JP2004316975A - Desiccant air conditioner - Google Patents

Desiccant air conditioner Download PDF

Info

Publication number
JP2004316975A
JP2004316975A JP2003108864A JP2003108864A JP2004316975A JP 2004316975 A JP2004316975 A JP 2004316975A JP 2003108864 A JP2003108864 A JP 2003108864A JP 2003108864 A JP2003108864 A JP 2003108864A JP 2004316975 A JP2004316975 A JP 2004316975A
Authority
JP
Japan
Prior art keywords
air
cooling
temperature
humidity
dehumidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003108864A
Other languages
Japanese (ja)
Inventor
Kenji Sukemiya
賢治 助宮
Masanobu Saito
正信 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taikisha Ltd
Original Assignee
Taikisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taikisha Ltd filed Critical Taikisha Ltd
Priority to JP2003108864A priority Critical patent/JP2004316975A/en
Publication of JP2004316975A publication Critical patent/JP2004316975A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1024Rotary wheel combined with a humidifier
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a desiccant air conditioner having the high energy-saving effect. <P>SOLUTION: This desiccant air conditioner humidifies cooling air C by a humidifying means 5 by cooling dehumidified air B by exchanging heat with a refrigerant CW by a cooling means 4 by dehumidifying processing object air A by using a drying agent X by dehumidifying means 3 and 6; and is provided with a control means 19 for adjusting absolute humidity xb of the dehumidified air B to target reduced humidity xbs by adjusting dehumidification quantity, and adjusting the temperature tc of the cooled air C by adjusting cooling quantity. This control means 19 is constituted so that the target reduced humidity xbs is changed to the rising side in response to a temperature drop in a supply refrigerant CW to the cooling means 4, and the target reduced humidity xbs is changed to the drop side in response to a temperature rise in the supply refrigerant CW to the cooling means 4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、デシカント(乾燥剤)空調装置に関し、詳しくは、
処理対象空気を乾燥剤により減湿する減湿手段と、その減湿手段による減湿後の空気を冷媒と熱交換させて冷却する冷却手段と、その冷却手段による冷却後の空気を加湿する加湿手段と、
前記減湿手段による処理対象空気の減湿処理に使用した前記乾燥剤を加熱により再生して、その再生した乾燥剤を再び前記減湿手段よる処理対象空気の減湿処理に供する再生手段と、
前記減湿手段による減湿量を調整して、前記減湿手段による減湿後の空気の絶対湿度を目標低下湿度に調整し、かつ、前記冷却手段に対する冷媒供給流量の調整により前記冷却手段による冷却量を調整して、前記冷却手段による冷却後の空気の温度を調整する制御手段とを備えるデシカント空調装置に関する。
【0002】
【従来の技術】
この種のデシカント空調装置では(図1,図2参照)、制御手段19による減湿量の調整下において減湿手段3,6により乾燥剤Xを用いて処理対象空気Aを減湿することで、その処理対象空気Aを絶対湿度xbが目標低下湿度xbs(=x1)の低湿高温空気Bに調整し、これに続き、この減湿後の低湿高温空気Bを冷却手段4により所要の冷却温度tcs(=t1)に冷却するとともに、その冷却後の低湿空気Cを加湿手段5により加湿することで、目標温湿度状態tds,xdsの空気Dを得るが、従来、この種のデシカント空調装置では、一定の目標温湿度状態tds,xdsの空気Dを得るのに、目標低下湿度xbsを一定の設定値x1に固定しており、この目標低下湿度xbsの固定により冷却手段4による空気冷却での所要冷却温度tcsを一定値t1に固定化した状態で、装置運転を実施していた(下記の特許文献1を参照)。
【0003】
すなわち、冷媒との熱交換による空気冷却では空気が未飽和状態において一定絶対湿度の下で状態変化(B→Cの状態変化)し、また、空気加湿では加湿方式によって決まる一定変化特性の下で空気が状態変化(例えば、湿球温度線mに沿う状態でのC→Dの状態変化)することから、目標低下湿度xbsを一定の設定値x1に固定すれば、一定の目標温湿度状態tds,xdsの空気Dを得る上で、冷却手段4による空気冷却での所要冷却温度tcsも上記の如く一定値t1に固定化されるが、従来装置では、目標低下湿度xbsを低く設定して、その低い設定値x1に固定することで、冷却手段4による空気冷却での所要冷却温度tcsを実現が容易な高めの温度t1に固定化し、これにより、冷却手段4に対する供給冷媒CWが温度変動により上昇側に温度変化したときにも、減湿後空気Bを冷媒供給流量の調整による冷却量調整の調整範囲内で確実に所要冷却温度tcs(=t1)まで冷却できるように(略言すれば、供給冷媒CWの温度上昇で冷却手段4による空気冷却の冷却限界温度tccが所要冷却温度tcsより高くなってしまうことが無いように)して、装置運転の安定化を図っていた。
【0004】
なお、本明細書では、空気の温度について単に温度と称する場合、その温度は乾球温度を意味し、また、空気の湿度について単に湿度と称する場合、その湿度は絶対湿度を意味する。
【0005】
【特許文献1】
特開2002−22253号公報
【0006】
【発明が解決しようとする課題】
しかし、従来装置では(同図1,図2参照)、減湿手段3,6による減湿において常に処理対象空気Aを上記の如く低く設定された固定の目標低下湿度xbs(=x1)まで大きく湿度低下させる為、そのような大きな減湿量を維持するのに、再生手段7による乾燥剤再生に要する加熱量が嵩み、また、固定の目標低下湿度xbs(=x1)まで大きく湿度低下させた減湿後空気Bを冷却手段4による冷却に続く加湿手段5による加湿で目標温湿度状態tds,xdsに調整するのに要する加湿量も嵩み、このことが省エネ促進の上で解決すべき問題になっていた。
【0007】
この実情に鑑み、本発明の主たる課題は、冷却手段に対する供給冷媒の温度変化にかかわらず装置運転を安定的に実施できるようにしながら、高い省エネ効果を得られるようにする点にある。
【0008】
【課題を解決するための手段】
〔1〕請求項1に係る発明はデシカント空調装置に係り、その特徴は、
