JP2004319241A - Parallel-line type mask and its manufacturing method - Google Patents

Parallel-line type mask and its manufacturing method Download PDF

Info

Publication number
JP2004319241A
JP2004319241A JP2003111093A JP2003111093A JP2004319241A JP 2004319241 A JP2004319241 A JP 2004319241A JP 2003111093 A JP2003111093 A JP 2003111093A JP 2003111093 A JP2003111093 A JP 2003111093A JP 2004319241 A JP2004319241 A JP 2004319241A
Authority
JP
Japan
Prior art keywords
groove
parallel
mask
fiber
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003111093A
Other languages
Japanese (ja)
Inventor
Kenichiro Nakamura
賢一郎 中村
Mitsuhiro Shinoda
光弘 篠田
Hiroki Sano
裕樹 佐野
Tsuruo Nakayama
鶴雄 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NBC Inc
Original Assignee
NBC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NBC Inc filed Critical NBC Inc
Priority to JP2003111093A priority Critical patent/JP2004319241A/en
Publication of JP2004319241A publication Critical patent/JP2004319241A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a parallel-line type mask which has an extremely small variation in stripe width, i.e., in parallel pitch of monofilament yarns and maintains the parallel pitch with high accuracy, in a parallel-line type mask having fine pitch using the monofilament yarns. <P>SOLUTION: The mask is formed by extending and fixing the monofilament yarns composed of either of synthetic fiber, natural fiber or metallic fiber into grooves arranged at prescribed pitch in non-opening parts of a planar substrate having an opening. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、微細なパターンを有する発光素子や薄膜トランジスタなどの薄膜を形成する際の蒸着マスク等に用いて好適な平行線型マスクおよびその製造方法に関する。
【0002】
【従来の技術】
蒸着による薄膜形成におけるマスクとして、例えば有機EL素子のストライプ状背面電極形成時に平行線型マスクを用いる方法がある。このようなマスクとしては、ステンレスやNi等の金属材料を用いてエッチングや電鋳等でストライプ状のパターンを形成したメタルマスクが検討されている。
【0003】
ところで、有機EL素子では均一な発光を得るために、均一な蒸着膜が得られるようパターンエッジの盛り上がりを抑制する必要があり、メタルマスクの厚みを100μm以下にする等の手段が採られている。しかしながら、このような薄いメタルマスクでは、平行な細線を精度良く形成することが困難で、しかもマスクの細線に引張力が十分に掛からず、中央付近で弛むまたは平行ピッチが不揃いになるという欠点があった。また、メタルマスクのパターンエッジにある微小なバリが有機EL層を傷つけるといった問題がある。
【0004】
これに対して、マスク部の平行な細線に天然繊維または合成繊維の単繊維を用いて陰極を形成する方法が知られている(例えば特許文献1参照)。この方法ではマスク部の単繊維が有機物であるため、有機EL層に傷を付けることなく、陰極層を形成できる。しかしながら、マスクに織物を利用したり金筬またはピッチゲージを治具として用いて平行線部を形成していることから、織物を利用する場合、開口部の経糸または緯糸を除去するため、製織時に生じた繊維の屈曲跡が残る。また治具を使用する方法では単繊維を伸張して固定するときに、単繊維と平板状基体との摩擦等が原因で容易にずれが発生し、これを矯正する手段が無いために、高精度な平行ピッチの形成は困難であった。
【0005】
【特許文献1】
特開2001−323365号公報
【0006】
【発明が解決しようとする課題】
本発明は、上記従来の技術を鑑みてなされたもので、単繊維の糸を使用した微細なピッチを有する平行線型マスクにおいて、ストライプの幅、すなわち、単繊維糸の平行ピッチのバラツキが極めて少なく平行ピッチが高精度に保持された平行線型マスク及びその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、開口部を有する平板状基体の非開口部に所定のピッチで設けられた溝に、合成繊維、天然繊維、金属繊維のいずれかからなる単繊維を伸張して固定させてなることを特徴とする平行線型マスクおよびその製造方法に関する。
【0008】
すなわち、本発明に係る平行線型マスクの第一の構成は、所定ピッチのストライプ状パターンを形成するためのマスクであって、開口部を有する平板状基体の非開口部に所定のピッチで設けられた溝に、合成繊維、天然繊維、金属繊維のいずれかからなる単繊維を伸張して固定させてなることを特徴とする。
