JP2000233375A - Flattening polishing segment type resin grinding wheel - Google Patents

Flattening polishing segment type resin grinding wheel

Info

Publication number
JP2000233375A
JP2000233375A JP3660299A JP3660299A JP2000233375A JP 2000233375 A JP2000233375 A JP 2000233375A JP 3660299 A JP3660299 A JP 3660299A JP 3660299 A JP3660299 A JP 3660299A JP 2000233375 A JP2000233375 A JP 2000233375A
Authority
JP
Japan
Prior art keywords
resin
grindstone
segment
polishing
flattening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3660299A
Other languages
Japanese (ja)
Inventor
Hiroto Oda
寛人 小田
Hiroshi Nakagawa
宏 中川
Kyoichi Tomita
教一 富田
Ken Nanaumi
憲 七海
Shunichi Numata
俊一 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP3660299A priority Critical patent/JP2000233375A/en
Publication of JP2000233375A publication Critical patent/JP2000233375A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin grinding wheel which has a polishing surface hardly causing a scratch, and has a satisfactory polishing speed, and is excellent in flattening performance by arranging small segment-like grinding wheels at spaces on a base plate and fixing the same. SOLUTION: Since the space between drain grooves of a grinding wheel depends on the size of a small segment grinding wheel, the size is important. Though the optimum size depends on the polishing speed, the pressure load and the quantity of supplied polishing liquid, the practical range is from 5 mm to 50 mm. The shape of the segment is preferably a small-segment magnet without an acute angle under 60 deg.. A magnet to be used is a structure having continuous pores with the porosity of 35-70%, preferably 45-55%, in which the bending elasticity of binding resin for binding abrasive grains is 35,000 kgf/cm2 or less, the maximum abrasive grain of the grinding wheel is 2 μm, and the compounding ratio of abrasive grain to resin preferably ranges from 40:60 to 60:40 by volume ratio.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シリコンウエハ、
磁気ディスク、ガラス基板等の薄板状被研磨体の表面を
平坦平滑に研磨する砥石、特に半導体ウエハ上に形成さ
れた配線材料、多層配線を行う場合に形成する層間絶縁
膜の研磨に有用な樹脂砥石に係わり、特にスクラッチ
(擦過傷)の発生が少なく平坦化性能に優れた樹脂砥石
関する。
TECHNICAL FIELD The present invention relates to a silicon wafer,
A grindstone that polishes the surface of a thin plate-like object to be polished such as a magnetic disk or a glass substrate flat and smooth, particularly a wiring material formed on a semiconductor wafer, a resin useful for polishing an interlayer insulating film formed when performing multilayer wiring. The present invention relates to a resin whetstone which is less related to a whetstone and has less flattening performance with less occurrence of scratches.

【0002】[0002]

【従来の技術】近年、電子装置の高密度化に伴って、半
導体、磁気ディスク、フラットディスプレイ等の分野
で、平坦基板上へのデバイスの形成が重要になってい
る。例えば、半導体素子の高集積化に伴い、デバイスの
微細化、多層配線構造化が進み、シリコンウエハ上に形
成された配線層には、微細化、高信頼度化のために表面
の平坦化が不可欠になっている。平坦化技術としては、
従来はSOG(Spin On Glass )等の液状絶縁膜を薄く
塗布後にCVD等の方法で無機膜を形成する方法や、ポ
リイミド等の耐熱性有機膜を形成する方法、あるいは形
成した無機膜をイオンエッチ等の方法でエッチバックす
る方法が採用されてきた。しかしながら、このような方
法による平坦化はほぼ限界にきている。
2. Description of the Related Art In recent years, with the increase in density of electronic devices, formation of devices on flat substrates has become important in the fields of semiconductors, magnetic disks, flat displays, and the like. For example, as semiconductor devices become more highly integrated, device miniaturization and multilayer wiring structure have progressed. Wiring layers formed on silicon wafers must have a flat surface for miniaturization and higher reliability. Has become indispensable. As flattening technology,
Conventionally, a method of forming an inorganic film by a method such as CVD after applying a thin liquid insulating film such as SOG (Spin On Glass), a method of forming a heat resistant organic film such as polyimide, or an ion etching of the formed inorganic film. Etch-back method has been adopted. However, planarization by such a method has almost reached its limit.