処理対象空気を乾燥剤により減湿する減湿手段と、その減湿手段による減湿後の空気を冷媒と熱交換させて冷却する冷却手段と、その冷却手段による冷却後の空気を加湿する加湿手段と、
前記減湿手段による処理対象空気の減湿処理に使用した前記乾燥剤を加熱により再生して、その再生した乾燥剤を再び前記減湿手段による処理対象空気の減湿処理に供する再生手段と、
前記減湿手段による減湿量を調整して、前記減湿手段による減湿後の空気の絶対湿度を目標低下湿度に調整し、かつ、前記冷却手段に対する冷媒供給流量の調整により前記冷却手段による冷却量を調整して、前記冷却手段による冷却後の空気の温度を調整する制御手段とを備えるデシカント空調装置において、
前記制御手段を、前記冷却手段に対する供給冷媒の温度低下に応じ前記目標低下湿度を上昇側に変更し、かつ、前記冷却手段に対する供給冷媒の温度上昇に応じ前記目標低下湿度を低下側に変更する構成にしてある点にある。
【0009】
つまり、この構成によれば、冷却手段4に対する供給冷媒CWが温度上昇したときには(図1,図2参照)、先述の従来装置と同様、目標低下湿度xbsを低い値x1にして、冷却手段4による空気冷却での所要冷却温度tcsを実現が容易な高い温度t1にし、この状態で、処理対象空気Aに対し減湿手段3,6による減湿処理(A→B)と冷却手段4による冷却処理(B→C)と加湿手段5による加湿処理(C→D)とをその順に施して、処理対象空気Aを一定の目標温湿度状態tds,xdsに調整するから、供給冷媒CWの温度上昇にかかわらず、減湿後空気Bを冷媒供給流量の調整による冷却量調整の調整範囲内で確実に所要冷却温度tcs(=t1)まで冷却できるようにした状態(すなわち、冷却限界温度tccが所要冷却温度tcsより高くなる事態を回避した状態)で、装置運転を安定的に実施することができる。
【0010】
そして逆に、冷却手段4に対する供給冷媒CWが温度低下したときには(同図1,図3参照)、目標低下湿度xbsを高い値x2(>x1)に変更して、冷却手段4による空気冷却での所要冷却温度tcsを冷媒温度低下による冷却限界温度tccの低下に追従させる形態で低い温度t2(<t1)に移行させ、この状態で、処理対象空気Aに対し減湿手段3,6による減湿処理(A→B)と冷却手段4による冷却処理(B→C)と加湿手段5による加湿処理(C→D)とをその順に施して、処理対象空気Aを一定の目標温湿度状態tds,xdsに調整するから、同じく装置運転を安定的に実施しながらも、目標低下湿度xbsの上昇側への変更(x1→x2)による必要減湿量の低減分だけ、再生手段7による乾燥剤再生に要する加熱量、及び、減湿後空気Bを冷却手段4による冷却に続く加湿手段5による加湿で目標温湿度状態tds,xdsに調整するのに要する加湿量を低減することができ、これにより、高い省エネ効果を得ることができる。
【0011】
〔2〕請求項2に係る発明は、請求項1に係る発明の実施に好適な実施形態を特定するものであり、その特徴は、
前記制御手段を、流量調整手段の操作により前記冷却手段に対する冷媒供給流量を調整して前記冷却手段による冷却量を調整するとともに、前記冷却手段に対する供給冷媒の温度変化に応じた前記目標低下湿度の変更を前記流量調整手段の操作状態に基づき実行する構成にしてある点にある。
【0012】
つまり(図1〜図3参照)、流量調整手段12の操作による冷媒供給流量の調整で冷却手段4の冷却量を調整して、冷却手段4による冷却後の空気Cの温度tcを上記の所要冷却温度tcsに調整するには、供給冷媒CWの温度低下に対し流量調整手段12を流量減少側に操作し、逆に、供給冷媒CWの温度上昇に対し流量調整手段12を流量増大側に操作するから、この流量調整手段12の操作状態は冷却手段4に対する供給冷媒CWの温度を反映する。
【0013】
したがって、冷却手段4に対する供給冷媒CWの温度変化に応じた目標低下湿度xbsの変更(すなわち、供給冷媒CWの温度低下に応じた目標低下湿度xbsの上昇側への変更、及び、供給冷媒CWの温度上昇に応じた目標低下湿度xbsの低下側への変更)を上記の如く流量調整手段12の操作状態に基づき実行すれば、目標低下湿度xbsを供給冷媒CWの温度に対し的確に対応させて変更することができ、これにより、目標低下湿度xbsの変更による前述の如き所期の機能を一層効果的に得ることができる。
【0014】
また、目標低下湿度xbsの変更と流量調整手段12による冷媒供給流量の調整との連係を簡素かつ親密にすることができて、装置の信頼性も向上し得るとともに、目標低下湿度xbsの変更制御に用いる専用の冷媒温度センサを不要にすることができて、装置全体としての必要センサ数も低減することができる。
【0015】
【発明の実施の形態】
図1はデシカント空調装置を示し、1は空調機、2は外気OAへの放熱により冷却水CWを冷却する冷却塔であり、空調機1には、シリカゲル等の乾燥剤Xにより空気を減湿する通気性の減湿ロータ3、冷却塔2からの供給冷却水CWにより空気を冷却する冷却器4、並びに、水散布により空気を加湿するエアワッシャ5をその順に空気通過方向の上流側から並べて装備してある。
【0016】
減湿ロータ3は、空調機1の空気入口部における減湿室6と、その減湿室6に隣接させて空調機1に付帯装備した再生室7とに跨らせた状態に配備して、回転により減湿ロータ3の周方向各部を減湿室6と再生室7とに交互に位置させるようにしてあり、減湿室6では、空調機1へ導入する処理対象空気Aを室内通過過程にあるロータ部分3aに通気することで、そのロータ部分3aの乾燥剤Xにより処理対象空気Aを減湿する。
【0017】
また、再生室7では、再生用高温気体Hを室内通過過程にあるロータ部分3bに通気することで、そのロータ部分3bの乾燥剤X(すなわち、先に減湿室6において処理対象空気Aの減湿に用いた乾燥剤)を加熱して再生し、これにより、減湿ロータ3の回転に伴い、再生室7において乾燥剤Xの再生処理を併行しながら、減湿室6において処理対象空気Aを乾燥剤Xにより連続的に減湿処理する。
【0018】
再生用高温気体Hとしては、コージェネレーション・システムを構成する発電用マイクロガスタービン8から排出されるタービン排ガスGと外気OAとの混合気体を再生用ファン9により再生室7に供給するようにしてあり、また、それらタービン排ガスG及び外気OA夫々の供給風量を調整する再生用弁装置10a,10bを設け、これら再生用弁装置10a,10bによる風量調整により、再生室7に供給する再生用高温気体Hの温度や風量を調整する(場合によっては、減湿ロータ3の回転速度も調整する)ことで、再生室7での乾燥剤再生の再生能力を調整し、この再生能力の調整により減湿室6での減湿処理における処理対象空気Aからの減湿量を調整する。
【0019】
11は冷却塔2と冷却器4との間で冷却水CWを循環させる循環ポンプ、12は冷却器4に対する冷却水CWの供給流量を調整する流量調整弁であり、この流量調整弁12による冷却水供給流量の調整により、減湿室6での減湿後の空気Bに対する冷却器4での冷却量を調整する。
【0020】
エアワッシャ5は、通過空気Cに対する多数の散水ノズル13と、それら散水ノズル13からの散布水Wのうち未蒸発で落下する水を受け止める水槽14とを備えており、この水槽14における貯留水Wを散水ポンプ15により散水ノズル13に循環供給する形態で、散水ノズル13から多量の水Wを通過空気Cに対し散布することにより、冷却器4での冷却後の空気Cを湿球温度線に沿わせて状態変化させる形態で飽和近傍状態まで加湿する。
【0021】
17は水槽14に対して自動的に水補給する補給水弁装置であり、18は空調機1の機内に空気通過させるとともにエアワッシャ5での加湿後の空気Dを空調機1から送出する給気ファンである。
【0022】
一方、運転制御については、減湿室6で減湿した空気Bの露点温度tb″を検出する露点温度センサS1、エアワッシャ5で加湿した空気Dの温度tdを検出する温度センサS2、並びに、これらセンサS1,S2の検出情報に基づいて減湿室6での減湿量、及び、冷却器4での冷却量を調整する制御器19を設けてあり、この制御器19は次の(イ)〜(ハ)の制御を実行する(図2参照)。
【0023】
(イ)露点温度センサS1の検出情報に基づき、再生用弁装置10a,10bを自動操作(場合によっては減湿ロータ3の回転速度も調整)して、再生室7での乾燥剤再生の再生能力の調整により減湿室6での処理対象空気Aからの減湿量を調整し、この減湿量の調整により、減湿室6での減湿後の空気Bの露点温度tb″を目標低下露点温度tbs″に調整する。
【0024】
換言すれば、この減湿量の調整により、減湿室6での減湿後の空気Bの絶対湿度xbを目標低下露点温度tbs″に対応する目標低下湿度xbsに調整する。
【0025】