【0009】
また、本発明に係る平行線型マスクの第二の構成は、上記第一の構成において、平板状基体の非開口部に設けられた所定のピッチで形成された繊維を固定するための溝が、樹脂からなることを特徴とする。
【0010】
さらに、本発明に係る平行線型マスクの第三の構成は、上記第一又は第二の構成において、平板状基体が金属からなることを特徴とする。
【0011】
一方、本発明に係る平行線型マスクの製造方法の第一の構成は、所定のピッチのストライプ状パターンを形成するためのマスクの製造方法であって、開口部を有する平板状基体の非開口部に樹脂層を形成する工程と、該樹脂層に所定のピッチで溝を形成する工程と、設けられた溝に、合成繊維、天然繊維、金属繊維のいずれかからなる単繊維を伸張して溝部に挿入する工程と、溝部に挿入した該繊維を接着剤で固定する工程と、からなることを特徴とする。
【0012】
ここで、平板状基体の材質としては、金属以外にも、樹脂、ガラス、セラミックス、等が採択可能である。平板状基体の材質を樹脂とする場合には、基板と樹脂層を同一材質とすることも可能であり、この場合には上記の樹脂層形成の工程を基板製造の工程に組み込み、樹脂層が一体となった基板を製造することで、全体の工程を減らせる、等のメリットが得られる。
【0013】
また、本発明に係る平行線型マスクの製造方法の第二の構成は、上記第一の構成において、溝を形成する工程では、非開口部に設けられた樹脂層の一部をレーザー照射により除去して形成することを特徴とする。
【0014】
【発明の実施の形態】
本発明における平行線型マスク及びその製造方法について、図面に基づいて具体的に説明する。
【0015】
図1は平行線型マスクの一例を示す平面図である。図2は1つの平板状基体に複数の開口部がある平行線型マスクの一例を示す平面図である。複数の開口部の配置は、マスクとしての使用状態に応じて任意に選定できるが、格子状配置(図2参照)または千鳥状配置が多く使用される。
【0016】
符号1の平板状基体の金属としては、炭素綱、ステンレス鋼、ニッケル等公知の金属材料を単体で用いても良く、合金や電気メッキ、化学メッキまたはスッパッタリングなどで表面コーティングをして用いることもできる。開口部2は、機械加工法、化学的エッチング法、金型を使用するなど所要とする精度、加工性を考慮した方法で形成すればよい。
【0017】
符号3は平板状基体1の非開口部に形成した樹脂層である。樹脂層3の材料としては、ポリオレフィン樹脂、アクリル樹脂、スチレン樹脂、塩化ビニル樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリカーボネイト樹脂、ポリアセタール樹脂、ポリフェニレンオキシド樹脂、ポリフェニレンスルファイド樹脂、フッソ樹脂等の熱可塑性樹脂でも、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、メラミン樹脂、アリル樹脂、ポリイミド樹脂、ポリウレタン樹脂等の熱硬化性樹脂のいずれでも用いることができる。特にマスクとして使用する環境が加熱状態の真空下である場合は、ガス発生の少ない熱硬化性樹脂が望ましい。
【0018】
樹脂層3を平板状基体1の非開口部に形成する方法は、公知の方法で良く、例えば、樹脂を溶剤などに溶かして液状にし、はけ塗り、ロール塗り、スプレー吹き付け、スクリーン印刷等の後に溶剤を乾燥除去する方法や樹脂をテープ状またはフィルム状にして接着剤で貼り合わせる等の方法がある。これらの方法を組み合わせてもよく、さらに2種以上の材料を2層以上重ねて形成しても良い。
【0019】
樹脂層3は、平板状基体1の開口部2を挟んだ対向する両岸基体上で、平行に伸張する単繊維を固定する溝を形成できる位置にあればよく、樹脂層3の幅、長さについても適宜選定することができる。また作業性を向上するため、対向する2組以上の樹脂層を設ける等の工夫を行うことも好ましい。
【0020】
図3は樹脂層3に形成した溝部4に単繊維5を挿入した状態の代表的な例の部分断面図である。溝部4の幅、深さおよび断面の形状は、溝に挿入し固定される単繊維の繊維径、繊維形状によって適宜定めれば良い。図3(a)は固定する単繊維経と溝深さとがほぼ等しい例である。図3(b)は単繊維径より溝深さが深い例である。図3(c)は単繊維径より溝深さが浅い例である。図3(d)は樹脂層3を一部残して溝を形成し単繊維5を固定した例である。図3(e)は溝上部幅を広くすることで、単繊維5の固定作業を容易化した例である。
【0021】
高精度な所定ピッチの溝部4は、平板状基体1の非開口部に形成した樹脂層3の所定位置を、レーザーで照射し樹脂を除去して形成することができる。ここで、レーザーとしては、気体、固体、半導体、色素、エキシマ、自由電子を放出源とした公知ものが使用可能である。とりわけ高精度での微細加工が可能なことから、樹脂加工で広く用いられるエキシマレーザーが特に好適である。
【0022】
平板状基体1の非開口部上に所定ピッチの溝部4を形成後、その溝部に合成繊維、天然繊維、金属繊維のいずれかからなる単繊維5を伸張させながら挿入し平行線マスク部を形成する。
【0023】
ここで、合成繊維としては、例えばアラミド、ポリアリレート、超高分子量ポリエチレン、ポリパラフェニレンベンゾビスオキサゾール(PBO)、ポリパラフェニレンベンゾビスチアゾール(PBT)、ポリパラフェニレンベンゾビスイミダゾール(PBI)、フッ素系繊維、ポリエチレンテレフタレート、ポリプロピレン、6−ナイロン、66−ナイロン、ポリエチレン、エチレン−酢酸ビニル共重合体、ポリカーボネート、ポリフェニレンサルファイド(PPS)、ポリエチレンナフタレート、ポリエーテルエーテルケトン、変成ポリフェニレンエーテル(PPE)、その他液晶ポリマーおよびこれら2種類以上を用いた複合の単繊維、例えば芯鞘型の単繊維などを用いることができる。特に高耐熱、高強度、低伸度のポリアリレートを主要成分とする単繊維は好適である。
【0024】
天然繊維としては木綿、麻、絹等を、また金属繊維としては炭素綱、ステンレス、ニッケル、チタン、銅、燐青銅等を用いることができる。
【0025】
単繊維の断面形状としては円形のみに限定されるものではなく、マスクとしての機能を好適に発揮する形状であれば、楕円形、長方形など任意に選定することができる。
【0026】
溝部4へ単繊維5を挿入する方法は、いずれの公知技術でもよく、例えば単繊維5にたるみが生じない程度の張力をかけながら1本づつ溝部4に挿入していく方法、また所定ピッチで構成された筬の各スリットに、単繊維5を通したものをガイド治具として複数本を同時に挿入する方法等を用いることができる。