【0003】これらの方法に替わって、研磨パッド上で
シリカや酸化セリウムのスラリーで研磨するCMP(Mh
emical and Mechanical Polishing )と呼ばれる研磨法
が実用化されてきている。この研磨法で研磨を行うと、
研磨パッドに柔らかな樹脂シートを使用する為、被研磨
物表面の凸部と同時に凹部も研磨され、被研磨物表面全
体を完全な平坦面に仕上げることが難しく、硬い樹脂シ
ートを使用した場合にはスクラッチが多く発生するとい
う問題があった。また、研磨パッドの寿命が短いため頻
繁に取り替えねばならず、その都度研磨条件を調節する
必要があり、その消耗品費とメンテナンス費もさらなる
問題がある。そして、研磨剤に高価なスリラーを使い捨
てし、さらにその廃液の処理も必要であり、コストを押
し上げる要因となっている。
Instead of these methods, CMP (Mh) polishing with a slurry of silica or cerium oxide on a polishing pad is performed.
A polishing method called emical and Mechanical Polishing) has been put to practical use. When polishing by this polishing method,
Since a soft resin sheet is used for the polishing pad, the projections and depressions on the surface of the object to be polished are also polished, making it difficult to finish the entire surface of the object to be polished to a completely flat surface. Has a problem that many scratches occur. In addition, since the life of the polishing pad is short, the polishing pad has to be replaced frequently, and it is necessary to adjust the polishing conditions each time, and there is a further problem in the cost of consumables and maintenance. In addition, it is necessary to dispose of an expensive chiller as an abrasive and to treat the waste liquid, which is a factor that raises the cost.

【0004】より研磨面の平坦性向上のために、砥石研
磨による平坦化法がある。砥石の製造方法としては、例
えば砥粒とフェノール−メラミン系熱硬化性粉末バイン
ダーとをドライブレンドして、所望の気孔率になるよう
に制御した圧力で成形する方法(特開平9−13945
4号公報)や、ポリビニルアルコール、液状フェノール
レゾールとホルマリン等と混練後に型に入れて硬化する
方法等がある。また、研磨液が砥石と被研磨体との間に
入って被研磨体を浮かしてしまうため、砥石には排水用
の溝が必要である。しかし、溝加工の形状によっては欠
けやすく欠けた砥石によって被研磨物表面にスクラッチ
が入る問題や、形成時に溝加工工具から欠け落ちた硬質
異物が付着してスクラッチが発生する問題がある。さら
に、装置や被研磨体であるシリコーンウエハの大きさに
合わせて砥石の形状を変える必要があり、それに応じて
成型金型が必要になる問題がある。
[0004] In order to further improve the flatness of the polished surface, there is a flattening method using grinding stone polishing. As a method of manufacturing a grinding stone, for example, a method of dry-blending abrasive grains and a phenol-melamine-based thermosetting powder binder and molding the mixture under a pressure controlled so as to obtain a desired porosity (Japanese Patent Laid-Open No. 9-13945)
No. 4) and a method of kneading with polyvinyl alcohol, liquid phenol resol and formalin, and then curing the mixture in a mold. Further, since the polishing liquid enters between the grindstone and the body to be polished and floats the body to be polished, the grindstone requires a drain groove. However, depending on the shape of the groove processing, there is a problem that scratches are caused on the surface of the polished object due to a chip that is easily chipped, and a problem that scratches occur due to the adhesion of hard foreign substances that have fallen off from the groove processing tool during formation. Furthermore, it is necessary to change the shape of the grindstone in accordance with the size of the apparatus or the silicon wafer to be polished, and there is a problem that a molding die is required accordingly.

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
状況に鑑みなされたもので、研磨剤に高価なスラリーを
多量に使用することなく、スクラッチの発生のない研磨
面が得られ、且つ十分な研磨速度があり、平坦化性能に
優れる特に半導体ウエハの研磨に有用な樹脂砥石を提供
することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and provides a polished surface free of scratches without using a large amount of expensive slurry as an abrasive. It is an object of the present invention to provide a resin grindstone having a sufficient polishing rate and excellent in flattening performance, and particularly useful for polishing a semiconductor wafer.

【0006】[0006]

【課題を解決するための手段】かかる目的は本発明によ
れば、金属、FRP等の硬質の基板上に小セグメント状
の砥石を、隙間を空けて並べて固着した研磨用砥石によ
り達成される。すなわち、予め小セグメント砥石を成形
しておき、それを平な基板上に隙間を空けて並べること
により、砥石と半導体ウエハ間の研磨液によって浮き上
がり研磨できなくなる現象がなく、且つ研磨液排出用の
溝形成のための加工がなくなるため、加工工具からの硬
質異物の脱落による不良や、鋭角形状をなくすことによ
り、研磨時の砥石欠けによるスクラッチ生成の問題がな
くなる。且つ、小セグメント砥石数を変えることによ
り、理想的には1個の金型で小口径から大口径の砥石ま
で製造可能となる。また、本発明による小セグメントを
並べた砥石では、使用時に一部が破損しても、破損した
部分のみを取り替えることで再生することができるとい
う長所も有する。また、研磨むらをなくすために溝が同
心円上にないように配置することもできる。
According to the present invention, this object is attained by a polishing whetstone in which small-segment whetstones are fixedly arranged on a hard substrate such as metal or FRP with a gap therebetween. That is, by forming a small-segment grindstone in advance and arranging it with a gap on a flat substrate, there is no phenomenon that the polishing liquid between the grindstone and the semiconductor wafer makes it impossible to polish, and the polishing liquid is discharged. Since there is no processing for forming the grooves, defects due to dropping of hard foreign matter from the processing tool, and problems of generation of scratches due to chipping of a grindstone during polishing are eliminated by eliminating an acute angle shape. In addition, by changing the number of small-segment grindstones, ideally, a single die can be used to manufacture a grindstone having a small diameter to a large diameter. Further, the grindstone in which the small segments according to the present invention are arranged has an advantage that even if a part is damaged during use, it can be regenerated by replacing only the damaged part. Further, in order to eliminate polishing unevenness, the grooves may be arranged so as not to be concentric.