(ロ)温度センサS2の検出情報に基づき、流量調整弁12を自動操作して、冷却器4に対する冷却水供給流量の調整により減湿室6での減湿後の空気Bに対する冷却器4での冷却量を調整し、この冷却量の調整により、エアワッシャ5での加湿後の空気Dの温度tdを目標温度tdsに調整して、その加湿後空気Dを目標温湿度状態tds,xds(本例では目標温度tdsで飽和近傍の状態)にする。
【0026】
換言すれば、この冷却量の調整により、冷却器4での冷却後の空気Cの温度tcを、その冷却後空気Cがエアワッシャ5での加湿による湿球温度線mに沿った状態変化で目標温湿度状態tds,xdsに至る状態となる所要冷却温度tcsに調整する。なお、図中Lは飽和線である。
【0027】
(ハ)上記冷却量調整における流量調整弁12の自動操作で、流量調整弁12の開度αが図4に示す如く設定上限開度α1よりも開き側(α>α1)になったとき、目標低下露点温度tbs″を高温側設定値t2″から低温側設定値t1″に変更し、逆に、流量調整弁12の開度αが図5に示す如く設定下限開度α2よりも閉じ側(α<α2)になったとき、目標低下露点温度tbs″を低温側設定値t1″から高温側設定値t2″に変更する。
【0028】
また、流量調整弁12の開度αが図6に示す如く設定上限開度α1と設定下限開度α2との間にあるとき(α1≦α≦α2)には、目標低下露点温度tbs″を現状値に維持する。
【0029】
換言すれば、流量調整弁12の開度αが設定上限開度α1よりも開き側になったとき、目標低下露点温度tbs″に対応する目標低下湿度xbsを高湿側設定値x2から低湿側設定値x1に変更し、逆に、流量調整弁12の開度αが設定下限開度α2よりも閉じ側になったとき、目標低下露点温度tbs″に対応する目標低下湿度xbsを低湿側設定値x1から高湿側設定値x2に変更し、そして、流量調整弁12の開度αが設定上限開度α1と設定下限開度α2との間にあるときには、目標低下露点温度tbs″に対応する目標低下湿度xbsを現状値に維持する。
【0030】
すなわち、外気の状態変化による冷却塔2の性能変化で冷却器4に対する供給冷却水CWの温度が変化することに対し、この(ハ)の制御では、冷却器4に対する供給冷却水CWの温度変化を上記(ロ)の制御による冷却量調整上での流量調整弁12の開度変化により検知するようにしている。
【0031】
そして、冷却器4に対する供給冷却水CWの温度上昇で流量調整弁12の開度αが設定上限開度α1よりも開き側になったとき、上記の如く目標低下露点温度tbs″を高温側設定値t2″から低温側設定値t1″に変更することにより、同図2に示す如く、冷却器4での空気冷却における所要冷却温度tcs(すなわち、冷却後空気Cをエアワッシャ5での加湿による湿球温度線mに沿った状態変化で目標温湿度状態tds,xdsに至らせるのに必要な冷却後の空気温度)を、供給冷却水CWの温度上昇による冷却限界温度tccの上昇に対応させる形態で高い温度t1に移行させ、この状態において、減湿室6での減湿処理(A→B)と冷却器4での冷却処理(B→C)とエアワッシャ5での加湿処理(C→D)とをその順に調整対象空気Aに施すとともに、前記(イ)の制御による減湿量調整、及び、前記(ロ)の制御による冷却量調整を実行することにより、供給冷却水Wの温度上昇で冷却器4での空気冷却における冷却限界温度tccが所要冷却温度tcsよりも高くなってしまう事態を回避した状態で、処理対象空気Aを目標温湿度状態tds,xdsに調整する。
【0032】
また逆に、冷却器4に対する供給冷却水CWの温度低下で流量調整弁12の開度αが設定下限開度α2よりも閉じ側になったとき、上記の如く目標低下露点温度tbs″を低温側設定値t1″から高温側設定値t2″に変更することにより、図3に示す如く、冷却器4での空気冷却における所要冷却温度tcsを供給冷却水CWの温度低下による冷却限界温度tccの低下に追従させる形態で低い温度t2に移行させ、この状態において、減湿室6での減湿処理(A→B)と冷却器4での冷却処理(B→C)とエアワッシャ5での加湿処理(C→D)とをその順に調整対象空気Aに施すとともに、前記(イ)の制御による減湿量調整、及び、前記(ロ)の制御による冷却量調整を実行することにより、目標低下露点温度tbs″の上昇側への変更による必要減湿量の低減分だけ、再生室7での乾燥剤再生に要する加熱量、及び、減湿後空気Bを冷却器4での冷却に続くエアワッシャ5での加湿により目標温湿度状態tds,xdsに調整するのに要する加湿量を低減して消費エネルギを効果的に低減しながら、処理対象空気Aを目標温湿度状態ds,xdsに調整する。
【0033】
以上要するに、本実施形態において、減湿ロータ3及び減湿室6は、処理対象空気Aを乾燥剤Xにより減湿する減湿手段を構成し、冷却器4は、減湿手段による減湿後の空気Bを冷媒(本実施形態では冷却水CW)と熱交換させて冷却する冷却手段を構成し、エアワッシャ5は、冷却手段による冷却後の空気Cを加湿する加湿手段を構成し、再生室7は、減湿手段による処理対象空気Aの減湿処理に使用した乾燥剤Xを加熱により再生して、その再生した乾燥剤Xを再び減湿手段よる処理対象空気Aの減湿処理に供する再生手段を構成する。
【0034】
また、制御器19は、減湿手段による減湿量を調整して減湿手段による減湿後の空気Bの絶対湿度xbを目標低下湿度xbsに調整し、かつ、冷却手段に対する冷媒供給流量の調整により冷却手段による冷却量を調整して冷却手段による冷却後の空気Cの温度tcを調整する制御手段を構成し、流量調整弁12は冷却手段に対する冷媒供給流量を調整する流量調整手段を構成する。
【0035】
そして、本実施形態において、上記制御手段としての制御器19は、冷却手段に対する供給冷媒(供給冷却水CW)の温度低下に応じ目標低下湿度xbsを上昇側に変更し、かつ、冷却手段に対する供給冷媒(供給冷却水CW)の温度上昇に応じ目標低下湿度xbsを低下側に変更する構成にしてあり、また、流量調整手段の操作により冷却手段に対する冷媒供給流量を調整して冷却手段による冷却量を調整するとともに、冷却手段に対する供給冷媒の温度変化に応じた目標低下湿度xbsの変更を流量調整手段の操作状態に基づき実行する構成にしてある。
【0036】
なお、本実施形態では、目標温度tdsで飽和近傍の状態を目標温湿度状態(tds,xds)として処理対象空気Aを調整するが、目標温度tdsで飽和近傍の状態に調整した空気Dを用いて空調対象空間20を所望の空調状態に調整するには、図7に示す如く、冷却器4による冷却後の空気Cの一部C′をエアワッシャ5に対するバイパス風路21を通じエアワッシャ5による加湿後空気D(目標温度tdsで飽和近傍の状態の空気)に混合して、その混合空気Eを空調対象空間20に供給するようにし、そして、エアワッシャ5による加湿後空気Dとエアワッシャ5をバイパスさせた冷却後空気C′との混合比をダンパ装置22により調整することで、空調対象空間20の所望空調状態に応じて、空調対象空間20に供給する混合空気Eの温湿度状態を調整するようにしてもよい。
【0037】
あるいはまた、図8に示す如く、エアワッシャ5による加湿後空気Dを加熱する再熱器23を設けて、この再熱器23で加熱した再熱空気E′を空調対象空間20に供給するようにし、そして、この再熱器23での空気加熱量を調整することで、空調対象空間20の所望空調状態に応じて、空調対象空間20に供給する再熱空気E′の温湿度状態を調整するようにしてもよい。
【0038】
〔別の実施形態〕
次に別実施形態を列記する。
【0039】
前述の実施形態では、乾燥剤Xによる処理対象空気Aの減湿処理と乾燥剤Xの再生処理とを減湿ロータ3の使用により併行して連続的に行う例を示したが、処理対象空気Aを乾燥剤Xにより減湿する減湿手段、及び、減湿手段による処理対象空気Aの減湿処理に使用した乾燥剤Xを加熱により再生して、その再生した乾燥剤Xを再び減湿手段よる処理対象空気Aの減湿処理に供する再生手段夫々の具体的な構成は種々の変更が可能であり、例えば、乾燥剤Xを収容した複数の処理塔のうち一部の処理塔に処理対象空気Aを通気して処理対象空気Aの減湿処理を実施している間に、他の処理塔に再生用高温気体Hを通気して乾燥剤Xの再生処理を行う形態で、減湿処理に用いる処理塔と再生処理に用いる処理塔とを交互的に切り換える構成にし、これにより、乾燥剤Xによる処理対象空気Aの減湿処理と乾燥剤Xの再生処理とを併行して連続的に行うようにしてもよい。
【0040】
また場合によっては、処理対象空気Aの減湿処理を実施している間は乾燥剤Xの再生処理を休止し、逆に、乾燥剤Xの再生処理を実施している間は処理対象空気Aの減湿処理を休止する形態で、乾燥剤Xによる処理対象空気Aの減湿処理と乾燥剤Xの再生処理とを非併行の状態で交互的に行う構成にしてもよい。
【0041】
再生用高温気体Hを用いて乾燥剤Xの再生処理を行う場合、再生用高温気体Hにはタービン排ガスGと外気OAとの混合気体に限らず、高温空気やバーナの燃焼排ガスなど種々の気体を採用でき、また、再生用高温気体Hを用いず加熱手段からの熱伝導による加熱で乾燥剤Xを再生するようにしてもよい。
【0042】
