【0001】
【発明の属する技術分野】
本発明は、硝酸性窒素含有水の処理方法に関するものであり、特に電解処理技術を利用して、排水中の硝酸性窒素を窒素ガスまで分解処理することができる水処理方法に関する。
【0002】
【従来の技術】
従来、実施されている窒素化合物含有水の処理方法は、生物学的な処理方法と物理化学的な処理方法に大別される。生物学的な処理方法は、数多く実用化されているが、広い設置面積を必要とすることや、汚泥を発生するという問題がある。このため、様々な種類の物理化学的な処理方法が検討されてきた。例えば、排水中の硝酸性窒素を除去する方法として、触媒を利用すると、生物学的な処理方法に比較して、反応速度が大きく処理装置もコンパクトにすることが可能であるが、100℃以上の加熱条件で処理する必要があった(特許文献1)。さらに、パラジウムを担持した還元触媒中に水素ガスを通じて、硝酸性窒素をアンモニアに還元した後に、排水中に残存するアンモニアを除去する処理方法が提案されている(特許文献2)。しかし、この方法では、大量の排水を処理する際に、大量の水素ガスの添加が必要であり、大量の可燃性ガスを保有しなければならないことと、2つの工程からなっており装置が複雑化するという問題があった。
【0003】
また、電気化学的な処理方法は、反応性ガスや薬品の添加が不要であり、汚泥を発生せずに装置がコンパクトになるという利点がある。このような観点から、真鍮や鉄といった金属電極を陰極として活用した硝酸性窒素含有水の処理方法が提案されている(非特許文献1、2)。しかしながら、工場排水には腐食性の強い物質を含んでいる場合も多く、真鍮や鉄といった電極材料は容易に汚染されたり、排水中に溶出しやすいという問題があり、実用化には至っていない。
これに対し、ダイヤモンドは化学的安定性が高く、ホウ素や窒素をドープすることによって導電性を示すことから排水処理のための電極材料として期待されている。藤嶋らの論文(非特許文献3)では、ホウ素をドープしたダイヤモンド電極の電位窓が極めて広く腐食性の強い水溶液中においても安定に動作することが報告されている。また、藤嶋らの論文(非特許文献4)ではNOxがダイヤモンド陰極でアンモニアに還元されることが報告されている。
【0004】
【特許文献1】
特開平7−328653号公報
【特許文献2】
特開2000−271575号公報
【非特許文献1】
広 直樹ら、「電子材料Vol.41」,(2002)69
【非特許文献2】
高岡大造ら、「第26回電解技術討論会講演要旨集」,(2002)50
【非特許文献3】
藤嶋ら、「Electrochemistry」,Vol,67(1999)389
【非特許文献4】
藤嶋ら、「Journal of ElectroanalyticalChemistry」,Vol,396(1995)233
【0005】
【発明が解決しようとする課題】
しかしながら、ダイヤモンド電極を用いた上記電解反応においては、電解反応によって生じるアンモニアを処理することが必要になる。また、陰極で窒素化合物の分解が起こるのと同時に水素発生反応が競合的に生じ、陽極では、アンモニアの再酸化反応が起こり、窒素の除去効率が悪く、実用化において改良が必要であると考えられている。
【0006】
本発明は、上記事情を背景としてなされたものであり、硝酸性窒素含有水の処理において、これまでの電解処理方法において見られた実用化の観点から改良が望まれる課題を解決し、電流効率の高い窒素化合物の処理方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため本発明の硝酸性窒素含有水の処理方法のうち、請求項1記載の発明は、少なくとも陰極に導電性ダイヤモンドを用いた電解反応槽にて、硝酸性窒素含有水を電解して、該含有水に含まれる硝酸性窒素をアンモニアに還元するとともに該アンモニアを酸化して窒素ガスとして前記含有水から除去することを特徴とする。
【0008】
請求項2記載の硝酸性窒素含有水の処理方法は、請求項1記載の発明において、硝酸性窒素含有水を濃縮した後、前記電解反応槽に供給することを特徴とする。
【0009】
請求項3記載の硝酸性窒素含有水の処理方法は、請求項2記載の発明において、前記濃縮は、硝酸性窒素含有水の蒸発濃縮により行われることを特徴とする。
【0010】
請求項4記載の硝酸性窒素含有水の処理方法は、請求項2記載の発明において、前記濃縮は、イオン交換樹脂を利用して行われることを特徴とする。
【0011】
請求項5記載の硝酸性窒素含有水の処理方法は、請求項2記載の発明において、前記濃縮は、逆浸透膜を利用して行われることを特徴とする。
【0012】
請求項6記載の硝酸性窒素含有水の処理方法は、請求項1〜5のいずれかに記載の発明において、前記硝酸性窒素含有水中に、処理開始初期及び、又は処理中に電解質を一時的、連続的あるいは断続的に添加することを特徴とする。
【0013】
請求項7記載の硝酸性窒素含有水の処理方法は、請求項1〜6のいずれかに記載の発明において、少なくとも陰極に利用する導電性ダイヤモンドは、電解処理時に1μm以上の大きさを有する結晶面を1つ以上前記含有水に接液させた状態で使用されるものであることを特徴とする。
【0014】
請求項8記載の硝酸性窒素含有水の処理方法は、請求項1〜7のいずれかに記載の発明において、陰極の電解有効面積が、陽極の電解有効面積より大きいことを特徴とする。
【0015】
請求項9記載の硝酸性窒素含有水の処理方法は、請求項1〜8のいずれかに記載の発明において、電極として利用されている導電性ダイヤモンドがセルフスタンド型電極であることを特徴とする。
【0016】
請求項10記載の硝酸性窒素含有水の処理方法は、請求項1〜9のいずれかに記載の発明において、陰極での電流密度を0.1A/cm2以下とすることを特徴とする。
【0017】
すなわち本発明によれば、硝酸性窒素を含有する水を、少なくとも陰極に導電性ダイヤモンドを用いた電解反応槽において電解処理することで、陰極側の反応によって硝酸性窒素がアンモニアに還元され、該アンモニアは陽極側の反応によって窒素ガスに酸化され、系外に除去することができる。該反応は、電解反応槽に硝酸性窒素含有水を通液しつつ電解することによって、より効率的になる。