【0007】[0007]

【発明の実施の形態】本発明では、砥石の排水溝の間隔
が、小セグメント砥石の大きさによるため、その大きさ
が重要となる。研磨速度、加圧荷重や、供給する研磨液
量によっても最適寸法が変わるが、実用的な範囲は、5
mmから50mm(円形の場合その直径、平行四辺形の
場合三辺に接する最大内接円の直径、正多角形の場合内
接円の直径)の範囲である。また、セグメントの形状
は、研磨時の応力によって欠けてスクラッチの原因にな
らないように、60度未満の鋭角の無い形状の小セグメ
ント砥石であることが好ましい。例えば、円形、平行四
辺形、正多角形等が考えられる。溝の間隙についてもセ
グメント砥石の形状や大きさ並びに研磨条件によって適
宜変える必要がある。本発明に用いる砥石としては、そ
の気孔率が35〜70%、好ましくは45〜55%の連
続気孔を有する構造体であり、砥粒を結合させる結合樹
脂の曲げ弾性率が、3.5万kgf/cm2 以下であ
り、砥粒の最大粒径が2μmで、砥粒と樹脂の配合比は
容積比で40:60〜60:40の範囲が好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the distance between the drain grooves of the grindstone depends on the size of the small segment grindstone. The optimum dimensions vary depending on the polishing rate, the pressing load, and the amount of the polishing liquid to be supplied.
mm to 50 mm (the diameter of a circle, the diameter of the largest inscribed circle touching three sides in the case of a parallelogram, and the diameter of the inscribed circle in the case of a regular polygon). In addition, the shape of the segment is preferably a small segment grindstone having no sharp angle of less than 60 degrees so as not to cause chipping due to stress during polishing and cause scratches. For example, a circle, a parallelogram, a regular polygon, and the like can be considered. The gap between the grooves also needs to be appropriately changed depending on the shape and size of the segment grindstone and the polishing conditions. The grindstone used in the present invention is a structure having continuous pores having a porosity of 35 to 70%, preferably 45 to 55%, and a bending elastic modulus of a binder resin for binding abrasive grains is 35,000. kgf / cm 2 or less, the maximum grain size of the abrasive grains is 2 μm, and the mixing ratio of the abrasive grains to the resin is preferably in the range of 40:60 to 60:40 by volume ratio.

【0008】本発明に用いる砥粒の結合樹脂としては、
ポリビニルアセタール、フェノール樹脂、メラミン樹
脂、尿素樹脂、不飽和ポリエステル樹脂、エポキシ樹
脂、またはジアリルフタレート樹脂から選ばれた少なく
とも1種からなる樹脂材料が適しており、実用的には、
不飽和ポリエステル樹脂、ジアリルフタレート樹脂また
はエポキシ樹脂等の熱硬化性樹脂が使いやすい。本発明
に用いられる砥石の主成分である砥粒としては、酸化セ
リウム、シリカ、アルミナ、ジルコニア、炭化珪素等が
挙げられる。上記セグメント砥石は公知の接着剤により
基板上に配列固着される。基板としては特に制限するも
のではないが、円板状のアルミ板、ガラス板、プラスチ
ック成形板などを用いることができる。本発明におい
て、半導体ウエハを研磨するにあたって、局所的に常に
溝に当たる時間が長い部分とそうでない部分とが存在し
ないような工夫をすることが好ましい。例えば、同心円
上に溝が並ばないように、下記実施例1に示すように、
小セグメント砥石を中心からずらして並べた方が均一な
研磨ができるので好ましい。以下本発明をさらに実施例
により説明する。
The binder resin of the abrasive used in the present invention includes:
Polyvinyl acetal, phenolic resin, melamine resin, urea resin, unsaturated polyester resin, epoxy resin, or at least one resin material selected from diallyl phthalate resin is suitable, practically,
Thermosetting resins such as unsaturated polyester resin, diallyl phthalate resin or epoxy resin are easy to use. Examples of the abrasive grains that are the main components of the grindstone used in the present invention include cerium oxide, silica, alumina, zirconia, and silicon carbide. The segment whetstones are arranged and fixed on the substrate by a known adhesive. The substrate is not particularly limited, but a disc-shaped aluminum plate, glass plate, plastic molded plate, or the like can be used. In the present invention, when polishing a semiconductor wafer, it is preferable to devise a method such that there is no portion where the local time always hits the groove and another portion does not. For example, as shown in Example 1 below, so that the grooves are not aligned on concentric circles,
It is preferable to arrange the small-segment whetstones off-center because uniform polishing can be performed. Hereinafter, the present invention will be further described with reference to examples.