【0027】
溝部4にはめ込み平行線マスク部を形成した後、接着剤6を用いて単繊維5を溝部4及び/又は平板状基体部に固着させれば良い。
【0028】
使用する接着剤6は、単繊維5と溝部4及び/又は平板状基体部とを固着できるものであればよく、樹脂および金属と合成繊維、天然繊維、金属繊維との接着ではα−シアノアクリル酸アルキル、ジメタアクリレート系、エポキシ系、エチレンー酢酸ビニル系等の接着剤を用いることができる。特にマスクとして使用される環境が加熱下の減圧状態であれば、加熱時に軟化せずまたガスの発生が少ない熱硬化性のエポキシ系接着剤や架橋型のα−シアノアクリル酸アルキル系のUV硬化型接着剤が好適である。
【0029】
【実施例】
次に、実施例を挙げて本発明をより具体的に説明する。ただし、本発明はそれら実施例のみに限定されるものではない。
【0030】
実施例1:
厚さ0.5mmで100mm×150mmのSUS430基板の中央に30mm×50mmの開口部を設けた平板状基体の両端部付近に2mm×50mmの樹脂層を1組、スクリーン印刷で形成した(図1参照)。樹脂層材料はエポキシ系塗料(セイコーアドバンス社製、1400N)を用い、印刷と乾燥を繰り返して平均厚さを50μmとした。
【0031】
形成した樹脂層にKrFエキシマレーザー(住友重機械工業社製、INDEX−848K、波長248nm)を照射しスキャンさせ、幅26μm、深さ50μmで長さ2mmの溝を300μmピッチで1つの樹脂層につき161本形成した。
【0032】
その溝部に径23μmのポリアリレート単繊維(クラレ社製、商品名VECRY)を1本ずつ5gfの張力を掛け伸張させながらはめ込んだ。161本全てをはめ込んだ後、UV硬化型接着剤(スリーボンド社製、1773E)を溝上に塗布し波長365nmのUV光を照射し固定させ、平行線型マスクを製造した。
【0033】
実施例2:
厚さ0.5mmで300mm×300mmのSUS430平板状基体に60mm×30mmの開口部を1列に6個ずつ3列、合計18個を設け、図2で示される平板状基体を作成した。伸張する単繊維に直交する平板状基体の両端部および隣接する開口部間の合計4ヶ所に1mm幅の樹脂層をスクリーン印刷で形成した。樹脂層材料はアクリレート系塗料(太陽インキ社製、PER−20K27)を用い、数回の印刷、乾燥にて平均厚さを55μmとした。
【0034】
KrFエキシマレーザー(住友重機械工業社製、INDEX−848K、波長248nm)を照射しスキャンさせ、幅38μm、深さ55μmで長さ1mmの溝を300μmピッチで開口部の位置に合わせて100本ずつ、すなわち1つの樹脂層につき600本、合計2400本形成した。
【0035】
溝に単繊維をはめ込むため、長さ60mm、幅5mm、厚さ250μmのSK鋼板を300μmピッチで並べた筬を使用した。筬の各スペースに径36μmのポリアリレート単繊維(クラレ社製、品名VECRY)を1本ずつ、600本通した後、3kgfの張力をかけ繊維を伸張し平行ピッチ部を形成した。
【0036】
平行ピッチ部と溝部の位置を光学顕微鏡で観察しながら合わせ、600本の繊維を溝にはめ込んだ後、UV硬化型接着剤(スリーボンド社製、1771E)を溝上に塗布し波長365nmのUV光を照射し固定させ、平行線型マスクを製造した。
【0037】
比較例1:
実施例2で使用した平板状基体と筬を用い、平板状基体に樹脂層および溝を形成しない外は、実施例2と同様の方法により平行線型マスクを製造した。
【0038】
得られた実施例1及び比較例1の平行線型マスクについて、開口部における伸長繊維の左端部、中央部、右端部3ヶ所での平行ピッチを全数測定した。また実施例2では3列の開口部の各々の中央部での平行ピッチを全数測定した。測定結果は最大幅、最小幅、最大幅と最小幅との差R、及び統計処理した標準偏差(σ)の値を表1〜3に示した。平行ピッチは測長機(大日本スクリーン社製、DR−550−F)により測定した。
【0039】
【表1】

Figure 2004319241
【0040】
【表2】
Figure 2004319241
【0041】
【表3】
Figure 2004319241
【0042】
実施例1,2では、レーザーを用いて所定ピッチの高精度の溝を形成し、その溝に短繊維を挿入したことにより、ピッチの最大幅と最小幅の差Rは18〜20μmとほぼレーザー加工による溝形成の精度と対応しており、筬のみを使用した比較例1のピッチのRと比べ著しく改善された。また実施例2では左開口部、中開口部、右開口部でのR,σがほぼ等しく、位置による有意差はないが、比較例1ではR、σとも位置による差が大きくなっている。これは単繊維を伸張し固定する時に、筬と反対側の右端部側でピッチのバラツキがより大きくなるためと考えられる。
【0043】
このように、本発明を適用した実施例によれば、開口部を有する金属からなる平板状基体の非開口部に樹脂層を形成し、樹脂層の一部をレーザー照射により除去し、所定のピッチで溝を形成し、この溝部に単繊維を伸張して挿入することにより、単繊維の平行ピッチのバラツキが極めて少ない平行線型マスクを再現性良く製造することが可能となった。
【0044】
なお、上述した実施の形態及び実施例では、平板状基体の材質を金属とした場合について説明したが、本発明はこれに限定されず、例えば、樹脂、ガラス、セラミックス、等の金属以外の材質とした場合にも可能である。平板状基体の材質を樹脂とする場合には、該基板と樹脂層とを同一材質にすることも可能となり、この場合には、樹脂層が一体となった基板を製造するように、上記の樹脂層形成の工程を基板製造の工程に組み込むことで、製造ラインにおける工程数やコスト等を減らせる、等のメリットが得られる。
【0045】
【発明の効果】
以上説明したように、本発明によれば、単繊維の糸を使用した微細なピッチを有する平行線型マスクにおいて、ストライプの幅、すなわち、単繊維糸の平行ピッチのバラツキが極めて少なく平行ピッチが高精度に保持された平行線型マスク及びその製造方法を提供することが可能となる。
【図面の簡単な説明】
【図1】平行線型マスクの一例の平面図である。
【図2】開口部を複数有する平行線型マスクの一例の平面図である。
【図3】溝へ単繊維を挿入した代表的状態の部分断面図であり、(a)に単繊維経と溝深さとをほぼ等しくした例を、(b)に単繊維径より溝深さを深くした例を、(c)に単繊維径より溝深さを浅くした例を、(d)に樹脂層を一部残して溝を形成し単繊維を固定した例を、(e)に単繊維の固定作業の容易化を図るために溝上部幅を広くした例を、それぞれ示す。