前述の実施形態では、再生室7で減湿ロータ3に通気する再生用高温気体Hの温度や風量を調整することで、あるいはまた、減湿ロータ3の回転速度を調整することで、減湿室6での処理対象空気Aからの減湿量を調整する例を示したが、これに限らず、減湿量の調整には減湿手段や再生手段の形式に応じて種々の方式を採用することができ、例えば、減湿手段による減湿を施した空気と減湿手段による減湿を施さない一部の処理対象空気との混合空気を減湿後空気Bとして冷却手段により冷却する構成にし、この構成において、減湿手段による減湿を施す処理対象空気Aと減湿手段による減湿を施さない処理対象空気A′との混合比を調整することで、処理対象空気全体に対する減湿量を調整するようにしてもよい。
【0043】
前述の実施形態では、冷却塔2からの供給冷却水CWを冷媒とする冷却器4により減湿後空気Bを冷却する例を示したが、減湿後空気Bを冷媒と熱交換させて冷却する冷却手段には種々の冷却形式のものを採用でき、例えば、ヒートポンプにおける冷媒蒸発器を冷却手段として減湿後空気Bを冷却する形式や、冷凍機により生成した冷水を冷媒として減湿後空気Bを冷却する形式、あるいはまた、井戸水、河川水、海水、湧水などの自然水を冷媒として減湿後空気Bを冷却する形式を採用してもよい。
【0044】
前述の実施形態では、冷却後空気Cをエアワッシャ5による加湿により湿球温度線mに沿わせて飽和近傍状態まで加湿する例を示したが、冷却後空気Cを加湿する加湿手段には種々の加湿形式のものを採用でき、例えば、空気に対する水噴霧や水蒸気噴霧において、その噴霧量の調整による加湿量の調整で、冷却後空気Cを飽和線Lから離れた目標湿度に加湿する形式を採用してもよい。
【0045】
また、加湿手段としてエアワッシャを用いる場合、散水ノズル13からの散布水Wと通過空気Cとの接触効率を高めるための通気性の充填剤層を水槽14の上方に配置するようにしてもよい。
【0046】
加湿手段による加湿後の空気Dの目標温湿度状態tds,xdsは、前述の実施形態で示した如き飽和近傍の温湿度状態に限られるものではなく、飽和線Lから離れた温湿度状態であってもいい。
【0047】
前述の実施形態では、冷却手段4に対する供給冷媒CWの温度変化に応じて目標低下湿度xbsを低湿側設定値x1と高湿側設定値x2とに二者択一的に切り換える例を示したが、これに代え、冷却手段に対する供給冷媒CWの温度低下に応じて目標低下湿度xbsを上昇側へ連続的ないし多段階的に変更し、かつ、冷却手段に対する供給冷媒CWの温度上昇に応じて目標低下湿度xbsを低下側へ連続的ないし多段階的に変更するようにしてもよい。
【0048】
また、前述の実施形態の如く冷却手段4に対する冷媒供給流量を調整する流量調整手段12の操作状態に基づき目標低下湿度xbsの変更を実行する構成に代え、温度センサにより検出する冷媒温度に基づき目標低下湿度xbsを変更する構成にしてもよい。
【0049】
本発明によるデシカント空調装置で温湿度調整した空気は、在人域の空調に限らず、所定温湿度の空気が要求される用途であれば、どのような用途にも使用できる。
【図面の簡単な説明】
【図1】装置の全体構成図
【図2】冷媒温度上昇時における温湿度調整形態を示す湿り空気線図
【図3】冷媒温度低下時における温湿度調整形態を示す湿り空気線図
【図4】流量調整弁の開度調整状態を示す図
【図5】流量調整弁の開度調整状態を示す図
【図6】流量調整弁の開度調整状態を示す図
【図7】調整後空気の使用形態を示す図
【図8】調整後空気の他の使用形態を示す図
【符号の説明】
3,6 減湿手段
4 冷却手段
5 加湿手段
7 再生手段
12 流量調整手段
A 処理対象空気
B 減湿後空気
C 冷却後空気
CW 冷媒
tc 冷却後空気の温度
X 乾燥剤
xb 減湿後空気の絶対湿度
xbs 目標低下湿度
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a desiccant (desiccant) air conditioner,
Dehumidifying means for dehumidifying the air to be treated with a desiccant, cooling means for exchanging heat with the refrigerant after dehumidifying by the dehumidifying means and cooling, and humidifying the humidified air after cooling by the cooling means. Means,
Regenerating means for regenerating the desiccant used for dehumidifying the air to be treated by the dehumidifying means by heating, and subjecting the regenerated desiccant to the dehumidifying treatment of the air to be treated by the dehumidifying means again,
The amount of dehumidification by the dehumidifying means is adjusted, the absolute humidity of the air after dehumidification by the dehumidifying means is adjusted to the target reduced humidity, and the cooling means is adjusted by adjusting the supply flow rate of the refrigerant to the cooling means. Control means for adjusting the amount of cooling and adjusting the temperature of the air after being cooled by the cooling means.
[0002]
[Prior art]
In this type of desiccant air conditioner (see FIGS. 1 and 2), the air A to be treated is dehumidified using the desiccant X by the dehumidifying means 3 and 6 under the control of the dehumidifying amount by the control means 19. The processing target air A is adjusted to the low humidity high temperature air B whose absolute humidity xb is the target reduction humidity xbs (= x1), and the low humidity high temperature air B after the dehumidification is cooled by the cooling means 4 to a required cooling temperature While cooling to tcs (= t1) and humidifying the cooled low-humidity air C by the humidifying means 5, the air D in the target temperature / humidity state tds and xds is obtained. In order to obtain the air D in the constant target temperature / humidity state tds, xds, the target decrease humidity xbs is fixed to a constant set value x1, and the fixing of the target decrease humidity xbs allows air cooling by the cooling means 4 to be performed. Required cooling The temperature tcs immobilized state to a constant value t1, it was conducted apparatus operation (see Patent Document 1 below).