なお、硝酸性窒素は、肥料の使用により地下水に浸透したり、生活排水、工場排水などに含まれる有害物質であり、環境面から除去の必要性が求められている。本発明でいうところの硝酸性窒素は、硝酸性窒素の他に亜硝酸性窒素も含む広い概念である。
【0018】
上記電解においては、酸化反応を促進するために、電解質としては、特に指定がないが、塩化ナトリウムなどの塩化物イオンを含んだ電解質を添加するのが望ましい。電解質の濃度については、特に指定はないが、極端に希薄になると極間電圧が高くなりすぎ、エネルギー効率的に実用的ではない。排水中に全く電解質成分が存在しない場合は、0.1M前後の電解質の添加が望ましい。排水中の硝酸性窒素は、陰極でアンモニアに還元されるが、陽極で生成する次亜塩素酸などの酸化剤と反応して、窒素ガスとして系外へと放出される。陽極にも、ダイヤモンド電極を用いることで、陽極で生成させる酸化剤としては、過硫酸であっても良いし、オゾンであっても良いので、排水中に添加する電解質としては、塩化物イオン以外の硫酸イオンを含むようなものであっても良い。さらに、還元処理を行う際の電流密度は、高いほど反応速度が上がるわけではなく、水素発生に利用される電流が増えて電流効率の低下を招くので、陰極での電流密度を0.1A/cm2以下に抑えることが望ましい。
また上記反応では、陽極でアンモニアが再酸化されて硝酸イオンにもどってしまうこともあるので、陽極のダイヤモンド電極の面積を陰極よりも小さくすることで上記現象を低減して処理効率を上げることができる。
【0019】
また、硝酸性窒素の除去に関する電流効率は、電極表面への物質移動によって決定され、電解液濃度が高くなるほど電流効率は高くなる。したがって、硝酸性窒素濃度が希薄な排水を大量に処理するよりも、濃縮を行った後に電解処理をする方が電流効率を高めた処理が行える。排水を濃縮する手段としては、蒸発濃縮であっても良いし、イオン交換樹脂を利用したものやRO膜(逆浸透膜)による方法であっても良い。
【0020】
本発明では、陽極および陰極のうち、少なくとも陰極にダイヤモンド電極を有する電解反応槽を使用する。好適には、陽極にもダイヤモンド電極を使用する。
本発明で使用する導電性ダイヤモンド電極は、Nb,Ta,Ti,Mo,W,Zr等の導電性金属材料を基盤とし、これらの基盤の表面に導電性ダイヤモンド薄膜を析出させたものや、シリコンウエハ等の半導体材料を基盤とし、この表面に導電性ダイヤモンド薄膜を合成させたもの、さらに、基盤を用いない条件で板状に析出合成した導電性多結晶ダイヤモンドを挙げることができる。但し、基板上に析出させたダイヤモンド膜の厚さが薄い場合、ダイヤモンド膜のピンホールより溶液が浸透して、陰極周囲はアルカリ性であるために基板が腐食されて、ダイヤモンド膜が脱落する可能性がある。このため、本発明で利用するダイヤモンド電極としては、ダイヤモンドのコーティング厚さが十分にあり、基板上に堆積させた後に、基板を除去したセルフスタンド型ダイヤモンド電極であることが望ましい。また、気相合成したダイヤモンド膜は、主として(111)あるいは(100)結晶面よりなっており、より大きな結晶面を接液させて処理することが望ましい。すなわち、導電性ダイヤモンド電極は、1つの辺が1μm以上である結晶面が1つ以上処理液に接液しているのが望ましい。
【0021】
なお、導電性ダイヤモンド薄膜は、ダイヤモンド薄膜の合成の際にボロン、窒素等の所定量をドープして導電性を付与したものであり、通常はボロンドープしたものが一般的である。これらのドープ量は、少なすぎると技術的意義が発生せず、多すぎてもドープ効果が飽和するため、ダイヤモンド薄膜の炭素量に対して、50〜20,000ppmの範囲でドープしたものを、通常使用する。
【0022】
また、本発明において、導電性ダイヤモンド電極は、通常は板状のものを使用するが、網目構造物を板状にしたものも使用できる。また、炭素粉末などにダイヤモンドをコーティングした粉末を電解液によって流動させて、流動床を構成することもできる。さらに、三次元構造の基質にダイヤモンド粉末を担持させ、高表面積を有する固定床を構成し、反応速度を大きくすることもできる。
【0023】
この導電性ダイヤモンド電極を用いて行う電解処理は、硝酸性窒素を含む水をダイヤモンド電極面と平行方向に、通液線速度を10〜1,000m/hで接触処理させることが望ましいが、必要な場合はこの範囲に限らず、10,000m/h程度までの範囲で接触処理させることもある。また、電解反応槽内の液温度は、通常10〜95℃の温度で処理するのが望ましい。
【0024】
【発明の実施の形態】
(実施形態1)
以下に、本発明の処理方法を図1に基づいて説明する。
本発明の一実施形態の処理方法に用いられる排水処理装置10は、電解貯槽11と循環ポンプ12と電解反応槽13と気液分離装置14と循環ライン15とを有している。
前記電解貯槽11は、循環ポンプ12及び循環ライン15の往路を介して電解反応槽13と連通し、電解反応槽13は、気液分離装置14および循環ライン15の復路を介して前記電解貯槽11と連通している。なお、電解反応槽13では、ダイヤモンド電極からなる陽極13aと陰極13bとを備えており、該陽極13aと陰極13b間を処理水が通液するように構成されている。陽極13aおよび陰極13bは、図示しない電源に接続され、通電可能となっている。
【0025】
次に、上記排水処理装置10の動作について以下に説明する。
まず電解貯槽11に、硝酸性窒素を含有する排水の原水を注入し貯水する。この電解貯槽11では、必要に応じて塩化物イオン等の電解質を添加する。電解貯槽11内の排水は処理水として、循環ポンプ12により電解反応槽13に送られる。電解反応槽13では、上記陽極13aおよび陰極13bに給電され、両極間を通液する処理水が電気分解される。この際に、電解反応槽13における処理水の温度は好適には60〜80℃に制御する。また、上記通電においては、陰極13bの電流密度を好適には0.1A/cm2以下とする。
【0026】