【符号の説明】
1 平板状基体
2 開口部
3 樹脂層
4 溝部
5 単繊維
6 接着剤[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a parallel line type mask suitable for use as a vapor deposition mask when forming a thin film such as a light emitting element or a thin film transistor having a fine pattern, and a method for manufacturing the same.
[0002]
[Prior art]
As a mask for forming a thin film by vapor deposition, for example, there is a method of using a parallel line type mask when forming a stripe-shaped back electrode of an organic EL element. As such a mask, a metal mask in which a stripe pattern is formed by etching or electroforming using a metal material such as stainless steel or Ni has been studied.
[0003]
By the way, in the organic EL element, in order to obtain uniform light emission, it is necessary to suppress the swelling of the pattern edge so as to obtain a uniform vapor deposition film, and measures such as reducing the thickness of the metal mask to 100 μm or less are employed. . However, with such a thin metal mask, it is difficult to form parallel fine lines with high accuracy, and furthermore, the tensile force is not sufficiently applied to the thin lines of the mask, so that the slack or the parallel pitch becomes uneven near the center. there were. In addition, there is a problem that fine burrs on the pattern edge of the metal mask damage the organic EL layer.
[0004]
On the other hand, a method is known in which a cathode is formed by using a single fiber of a natural fiber or a synthetic fiber on a parallel fine line of a mask portion (for example, see Patent Document 1). In this method, since the single fiber of the mask portion is an organic substance, the cathode layer can be formed without damaging the organic EL layer. However, since a parallel line is formed by using a woven fabric for the mask or using a gold reed or a pitch gauge as a jig, when using a woven fabric, in order to remove the warp or weft at the opening, it is necessary during weaving. Traces of the resulting fiber bending remain. Further, in the method using a jig, when the single fiber is stretched and fixed, a deviation easily occurs due to friction between the single fiber and the flat substrate, and there is no means for correcting this. It was difficult to form an accurate parallel pitch.
[0005]
[Patent Document 1]
JP 2001-323365 A
[Problems to be solved by the invention]
The present invention has been made in view of the above conventional technology, and in a parallel linear mask having a fine pitch using a single fiber yarn, the width of the stripe, that is, the variation in the parallel pitch of the single fiber yarn is extremely small. An object of the present invention is to provide a parallel linear mask in which a parallel pitch is held with high precision and a method for manufacturing the same.