[0003]
That is, in the air cooling by heat exchange with the refrigerant, the state changes under a constant absolute humidity (state change from B to C) in the unsaturated state of the air, and in the air humidification, the air changes under a constant change characteristic determined by the humidification method. Since the air changes in state (for example, the state change from C to D along the wet bulb temperature line m), if the target decrease humidity xbs is fixed to a constant set value x1, a constant target temperature and humidity state tds , Xds, the required cooling temperature tcs in the air cooling by the cooling means 4 is also fixed to the constant value t1 as described above. However, in the conventional apparatus, the target reduction humidity xbs is set low, By fixing to the lower set value x1, the required cooling temperature tcs for air cooling by the cooling means 4 is fixed to a higher temperature t1 which is easy to realize, whereby the supply refrigerant CW to the cooling means 4 changes in temperature. Therefore, even when the temperature changes to the rising side, the dehumidified air B can be reliably cooled to the required cooling temperature tcs (= t1) within the adjustment range of the cooling amount adjustment by adjusting the refrigerant supply flow rate (abbreviation). For example, a cooling limit temperature tcc of air cooling by the cooling means 4 does not become higher than a required cooling temperature tcs due to a rise in the temperature of the supply refrigerant CW), thereby stabilizing the operation of the apparatus.
[0004]
In this specification, when the temperature of air is simply referred to as temperature, the temperature means a dry-bulb temperature, and when the humidity of air is simply called humidity, the humidity means absolute humidity.
[0005]
[Patent Document 1]
JP 2002-22253 A
[0006]
[Problems to be solved by the invention]
However, in the conventional apparatus (see FIGS. 1 and 2), in the dehumidification by the dehumidification means 3 and 6, the processing target air A is always increased to the fixed target reduced humidity xbs (= x1) set low as described above. In order to reduce the humidity, to maintain such a large amount of dehumidification, the amount of heating required for the regeneration of the desiccant by the regeneration means 7 increases, and the humidity is greatly reduced to a fixed target reduction humidity xbs (= x1). The amount of humidification required to adjust the dehumidified air B to the target temperature / humidity state tds, xds by the humidification by the humidification means 5 following the cooling by the cooling means 4 also increases, and this should be solved in order to promote energy saving. Had been a problem.
[0007]
In view of this situation, a main object of the present invention is to obtain a high energy saving effect while enabling stable operation of the apparatus regardless of a change in the temperature of the refrigerant supplied to the cooling means.
[0008]
[Means for Solving the Problems]
[1] The invention according to claim 1 relates to a desiccant air conditioner.
Dehumidifying means for dehumidifying the air to be treated with a desiccant, cooling means for exchanging heat with the refrigerant after dehumidifying by the dehumidifying means and cooling, and humidifying the humidified air after cooling by the cooling means. Means,
A regeneration unit that regenerates the desiccant used for the dehumidification process of the air to be treated by the dehumidification unit by heating and provides the regenerated desiccant again to the dehumidification process of the air to be treated by the dehumidification unit.
The amount of dehumidification by the dehumidifying means is adjusted, the absolute humidity of the air after dehumidification by the dehumidifying means is adjusted to the target reduced humidity, and the cooling means is adjusted by adjusting the supply flow rate of the refrigerant to the cooling means. A desiccant air conditioner comprising a control unit for adjusting a cooling amount and adjusting a temperature of air after cooling by the cooling unit,
The control means changes the target reduced humidity to a rising side in accordance with a decrease in the temperature of the refrigerant supplied to the cooling means, and changes the target lowered humidity to a lower side in accordance with a temperature increase in the supplied refrigerant to the cooling means. The point is that it is configured.
[0009]
In other words, according to this configuration, when the temperature of the coolant CW supplied to the cooling unit 4 rises (see FIGS. 1 and 2), the target reduction humidity xbs is set to a low value x1, and the cooling unit 4 The required cooling temperature tcs in the air cooling by the above is set to a high temperature t1 which is easy to realize, and in this state, the air A to be treated is dehumidified by the dehumidifying means 3 and 6 (A → B) and cooled by the cooling means 4 The processing air (B → C) and the humidification processing (C → D) by the humidifying means 5 are performed in that order to adjust the processing target air A to the constant target temperature / humidity state tds, xds. Irrespective of the above, the dehumidified air B can be reliably cooled to the required cooling temperature tcs (= t1) within the adjustment range of the cooling amount adjustment by adjusting the refrigerant supply flow rate (that is, the cooling limit temperature tcc is required). Cooling temperature In avoidance state) the higher becomes situation than tcs, it is possible to stably implement the device operation.
[0010]
Conversely, when the temperature of the coolant CW supplied to the cooling means 4 decreases (see FIGS. 1 and 3), the target reduction humidity xbs is changed to a high value x2 (> x1), and air cooling by the cooling means 4 is performed. The required cooling temperature tcs is shifted to a lower temperature t2 (<t1) in such a manner as to follow a decrease in the cooling limit temperature tcc due to a decrease in the refrigerant temperature. The humidification treatment (A → B), the cooling treatment (B → C) by the cooling means 4 and the humidification treatment (C → D) by the humidification means 5 are performed in this order, so that the air A to be treated is kept at a constant target temperature / humidity state tds. , Xds, the desiccant by the regenerating means 7 is reduced by the reduced amount of the required dehumidification amount due to the change of the target reduced humidity xbs to the rising side (x1 → x2) while the operation of the apparatus is stably performed. Heating required for regeneration Further, the amount of humidification required to adjust the dehumidified air B to the target temperature / humidity state tds, xds by the humidification by the humidification means 5 following the cooling by the cooling means 4 can be reduced, thereby achieving a high energy saving effect. Obtainable.
[0011]
[2] The invention according to claim 2 specifies an embodiment suitable for carrying out the invention according to claim 1, and its features are as follows.
The control means adjusts the amount of cooling by the cooling means by adjusting the refrigerant supply flow rate to the cooling means by operating the flow rate adjusting means, and adjusts the target reduction humidity according to the temperature change of the supply refrigerant to the cooling means. The point is that the change is executed based on the operation state of the flow rate adjusting means.
[0012]
That is, (see FIGS. 1 to 3), the cooling amount of the cooling means 4 is adjusted by adjusting the refrigerant supply flow rate by operating the flow rate adjusting means 12, and the temperature tc of the air C after the cooling by the cooling means 4 is adjusted to the above-described required value. To adjust the cooling temperature tcs, the flow rate adjusting means 12 is operated to decrease the flow rate in response to a decrease in the temperature of the supplied refrigerant CW, and conversely, the flow rate adjusting means 12 is operated to increase the flow rate in response to an increase in the temperature of the supplied refrigerant CW. Therefore, the operation state of the flow rate adjusting means 12 reflects the temperature of the supply refrigerant CW to the cooling means 4.
[0013]
Therefore, a change in the target decrease humidity xbs according to the temperature change of the supply refrigerant CW to the cooling means 4 (that is, a change in the target decrease humidity xbs to an increase side in accordance with the temperature decrease of the supply refrigerant CW, and a change in the supply refrigerant CW) If the target lowering humidity xbs is changed to the lowering side in accordance with the temperature increase) based on the operation state of the flow rate adjusting means 12 as described above, the target lowering humidity xbs is made to accurately correspond to the temperature of the supply refrigerant CW. The desired function as described above by changing the target reduced humidity xbs can be more effectively obtained.
[0014]
Further, the link between the change of the target lowering humidity xbs and the adjustment of the refrigerant supply flow rate by the flow rate adjusting means 12 can be simplified and more intimate, the reliability of the apparatus can be improved, and the change control of the target lowering humidity xbs can be achieved. It is possible to eliminate the need for a dedicated refrigerant temperature sensor used in the apparatus, and to reduce the number of sensors required for the entire apparatus.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a desiccant air conditioner, 1 is an air conditioner, 2 is a cooling tower for cooling the cooling water CW by radiating heat to the outside air OA, and the air conditioner 1 dehumidifies air with a desiccant X such as silica gel. The air-permeable dehumidifying rotor 3, the cooler 4 for cooling the air with the cooling water CW supplied from the cooling tower 2, and the air washer 5 for humidifying the air by water spray are arranged in this order from the upstream side in the air passing direction. Equipped.