【0009】[0009]

【実施例】実施例1 硬化後の曲げ弾性率が3.5万kgf/cm2 になる固
形の不飽和ポリエステル樹脂(ユピカ株製 8523)
20部(重量部 以下同じ)、硬化促進剤ジクミルパー
オキサイド(三井東圧社製 DCP−F)2部、最大粒
子径が2μmの酸化セリウムを80部の割合で配合し、
ヘンシェルミキサーで混合後、さらにジェットミルにて
微粉砕混合した。この混合粉を金型に入れて、金型温度
160℃で40分の条件で成形した。成形体は脱型後樹
脂を完全硬化するために、160℃で2時間乾燥機で後
硬化を行いセグメント樹脂砥石とした。金型の形状は、
1辺1cmの正六角形で厚み1cm、一度に25個成形
できる形状のものである。金型に充填した混合粉の量
は、金型のキャビティの容量に対して50容積%の気孔
率が残るように秤量して充填した。次に、図1に示すよ
うな形状に、厚み5mmのアルミ板にエポキシ接着剤を
用いて、セグメント間隔が2mmになるように並べて接
着し、さらに表面が平坦になるようにダイヤモンド砥石
でドレッシングして直径約320mmφの樹脂砥石を得
た。
EXAMPLES Example 1 A solid unsaturated polyester resin having a flexural modulus of elasticity of 35,000 kgf / cm 2 after curing (8523 manufactured by Iupika Co., Ltd.)
20 parts (the same applies to parts by weight hereinafter), 2 parts of a curing accelerator dicumyl peroxide (DCP-F manufactured by Mitsui Toatsu Co., Ltd.), and 80 parts of cerium oxide having a maximum particle diameter of 2 μm,
After mixing with a Henschel mixer, the mixture was further pulverized and mixed with a jet mill. This mixed powder was put in a mold and molded at a mold temperature of 160 ° C. for 40 minutes. In order to completely cure the resin after demolding, the molded body was post-cured with a dryer at 160 ° C. for 2 hours to obtain a segment resin grindstone. The shape of the mold is
It is a regular hexagon having a side of 1 cm, a thickness of 1 cm, and a shape capable of forming 25 pieces at a time. The amount of the mixed powder filled in the mold was measured and filled so that a porosity of 50% by volume based on the volume of the cavity of the mold remained. Next, a 5 mm thick aluminum plate was adhered to the aluminum plate with a thickness of 5 mm using an epoxy adhesive so that the segment interval became 2 mm, and dressed with a diamond grindstone so that the surface became flat. Thus, a resin grindstone having a diameter of about 320 mmφ was obtained.

【0010】次に、この樹脂砥石を用いて、シリコンウ
エハ上に形成した層間絶縁膜(プラズマCVD法で形成
したSiO2 膜)を研磨した。研磨試験は、樹脂砥石に
純水を流しながら圧力200g/cm2 、摺動速度19
cm/sec、加工時間3分の条件で行った。研磨後ウ
エハ表面のスクラッチの測定は、光学顕微鏡により大ス
クラッチ(下部配線層に影響があると思われる傷)は6
inchウエハ全面、μスクラッチ(その他微細傷)は
ウエハの一部を観察し、6inchウエハ全体の量に換
算した。また、平坦化性能は、7mmパターン配線のウ
エハで、当初段差500nmに対し凸部500nmの研
磨での残存段差を測定した。研磨評価の結果、本発明に
なる砥石によれば、研磨中における砥石の欠けの発生も
全くなく、スクラッチは0個/ウエハ、研磨速度は10
5nm/min、平坦性は18nmと非常に優れた研磨
性能を有することが分かった。
Next, the interlayer insulating film (SiO 2 film formed by the plasma CVD method) formed on the silicon wafer was polished using the resin grindstone. In the polishing test, the pressure was 200 g / cm 2 and the sliding speed was 19 while flowing pure water through the resin grindstone.
cm / sec and a processing time of 3 minutes. The scratch on the wafer surface after polishing was measured by an optical microscope to find that large scratches (scratches thought to affect the lower wiring layer) were 6
The scratches (other fine scratches) on the entire surface of the inch wafer were observed on a part of the wafer, and were converted into the total amount of the 6 inch wafer. The flattening performance was measured by measuring the residual step in the polishing of the convex portion 500 nm with respect to the initial step 500 nm in the wafer having the 7 mm pattern wiring. As a result of the polishing evaluation, according to the grindstone according to the present invention, there was no occurrence of chipping of the grindstone during polishing, no scratches / wafer, and a polishing speed of 10
It was found that the polishing performance was as excellent as 5 nm / min and the flatness was 18 nm.