[0007]
[Means for Solving the Problems]
According to the present invention, a single fiber made of any of synthetic fiber, natural fiber, and metal fiber is stretched and fixed in a groove provided at a predetermined pitch in a non-opening portion of a flat substrate having an opening. And a manufacturing method thereof.
[0008]
That is, the first configuration of the parallel linear mask according to the present invention is a mask for forming a stripe pattern with a predetermined pitch, and is provided at a predetermined pitch in a non-opening portion of a flat substrate having an opening. A single fiber made of any of synthetic fibers, natural fibers and metal fibers is stretched and fixed to the groove.
[0009]
Further, the second configuration of the parallel linear mask according to the present invention, in the first configuration, the groove for fixing the fibers formed at a predetermined pitch provided in the non-opening portion of the flat substrate, It is characterized by being made of resin.
[0010]
Furthermore, a third configuration of the parallel linear mask according to the present invention is characterized in that, in the first or second configuration, the flat substrate is made of metal.
[0011]
On the other hand, a first configuration of a method for manufacturing a parallel linear mask according to the present invention is a method for manufacturing a mask for forming a stripe pattern having a predetermined pitch, wherein a non-opening portion of a flat substrate having an opening is provided. A step of forming a groove at a predetermined pitch in the resin layer, and a step of extending a single fiber made of any of synthetic fiber, natural fiber, and metal fiber into the groove provided. And fixing the fiber inserted into the groove with an adhesive.
[0012]
Here, as the material of the flat substrate, other than metal, resin, glass, ceramics and the like can be adopted. When the material of the flat substrate is made of resin, the substrate and the resin layer can be made of the same material. In this case, the above-mentioned resin layer forming step is incorporated in the substrate manufacturing step, and the resin layer is formed. By manufacturing an integrated substrate, advantages such as reduction of the entire process can be obtained.
[0013]
In the second configuration of the method for manufacturing a parallel linear mask according to the present invention, in the first configuration, in the step of forming a groove, a part of the resin layer provided in the non-opening portion is removed by laser irradiation. It is characterized by being formed.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The parallel linear mask and the method of manufacturing the same according to the present invention will be specifically described with reference to the drawings.
[0015]
FIG. 1 is a plan view showing an example of a parallel linear mask. FIG. 2 is a plan view showing an example of a parallel linear mask having a plurality of openings in one flat substrate. The arrangement of the plurality of openings can be arbitrarily selected according to the state of use as a mask, but a lattice arrangement (see FIG. 2) or a staggered arrangement is often used.
[0016]
Known metals such as carbon steel, stainless steel, and nickel may be used alone as the metal of the plate-shaped substrate denoted by reference numeral 1, and may be used after being coated with an alloy, electroplating, chemical plating, or sputtering. You can also. The opening 2 may be formed by a method in consideration of required accuracy and workability, such as using a machining method, a chemical etching method, and a mold.
[0017]
Reference numeral 3 denotes a resin layer formed in a non-opening portion of the flat substrate 1. Examples of the material of the resin layer 3 include thermoplastic resins such as polyolefin resin, acrylic resin, styrene resin, vinyl chloride resin, polyamide resin, polyester resin, polycarbonate resin, polyacetal resin, polyphenylene oxide resin, polyphenylene sulfide resin, and fluoro resin. Any of thermosetting resins such as epoxy resin, phenol resin, silicone resin, melamine resin, allyl resin, polyimide resin and polyurethane resin can be used. In particular, when the environment used as the mask is under a heated vacuum, a thermosetting resin that generates less gas is desirable.
[0018]
The method of forming the resin layer 3 in the non-opening portion of the flat substrate 1 may be a known method, for example, dissolving the resin in a solvent or the like to make it liquid, brushing, rolling, spraying, screen printing, or the like. After that, there is a method of drying and removing the solvent, a method of forming the resin into a tape or a film, and bonding them with an adhesive. These methods may be combined, and two or more kinds of materials may be formed in two or more layers.
[0019]
The resin layer 3 may be located at a position where a groove for fixing a monofilament extending in parallel can be formed on the opposing banks on both sides of the opening 2 of the flat substrate 1. The length can also be appropriately selected. Further, in order to improve workability, it is also preferable to devise measures such as providing two or more sets of resin layers facing each other.
[0020]
FIG. 3 is a partial cross-sectional view of a typical example in a state where a single fiber 5 is inserted into a groove 4 formed in the resin layer 3. The width, depth, and cross-sectional shape of the groove 4 may be appropriately determined according to the fiber diameter and fiber shape of the single fiber inserted and fixed in the groove. FIG. 3A shows an example in which the single fiber warp to be fixed is substantially equal to the groove depth. FIG. 3B is an example in which the groove depth is deeper than the single fiber diameter. FIG. 3C is an example in which the groove depth is shallower than the single fiber diameter. FIG. 3D shows an example in which a groove is formed while partially leaving the resin layer 3 and the single fiber 5 is fixed. FIG. 3E is an example in which the work of fixing the single fiber 5 is facilitated by increasing the width of the upper part of the groove.
