layer is 100 mass parts, the quantity of abrasive grains for abrasives is 10 mass parts or more and 99 mass parts or less. It is desirable to set it to 50 parts by mass or more and 95 parts by mass or less.

支持基材はその表面に研磨層が形成される部材である。研磨層が形成される表面は平滑であることが望ましい。支持基材としては薄膜状、ブロック状などどのような形態であっても良い。   The supporting substrate is a member on which a polishing layer is formed. The surface on which the polishing layer is formed is desirably smooth. The support substrate may be in any form such as a thin film or block.

支持基材を構成する材料は、必要な弾性および強度を有し、研磨層を保持できるものであればよい。例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート等のポリエステル、ポリカーボネート等からなるフィルム等が好適である。支持基材として薄膜状のフィルムを採用する場合の厚さは、特に限定されるものではなく、例えば、25〜150μm程度とすればよい。   The material which comprises a support base material should just have the elasticity and intensity | strength required, and can hold | maintain a grinding | polishing layer. For example, a film made of polyester such as polyethylene terephthalate (PET) or polybutylene terephthalate, polycarbonate, or the like is suitable. The thickness in the case of adopting a thin film as the supporting substrate is not particularly limited, and may be, for example, about 25 to 150 μm.

また、支持基材と研磨層との接着性の向上、研磨層の表面のパターニング等、目的に応じて、支持基材の表面に予めバッファー層を形成してもよい。例えば、支持基材表面に易接着層を形成してバッファー層とすればよい。また、支持基材表面を熱処理、コロナ処理、プラズマ処理等してバッファー層を形成してもよい。易接着層は、例えば、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂等からなるバッファー塗工液を、支持基材表面に塗布、乾燥することで形成できる。   In addition, a buffer layer may be formed in advance on the surface of the support base material in accordance with the purpose such as improvement in adhesion between the support base material and the polishing layer and patterning of the surface of the polishing layer. For example, an easy-adhesion layer may be formed on the surface of the support substrate to form a buffer layer. Further, the buffer layer may be formed by heat treatment, corona treatment, plasma treatment, etc. on the surface of the supporting substrate. The easy-adhesion layer can be formed by applying and drying a buffer coating solution made of, for example, an epoxy resin, an acrylic resin, or a polyester resin on the surface of the supporting substrate.

・研磨材用砥粒の製造方法
本実施形態における研磨材用砥粒は粉砕前球状シリカ微粒子に対して破砕操作を加えることで製造できる。粉砕前球状シリカ微粒子に含まれる粒径が5μm以上の粒子を粉砕する。粉砕前球状シリカ微粒子に破砕操作を加えることで大きな粒径をもつ粒子から破砕が進行する。大きな粒径の粒子から破砕されていくので破砕時間を制御することで、粒径分布を制御できる。つまり、破砕時間の制御により、所定粒径以上の粒子を実質的に含まない研磨材用砥粒を得ることができる。得られた研磨材用砥粒は破砕されなかった部分である球状シリカ微粒子と破砕されて生成する破砕シリカ微粒子とから構成される。所定の粒径以上の粒子が実質的に含まないか否かは、研磨材用砥粒を適正な分散媒に分散させた状態で、所定粒径乃至それ以下の孔径をもつフィルターを通過できるかどうかで判断する。5μm以上の粒径をもつ粒子を実質的に含まないか否かを判断する場合には5μmの孔径をもつフィルターを用い、そのフィルターを通過できるかどうかで判断する。適正な分散媒としては水、アルコール、ケトンなどの水系溶媒が採用できる。
-Manufacturing method of abrasive grain for abrasive | polishing material The abrasive grain for abrasive | polishing material in this embodiment can be manufactured by adding crushing operation with respect to the spherical silica fine particle before grinding | pulverization . Particles having a particle size of 5 μm or more contained in the spherical silica fine particles before pulverization are pulverized. By crushing spherical silica fine particles before pulverization , crushing proceeds from particles having a large particle size. Particle size distribution can be controlled by controlling the crushing time because the particles are crushed from the large particle size. That is, by controlling the crushing time, it is possible to obtain abrasive grains for abrasives that do not substantially contain particles having a predetermined particle diameter or more. The obtained abrasive grains for abrasives are composed of spherical silica fine particles which are not crushed and crushed silica fine particles which are crushed and generated. Whether or not particles having a predetermined particle diameter or larger are substantially not included can be determined by determining whether the abrasive grains for abrasives can be passed through a filter having a predetermined particle diameter or smaller pore diameter in a state of being dispersed in an appropriate dispersion medium. Judge by how . When judging whether or not particles having a particle diameter of 5 μm or more are substantially not contained, a filter having a pore diameter of 5 μm is used, and it is judged by whether or not the filter can pass through. As an appropriate dispersion medium, water-based solvents such as water, alcohol, and ketone can be employed.