【0011】実施例2 硬化後曲げ弾性率が3.5万kgf/cm2 になる固形
のエポキシ樹脂(シェル社製 EP−1004)100
部とフェノールノボラック樹脂(日立化成工業製HP8
50)12部との溶融混合品)20部、硬化促進剤テト
ラフェニルホスフィンテトラフェニルボレート2.5
部、最大粒子径2μmの酸化セリウムを80部の割合
で、ヘンシェルミキサーで混合後、さらにジェットミル
にて微粉砕混合した。この混合粉を金型に入れて、金型
温度160℃で60分の条件で成形した。成形体は脱型
後、樹脂を完全硬化するために160℃で2時間乾燥機
で後硬化を行い、セグメント樹脂砥石とした。金型の形
状は、1辺2cmの正方形で厚み1cm、一度に25個
成形できる形状のものである。金型に充填した混合粉の
量は、金型のキャビティの容量に対して、50容積%の
気孔率が残るように秤量して充填した。次に、図2に示
すような形状に、厚み5mmのアルミ板上にエポキシ接
着剤を用いて、セグメント間隔が2mmになるように並
べて接着し、さらに表面が平坦になるようにダイヤモン
ド砥石でドレッシングして直径約360mmφの樹脂砥
石を得た。次に、この樹脂砥石を用いて、実施例1と同
様に研磨実験を行った。研磨評価の結果、研磨中におけ
る砥石の欠けの発生も全く無く、スクラッチは0個/ウ
エハ、研磨速度は125nm/min、平坦性は25n
mと非常に優れた研磨性能を有することが分かった。
Example 2 A solid epoxy resin (EP-1004 manufactured by Shell Co.) 100 having a flexural modulus after curing of 35,000 kgf / cm 2.
Part and phenol novolak resin (HP8 manufactured by Hitachi Chemical Co., Ltd.)
50) Melt mixture with 12 parts) 20 parts, curing accelerator tetraphenylphosphine tetraphenylborate 2.5
And cerium oxide having a maximum particle diameter of 2 μm in a ratio of 80 parts with a Henschel mixer, and then finely pulverized and mixed with a jet mill. This mixed powder was placed in a mold and molded at a mold temperature of 160 ° C. for 60 minutes. After demolding, the molded article was post-cured at 160 ° C. for 2 hours with a drier in order to completely cure the resin to obtain a segment resin grindstone. The shape of the mold is a square having a side of 2 cm, a thickness of 1 cm, and a shape capable of forming 25 pieces at a time. The amount of the mixed powder filled in the mold was weighed and filled so that a porosity of 50% by volume based on the volume of the cavity of the mold remained. Next, using a epoxy adhesive to adhere to the shape as shown in FIG. 2 on an aluminum plate with a thickness of 5 mm so that the segment interval becomes 2 mm, and further dressing with a diamond grindstone so that the surface becomes flat. Thus, a resin grindstone having a diameter of about 360 mmφ was obtained. Next, a polishing experiment was performed in the same manner as in Example 1 using this resin grindstone. As a result of the polishing evaluation, there was no chipping of the grindstone during the polishing, no scratches / wafer, the polishing rate was 125 nm / min, and the flatness was 25 n.
m and very excellent polishing performance.

【0012】実施例3 実施例2のセグメント型樹脂砥石を用い、直径約700
mmφの樹脂砥石を得た。次に、この樹脂砥石を用いて
シリコンウエハ上に形成したSiO2 層間絶縁膜の研磨
を実施例1、2と同様に行った。研磨試験は、樹脂砥石
に純水を流しながら圧力250g/cm2 、摺動速度5
3cm/sec、加工時間1分の条件で行った。研磨評
価の結果、研磨中における砥石の欠けの発生も全く無
く、スクラッチは0個/ウエハ、研磨速度は650nm
/min、平坦性は25nmと非常に優れた研磨性能を
有することが分かった。
Example 3 The segment-type resin grindstone of Example 2 was used, and the diameter was about 700.
A resin whetstone of mmφ was obtained. Next, polishing of the SiO2 interlayer insulating film formed on the silicon wafer using this resin grindstone was performed in the same manner as in Examples 1 and 2. In the polishing test, the pressure was 250 g / cm 2 and the sliding speed was 5 while pure water was flowing through the resin grindstone.
The test was performed under the conditions of 3 cm / sec and a processing time of 1 minute. As a result of the polishing evaluation, there was no chipping of the grindstone during the polishing, no scratches / wafer, and the polishing rate was 650 nm.
/ Min, and the flatness was 25 nm, which was very excellent polishing performance.