[0021]
The high-precision grooves 4 having a predetermined pitch can be formed by irradiating a predetermined position of the resin layer 3 formed in the non-opening part of the flat substrate 1 with a laser to remove the resin. Here, as the laser, a known laser using a gas, a solid, a semiconductor, a dye, an excimer, and a free electron as an emission source can be used. In particular, excimer lasers widely used in resin processing are particularly suitable because they enable fine processing with high precision.
[0022]
After forming grooves 4 having a predetermined pitch on the non-opening portions of the flat substrate 1, a single fiber 5 made of any of synthetic fibers, natural fibers, and metal fibers is inserted into the grooves while being stretched to form a parallel line mask portion. I do.
[0023]
Here, as synthetic fibers, for example, aramid, polyarylate, ultrahigh molecular weight polyethylene, polyparaphenylene benzobisoxazole (PBO), polyparaphenylene benzobisthiazole (PBT), polyparaphenylene benzobisimidazole (PBI), fluorine Fiber, polyethylene terephthalate, polypropylene, 6-nylon, 66-nylon, polyethylene, ethylene-vinyl acetate copolymer, polycarbonate, polyphenylene sulfide (PPS), polyethylene naphthalate, polyether ether ketone, modified polyphenylene ether (PPE), In addition, a liquid crystal polymer and a composite single fiber using two or more kinds thereof, for example, a core-sheath single fiber can be used. In particular, a single fiber mainly composed of polyarylate having high heat resistance, high strength and low elongation is suitable.
[0024]
As natural fibers, cotton, hemp, silk and the like can be used, and as metal fibers, carbon steel, stainless steel, nickel, titanium, copper, phosphor bronze and the like can be used.
[0025]
The cross-sectional shape of the single fiber is not limited to a circular shape, and may be arbitrarily selected, such as an elliptical shape or a rectangular shape, as long as the shape suitably functions as a mask.
[0026]
The method of inserting the single fiber 5 into the groove 4 may be any known technique, for example, a method in which the single fiber 5 is inserted into the groove 4 one by one while applying a tension that does not cause slack to occur, or at a predetermined pitch. It is possible to use a method in which a plurality of the reeds are inserted at the same time into each slit of the reed as a guide jig through which a single fiber 5 is passed.
[0027]
After forming the parallel line mask portion into the groove portion 4, the single fibers 5 may be fixed to the groove portion 4 and / or the flat base member using an adhesive 6.
[0028]
The adhesive 6 to be used may be any as long as it can fix the single fiber 5 to the groove 4 and / or the plate-shaped base. For bonding resin and metal to synthetic fiber, natural fiber and metal fiber, α-cyanoacrylic is used. Adhesives such as alkyl acid, dimethacrylate, epoxy, and ethylene-vinyl acetate can be used. In particular, if the environment used as a mask is under reduced pressure under heating, UV curing of a thermosetting epoxy adhesive or a cross-linked α-alkyl cyanoacrylate-based adhesive that does not soften during heating and generates less gas. Mold adhesives are preferred.
[0029]
【Example】
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples.
[0030]
Example 1
One set of 2 mm × 50 mm resin layers was formed by screen printing near both ends of a flat substrate provided with a 30 mm × 50 mm opening at the center of a SUS430 substrate having a thickness of 0.5 mm and 100 mm × 150 mm (FIG. 1). reference). The resin layer material was an epoxy-based paint (1400N, manufactured by Seiko Advance Co., Ltd.), and printing and drying were repeated to make the average thickness 50 μm.
[0031]
The formed resin layer is irradiated with a KrF excimer laser (manufactured by Sumitomo Heavy Industries, Ltd., INDEX-848K, wavelength 248 nm) and scanned, and grooves having a width of 26 μm, a depth of 50 μm and a length of 2 mm are formed at a pitch of 300 μm per resin layer. 161 were formed.
[0032]
Polyarylate single fibers having a diameter of 23 μm (trade name: VECRY, manufactured by Kuraray Co., Ltd.) were fitted into the grooves while applying a tension of 5 gf to each one while being stretched. After all 161 pieces were fitted, a UV-curable adhesive (1773E, manufactured by Three Bond Co.) was applied on the groove, and was irradiated with UV light having a wavelength of 365 nm to be fixed, thereby producing a parallel line type mask.
[0033]
Example 2:
A SUS430 flat substrate having a thickness of 0.5 mm and a size of 300 mm x 300 mm was provided with three rows of six openings each having a size of 60 mm x 30 mm, each having three rows, and a total of 18 flat boards were prepared as shown in Fig. 2. A resin layer having a width of 1 mm was formed by screen printing at a total of four locations between both ends of the flat substrate perpendicular to the single fiber to be stretched and adjacent openings. As the resin layer material, an acrylate-based paint (manufactured by Taiyo Ink, PER-20K27) was used, and the average thickness was 55 μm by printing and drying several times.
[0034]
A KrF excimer laser (manufactured by Sumitomo Heavy Industries, Ltd., INDEX-848K, wavelength 248 nm) is irradiated and scanned, and a groove having a width of 38 μm, a depth of 55 μm, and a length of 1 mm is arranged at a pitch of 300 μm at a pitch of 300 μm. That is, 600 resin layers were formed for one resin layer, for a total of 2400 resin layers.