[0016]
The dehumidification rotor 3 is arranged so as to straddle a dehumidification chamber 6 at an air inlet of the air conditioner 1 and a regeneration chamber 7 attached to the air conditioner 1 adjacent to the dehumidification chamber 6. By rotating, each portion in the circumferential direction of the dehumidification rotor 3 is alternately positioned in the dehumidification chamber 6 and the regeneration chamber 7, and in the dehumidification chamber 6, the air A to be treated introduced into the air conditioner 1 passes through the room. By ventilating the rotor portion 3a in the process, the air A to be treated is dehumidified by the desiccant X of the rotor portion 3a.
[0017]
In the regeneration chamber 7, the high-temperature gas for regeneration H is passed through the rotor portion 3 b in the process of passing through the room, so that the desiccant X of the rotor portion 3 b (that is, the air A to be treated in the dehumidification chamber 6 is first removed). The desiccant used for dehumidification) is heated and regenerated, whereby the air to be treated is reduced in the dehumidification chamber 6 while the regeneration processing of the desiccant X is performed in the regeneration chamber 7 along with the rotation of the dehumidification rotor 3. A is continuously dehumidified by a desiccant X.
[0018]
As the high-temperature gas for regeneration H, a mixed gas of the turbine exhaust gas G discharged from the power-generating micro gas turbine 8 constituting the cogeneration system and the outside air OA is supplied to the regeneration chamber 7 by the regeneration fan 9. Also, regeneration valve devices 10a and 10b are provided for adjusting the supply air volume of each of the turbine exhaust gas G and the outside air OA. The regeneration high temperature supplied to the regeneration chamber 7 is provided by adjusting the air volume by the regeneration valve devices 10a and 10b. By adjusting the temperature and the flow rate of the gas H (and, in some cases, also adjusting the rotation speed of the dehumidifying rotor 3), the regeneration capacity of the desiccant regeneration in the regeneration chamber 7 is adjusted. The amount of dehumidification from the processing target air A in the dehumidification process in the wet chamber 6 is adjusted.
[0019]
Reference numeral 11 denotes a circulation pump for circulating the cooling water CW between the cooling tower 2 and the cooler 4, and reference numeral 12 denotes a flow control valve for adjusting a supply flow rate of the cooling water CW to the cooler 4. By adjusting the water supply flow rate, the cooling amount of the air B after dehumidification in the dehumidification chamber 6 in the cooler 4 is adjusted.
[0020]
The air washer 5 includes a large number of watering nozzles 13 for the passing air C, and a water tank 14 that receives water that has not yet evaporated and falls out of the water W sprayed from the watering nozzles 13. Is sprayed to the passing air C from the watering nozzle 13 in the form of being circulated and supplied to the watering nozzle 13 by the watering pump 15, so that the air C after cooling in the cooler 4 becomes a wet bulb temperature line. Humidification is performed to a state near saturation by changing the state along the line.
[0021]
Reference numeral 17 denotes a replenishing water valve device for automatically refilling the water tank 14 with water. Reference numeral 18 denotes a water supply for allowing air to pass through the air conditioner 1 and sending out the humidified air D from the air washer 5 from the air conditioner 1. I'm a fan.
[0022]
On the other hand, regarding the operation control, a dew point temperature sensor S1 for detecting a dew point temperature tb ″ of the air B dehumidified in the dehumidification chamber 6, a temperature sensor S2 for detecting a temperature td of the air D humidified by the air washer 5, and A controller 19 for adjusting the amount of dehumidification in the dehumidification chamber 6 and the amount of cooling in the cooler 4 based on the detection information of these sensors S1 and S2 is provided. ) To (c) are executed (see FIG. 2).
[0023]
(A) Based on the detection information of the dew point temperature sensor S1, the regeneration valve devices 10a and 10b are automatically operated (in some cases, the rotation speed of the dehumidification rotor 3 is also adjusted) to regenerate the desiccant in the regeneration chamber 7. The dehumidification amount from the processing target air A in the dehumidification chamber 6 is adjusted by adjusting the capacity, and the dew point temperature tb ″ of the air B after dehumidification in the dehumidification chamber 6 is adjusted by adjusting the dehumidification amount. The dew point temperature is adjusted to tbs ″.
[0024]
In other words, by adjusting the dehumidification amount, the absolute humidity xb of the dehumidified air B in the dehumidification chamber 6 is adjusted to the target reduced humidity xbs corresponding to the target reduced dew point temperature tbs ″.
[0025]
(B) Based on the detection information of the temperature sensor S2, the flow rate adjusting valve 12 is automatically operated to adjust the cooling water supply flow rate to the cooler 4 so that the cooler 4 for the air B after dehumidification in the dehumidification chamber 6 operates. By adjusting the cooling amount, the temperature td of the air D after humidification by the air washer 5 is adjusted to the target temperature tds, and the air D after humidification is set in the target temperature and humidity state tds, xds ( In this example, the state is set to a state near saturation at the target temperature tds).
[0026]
In other words, by adjusting the cooling amount, the temperature tc of the air C after the cooling in the cooler 4 is changed by the state change of the air C after the cooling along the wet bulb temperature line m due to the humidification in the air washer 5. The required cooling temperature tcs is adjusted to reach the target temperature / humidity state tds, xds. Note that L in the figure is a saturation line.
[0027]
(C) When the opening degree α of the flow rate adjusting valve 12 is closer to the opening side (α> α1) than the set upper limit opening degree α1 as shown in FIG. The target lowering dew point temperature tbs ″ is changed from the high temperature side set value t2 ″ to the low temperature side set value t1 ″, and conversely, the opening α of the flow regulating valve 12 is closer to the closed side than the set lower limit opening α2 as shown in FIG. When (α <α2), the target reduced dew point temperature tbs ″ is changed from the low temperature side set value t1 ″ to the high temperature side set value t2 ″.
[0028]
When the opening α of the flow control valve 12 is between the set upper limit opening α1 and the set lower limit opening α2 as shown in FIG. 6 (α1 ≦ α ≦ α2), the target lowering dew point temperature tbs ″ is set. Maintain the current value.
[0029]
In other words, when the opening degree α of the flow rate regulating valve 12 is more open than the set upper limit opening degree α1, the target lowering humidity xbs corresponding to the target lowering dew point temperature tbs ″ is shifted from the high humidity side set value x2 to the low humidity side. When the opening degree α of the flow control valve 12 is closer to the closing side than the setting lower limit opening degree α2, the target lowering humidity xbs corresponding to the target lowering dew point temperature tbs ″ is set to the lower humidity side. When the opening α of the flow control valve 12 is between the set upper limit opening α1 and the set lower limit opening α2 from the value x1 to the high humidity side set value x2, it corresponds to the target reduced dew point temperature tbs ″. Is maintained at the current value.
[0030]
That is, while the temperature of the supply cooling water CW to the cooler 4 changes due to a change in the performance of the cooling tower 2 due to a change in the state of the outside air, in the control of (c), the temperature change of the supply cooling water CW to the cooler 4 Is detected by a change in the opening degree of the flow control valve 12 in the adjustment of the cooling amount by the control (b).
[0031]
Then, when the opening α of the flow control valve 12 becomes more open than the set upper limit opening α1 due to the temperature rise of the supply cooling water CW to the cooler 4, the target lowering dew point temperature tbs ″ is set to the higher temperature side as described above. By changing the value t2 ″ to the low-temperature set value t1 ″, as shown in FIG. 2, the required cooling temperature tcs in the air cooling in the cooler 4 (that is, the air C after cooling is cooled by the humidification in the air washer 5). The air temperature after cooling required to reach the target temperature / humidity state tds, xds by the state change along the wet bulb temperature line m) corresponds to the rise in the cooling limit temperature tcc due to the rise in the temperature of the supply cooling water CW. In this state, the temperature is shifted to the high temperature t1, and in this state, the dehumidifying process (A → B) in the dehumidifying chamber 6, the cooling process (B → C) in the cooler 4, and the humidifying process (C) in the air washer 5 are performed. → D) and the order to be adjusted are empty In addition to the air A, the dehumidification amount is adjusted by the control (a) and the cooling amount is adjusted by the control (b). The processing target air A is adjusted to the target temperature and humidity states tds and xds in a state in which the cooling limit temperature tcc in cooling is prevented from becoming higher than the required cooling temperature tcs.