【0013】実施例4 実施例2のセグメント型樹脂砥石を用い、直径約100
mmφの樹脂砥石を得た。次に、この樹脂砥石を用い
て、シリコンウエハ上に形成したSiO2 層間絶縁膜の
研磨を実施例1、2と同様に行った。研磨試験は、樹脂
砥石に純水を流しながら圧力200g/cm2 、摺動速
度9cm/sec、加工時間3分の条件で行った。ただ
し、この場合シリコーンウエハを下部回転円盤状に固定
し、シリコンウエハを砥石ホルダーの方に取り付け、ウ
エハの中心部のみ常に研磨されるように設定して研磨を
行った。研磨評価の結果、研磨中における砥石の欠けの
発生も全く無く、スクラッチは0個/ウエハ、研磨速度
は65nm/min、平坦性は20nmと非常に優れた
研磨性能を有することが分かった。研磨速度は、研磨圧
力と摺動速度に大きく左右される。
Example 4 The segment-type resin grindstone of Example 2 was used and the diameter was about 100.
A resin whetstone of mmφ was obtained. Next, using this resin grindstone, polishing of the SiO2 interlayer insulating film formed on the silicon wafer was performed in the same manner as in Examples 1 and 2. The polishing test was performed under the conditions of a pressure of 200 g / cm 2 , a sliding speed of 9 cm / sec, and a processing time of 3 minutes while flowing pure water through the resin grindstone. However, in this case, the silicon wafer was fixed in a lower rotating disk shape, the silicon wafer was attached to the grindstone holder, and the polishing was performed so that only the central portion of the wafer was constantly polished. As a result of the polishing evaluation, it was found that there was no occurrence of chipping of the grindstone during the polishing, the scratch was 0 pieces / wafer, the polishing speed was 65 nm / min, and the flatness was 20 nm, which was a very excellent polishing performance. The polishing speed largely depends on the polishing pressure and the sliding speed.

【0014】比較例1 半導体配線層の研磨に通常使用されている市販のウレタ
ン研磨パッドでのCMP研磨実験を行った。パッドには
ポリウレタン製で圧縮弾性率が10000kgf/cm
2 のものを使い、研磨スラリは、酸化セリウムをポリア
クリル酸アンモニウムを分散剤として、添加した純水中
に濃度が3重量%になるように分散させたものを用い
た。研磨圧力は250g/cm2 、摺動速度53cm/
secとした。その結果、スクラッチは0個/ウエハ、
研磨速度は265nm/min、平坦性は200nmで
あった。ウレタンパッドによるCMP法では、スクラッ
チと研磨速度では良好だが、平坦性に劣っている。
Comparative Example 1 A CMP polishing experiment was performed using a commercially available urethane polishing pad which is usually used for polishing a semiconductor wiring layer. The pad is made of polyurethane and has a compression modulus of 10,000 kgf / cm.
The polishing slurry used was prepared by dispersing cerium oxide using polyammonium polyacrylate as a dispersing agent in pure water to a concentration of 3% by weight. Polishing pressure is 250 g / cm 2 , sliding speed 53 cm /
sec. As a result, 0 scratches / wafer,
The polishing rate was 265 nm / min, and the flatness was 200 nm. In the CMP method using a urethane pad, the scratch and the polishing rate are good, but the flatness is poor.

【0015】比較例2 実施例2と同じ組成の直径が380mmφの樹脂砥石
を、扇状に8分割にして砥石を成形し、アルミ板上に接
着後、ダイヤモンドカッターで20mmピッチ、幅20
mmの溝を格子状に形成した。溝内部を観察すると、局
部的に黒色の金属異物と思われる残留物が生成してい
た。これを研磨で目視できなくなったと思われる程度に
除去したが、その作業は極めて困難であった。次に、こ
の樹脂砥石を用いて実施例2と同様の条件で研磨実験を
行った。その結果、大スクラッチは0個/ウエハだった
が、マイクロスクラッチは約100個/ウエハ程度生成
した。研磨速度は90nm/min、平坦性は20nm
であった。平坦性と研磨速度は良好だが、加工時に混入
したと思われる不純物によりスクラッチが発生した。
Comparative Example 2 A resin grindstone having the same composition as that of Example 2 and having a diameter of 380 mmφ was divided into eight fan-shaped parts to form a grindstone, bonded to an aluminum plate, and pitched with a diamond cutter at a pitch of 20 mm and a width of 20 mm.
mm grooves were formed in a grid pattern. When the inside of the groove was observed, a residue which was considered to be a locally black metal foreign matter was formed. This was removed by polishing to such an extent that it could not be visually observed, but the operation was extremely difficult. Next, a polishing experiment was performed using this resin grindstone under the same conditions as in Example 2. As a result, the number of large scratches was 0 / wafer, but the number of micro scratches was about 100 / wafer. Polishing rate: 90 nm / min, flatness: 20 nm
Met. Although the flatness and polishing rate were good, scratches occurred due to impurities that seemed to be mixed during processing.

【0016】比較例3 実施例2と同じ組成の直径が380mmφの樹脂砥石
を、扇状に8分割にして砥石を成形し、アルミ板上に接
着して樹脂砥石とした。溝を形成せずに研磨実験を行っ
た結果、スクラッチは0個/ウエハだったが、研磨速度
は12nm/minと非常に遅かった。研磨条件が実施
例2と同様なのにもかかわらず、研磨速度が非常に低い
理由は、ウエハと砥石間に研磨液が入ったために研磨で
きなかったためと思われる。
Comparative Example 3 A resin grindstone having the same composition as that of Example 2 and having a diameter of 380 mmφ was divided into eight fan-shaped sections to form a grindstone, which was adhered to an aluminum plate to obtain a resin grindstone. As a result of conducting a polishing experiment without forming a groove, the number of scratches was 0 / wafer, but the polishing rate was extremely low at 12 nm / min. Although the polishing conditions are the same as in Example 2, the reason why the polishing rate is very low is considered to be that the polishing could not be performed because the polishing liquid entered between the wafer and the grindstone.