[0035]
In order to fit a single fiber into the groove, a reed in which SK steel plates having a length of 60 mm, a width of 5 mm, and a thickness of 250 μm were arranged at a pitch of 300 μm was used. After passing each of the polyarylate single fibers (manufactured by Kuraray Co., Ltd., product name: VECRY) into each space of the reed, 600 fibers were stretched by applying a tension of 3 kgf to form parallel pitch portions.
[0036]
The positions of the parallel pitch part and the groove part are aligned while observing with an optical microscope, and after inserting 600 fibers into the groove, a UV curing adhesive (manufactured by Three Bond Co., Ltd., 1771E) is applied on the groove and UV light having a wavelength of 365 nm is applied. Irradiation and fixation produced a parallel line mask.
[0037]
Comparative Example 1:
Using the flat substrate and the reed used in Example 2, a parallel line mask was manufactured in the same manner as in Example 2 except that the resin layer and the groove were not formed in the flat substrate.
[0038]
With respect to the obtained parallel linear masks of Example 1 and Comparative Example 1, the total number of parallel pitches at the left end, the center, and the right end of the stretched fiber at the opening was measured. In Example 2, the total number of parallel pitches at the center of each of the three rows of openings was measured. The measurement results are shown in Tables 1 to 3, showing the maximum width, the minimum width, the difference R between the maximum width and the minimum width, and the standard deviation (σ) obtained by statistical processing. The parallel pitch was measured by a length measuring machine (DR-550-F, manufactured by Dainippon Screen).
[0039]
[Table 1]
Figure 2004319241
[0040]
[Table 2]
Figure 2004319241
[0041]
[Table 3]
Figure 2004319241
[0042]
In Examples 1 and 2, a high-precision groove having a predetermined pitch was formed by using a laser, and a short fiber was inserted into the groove. This corresponds to the precision of groove formation by processing, and is significantly improved as compared with the pitch R of Comparative Example 1 using only the reed. Further, in Example 2, R and σ in the left opening, the middle opening, and the right opening are almost equal, and there is no significant difference depending on the position. In Comparative Example 1, however, the difference between R and σ is large depending on the position. This is presumably because when the single fiber is stretched and fixed, the variation in pitch becomes larger on the right end side opposite to the reed.
[0043]
As described above, according to the embodiment to which the present invention is applied, a resin layer is formed in a non-opening portion of a flat substrate made of a metal having an opening, and a part of the resin layer is removed by laser irradiation. By forming grooves at a pitch and then inserting a single fiber into this groove by stretching it, it has become possible to produce a parallel linear mask with very little variation in the parallel pitch of the single fibers with good reproducibility.
[0044]
In the above-described embodiments and examples, the case where the material of the flat substrate is metal is described. However, the present invention is not limited to this. For example, resin, glass, ceramics, and other materials other than metal Is also possible. When the material of the flat substrate is resin, the substrate and the resin layer can be made of the same material. In this case, the above-described method is used to manufacture a substrate in which the resin layer is integrated. By incorporating the resin layer forming process into the substrate manufacturing process, advantages such as reduction in the number of processes and costs in the manufacturing line can be obtained.
[0045]
【The invention's effect】
As described above, according to the present invention, in a parallel linear mask having a fine pitch using a single fiber yarn, the width of the stripe, that is, the variation in the parallel pitch of the single fiber yarn is extremely small, and the parallel pitch is high. It is possible to provide a parallel line mask maintained with high accuracy and a method for manufacturing the same.
[Brief description of the drawings]
FIG. 1 is a plan view of an example of a parallel linear mask.
FIG. 2 is a plan view of an example of a parallel linear mask having a plurality of openings.
3A and 3B are partial cross-sectional views of a typical state in which a single fiber is inserted into a groove. FIG. 3A shows an example in which a single fiber warp and a groove depth are almost equal, and FIG. (C) shows an example in which the groove depth is made shallower than the diameter of a single fiber, (d) shows an example in which a groove is formed while partially leaving a resin layer, and (e) shows an example in which a single fiber is fixed. Examples in which the width of the upper portion of the groove is widened to facilitate the work of fixing the single fiber will be described.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 flat substrate 2 opening 3 resin layer 4 groove 5 single fiber 6 adhesive

Claims (5)

所定のピッチのストライプ状パターンを形成するためのマスクであって、
開口部を有する平板状基体の非開口部に所定のピッチで設けられた溝に、合成繊維、天然繊維、金属繊維のいずれかからなる単繊維を伸張して固定させてなること
を特徴とする平行線型マスク。
A mask for forming a stripe pattern of a predetermined pitch,
A single fiber made of any of synthetic fiber, natural fiber, and metal fiber is stretched and fixed in a groove provided at a predetermined pitch in a non-opening portion of a flat substrate having an opening. Parallel linear mask.
平板状基体の非開口部に設けられた所定のピッチで形成された繊維を固定するための溝が、樹脂からなること
を特徴とする請求項1記載の平行線型マスク。
2. The parallel linear mask according to claim 1, wherein the grooves provided in the non-opening portions of the flat substrate for fixing the fibers formed at a predetermined pitch are made of resin.