[0032]
Conversely, when the opening α of the flow regulating valve 12 is closer to the closed side than the set lower limit opening α2 due to a decrease in the temperature of the supply cooling water CW to the cooler 4, the target reduced dew point temperature tbs ″ is lowered to a low temperature as described above. By changing the side set value t1 "to the high temperature side set value t2", as shown in FIG. 3, the required cooling temperature tcs in the air cooling in the cooler 4 is reduced to the cooling limit temperature tcc due to a decrease in the temperature of the supply cooling water CW. The temperature is shifted to a low temperature t2 in such a manner as to follow the decrease, and in this state, the dehumidification process (A → B) in the dehumidification chamber 6, the cooling process (B → C) in the cooler 4, and the air washer 5 The humidification process (C → D) is performed on the air A to be adjusted in that order, and the adjustment of the dehumidification amount by the control of (a) and the adjustment of the cooling amount by the control of (b) are performed. Change of the dew point temperature tbs "to the rising side The amount of heating required for the desiccant regeneration in the regeneration chamber 7 and the target temperature and humidity by the humidification by the air washer 5 following the cooling of the dehumidified air B by the cooler 4 by the reduced amount of the required dehumidification by the renewal The processing target air A is adjusted to the target temperature and humidity states ds and xds while the amount of humidification required to adjust the states tds and xds is reduced and energy consumption is effectively reduced.
[0033]
In short, in the present embodiment, the dehumidification rotor 3 and the dehumidification chamber 6 constitute dehumidification means for dehumidifying the air A to be treated with the desiccant X, and the cooler 4 is provided after the dehumidification by the dehumidification means. The air B is cooled by exchanging heat with the refrigerant (cooling water CW in the present embodiment), and the air washer 5 constitutes a humidifying unit that humidifies the air C cooled by the cooling unit. The chamber 7 regenerates the desiccant X used in the dehumidification treatment of the air A to be treated by the dehumidification means by heating, and regenerates the regenerated desiccant X again in the dehumidification treatment of the air A to be treated by the dehumidification means. Constituting the reproducing means to be provided.
[0034]
Further, the controller 19 adjusts the dehumidification amount by the dehumidification means to adjust the absolute humidity xb of the air B after the dehumidification by the dehumidification means to the target reduction humidity xbs, and adjusts the supply flow rate of the refrigerant to the cooling means. Control means for adjusting the amount of cooling by the cooling means by adjustment to adjust the temperature tc of the air C after cooling by the cooling means, and the flow control valve 12 constitutes flow rate adjusting means for adjusting the flow rate of the refrigerant supplied to the cooling means. I do.
[0035]
In the present embodiment, the controller 19 as the control means changes the target reduction humidity xbs to the rising side in accordance with the temperature decrease of the supply refrigerant (supply cooling water CW) to the cooling means, and supplies the cooling medium to the cooling means. The target reduction humidity xbs is changed to a lower side in accordance with a rise in the temperature of the refrigerant (supply cooling water CW), and the flow rate of the refrigerant supply to the cooling means is adjusted by operating the flow rate adjustment means, and the amount of cooling by the cooling means is adjusted. And the change of the target reduced humidity xbs according to the temperature change of the supply refrigerant to the cooling means is executed based on the operation state of the flow rate adjusting means.
[0036]
In the present embodiment, the processing target air A is adjusted with the state near the saturation at the target temperature tds as the target temperature / humidity state (tds, xds), but the air D adjusted to the state near the saturation at the target temperature tds is used. In order to adjust the air-conditioned space 20 to a desired air-conditioning state, a part C ′ of the air C cooled by the cooler 4 is passed through the bypass air passage 21 to the air washer 5 by the air washer 5 as shown in FIG. The humidified air D (air near saturation at the target temperature tds) is mixed with the humidified air D to supply the mixed air E to the air-conditioned space 20, and the humidified air D and the air washer 5 by the air washer 5. The mixed air supplied to the air-conditioned space 20 is adjusted according to the desired air-conditioning state of the air-conditioned space 20 by adjusting the mixing ratio with the cooled air C ′ bypassing the air by the damper device 22. Temperature and humidity conditions of the may be adjusted.
[0037]
Alternatively, as shown in FIG. 8, a reheater 23 for heating the air D after humidification by the air washer 5 is provided, and the reheated air E ′ heated by the reheater 23 is supplied to the air-conditioned space 20. Then, by adjusting the amount of air heating in the reheater 23, the temperature and humidity of the reheat air E ′ to be supplied to the air-conditioned space 20 is adjusted according to the desired air-conditioning state of the air-conditioned space 20. You may make it.
[0038]
[Another embodiment]
Next, another embodiment will be described.
[0039]
In the above-described embodiment, an example has been described in which the dehumidifying process of the air A to be treated with the desiccant X and the regeneration process of the desiccant X are performed simultaneously and continuously by using the dehumidifying rotor 3. A dehumidifying means for dehumidifying A with a desiccant X, and a desiccant X used for dehumidifying the air A to be treated by the dehumidifying means is regenerated by heating, and the regenerated desiccant X is dehumidified again. The specific configuration of each of the regenerating means for performing the dehumidifying treatment of the air A to be treated by the means can be variously changed. For example, the treating means may treat some of the plurality of treating towers containing the desiccant X. While the target air A is ventilated to perform the dehumidification treatment of the treatment target air A, the regeneration high-temperature gas H is passed through another treatment tower to regenerate the desiccant X, thereby dehumidifying. The processing tower used for processing and the processing tower used for regeneration processing are alternately switched. Accordingly, the dehumidification process of the processed air A by the drying agent X and the regeneration process of the desiccant X parallel to may be continuously performed.
[0040]
In some cases, the regeneration process of the desiccant X is suspended while the dehumidification process of the processing target air A is being performed, and conversely, the regeneration process of the processing target air A is performed while the regeneration process of the desiccant X is being performed. In a mode in which the dehumidifying process is stopped, the dehumidifying process of the air A to be treated with the desiccant X and the regeneration process of the desiccant X may be alternately performed in a non-parallel state.
[0041]
When the regenerating treatment of the desiccant X is performed using the regenerating high-temperature gas H, the regenerating high-temperature gas H is not limited to a mixed gas of the turbine exhaust gas G and the outside air OA, but may be various gases such as high-temperature air and burner exhaust gas. Alternatively, the desiccant X may be regenerated by heating by heat conduction from the heating means without using the high-temperature gas H for regeneration.
[0042]
In the above-described embodiment, the dehumidification is achieved by adjusting the temperature and the flow rate of the high-temperature gas for regeneration H that is passed through the dehumidification rotor 3 in the regeneration chamber 7 or by adjusting the rotation speed of the dehumidification rotor 3. Although the example in which the amount of dehumidification from the air A to be treated in the chamber 6 is adjusted has been described, the invention is not limited to this, and various methods are used to adjust the amount of dehumidification depending on the type of the dehumidification means and the regeneration means. For example, a configuration in which a mixture of air dehumidified by the dehumidifying unit and some air to be treated that is not dehumidified by the dehumidifying unit is cooled by the cooling unit as dehumidified air B. In this configuration, by adjusting the mixing ratio of the processing target air A to be dehumidified by the dehumidifying means and the processing target air A ′ not to be dehumidified by the dehumidifying means, the dehumidification relative to the entire processing target air is adjusted. The amount may be adjusted.