シリカ微粒子は金属シリコンを酸素と反応させる方法、シリカを熱により溶融させる方法、ゾルゲル法などの一般的な方法が採用できる。粉砕前球状シリカ微粒子を得る方法(粉砕前球状シリカ微粒子を製造する工程)は金属シリコンを酸素と反応させる方法である。粉砕前球状シリカ微粒子の粒径分布としては粉砕前球状シリカ微粒子から5μm以上の粒子を除いた残分を100質量部とした場合に粒径が5μm以上の粒子が0.5質量部以上50質量部以下である。第2微粒子を製造するにはゾルゲル法を採用することが望ましい。ゾルゲル法によれば、前述した粒径分布を持つ微粒子を得ることができる。 Silica fine particles a method of reacting metallic silicon with oxygen, a method of silica is melted by heat, a general method such as a sol-gel method can be employed. A method of obtaining spherical silica fine particles before pulverization (a step of producing spherical silica fine particles before pulverization) is a method of reacting metal silicon with oxygen. The particle size distribution of the spherical silica fine particles before pulverization is 0.5 parts by mass or more and 50 masses of particles having a particle diameter of 5 μm or more when the remainder obtained by removing particles of 5 μm or more from the spherical silica fine particles before pulverization is 100 parts by mass Or less. In order to produce the second fine particles, it is desirable to employ a sol-gel method. According to the sol-gel method, fine particles having the above-described particle size distribution can be obtained.

製造した研磨材用砥粒をバインダー材にて結合する方法としも特に限定しない。例えば、バインダー材を構成する樹脂になるプレポリマー中に研磨材用砥粒を分散した後に、プレポリマーを重合する方法や、バインダー材を構成する樹脂中に直接、研磨材用砥粒を混合・分散する方法などが採用できる。研磨材用砥粒は予め有機溶媒中に分散してスラリー化した後、バインダー材に混合・分散することが望ましい。その場合に分散媒として採用する有機溶媒は、バインダー材を構成する樹脂(又は、そのプレポリマー)を溶解する溶媒又はプレポリマー自身と混合可能な有機溶媒を採用することが望ましい。   There is no particular limitation on the method of bonding the manufactured abrasive grains with a binder material. For example, after dispersing abrasive abrasive grains in the prepolymer that becomes the resin constituting the binder material, the prepolymer is polymerized, or the abrasive abrasive grains are mixed directly into the resin constituting the binder material. A method of dispersing can be adopted. It is desirable that the abrasive grains for abrasives be dispersed and slurried in advance in an organic solvent, and then mixed and dispersed in a binder material. In this case, the organic solvent used as the dispersion medium is desirably a solvent that dissolves the resin (or its prepolymer) constituting the binder material or an organic solvent that can be mixed with the prepolymer itself.