前記平板状基体が金属からなること
を特徴とする請求項1又は2記載の平行線型マスク。
3. The parallel linear mask according to claim 1, wherein the flat substrate is made of metal.
所定のピッチのストライプ状パターンを形成するためのマスクの製造方法であって、
開口部を有する平板状基体の非開口部に樹脂層を形成する工程と、
該樹脂層に所定のピッチで溝を形成する工程と、
設けられた溝に、合成繊維、天然繊維、金属繊維のいずれかからなる単繊維を伸張して溝部に挿入する工程と、
溝部に挿入した該繊維を接着剤で固定する工程と、
からなることを特徴とする平行線型マスクの製造方法。
A method for manufacturing a mask for forming a stripe pattern of a predetermined pitch,
Forming a resin layer in a non-opening portion of the flat substrate having an opening,
Forming grooves at a predetermined pitch in the resin layer;
In the provided groove, a step of stretching a single fiber made of any of synthetic fibers, natural fibers, and metal fibers and inserting it into the groove,
Fixing the fiber inserted into the groove with an adhesive,
A method for manufacturing a parallel linear mask, comprising:
前記溝を形成する工程では、非開口部に設けられた樹脂層の一部をレーザー照射により除去して形成すること
を特徴とする請求項4記載の平行線型マスクの製造方法。
The method for manufacturing a parallel linear mask according to claim 4, wherein in the step of forming the groove, a part of the resin layer provided in the non-opening portion is formed by laser irradiation.
JP2003111093A 2003-04-16 2003-04-16 Parallel-line type mask and its manufacturing method Pending JP2004319241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003111093A JP2004319241A (en) 2003-04-16 2003-04-16 Parallel-line type mask and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003111093A JP2004319241A (en) 2003-04-16 2003-04-16 Parallel-line type mask and its manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010104256A Division JP5147893B2 (en) 2010-04-28 2010-04-28 Parallel line mask and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2004319241A true JP2004319241A (en) 2004-11-11

Family

ID=33471741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003111093A Pending JP2004319241A (en) 2003-04-16 2003-04-16 Parallel-line type mask and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004319241A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016192141A1 (en) * 2015-06-03 2016-12-08 深圳市华星光电技术有限公司 Mask plate for vacuum thermal evaporation of oled materials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07300664A (en) * 1994-04-28 1995-11-14 Fujitsu Ltd Production of metal mask and method for regenerating the mask
JP2000068054A (en) * 1998-08-26 2000-03-03 Hokuriku Electric Ind Co Ltd Manufacture of el element
JP2001323365A (en) * 2000-05-15 2001-11-22 Nbc Industries Co Ltd Parallel-line mask and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07300664A (en) * 1994-04-28 1995-11-14 Fujitsu Ltd Production of metal mask and method for regenerating the mask
JP2000068054A (en) * 1998-08-26 2000-03-03 Hokuriku Electric Ind Co Ltd Manufacture of el element
JP2001323365A (en) * 2000-05-15 2001-11-22 Nbc Industries Co Ltd Parallel-line mask and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016192141A1 (en) * 2015-06-03 2016-12-08 深圳市华星光电技术有限公司 Mask plate for vacuum thermal evaporation of oled materials

Similar Documents

Publication Publication Date Title
JP5529395B2 (en) Highly accurate and durable combination screen version
KR102109071B1 (en) Film forming mask
JP5151004B2 (en) Metal mask unit and manufacturing method thereof
KR20200137032A (en) Deposition mask, method of manufacturing deposition mask and metal plate
KR102289109B1 (en) Method for manufacturing mask for use in vapor deposition, and method for manufacturing display device
US9376743B2 (en) Method of manufacturing mask for deposition
CN110997969A (en) Method for manufacturing film formation mask
EP0311687B1 (en) Mesh woven fabric for printing screen
JP6975171B2 (en) Screen plate and its manufacturing method
JP5147893B2 (en) Parallel line mask and manufacturing method thereof
JP2004319241A (en) Parallel-line type mask and its manufacturing method
EP4361329A1 (en) Conductive mesh fabric
JP2007297753A (en) Method for producing three-dimensional fiber structure
KR20190132941A (en) Method for producing deposition mask and deposition method for organic light-emitting material
CN113789497A (en) Mask assembly, manufacturing method thereof, display substrate and display device
KR101987172B1 (en) Method for manufacturing thin film deposition mask and deposition mask manufactured thereby
JP3741590B2 (en) Parallel line mask and manufacturing method thereof
JP2018111311A (en) Screen printing plate
EP3397452B1 (en) Three-dimensional article and method of making the same
EP4269121A1 (en) Screen plate
JP2019044257A (en) Method for manufacturing film deposition mask
US20170320279A1 (en) Filler-filled film, sheet film, stacked film, bonded body, and method for producing filler-filled film
KR101138794B1 (en) Mold for forming optical pattern for display
CN116511842A (en) Manufacturing method of precise metal mask plate and precise metal mask plate
CN117227313A (en) Screen printing plate structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629