【0017】[0017]

【発明の効果】以上のように、本発明になるセグメント
型樹脂砥石は、高価なスラリーを用いることなく、スク
ラッチの発生のない研磨面が得られ、且つ十分な研磨速
度があり、平坦化性能に優れ、且つ異物混入のない溝が
形成でき、寸法の異なる大型小型の砥石の作製が容易
で、研磨時に砥石の欠けがなく、半導体ウエハ上に形成
された配線材料、多層配線を行う場合に形成する層間絶
縁膜の研磨に有用である。
As described above, the segment type resin grindstone according to the present invention can obtain a polished surface free of scratches without using an expensive slurry, has a sufficient polishing rate, and has a flattening performance. Excellent in forming grooves with no foreign matter, making it easy to manufacture large and small whetstones with different dimensions, no chipping of whetstones during polishing, wiring material formed on semiconductor wafers, multi-layer wiring It is useful for polishing an interlayer insulating film to be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 正六角形セグメント型樹脂砥石の平面図。FIG. 1 is a plan view of a regular hexagonal segment type resin grindstone.

【図2】 正方形セグメント型樹脂砥石の平面図。FIG. 2 is a plan view of a square segment type resin grindstone.

【符号の説明】[Explanation of symbols]

1 セグメント型樹脂砥石 2 溝 1 segment type resin whetstone 2 groove

───────────────────────────────────────────────────── フロントページの続き (72)発明者 富田 教一 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館工場内 (72)発明者 七海 憲 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館工場内 (72)発明者 沼田 俊一 茨城県つくば市和台48 日立化成工業株式 会社筑波開発研究所内 Fターム(参考) 3C063 AA02 AB05 BA08 BB01 BB03 BB07 BC03 BC09 EE10 FF23 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor K. Tomita 1500 Oji Ogawa, Shimodate City, Ibaraki Prefecture Inside the Shimodate Plant of Hitachi Chemical Co., Ltd. Inside the Shimodate Plant of the Company (72) Inventor Shunichi Numata 48 Wadai, Tsukuba, Ibaraki Prefecture Hitachi Chemical Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】基板上に砥粒と結合樹脂からなる小セグメ
ント砥石を互いに隙間を空けて並べて固着してなる平坦
化研磨用セグメント型樹脂砥石。
1. A flattening-polishing segment-type resin grindstone comprising small-segment grindstones made of abrasive grains and a binder resin fixedly arranged on a substrate with a gap therebetween.
【請求項2】セグメント型樹脂砥石の形状が、円形、平
行四辺形、または正多角形であって、セグメント型樹脂
砥石の単位セグメント形状が、円形の場合その直径、平
行四辺形の場合三辺に接する最大内接円の直径、正多角
形の場合内接円の直径が、5mmから50mmの範囲で
ある請求項1に記載の平坦化研磨用セグメント型樹脂砥
石。
2. The shape of a segment-type resin grindstone is a circle, a parallelogram, or a regular polygon, and the unit segment shape of the segment-type resin grindstone is a circle; The segmented resin grindstone for flattening and polishing according to claim 1, wherein the diameter of the largest inscribed circle in contact with the surface, or in the case of a regular polygon, the diameter of the inscribed circle is in the range of 5 mm to 50 mm.
【請求項3】小セグメント砥石の形状において、60度
未満の鋭角な角を有しない請求項1又は2に記載の平坦
化研磨用セグメント型樹脂砥石。
3. The segment type resin grindstone for flattening and polishing according to claim 1, wherein the small segment grindstone does not have an acute angle of less than 60 degrees.
【請求項4】砥石の主成分が、砥粒、結合樹脂、並びに
空隙からなる請求項1乃至3のいずれかに記載の平坦化
研磨用セグメント型樹脂砥石。
4. The segment type resin grindstone for flattening and polishing according to claim 1, wherein the main components of the grindstone are abrasive grains, a binder resin, and voids.
【請求項5】砥石の気孔率が35〜70%の連続気孔を
有する構造体であり、砥粒を結合させる結合樹脂の曲げ
弾性率が3.5万kgf/cm2 以下であり、砥粒の最
大粒径が2μmで、砥粒と樹脂の配合比は容積比で4
0:60〜60:40の範囲にある請求項1乃至4のい
ずれかに記載の平坦化研磨用セグメント型樹脂砥石。
5. A structure having continuous pores of a grindstone having a porosity of 35 to 70%, wherein a bending elastic modulus of a binder resin for binding the abrasive grains is 35,000 kgf / cm 2 or less. Has a maximum particle size of 2 μm, and the compounding ratio of the abrasive and the resin is 4 by volume.
The segmented resin grindstone for flattening and polishing according to any one of claims 1 to 4, which is in a range of 0:60 to 60:40.
【請求項6】砥石の主成分である砥粒が、酸化セリウ
ム、シリカ、アルミナ、またはジルコニアから選ばれた
少なくとも一種からなる請求項1乃至5のいずれかに記
載の平坦化研磨用セグメント型樹脂砥石。
6. The segment type resin for flattening and polishing according to claim 1, wherein the abrasive grains as a main component of the grindstone are at least one selected from cerium oxide, silica, alumina, and zirconia. Whetstone.
【請求項7】砥粒を結合させる結合樹脂が、ポリビニル
アセタール、フェノール樹脂、メラミン樹脂、尿素樹
脂、不飽和ポリエステル樹脂、エポキシ樹脂、またはジ
アリルフタレート樹脂から選ばれた少なくとも一種から
なる請求項1乃至6のいずれかに記載の平坦化研磨用セ
グメント型樹脂砥石。
7. The resin according to claim 1, wherein the binder resin for binding the abrasive grains is at least one selected from polyvinyl acetal, phenol resin, melamine resin, urea resin, unsaturated polyester resin, epoxy resin, and diallyl phthalate resin. 7. The segment type resin grindstone for planarization polishing according to any one of 6.
JP3660299A 1999-02-16 1999-02-16 Flattening polishing segment type resin grinding wheel Pending JP2000233375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3660299A JP2000233375A (en) 1999-02-16 1999-02-16 Flattening polishing segment type resin grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3660299A JP2000233375A (en) 1999-02-16 1999-02-16 Flattening polishing segment type resin grinding wheel