(試験例1)
平均粒径が0.2μmの球状シリカSO−C1(アドマテックス社製)をメチルエチルケトン(MEK)に分散させてスラリー状にした。このスラリーをビーズミル(1mmのジルコニアビーズを使用)にて5μm以上の粒径をもつ粒子を破砕した。5μm以上の粒径をもつ粒子を実質的に含まないか否かは5μmのフィルターを通過できるかどうかで判断した。ビーズミルによる破砕操作前のスラリーは5μmのフィルターを殆ど通過できなかったが、破砕操作後のスラリーは速やかに通過させることができた。
(Test Example 1)
Spherical silica SO-C1 (manufactured by Admatechs) having an average particle size of 0.2 μm was dispersed in methyl ethyl ketone (MEK) to form a slurry. From this slurry, particles having a particle size of 5 μm or more were crushed by a bead mill (using 1 mm zirconia beads). Whether or not particles having a particle diameter of 5 μm or more are substantially not included was determined by whether or not the particles could pass through a 5 μm filter. The slurry before the crushing operation by the bead mill could hardly pass through the 5 μm filter, but the slurry after the crushing operation could be passed quickly.

得られたスラリー(固形分1200質量部、MEK1200質量部)にバインダー材を構成する樹脂のプレポリマーである、ZX−1059(エポキシ樹脂:東都化成社製)が100質量部、フェノライトTD2131(フェノール樹脂:大日本インキ化学工業社製)がZX−1059に対して当量、反応触媒としてのトリフェニルホスフィン(TPP)が3phr(per hundred resin:樹脂100質量部当たりの比率)を混合して塗布液を調製した。   ZX-1059 (epoxy resin: manufactured by Tohto Kasei Co., Ltd.), which is a prepolymer of a resin constituting the binder material, in the obtained slurry (solid content: 1200 parts by mass, MEK: 1200 parts by mass), phenolic TD2131 (phenol) Resin: Dai Nippon Ink Chemical Co., Ltd.) is equivalent to ZX-1059, and triphenylphosphine (TPP) as a reaction catalyst is mixed with 3 phr (per hundred resin: ratio per 100 parts by mass of resin). Was prepared.

この塗布液を厚さ75μmのPETフィルム上に塗布し、150℃で加熱して硬化反応(重合反応)を進行させて研磨材としての研磨フィルムを得た。得られた研磨層の厚みは5μmであった。   This coating solution was applied onto a 75 μm thick PET film and heated at 150 ° C. to advance the curing reaction (polymerization reaction) to obtain a polishing film as an abrasive. The thickness of the obtained polishing layer was 5 μm.

(試験例2)
平均粒径が0.2μmの球状シリカSO−C1をMEKに分散させてスラリー状にした。このスラリーをビーズミル(1mmのジルコニアビーズを使用)にて5μm以上の粒径をもつ粒子を破砕した。5μm以上の粒径をもつ粒子を実質的に含まないか否かは5μmのフィルターを通過できるかどうかで判断した。ビーズミルによる破砕操作前のスラリーは5μmのフィルターを殆ど通過できなかったが、破砕操作後のスラリーは速やかに通過させることができた。
(Test Example 2)
Spherical silica SO-C1 having an average particle size of 0.2 μm was dispersed in MEK to form a slurry. From this slurry, particles having a particle size of 5 μm or more were crushed by a bead mill (using 1 mm zirconia beads). Whether or not particles having a particle diameter of 5 μm or more are substantially not included was determined by whether or not the particles could pass through a 5 μm filter. The slurry before the crushing operation by the bead mill could hardly pass through the 5 μm filter, but the slurry after the crushing operation could be passed quickly.

得られたスラリー(固形分600質量部、MEK600質量部)にバインダー材を構成する樹脂のプレポリマーである、ZX−1059が100質量部、フェノライトTD2131がZX−1059に対して当量、反応触媒としてのTPPが3phr、第2微粒子としてのシリカゾルMEK−ST(体積平均粒子径20nm、日産化学製:固形分30%)が2000質量部を混合して塗布液を調製した。   The obtained slurry (solid content: 600 parts by mass, MEK: 600 parts by mass) is a prepolymer of resin constituting the binder material, ZX-1059 is 100 parts by mass, Phenolite TD2131 is equivalent to ZX-1059, reaction catalyst A coating solution was prepared by mixing 2000 parts by weight of TPP as 3 phr and silica sol MEK-ST (volume average particle diameter 20 nm, manufactured by Nissan Chemical Co., Ltd .: solid content 30%) as the second fine particles.