上記電気分解では、陰極側で硝酸性窒素がアンモニアに還元される反応が生じ、陽極側では、該アンモニアが窒素に酸化される反応が生じる。電気分解によって生成された上記窒素は窒素ガスとして処理水とともに移動して、電解反応槽13から排出される。電解反応槽13から排出された処理水は、気液分離装置14に送られ、該分離装置14でガス成分である窒素ガスを処理水から分離して排気した後、処理水を返送液として循環ライン15により電解貯槽11に返送する。
電解貯槽11に返送された返送液は、循環ポンプ12により再び電解反応槽13に送られ、液中の硝酸窒素が繰り返し電気分解される。このように、排水は電解貯槽11と電解反応槽13との間を循環して処理水から硝酸性窒素が効果的に分解除去される。
【0027】
(実施形態2)
次に、本発明の処理方法の他の実施形態を図2に基づいて説明する。
この実施形態に用いられる処理装置では、電解反応槽130を備えている以外は、実施形態1と同様の構成を有しており、該構成については実施形態1と同一の符号を付してその説明は省略する。電解反応槽130は、ダイヤモンド電極で構成される陽極130aと陰極130bとを備えており、陽極130aの電極有効面積は、陰極130bの電極有効面積よりも小さくなっている。該電解反応槽130では、上記電解反応槽13と同様に処理水の電気分解がなされ、陰極側で硝酸性窒素がアンモニアに還元され、陽極側で、該アンモニアが窒素に酸化される。また、この電解反応槽130では、陽極130aの電極有効面積が陰極13bよりも小さくなっていることから、陽極130aで上記アンモニアが再酸化されるのを抑制することによって処理効率の向上を図っている。
【0028】
(実施形態3)
次に、さらに他の実施形態を図3に基づいて説明する。
この実施形態に用いられる処理装置20では、上記各実施形態と異なり、蒸発濃縮装置21を備えているものである。なお、上記実施形態と同様の構成については同一の符号を付してその説明を省略または簡略化する。
前記蒸発濃縮装置21は、循環ポンプ12及び循環ライン15の往路を介して電解反応槽13と連通し、さらに、電解反応槽13は、気液分離装置14および循環ライン15の復路を介して蒸発濃縮装置21と連通する。
【0029】
この排水処理装置20の動作について以下に説明する。
まず蒸発濃縮装置21に、硝酸性窒素を含有する排水の原水を注入する。蒸発濃縮装置21では、排水中の水分の一部を蒸発させて該排水を濃縮し、濃縮液を作る。なお、蒸発させた水分は凝縮させて凝縮水として排水する。上記濃縮水は、循環ポンプ12により電解反応槽13に送る。電解反応槽13では、濃縮水中の硝酸性窒素が上記各実施形態と同様に電気分解される。このとき、濃縮水中の硝酸性窒素濃度は、蒸発濃縮装置21による濃縮によって高くなっているので、硝酸性窒素を分解するために使われる電流の効率を高くすることができる。
【0030】
上記電気分解によって生成される窒素ガスは、上記各実施形態と同様に気液分離装置14で分離されて排気される。窒素ガスを分離した濃縮水は、返送液として循環ライン15の復路により蒸発濃縮装置11に返送する。
蒸発濃縮装置21に返送された返送液は、さらに必要に応じて蒸発濃縮され、循環ポンプ12により再び電解反応槽13に送られ、液中の有機物が電気分解される。なお、蒸発濃縮装置21では、上記返送液に原水を混合して蒸発濃縮することもできる。このように、排水は蒸発濃縮装置11と電解反応槽13との間を循環する。また、この実施形態においても、循環路等において適宜塩化物イオン等の電解質を必要に応じて添加することができる。
【0031】
なお、この実施形態では、硝酸性窒素含有水を濃縮する方法として蒸発濃縮の方法を採用しているが、本発明としては、硝酸性窒素の濃度を高めることができるものであればその手段は特に問わないものであり、前記したようにイオン交換樹脂や、逆浸透膜等によって濃縮を行うことも可能であり、同様の効果を得ることができる。
また、この実施形態では、電解反応槽における陽極と陰極の電極有効面積について言及していないが、実施形態2と同様に、陽極の面積を陰極よりも小さくしてアンモニアの再酸化を抑止するようにしてもよい。
【0032】
【実施例】
以下に本発明の実施例を比較例と対比しつつ説明する。
実施例1−1
ボロンドープ法を用いて気相析出合成した積層状多結晶導電性ダイヤモンド板(5cm×5cm×0.05cm)2枚を陰極および陽極に用いて対向させ、極間距離1cmに設定して電解反応槽とした。硝酸性窒素含有排水(T−N:106mg/L、NO3−N:106mg/L、300mL)に塩化ナトリウムを5,850mg/L添加して前記電解貯槽に入れた。電解貯槽内をスターラーで攪拌しながら送液ポンプを用いて、電解反応槽に200ml/minの流速で通液して電解貯槽間で循環処理した。電解反応槽の投入電気量は電流値で0.5A(電流密度は25mA/cm2)となるように設定した。電解処理を3時間継続して、電解反応槽出口水の水を採取して全室素(T−N)、硝酸性窒素(NO3−N)、アンモニア性窒素(NH3−N)の分析を行ったところ表1の結果を得た。表1に示されるように、アンモニアを残存させることなく、T−Nについて完全に除去することが可能であった。
【0033】
【表1】
【0034】
比較例1−1
実施例1−1で行った電解処理で、陰極を白金メッキしたチタン板とした以外は実施例1−1と同様に電解処理を行った。その結果、硝酸性窒素の還元が殆ど起こらないことがわかった。
【0035】
【表2】
【0036】
実施例1−2
ボロンドープ法を用いて気相析出合成した筒状の積層状多結晶導電性ダイヤモンド電極(外径7cm×長さ4cm×0.05cm)を陰極に用い、その中央部に棒状のダイヤモンド電極(外径1cm×長さ4cm)を陽極として設置して、電解反応槽とした。硝酸性窒素含有排水(T−N:110mg/L、NO3−N:110mg/L、300mL)に塩化ナトリウムを5,850mg/L添加して電解貯槽に入れた。電解貯槽内をスターラーで攪拌しながら送液ポンプを用いて、電解反応槽に200ml/minの流速で通液して電解貯槽間で循環処理した。電解反応槽の投入電気量は電流値で0.5A(電流密度は18mA/cm2)となるように設定した。電解処理を2.5時間継続して、電解反応槽出口水の水を採取して全窒素(T−N)、硝酸性窒素(NO3−N)、アンモニア性窒素(NH3−N)の分析を行ったところ表3の結果を得た。すなわちアンモニアを残存させることなく、T−Nについて完全除去が可能であった。また、陽極の面積を陰極よりも小さくすることで、陰極で生成したアンモニアの再酸化を抑えながら高効率での窒素除去が可能であった。