Publications (1)

Publication Number Publication Date
JP2000233375A true JP2000233375A (en) 2000-08-29

Family

ID=12474355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3660299A Pending JP2000233375A (en) 1999-02-16 1999-02-16 Flattening polishing segment type resin grinding wheel

Country Status (1)

Country Link
JP (1) JP2000233375A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367938A (en) * 2001-06-08 2002-12-20 Lsi Logic Corp Method for reducing defect density and method for controlling flow rate of slurry in chemical mechanical polishing of semiconductor wafer
JP2008001803A (en) * 2006-06-22 2008-01-10 Admatechs Co Ltd Abrasive grain for abradant, method for producing the same and abradant
JP2020501928A (en) * 2016-12-23 2020-01-23 スリーエム イノベイティブ プロパティズ カンパニー Polymer bonded abrasive articles and methods for their manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367938A (en) * 2001-06-08 2002-12-20 Lsi Logic Corp Method for reducing defect density and method for controlling flow rate of slurry in chemical mechanical polishing of semiconductor wafer
JP2008001803A (en) * 2006-06-22 2008-01-10 Admatechs Co Ltd Abrasive grain for abradant, method for producing the same and abradant
JP2020501928A (en) * 2016-12-23 2020-01-23 スリーエム イノベイティブ プロパティズ カンパニー Polymer bonded abrasive articles and methods for their manufacture
JP7134971B2 (en) 2016-12-23 2022-09-12 スリーエム イノベイティブ プロパティズ カンパニー Polymer-bonded abrasive articles and methods of making them
US11623324B2 (en) 2016-12-23 2023-04-11 3M Innovative Properties Company Polymer bond abrasive articles and methods of making them

Similar Documents

Publication Publication Date Title
EP1211023B1 (en) Polishing body, polisher, polishing method, and method for producing semiconductor device
US6454644B1 (en) Polisher and method for manufacturing same and polishing tool
TWI444247B (en) Improved chemical mechanical polishing pad and methods of making and using same
US9067302B2 (en) Segment-type chemical mechanical polishing conditioner and method for manufacturing thereof
JPH10180618A (en) Grinding pad adjusting method for cmp device
CN104620356A (en) Cmp conditioner pads with superabrasive grit enhancement
US6659846B2 (en) Pad for chemical mechanical polishing
JP5836992B2 (en) Manufacturing method of semiconductor device
JP4681304B2 (en) Laminated polishing pad
CN202952159U (en) Chemical mechanical polishing dresser
JPH11207632A (en) Polisher, manufacture of the same and polishing tool
JP2016124043A (en) Abrasive pad
JP2000190232A (en) Resin grinding wheel for semiconductor wafer polishing, its manufacture, polishing method of semiconductor wafer, semiconductor element, and semiconductor device
JP2000233375A (en) Flattening polishing segment type resin grinding wheel
TWI702281B (en) Abrasive material and manufacturing method of abrasive material
JP2002355763A (en) Synthetic grinding wheel
JP2003124165A (en) System and device for manufacturing of semiconductor device
US20100240285A1 (en) Polishing apparatus and method of manufacturing semiconductor device using the same
CN112405337B (en) Polishing pad and method for manufacturing semiconductor device
JPH11347952A (en) Resin grinding wheel for grinding semi-conductor wafer, and its manufacture
Liu et al. An approach for hydrophobic fixed abrasive pad based on layer-by-layer method
WO2023100957A1 (en) Glass sheet manufacturing method
WO2023085192A1 (en) Method for manufacturing glass plate
CN219599100U (en) Polishing pad with double-layer functional gradients
WO2000024548A1 (en) Polishing apparatus and a semiconductor manufacturing method using the same