この塗布液を厚さ75μmのPETフィルム上に塗布し、150℃で加熱して硬化反応を進行させて研磨フィルムを得た。得られた研磨層の厚みは5μmであった。   This coating solution was applied onto a 75 μm thick PET film and heated at 150 ° C. to advance the curing reaction to obtain a polishing film. The thickness of the obtained polishing layer was 5 μm.

(試験例3)
平均粒径が0.2μmの球状シリカSO−C1をMEKに分散させてスラリー状にした。
(Test Example 3)
Spherical silica SO-C1 having an average particle size of 0.2 μm was dispersed in MEK to form a slurry.

得られたスラリー(固形分1200質量部、MEK1200質量部)にバインダー材を構成する樹脂のプレポリマーである、ZX−1059が100質量部、フェノライトTD2131がZX−1059に対して当量、反応触媒としてのTPPが3phrを混合して塗布液を調製した。   The obtained slurry (solid content: 1200 parts by mass, MEK: 1200 parts by mass) is a prepolymer of resin constituting the binder material, ZX-1059 is 100 parts by mass, Phenolite TD2131 is equivalent to ZX-1059, reaction catalyst The coating solution was prepared by mixing 3 phr of TPP.

この塗布液を厚さ75μmのPETフィルム上に塗布し、150℃で加熱して硬化反応を進行させて研磨フィルムを得た。得られた研磨層の厚みは5μmであった。   This coating solution was applied onto a 75 μm thick PET film and heated at 150 ° C. to advance the curing reaction to obtain a polishing film. The thickness of the obtained polishing layer was 5 μm.

(試験例4)
シリカゾルMEK−ST5000質量部、ZX−1059が100質量部、フェノライトTD2131がZX−1059に対して当量、反応触媒としてのTPPが3phrを混合して塗布液を調製した。
(Test Example 4)
Silica sol MEK-ST5000 parts by mass, ZX-1059 was 100 parts by mass, Phenolite TD2131 was equivalent to ZX-1059, and TPP as a reaction catalyst was mixed with 3 phr to prepare a coating solution.

この塗布液を厚さ75μmのPETフィルム上に塗布し、150℃で加熱して硬化反応を進行させて研磨フィルムを得た。得られた研磨層の厚みは5μmであった。   This coating solution was applied onto a 75 μm thick PET film and heated at 150 ° C. to advance the curing reaction to obtain a polishing film. The thickness of the obtained polishing layer was 5 μm.

(評価方法)
研磨機:SPF−120A(株式会社精工技研社製)に各試験研磨フィルムを貼り付けて研磨フィルム上に蒸留水を滴下して、Φ2.5mmの光コネクタを研磨した。研磨条件は所定の圧力で30秒間行った。
(Evaluation method)
Polishing machine: Each test polishing film was attached to SPF-120A (manufactured by Seiko Giken Co., Ltd.), and distilled water was dropped onto the polishing film to polish a Φ2.5 mm optical connector. Polishing conditions were performed at a predetermined pressure for 30 seconds.

光コネクタの端面の評価をクリーニング後に行った。なお、上記研磨前に前処理として1μmのダイヤモンド研磨シートにて所定の圧力で30秒間研磨を行った。   The end face of the optical connector was evaluated after cleaning. In addition, before the said grinding | polishing, it grind | polished for 30 second by the predetermined pressure with the diamond grinding | polishing sheet | seat of 1 micrometer as a pretreatment.