【0037】
【表3】
【0038】
実施例2−1
次に、ボロンドープ法を用いて気相析出合成し、(111)結晶面の大きさが10μm×10μm以上になるように成長させた導電性ダイヤモンド板(5cm×5cm×0.05cm)2枚を陰極および陽極に用いて対向させ、極間距離1cmに設定して電解反応槽とした。硝酸性窒素含有排水を蒸発濃縮によって濃縮させた排水(T−N:620mg/L、NO8−N:620mg/L、200mL)に塩化ナトリウムを5850mg/L添加して電解貯槽に入れた。電解貯槽内をスターラーで攪拌しながら送液ポンプを用いて、電解反応槽に200ml/minの流速で通液して電解貯槽間で循環処理した。電解反応槽の投入電気量は電流値で0.8A(電流密度は25mA/cm2)となるように設定した。電解処理を4時間継続して、電解反応槽出口水の水を採取して全窒素(T−N)を全窒素計で、硝酸性窒素(NO8−N)とアンモニア性窒素(NH8−N)についてはイオンクロマトグラフィーによって分析を行ったところ表4の結果を得た。表から明らかなように硝酸性窒素が効果的に分解されている。
【0039】
【表4】
【0040】
試験例2−1
実施例2−1で行った電解処理で、蒸発濃縮を行わずに原水のまま(T−N:30mg/L、NO8−N:30mg/L、200mL)で処理を行った以外は、実施例2−1と同様に電解処理を行った。電解処理を4時間継続して、分析を行ったところ表5の結果を得た。この結果、上記濃縮が処理効率を向上させていることがわかる。
【0041】
【表5】
【0042】
試験例2−2
実施例2−1で行った電解処理で、表面を研磨して結晶面をつぶした導電性ダイヤモンド板を両極に用いた以外は、実施例2−1と同様に電解処理を行った。電解処理を4時間継続して、分析を行ったところ、表6の結果を得た。この結果、処理効率が低下していることがわかる。
【0043】
【表6】
【0044】
実施例2−2
ボロンドープ法を用いて気相析出合成し、(111)結晶面の大きさが10μm×10μm以上となるように成長させた導電性ダイヤモンド板(5cm×5cm×0.05cm)2枚を陰極および陽極に用い、極間距離1cmに設定して電解反応槽とした。硝酸性窒素含有排水を強塩基性アニオン樹脂によって濃縮させた排水(T−N:820mg/L、NO3−N:820mg/L、200mL)に塩化ナトリウムを5,850mg/L添加して電解貯槽に入れた。電解貯槽内をスターラーで攪拌しながら送液ポンプを用いて、電解反応槽に200mL/minの流速で循環処理した。電解反応槽の投入電気量は電流値で0.8A(電流密度は25mA/cm2)となるように設定した。電解処理を4時間継続して、電解反応槽出口水の水を採取して全窒素(T−N)を全窒素計で、硝酸性窒素(NO8−N)とアンモニア性窒素(NH3−N)についてはイオンクロマトグラフイーによって分析を行ったところ表7の結果を得た。この結果、硝酸性窒素が効率よく分解されていることがわかる。
【0045】
【表7】
【0046】
実施例2−3
ボロンドープ法を用いて気相析出合成し、(111)結晶面の大きさが100μm×100μm以上になるように成長させた導電性ダイヤモンド板(5cm×5cm×0.05cm)2枚を陰極および陽極に用い、極間距離1cmに設定して電解反応槽とした。硝酸性窒素含有排水を強塩基性アニオン樹脂によって濃縮させた排水(T−N:820m/Lg、NO3−N:820mg/L、200ml)に塩化ナトリウムを5,850mg/L添加して電解貯槽に入れた。電解貯槽内をスターラーで攪拌しながら送液ポンプを用いて、電解反応槽に200ml/minの流速で循環処理した。電解反応槽の投入電気畳は電流値で0.8A(電流密度は25mA/cm2)となるように設定した。電解処理を4時間継続して、電解反応槽出口水の水を採取して全窒素(T−N)を全窒素計で、硝酸性窒素(NO3−N)とアンモニア性窒素(NH3−N)についてはイオンクロマトグラフィーによって分析を行ったところ表8の結果を得た。実施例2−2よりも電流効率が良く、電解処理による窒素化合物の還元効果が接液している結晶面が大きいほど良いことがわかった。
【0047】
【表8】
【0048】
【発明の効果】
以上説明したように、本発明の硝酸性窒素含有水の処理方法によれば、少なくとも陰極に導電性ダイヤモンドを用いた電解反応槽にて、硝酸性窒素含有水を電解して、該含有水に含まれる硝酸性窒素をアンモニアに還元するとともに該アンモニアを酸化して窒素ガスとして前記含有水から除去するので、硝酸性窒素を電気分解によって効果的に分解除去することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に用いられる処理装置を示す概略図である。
【図2】同じく他の実施形態に用いられる処理装置を示す概略図である。
【図3】同じくさらに他の実施形態に用いられる処理装置を示す概略図である。
【符号の説明】
10 電解処理装置
11 電解貯槽
12 送液ポンプ
13 電解反応槽
14 気液分離装置
15 循環ライン
20 電解処理装置
21 蒸発濃縮装置[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for treating nitrate nitrogen-containing water, and more particularly to a water treatment method capable of decomposing nitrate nitrogen in wastewater into nitrogen gas by utilizing an electrolytic treatment technique.