・光損失率
AR−301R(NTT−AT社)の検査機により波長1310nmにて光ファイバーのリターンロス(光損失率)を求めた。この光損失率は光コネクタの端面における反射で生じる伝達光量のロス量を測定したもので、dBで表した値が小さい(マイナス方向に大きい)ほど低反射で伝達ロスが小さく、伝達効率が高いものであり、良好な伝達状態を示すものである。
-Optical loss rate The return loss (optical loss rate) of the optical fiber was obtained at a wavelength of 1310 nm using an AR-301R (NTT-AT) inspection machine. This optical loss rate is a measurement of the amount of transmitted light loss caused by reflection at the end face of the optical connector. The smaller the value expressed in dB (larger in the negative direction), the lower the transmission loss and the lower the transmission loss. And shows a good transmission state.

・段差
AC3000−NT(NTT−AT社)の測定機によりファイバー及びフェルールの端面の段差を求めた。フェルール端面の仮想曲線の中心位置からファイバー端面の中心位置の高さが段差であり、+値が突出方向、−値が引込方向である。±0が最適で±50nmが許容値である。
-Level difference The level | step difference of the end surface of a fiber and a ferrule was calculated | required with the measuring machine of AC3000-NT (NTT-AT company). The height from the center position of the virtual curve of the ferrule end face to the center position of the fiber end face is a step, + value is the protruding direction, and-value is the drawing direction. ± 0 is optimal and ± 50 nm is an acceptable value.

・スクラッチ
倍率400倍の顕微鏡で研磨した光コネクタ12本の端面を12本、検査した。そのうちで傷が発生しているファイバーの数量で判定を行った。1本以下が◎、2〜3本が○、4〜5本が△、6本以上が×とした。
-Scratch Twelve end faces of 12 optical connectors polished with a microscope having a magnification of 400 times were inspected. Judgment was made based on the number of fibers in which scratches occurred. One or less was marked ◎, 2-3 were marked as ◯, 4-5 were marked as Δ, and six or more were marked as x.

(結果)
結果を表1に示す。
(result)
The results are shown in Table 1.

Figure 0005289687
Figure 0005289687

表1から明らかなように、大きな粒子(粒径5μm以上)を破砕した研磨材用砥粒を含有する試験例1の研磨材で研磨した光コネクタは、大きな粒子を破砕していない試験例3の研磨材で研磨した光コネクタの端面よりも光損失率が低く、また、発生した段差も少なかった。更にスクラッチの発生も少なかった。   As is apparent from Table 1, the optical connector polished with the abrasive of Test Example 1 containing abrasive particles for abrasives in which large particles (particle size of 5 μm or more) were crushed was such that Test Example 3 in which large particles were not crushed The optical loss rate was lower than that of the end face of the optical connector polished with this abrasive, and there were few steps generated. Furthermore, there was little occurrence of scratches.

そして、5μm以上の粒径をもつ粒子を破砕した上で第2微粒子としてのシリカゾルを含有する試験例2の研磨材で研磨した光コネクタの端面は試験例1の研磨材で研磨した光コネクタの端面よりも光損失率も段差もスクラッチも好ましいものであった。   The end face of the optical connector polished with the abrasive of Test Example 2 containing silica sol as the second fine particle after crushing particles having a particle diameter of 5 μm or more is the same as that of the optical connector polished with the abrasive of Test Example 1 The optical loss rate, level difference and scratch were more preferable than the end face.

すなわち、大きな粒子を破砕した研磨材用砥粒を採用することで、被研磨面の性状を好ましいものにすることができた。また、第2微粒子を含有させることで更なる性能の向上を図ることができた。   That is, by adopting abrasive grains for abrasives, in which large particles were crushed, the properties of the surface to be polished could be made favorable. Further, the performance could be further improved by containing the second fine particles.

Claims (8)

球状シリカ微粒子と、
該球状シリカ微粒子を100質量部とした場合に0.5質量部以上50質量部以下の破砕シリカ微粒子とを有し、
5μm以上の粒径をもつ粒子を実質的に含有しないことを特徴とする光コネクタ端面の研磨に用いられる研磨材用砥粒。
Spherical silica fine particles,
When the spherical silica fine particles are taken as 100 parts by mass, 0.5 to 50 parts by mass of crushed silica fine particles,
An abrasive grain for an abrasive used for polishing an optical connector end face, which does not substantially contain particles having a particle diameter of 5 μm or more.
体積平均粒子径が300nm以下である請求項1に記載の研磨材用砥粒。 The abrasive grain according to claim 1, wherein the volume average particle diameter is 300 nm or less. 無機材料から形成され、体積平均粒子径が1nm以上100nm以下の第2微粒子を有する請求項1又は2に記載の研磨材用砥粒。 The abrasive grain for abrasives according to claim 1 or 2 , comprising a second fine particle formed of an inorganic material and having a volume average particle diameter of 1 nm or more and 100 nm or less. 前記第2微粒子の体積平均粒子径は5nm以上20nm以下である請求項に記載の研磨材用砥粒。 The abrasive grain for abrasives according to claim 3 , wherein the volume average particle diameter of the second fine particles is 5 nm or more and 20 nm or less. 前記第2微粒子を形成する無機材料はシリカである請求項又はに記載の研磨材用砥粒。 The abrasive grain for abrasives according to claim 3 or 4 , wherein the inorganic material forming the second fine particles is silica. 金属ケイ素を酸素と反応して粉砕前球状シリカ微粒子を製造する工程と、
粉砕前球状シリカ微粒子に含まれる粒径が5μm以上の粒子を破砕して破砕シリカとし、残分を球状シリカ微粒子とする工程と、を有することを特徴とし、
前記粉砕前球状シリカ微粒子を製造する工程では、前記粉砕前球状シリカ微粒子から前記5μm以上の粒子を除いた残分を100質量部とした場合に前記粒径が5μm以上の粒子が0.5質量部以上50質量部以下である、
請求項1〜5のうちの何れか1項に記載の研磨材用砥粒の製造方法。
A step of reacting metallic silicon with oxygen to produce spherical silica fine particles before grinding ;
A step of crushing particles having a particle size of 5 μm or more contained in the spherical silica fine particles before pulverization into crushed silica, and the remainder being spherical silica fine particles ,
In the step of producing the spherical silica fine particles before pulverization, when the remaining amount obtained by removing the particles of 5 μm or more from the spherical silica fine particles before pulverization is 100 parts by mass, the particles having a particle diameter of 5 μm or more are 0.5 mass. Part to 50 parts by weight,
The manufacturing method of the abrasive grain for abrasives according to any one of claims 1 to 5 .
支持基材と、
請求項1〜5のいずれかに記載の研磨材用砥粒又は請求項に記載の製造方法にて製造された研磨材用砥粒と、該研磨材用砥粒を結合するバインダー材とをもち該支持基材表面に形成された研磨層と、
を有することを特徴とする光コネクタ端面の研磨に用いられる研磨材。
A support substrate;
The abrasive grain for abrasives according to any one of claims 1 to 5 or the abrasive grain for abrasives produced by the production method according to claim 6 and a binder material for binding the abrasive grains for abrasives. A polishing layer formed on the surface of the supporting substrate;
A polishing material used for polishing an optical connector end face.
前記バインダー材は、エポキシ樹脂と、フェノール性水酸基を2つ以上もつ芳香族化合物である硬化剤とを混合して硬化させた樹脂組成物である請求項に記載の研磨材。 The abrasive according to claim 7 , wherein the binder material is a resin composition obtained by mixing and curing an epoxy resin and a curing agent that is an aromatic compound having two or more phenolic hydroxyl groups.
JP2006172794A 2006-06-22 2006-06-22 Abrasive grains for abrasive, method for producing the same, and abrasive Active JP5289687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006172794A JP5289687B2 (en) 2006-06-22 2006-06-22 Abrasive grains for abrasive, method for producing the same, and abrasive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006172794A JP5289687B2 (en) 2006-06-22 2006-06-22 Abrasive grains for abrasive, method for producing the same, and abrasive

Publications (2)

Publication Number Publication Date
JP2008001803A JP2008001803A (en) 2008-01-10
JP5289687B2 true JP5289687B2 (en) 2013-09-11