[0002]
[Prior art]
Conventionally, the treatment method of nitrogen compound-containing water is roughly classified into a biological treatment method and a physicochemical treatment method. Many biological treatment methods have been put to practical use, but there are problems that a large installation area is required and sludge is generated. For this reason, various kinds of physicochemical treatment methods have been studied. For example, when a catalyst is used as a method for removing nitrate nitrogen in wastewater, the reaction rate is large and the treatment apparatus can be made compact as compared with a biological treatment method. (Patent Document 1). Further, a treatment method has been proposed in which nitrate nitrogen is reduced to ammonia by passing hydrogen gas through a reduction catalyst carrying palladium, and then ammonia remaining in wastewater is removed (Patent Document 2). However, in this method, a large amount of hydrogen gas needs to be added when treating a large amount of wastewater, and a large amount of flammable gas must be retained. There was a problem of becoming.
[0003]
Further, the electrochemical treatment method does not require addition of a reactive gas or a chemical, and has an advantage that the apparatus is compact without generating sludge. From such a viewpoint, a method for treating nitrate nitrogen-containing water using a metal electrode such as brass or iron as a cathode has been proposed (Non-Patent Documents 1 and 2). However, factory wastewater often contains highly corrosive substances, and there is a problem that electrode materials such as brass and iron are easily contaminated or easily eluted in the wastewater, and have not been put to practical use.
On the other hand, diamond is expected to be used as an electrode material for wastewater treatment because diamond has high chemical stability and exhibits conductivity when doped with boron or nitrogen. A paper by Fujishima et al. (Non-Patent Document 3) reports that the potential window of a boron-doped diamond electrode is extremely wide and operates stably even in a highly corrosive aqueous solution. Also, a paper by Fujishima et al. (Non-Patent Document 4) reports that NOx is reduced to ammonia at a diamond cathode.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 7-328653 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2000-271575 [Non-Patent Document 1]
Naoki Hiro et al., “Electronic Materials Vol. 41”, (2002) 69
[Non-patent document 2]
Taizo Takaoka et al., “Abstracts of the 26th Meeting of the Electrochemical Technology Symposium”, (2002) 50
[Non-Patent Document 3]
Fujishima et al., "Electrochemistry", Vol. 67 (1999) 389.
[Non-patent document 4]
Fujishima et al., "Journal of Electroanalytical Chemistry", Vol, 396 (1995) 233.
[0005]
[Problems to be solved by the invention]
However, in the above-described electrolytic reaction using a diamond electrode, it is necessary to treat ammonia generated by the electrolytic reaction. At the same time, the decomposition of the nitrogen compound occurs at the cathode, and at the same time, the hydrogen generation reaction occurs competitively. At the anode, the reoxidation reaction of ammonia occurs, and the nitrogen removal efficiency is poor. Have been.
[0006]
The present invention has been made in view of the above circumstances, and solves a problem in the treatment of nitrate-nitrogen-containing water, which is desired to be improved from the viewpoint of practical use seen in the conventional electrolytic treatment method, and solves the problem of current efficiency. It is an object of the present invention to provide a method for treating a nitrogen compound having a high nitrogen content.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, among the methods for treating nitrate-nitrogen-containing water according to the present invention, the invention according to claim 1 is characterized in that the nitrate-nitrogen-containing water is electrolyzed at least in an electrolytic reactor using conductive diamond for the cathode. Then, nitrate nitrogen contained in the contained water is reduced to ammonia, and the ammonia is oxidized to be removed from the contained water as nitrogen gas.
[0008]
The method for treating nitrate-nitrogen-containing water according to claim 2 is characterized in that, in the invention according to claim 1, the nitrate-nitrogen-containing water is concentrated and then supplied to the electrolytic reaction tank.
[0009]
The method for treating nitrate nitrogen-containing water according to claim 3 is characterized in that, in the invention according to claim 2, the concentration is performed by evaporative concentration of the nitrate nitrogen-containing water.
[0010]
A method for treating nitrate nitrogen-containing water according to a fourth aspect is characterized in that, in the second aspect, the concentration is performed using an ion exchange resin.
[0011]
A method for treating nitrate nitrogen-containing water according to a fifth aspect is characterized in that, in the second aspect, the concentration is performed using a reverse osmosis membrane.
[0012]
The method for treating nitrate nitrogen-containing water according to claim 6 is the method according to any one of claims 1 to 5, wherein an electrolyte is temporarily added to the nitrate nitrogen-containing water at an early stage of treatment and / or during treatment. Is added continuously or intermittently.
[0013]
The method for treating nitrate nitrogen-containing water according to claim 7 is the method according to any one of claims 1 to 6, wherein at least the conductive diamond used for the cathode has a size of 1 μm or more during the electrolytic treatment. It is characterized in that it is used in a state in which one or more surfaces are brought into contact with the contained water.
[0014]
The method for treating nitrate nitrogen-containing water according to claim 8 is characterized in that, in the invention according to any one of claims 1 to 7, the electrolytic effective area of the cathode is larger than the electrolytic effective area of the anode.
[0015]
The method for treating nitrate-nitrogen-containing water according to claim 9 is the invention according to any one of claims 1 to 8, wherein the conductive diamond used as the electrode is a self-standing electrode. .
[0016]
According to a tenth aspect of the present invention, in the method for treating nitrate-nitrogen-containing water according to any one of the first to ninth aspects, the current density at the cathode is set to 0.1 A / cm 2 or less.
[0017]
That is, according to the present invention, nitrate nitrogen is reduced to ammonia by a reaction on the cathode side by subjecting water containing nitrate nitrogen to electrolytic treatment at least in an electrolytic reaction tank using conductive diamond for the cathode. Ammonia is oxidized to nitrogen gas by the reaction on the anode side and can be removed out of the system. The reaction becomes more efficient by performing electrolysis while passing nitrate nitrogen-containing water through the electrolytic reaction tank.
Nitrate nitrogen is a harmful substance that penetrates groundwater by using fertilizers and is contained in domestic wastewater, industrial wastewater, and the like, and is required to be removed from an environmental point of view. The term "nitrate nitrogen" as used in the present invention is a broad concept including nitrite nitrogen in addition to nitrate nitrogen.