Family

ID=39006450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006172794A Active JP5289687B2 (en) 2006-06-22 2006-06-22 Abrasive grains for abrasive, method for producing the same, and abrasive

Country Status (1)

Country Link
JP (1) JP5289687B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094982A (en) * 2006-10-12 2008-04-24 Kao Corp Polishing liquid composition for memory hard disk substrate
JP2008260815A (en) * 2007-04-10 2008-10-30 Admatechs Co Ltd Abrasive grain for polishing material, and polishing material
JP6214978B2 (en) 2013-09-17 2017-10-18 株式会社東芝 Semiconductor device
JPWO2022220161A1 (en) * 2021-04-15 2022-10-20

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000233375A (en) * 1999-02-16 2000-08-29 Hitachi Chem Co Ltd Flattening polishing segment type resin grinding wheel
JP4105838B2 (en) * 1999-03-31 2008-06-25 株式会社トクヤマ Abrasive and polishing method
US6394888B1 (en) * 1999-05-28 2002-05-28 Saint-Gobain Abrasive Technology Company Abrasive tools for grinding electronic components
JP2001277133A (en) * 2000-03-28 2001-10-09 Hitachi Chem Co Ltd Resin grinding wheel for polishing semiconductor wafer
IL151794A0 (en) * 2000-03-31 2003-04-10 Bayer Ag Polishing agent and method for producing planar layers
JP3563017B2 (en) * 2000-07-19 2004-09-08 ロデール・ニッタ株式会社 Polishing composition, method for producing polishing composition and polishing method
DE10205280C1 (en) * 2002-02-07 2003-07-03 Degussa Aqueous dispersion used for chemical-mechanical polishing of oxide surface, preferably silica, contains pyrogenic silica powder doped with alumina from aerosol with specified particle size
JP2005008463A (en) * 2003-06-17 2005-01-13 Hitachi Maxell Ltd Silicon oxide particle and method for producing the same
JP5036955B2 (en) * 2003-12-19 2012-09-26 ニッタ・ハース株式会社 Metal film polishing composition and metal film polishing method

Also Published As

Publication number Publication date
JP2008001803A (en) 2008-01-10

Similar Documents

Publication Publication Date Title
CN101767318B (en) Granulation polishing film, preparing method thereof and application thereof
TW519505B (en) Abrasive article and methods of manufacturing and use of same
KR100398279B1 (en) Abrasive tape, its manufacturing method and abrasive tape application
TWI291910B (en) Abrasive articles with resin control additives
CN104099025B (en) Colloidal silicon dioxide polishing composition and the method for manufacturing synthetic quartz glass substrate using it
JP3084471B2 (en) Polishing method of ferrule end face of optical connector
JP5289687B2 (en) Abrasive grains for abrasive, method for producing the same, and abrasive
JP2009072832A (en) Polishing sheet and method for production thereof
JP2008260815A (en) Abrasive grain for polishing material, and polishing material
CN1207328C (en) Polishing film and its preparing process
JP6644808B2 (en) Polishing sheet provided with nano-silica polishing particles, polishing method and manufacturing method for optical fiber connector using the polishing sheet
KR101904159B1 (en) Abrasive film
TWI535789B (en) Resin film, method for preparing resin film, and coating liquid
JP3924252B2 (en) Polishing film and method for producing the same
JP7197603B2 (en) Abrasive for multi-core ferrules
US20080248726A1 (en) Polishing Method and Polishing Film Used in Such Polishing Method
JP2008000847A (en) Polishing material
JP2012121128A (en) Composite abrasive grain and polishing composition using the same
JP4597395B2 (en) Polishing film and method for producing the same
WO2022220161A1 (en) Ferrule polishing material
JP2004322253A (en) Fixed abrasive grain polishing material
JP2003291068A (en) Polishing medium for end face of optical fiber
JP2003094340A (en) Polishing medium
JP2004249370A (en) Polishing element and method of manufacturing the same
JP3676726B2 (en) Abrasive tape and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130605

R150 Certificate of patent or registration of utility model

Ref document number: 5289687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250