[0018]
In the above electrolysis, in order to promote the oxidation reaction, although there is no particular designation as an electrolyte, it is desirable to add an electrolyte containing chloride ions such as sodium chloride. The concentration of the electrolyte is not particularly specified, but if the concentration is extremely low, the voltage between electrodes becomes too high, which is not practical in terms of energy efficiency. When there is no electrolyte component in the wastewater, it is desirable to add an electrolyte of about 0.1M. The nitrate nitrogen in the wastewater is reduced to ammonia at the cathode, but reacts with an oxidizing agent such as hypochlorous acid generated at the anode to be released outside the system as nitrogen gas. By using a diamond electrode also for the anode, the oxidizing agent generated at the anode may be persulfuric acid or ozone. May be used. Further, the higher the current density at the time of performing the reduction treatment, the higher the reaction speed does not increase, and the current used for hydrogen generation increases and the current efficiency decreases, so the current density at the cathode is reduced to 0.1 A / cm 2 or less.
In the above reaction, ammonia may be reoxidized at the anode and returned to nitrate ions.Therefore, by reducing the area of the diamond electrode of the anode to be smaller than that of the cathode, it is possible to reduce the above phenomenon and increase the processing efficiency. it can.
[0019]
In addition, the current efficiency related to the removal of nitrate nitrogen is determined by the mass transfer to the electrode surface. Therefore, the treatment with higher current efficiency can be performed by performing the electrolytic treatment after the concentration, rather than treating a large amount of wastewater having a low nitrate nitrogen concentration. The means for concentrating the wastewater may be evaporation concentration, a method using an ion exchange resin, or a method using an RO membrane (reverse osmosis membrane).
[0020]
In the present invention, an electrolytic reaction tank having a diamond electrode on at least the cathode out of the anode and the cathode is used. Preferably, a diamond electrode is also used for the anode.
The conductive diamond electrode used in the present invention is based on a conductive metal material such as Nb, Ta, Ti, Mo, W, or Zr, and is formed by depositing a conductive diamond thin film on the surface of these substrates or silicon. Examples thereof include a semiconductor material such as a wafer as a base and a conductive diamond thin film synthesized on the surface thereof, and a conductive polycrystalline diamond deposited and synthesized in a plate shape without using the base. However, if the thickness of the diamond film deposited on the substrate is small, the solution may penetrate through the pinholes of the diamond film, and the substrate may be corroded due to the alkali around the cathode, and the diamond film may fall off. There is. For this reason, it is preferable that the diamond electrode used in the present invention is a self-standing diamond electrode having a sufficient diamond coating thickness and having the substrate removed after being deposited on the substrate. In addition, the diamond film synthesized by the vapor phase mainly has a (111) or (100) crystal plane, and it is preferable that the treatment is performed by bringing a larger crystal plane into contact with the liquid. That is, the conductive diamond electrode preferably has one or more crystal faces having one side of 1 μm or more in contact with the treatment liquid.
[0021]
In addition, the conductive diamond thin film is obtained by doping a predetermined amount of boron, nitrogen or the like at the time of synthesizing the diamond thin film to impart conductivity, and generally, boron-doped one is generally used. When the doping amount is too small, the technical significance does not occur, and when the doping amount is too large, the doping effect is saturated. Therefore, the doping in the range of 50 to 20,000 ppm with respect to the carbon amount of the diamond thin film is performed. Usually used.
[0022]
Further, in the present invention, the conductive diamond electrode is usually in the form of a plate, but an electrode in which the mesh structure is formed in a plate shape can also be used. Alternatively, a fluidized bed can be formed by flowing a powder of diamond coated carbon powder or the like with an electrolytic solution. Further, a diamond bed is supported on a substrate having a three-dimensional structure to form a fixed bed having a high surface area, thereby increasing the reaction rate.
[0023]
In the electrolytic treatment performed using this conductive diamond electrode, it is desirable that water containing nitrate nitrogen be contacted in a direction parallel to the diamond electrode surface at a liquid passing linear velocity of 10 to 1,000 m / h. In such a case, the contact treatment is not limited to this range and may be performed in a range up to about 10,000 m / h. In addition, it is desirable that the liquid temperature in the electrolytic reaction tank is usually set at a temperature of 10 to 95 ° C.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
(Embodiment 1)
Hereinafter, the processing method of the present invention will be described with reference to FIG.
The wastewater treatment apparatus 10 used in the treatment method according to one embodiment of the present invention includes an electrolytic storage tank 11, a circulation pump 12, an electrolytic reaction tank 13, a gas-liquid separator 14, and a circulation line 15.
The electrolytic storage tank 11 communicates with an electrolytic reaction tank 13 through a circulation pump 12 and a circulation line 15, and the electrolytic reaction tank 13 communicates with the electrolytic storage tank 11 through a gas-liquid separator 14 and a return path of a circulation line 15. Is in communication with The electrolytic reaction tank 13 is provided with an anode 13a and a cathode 13b made of a diamond electrode, and is configured so that treated water flows between the anode 13a and the cathode 13b. The anode 13a and the cathode 13b are connected to a power supply (not shown) and can be energized.
[0025]
Next, the operation of the wastewater treatment device 10 will be described below.
First, raw water of wastewater containing nitrate nitrogen is injected into the electrolytic storage tank 11 and stored. In the electrolytic storage tank 11, an electrolyte such as chloride ions is added as needed. The wastewater in the electrolytic storage tank 11 is sent to the electrolytic reaction tank 13 by the circulation pump 12 as treated water. In the electrolytic reaction tank 13, the water is supplied to the anode 13a and the cathode 13b, and the treated water flowing between the electrodes is electrolyzed. At this time, the temperature of the treated water in the electrolytic reaction tank 13 is preferably controlled to 60 to 80 ° C. In the energization, the current density of the cathode 13b is preferably set to 0.1 A / cm 2 or less.
[0026]
In the above electrolysis, a reaction occurs in which nitrate nitrogen is reduced to ammonia on the cathode side, and a reaction occurs in which the ammonia is oxidized to nitrogen on the anode side. The nitrogen generated by the electrolysis moves together with the treated water as nitrogen gas and is discharged from the electrolytic reaction tank 13. The treated water discharged from the electrolytic reaction tank 13 is sent to a gas-liquid separator 14, where nitrogen gas, which is a gas component, is separated from the treated water and exhausted, and then the treated water is circulated as a return liquid. It is returned to the electrolytic storage tank 11 by the line 15.
The liquid returned to the electrolytic storage tank 11 is sent again to the electrolytic reaction tank 13 by the circulation pump 12, and nitrogen nitrate in the liquid is repeatedly electrolyzed. As described above, the wastewater circulates between the electrolytic storage tank 11 and the electrolytic reaction tank 13 to effectively decompose and remove nitrate nitrogen from the treated water.
[0027]
(Embodiment 2)
Next, another embodiment of the processing method of the present invention will be described with reference to FIG.
The processing apparatus used in this embodiment has the same configuration as that of the first embodiment except that an electrolytic reaction tank 130 is provided, and the configuration is denoted by the same reference numeral as that of the first embodiment. Description is omitted. The electrolytic reaction tank 130 includes an anode 130a and a cathode 130b formed of a diamond electrode, and the effective area of the anode 130a is smaller than the effective area of the cathode 130b. In the electrolytic reaction tank 130, similarly to the electrolytic reaction tank 13, electrolysis of the treated water is performed, and nitrate nitrogen is reduced to ammonia on the cathode side, and the ammonia is oxidized to nitrogen on the anode side. Further, in the electrolytic reaction tank 130, since the electrode effective area of the anode 130a is smaller than that of the cathode 13b, the processing efficiency is improved by suppressing the reoxidation of the ammonia at the anode 130a. I have.
[0028]
(Embodiment 3)
Next, still another embodiment will be described with reference to FIG.
The processing apparatus 20 used in this embodiment differs from the above embodiments in that it includes an evaporative concentration apparatus 21. The same components as those in the above embodiment are denoted by the same reference numerals, and description thereof will be omitted or simplified.
The evaporating and concentrating device 21 communicates with the electrolytic reaction tank 13 through the circulation pump 12 and the circulation line 15, and the electrolytic reaction tank 13 evaporates through the gas-liquid separation device 14 and the circulation line 15. It communicates with the concentration device 21.
[0029]
The operation of the wastewater treatment device 20 will be described below.
First, raw water of wastewater containing nitrate nitrogen is injected into the evaporator / concentrator 21. In the evaporative concentrator 21, a part of the water in the waste water is evaporated to concentrate the waste water to produce a concentrated liquid. The evaporated water is condensed and drained as condensed water. The concentrated water is sent to the electrolytic reaction tank 13 by the circulation pump 12. In the electrolytic reaction tank 13, the nitrate nitrogen in the concentrated water is electrolyzed in the same manner as in each of the above embodiments. At this time, since the concentration of nitrate nitrogen in the concentrated water is increased by the concentration by the evaporative concentration device 21, the efficiency of the current used for decomposing the nitrate nitrogen can be increased.
[0030]
The nitrogen gas generated by the electrolysis is separated and exhausted by the gas-liquid separator 14 as in the above embodiments. The concentrated water from which the nitrogen gas has been separated is returned to the evaporative concentration device 11 via the return line of the circulation line 15 as a return liquid.
The liquid returned to the evaporating and concentrating device 21 is further evaporated and concentrated as necessary, and is sent again to the electrolytic reaction tank 13 by the circulation pump 12, whereby the organic matter in the liquid is electrolyzed. In addition, in the evaporative concentration apparatus 21, raw water can be mixed with the returned liquid to evaporate and concentrate. In this way, the wastewater circulates between the evaporative concentration device 11 and the electrolytic reaction tank 13. Also in this embodiment, an electrolyte such as chloride ions can be added as needed in the circulation path or the like.
[0031]
In this embodiment, the method of evaporating and concentrating nitrate nitrogen-containing water is employed as a method of concentrating the nitrate nitrogen-containing water. However, the present invention employs any means capable of increasing the concentration of nitrate nitrogen. There is no particular limitation. As described above, the concentration can be performed using an ion exchange resin, a reverse osmosis membrane, or the like, and the same effect can be obtained.
Further, in this embodiment, the electrode effective area of the anode and the cathode in the electrolytic reaction tank is not mentioned, but as in the second embodiment, the anode area is made smaller than that of the cathode to suppress reoxidation of ammonia. It may be.
[0032]
【Example】
Hereinafter, examples of the present invention will be described in comparison with comparative examples.
Example 1-1
Electrolytic reaction vessel with two laminated polycrystalline conductive diamond plates (5 cm × 5 cm × 0.05 cm) synthesized by vapor deposition using the boron dope method facing each other using a cathode and an anode, with a distance between electrodes set to 1 cm. And Nitrate nitrogen-containing waste water (T-N: 106mg / L , NO 3 -N: 106mg / L, 300mL) were placed in the electrolyte reservoir and sodium chloride was added 5,850mg / L. While stirring the inside of the electrolytic storage tank with a stirrer, the liquid was passed through the electrolytic reaction tank at a flow rate of 200 ml / min using a liquid feed pump, and circulated between the electrolytic storage tanks. The amount of electricity supplied to the electrolytic reaction tank was set so that the current value was 0.5 A (current density was 25 mA / cm 2 ). Electrolytic treatment for 3 hours to continue, all Shitsumoto was collected water electrolysis reactor outlet water (T-N), the analysis of nitrate nitrogen (NO 3 -N), ammonia nitrogen (NH 3 -N) The results shown in Table 1 were obtained. As shown in Table 1, T-N could be completely removed without leaving ammonia.
[0033]
[Table 1]
[0034]
Comparative Example 1-1
The electrolytic treatment was performed in the same manner as in Example 1-1, except that the cathode was a platinum-plated titanium plate in the electrolytic treatment performed in Example 1-1. As a result, it was found that the reduction of nitrate nitrogen hardly occurred.
[0035]
[Table 2]
[0036]
Example 1-2
A cylindrical laminated polycrystalline conductive diamond electrode (outside diameter 7 cm × length 4 cm × 0.05 cm) synthesized by vapor deposition using the boron doping method is used as a cathode, and a rod-shaped diamond electrode (outside diameter (1 cm × 4 cm in length) was installed as an anode to form an electrolytic reaction tank. Nitrate nitrogen-containing waste water (T-N: 110mg / L , NO 3 -N: 110mg / L, 300mL) was placed sodium chloride to 5,850mg / L added to the electrolyte reservoir. While stirring the inside of the electrolytic storage tank with a stirrer, the liquid was passed through the electrolytic reaction tank at a flow rate of 200 ml / min using a liquid feed pump, and circulated between the electrolytic storage tanks. The amount of electricity supplied to the electrolytic reaction tank was set so that the current value was 0.5 A (the current density was 18 mA / cm 2 ). Continuously electrolyzed 2.5 h, total nitrogen and collected water electrolysis reactor outlet water (T-N), nitrate nitrogen (NO 3 -N), ammonium nitrogen (NH 3 -N) When the analysis was performed, the results shown in Table 3 were obtained. That is, TN could be completely removed without leaving ammonia. In addition, by making the area of the anode smaller than that of the cathode, it was possible to remove nitrogen with high efficiency while suppressing the reoxidation of ammonia generated at the cathode.
[0037]
[Table 3]
[0038]
Example 2-1
Next, two conductive diamond plates (5 cm × 5 cm × 0.05 cm) grown by vapor deposition using the boron doping method and grown so that the size of the (111) crystal plane becomes 10 μm × 10 μm or more are obtained. A cathode and an anode were used to face each other, and the distance between the electrodes was set to 1 cm to form an electrolytic reaction tank. 5850 mg / L of sodium chloride was added to waste water (TN: 620 mg / L, NO 8 -N: 620 mg / L, 200 mL) obtained by concentrating the nitrate nitrogen-containing waste water by evaporative concentration, and the mixture was placed in an electrolytic storage tank. While stirring the inside of the electrolytic storage tank with a stirrer, the liquid was passed through the electrolytic reaction tank at a flow rate of 200 ml / min using a liquid feed pump, and circulated between the electrolytic storage tanks. The amount of electricity supplied to the electrolytic reaction tank was set to be 0.8 A in current value (current density was 25 mA / cm 2 ). Continuing electrolysis of 4 hours, total nitrogen were taken of water electrolysis reactor outlet water (T-N) in total nitrogen analyzer, nitrate nitrogen (NO 8 -N) and ammonia nitrogen (NH 8 - About N), the result of Table 4 was obtained when it analyzed by ion chromatography. As is clear from the table, nitrate nitrogen is effectively decomposed.
[0039]
[Table 4]
[0040]
Test Example 2-1
Except that in the electrolytic treatment performed in Example 2-1, the treatment was performed with raw water (TN: 30 mg / L, NO 8 -N: 30 mg / L, 200 mL) without performing evaporation and concentration. Electrolysis was performed in the same manner as in Example 2-1. When the electrolytic treatment was continued for 4 hours and the analysis was performed, the results shown in Table 5 were obtained. As a result, it is found that the concentration improves the processing efficiency.
[0041]
[Table 5]
[0042]
Test Example 2-2
The electrolytic treatment was performed in the same manner as in Example 2-1 except that in the electrolytic treatment performed in Example 2-1, a conductive diamond plate whose surface was polished and crystal faces were crushed was used for both electrodes. When the electrolytic treatment was continued for 4 hours and analyzed, the results shown in Table 6 were obtained. As a result, it can be seen that the processing efficiency has decreased.
[0043]
[Table 6]
[0044]
Example 2-2
Two conductive diamond plates (5 cm × 5 cm × 0.05 cm) grown by vapor deposition using a boron doping method and having a (111) crystal plane size of 10 μm × 10 μm or more were used as a cathode and an anode. And the distance between the electrodes was set to 1 cm to form an electrolytic reaction tank. Wastewater was concentrated nitrate nitrogen-containing waste water by strong base anion resin (T-N: 820mg / L , NO 3 -N: 820mg / L, 200mL) in sodium chloride 5,850mg / L added to the electrolyte storage tank Put in. While stirring the inside of the electrolytic storage tank with a stirrer, a circulation treatment was performed at a flow rate of 200 mL / min in the electrolytic reaction tank using a liquid sending pump. The amount of electricity supplied to the electrolytic reaction tank was set to be 0.8 A in current value (current density was 25 mA / cm 2 ). Continuing electrolysis of 4 hours, total nitrogen were taken of water electrolysis reactor outlet water (T-N) in total nitrogen analyzer, nitrate nitrogen (NO 8 -N) and ammonia nitrogen (NH 3 - About N), the result of Table 7 was obtained when it analyzed by ion chromatography. As a result, it is found that nitrate nitrogen is efficiently decomposed.
[0045]
[Table 7]
[0046]
Example 2-3
Two conductive diamond plates (5 cm × 5 cm × 0.05 cm) grown by vapor deposition using a boron doping method and grown so that the size of the (111) crystal plane is 100 μm × 100 μm or more are used as a cathode and an anode. And the distance between the electrodes was set to 1 cm to form an electrolytic reaction tank. Wastewater was concentrated nitrate nitrogen-containing waste water by strong base anion resin (T-N: 820m / Lg , NO 3 -N: 820mg / L, 200ml) in sodium chloride 5,850mg / L added to the electrolyte storage tank Put in. While the inside of the electrolytic storage tank was stirred with a stirrer, a circulation treatment was performed at a flow rate of 200 ml / min in the electrolytic reaction tank using a liquid feed pump. The input electric tatami mat of the electrolytic reaction tank was set so as to have a current value of 0.8 A (current density was 25 mA / cm 2 ). Continuing electrolysis of 4 hours, total nitrogen were taken of water electrolysis reactor outlet water (T-N) in total nitrogen analyzer, nitrate nitrogen (NO 3 -N) and ammonia nitrogen (NH 3 - About N), the result of Table 8 was obtained when it analyzed by ion chromatography. It was found that the current efficiency was better than that of Example 2-2, and the effect of reducing the nitrogen compound by the electrolytic treatment was better as the crystal face in contact with the liquid was larger.
[0047]
[Table 8]
[0048]
【The invention's effect】
As described above, according to the method for treating nitrate-nitrogen-containing water of the present invention, the nitrate-nitrogen-containing water is electrolyzed at least in an electrolytic reaction tank using conductive diamond for the cathode, and Since the contained nitrate nitrogen is reduced to ammonia and the ammonia is oxidized and removed as nitrogen gas from the water, the nitrate nitrogen can be effectively decomposed and removed by electrolysis.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a processing apparatus used in an embodiment of the present invention.
FIG. 2 is a schematic diagram showing a processing apparatus used in another embodiment.
FIG. 3 is a schematic view showing a processing apparatus used in still another embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Electrolysis processing apparatus 11 Electrolysis storage tank 12 Liquid feed pump 13 Electrolysis reaction tank 14 Gas-liquid separation device 15 Circulation line 20 Electrolysis processing apparatus 21 Evaporation concentration apparatus