[0043]
In the above-described embodiment, an example in which the dehumidified air B is cooled by the cooler 4 using the cooling water CW supplied from the cooling tower 2 as a refrigerant is shown, but the dehumidified air B is cooled by exchanging heat with the refrigerant. The cooling means may be of various cooling types, for example, a method of cooling the dehumidified air B using a refrigerant evaporator in a heat pump as a cooling means, or a method of cooling the dehumidified air using cold water generated by a refrigerator as a refrigerant. A method of cooling B, or a method of cooling air B after dehumidification using natural water such as well water, river water, seawater, or spring water as a refrigerant may be adopted.
[0044]
In the above-described embodiment, the example in which the air C after cooling is humidified by the air washer 5 along the wet bulb temperature line m to near the saturation state, but various humidifying means for humidifying the air C after cooling are used. For example, in the case of water spraying or steam spraying on air, for example, a method of humidifying the air C to a target humidity away from the saturation line L by adjusting the humidifying amount by adjusting the spraying amount. May be adopted.
[0045]
When an air washer is used as the humidifier, a gas-permeable filler layer for increasing the contact efficiency between the spray water W from the spray nozzle 13 and the passing air C may be arranged above the water tank 14. .
[0046]
The target temperature / humidity states tds and xds of the air D after humidification by the humidification means are not limited to the temperature / humidity state near the saturation as shown in the above-described embodiment, but are the temperature / humidity states away from the saturation line L. You can.
[0047]
In the above-described embodiment, an example has been described in which the target reduced humidity xbs is alternately switched between the low humidity side set value x1 and the high humidity side set value x2 in accordance with a change in the temperature of the supply refrigerant CW to the cooling means 4. Instead of this, the target lowering humidity xbs is continuously or multi-stepwise changed to the rising side in accordance with the temperature decrease of the supply refrigerant CW to the cooling means, and the target reduction humidity xbs is changed in accordance with the temperature increase of the supply refrigerant CW to the cooling means. The lowering humidity xbs may be changed to the lowering side continuously or in multiple steps.
[0048]
Further, instead of the configuration in which the target lowering humidity xbs is changed based on the operation state of the flow rate adjusting unit 12 that adjusts the refrigerant supply flow rate to the cooling unit 4 as in the above-described embodiment, the target is set based on the refrigerant temperature detected by the temperature sensor. A configuration in which the reduced humidity xbs is changed may be adopted.
[0049]
The air whose temperature and humidity have been adjusted by the desiccant air conditioner according to the present invention can be used not only for air conditioning in a resident area, but also for any application that requires air at a predetermined temperature and humidity.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of an apparatus.
FIG. 2 is a psychrometric chart showing a temperature / humidity adjustment mode when a refrigerant temperature rises.
FIG. 3 is a psychrometric chart showing a temperature / humidity adjustment mode when the refrigerant temperature is lowered.
FIG. 4 is a diagram showing an opening adjustment state of a flow control valve.
FIG. 5 is a diagram showing an opening adjustment state of a flow control valve.
FIG. 6 is a diagram showing an opening adjustment state of a flow control valve.
FIG. 7 is a diagram showing a use form of air after adjustment.
FIG. 8 is a diagram showing another use form of the air after adjustment.
[Explanation of symbols]
3,6 Dehumidifying means
4 Cooling means
5 Humidifying means
7 Reproduction means
12 Flow rate adjusting means
A Air to be treated
B Air after dehumidification
C Air after cooling
CW refrigerant
tc Air temperature after cooling
X desiccant
xb Absolute humidity of dehumidified air
xbs target decrease humidity

Claims (2)

処理対象空気を乾燥剤により減湿する減湿手段と、その減湿手段による減湿後の空気を冷媒と熱交換させて冷却する冷却手段と、その冷却手段による冷却後の空気を加湿する加湿手段と、
前記減湿手段による処理対象空気の減湿処理に使用した前記乾燥剤を加熱により再生して、その再生した乾燥剤を再び前記減湿手段による処理対象空気の減湿処理に供する再生手段と、
前記減湿手段による減湿量を調整して、前記減湿手段による減湿後の空気の絶対湿度を目標低下湿度に調整し、かつ、前記冷却手段に対する冷媒供給流量の調整により前記冷却手段による冷却量を調整して、前記冷却手段による冷却後の空気の温度を調整する制御手段とを備えるデシカント空調装置であって、
前記制御手段を、前記冷却手段に対する供給冷媒の温度低下に応じ前記目標低下湿度を上昇側に変更し、かつ、前記冷却手段に対する供給冷媒の温度上昇に応じ前記目標低下湿度を低下側に変更する構成にしてあるデシカント空調装置。
Dehumidifying means for dehumidifying the air to be treated with a desiccant, cooling means for exchanging heat with the refrigerant after dehumidifying by the dehumidifying means and cooling, and humidifying the humidified air after cooling by the cooling means. Means,
A regeneration unit that regenerates the desiccant used for the dehumidification process of the air to be treated by the dehumidification unit by heating and provides the regenerated desiccant again to the dehumidification process of the air to be treated by the dehumidification unit.
The amount of dehumidification by the dehumidifying means is adjusted, the absolute humidity of the air after dehumidification by the dehumidifying means is adjusted to the target reduced humidity, and the cooling means is adjusted by adjusting the supply flow rate of the refrigerant to the cooling means. A desiccant air conditioner comprising a control unit for adjusting a cooling amount and adjusting a temperature of air after cooling by the cooling unit,
The control means changes the target reduced humidity to a rising side in accordance with a decrease in the temperature of the refrigerant supplied to the cooling means, and changes the target lowered humidity to a lower side in accordance with a temperature increase in the supplied refrigerant to the cooling means. Desiccant air-conditioning system configured.
前記制御手段を、流量調整手段の操作により前記冷却手段に対する冷媒供給流量を調整して前記冷却手段による冷却量を調整するとともに、前記冷却手段に対する供給冷媒の温度変化に応じた前記目標低下湿度の変更を前記流量調整手段の操作状態に基づき実行する構成にしてある請求項1記載のデシカント空調装置。The control means adjusts the amount of refrigerant supplied to the cooling means by operating the flow rate adjusting means to adjust the amount of cooling by the cooling means, and adjusts the target reduced humidity according to the temperature change of the refrigerant supplied to the cooling means. The desiccant air conditioner according to claim 1, wherein the change is performed based on an operation state of the flow rate adjusting means.
JP2003108864A 2003-04-14 2003-04-14 Desiccant air conditioner Pending JP2004316975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003108864A JP2004316975A (en) 2003-04-14 2003-04-14 Desiccant air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003108864A JP2004316975A (en) 2003-04-14 2003-04-14 Desiccant air conditioner

Publications (1)

Publication Number Publication Date
JP2004316975A true JP2004316975A (en) 2004-11-11

Family

ID=33470206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003108864A Pending JP2004316975A (en) 2003-04-14 2003-04-14 Desiccant air conditioner

Country Status (1)

Country Link
JP (1) JP2004316975A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300392A (en) * 2005-04-19 2006-11-02 Hitachi Plant Technologies Ltd Air-conditioning heat source facility for clean room

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300392A (en) * 2005-04-19 2006-11-02 Hitachi Plant Technologies Ltd Air-conditioning heat source facility for clean room

Similar Documents

Publication Publication Date Title
KR101594422B1 (en) Solar energy dehumidifying and cooling air system
EP1188024B1 (en) A method for heat and humidity exchange between two air streams and apparatus therefor
CN105757836A (en) Dehumidification heat exchanger based regeneration dehumidification heat pump system and running method therefor
JP6178174B2 (en) Desiccant air conditioner and desiccant air conditioner
JP6018938B2 (en) Air conditioning system for outside air treatment
JP2011125826A (en) Dehumidifier
JP6873721B2 (en) Air treatment device, control device for air treatment device, control method for air treatment system and air treatment device
JP3821371B2 (en) Dehumidifier
KR101993825B1 (en) Deciccant cooling system
JP2018124035A5 (en)
JP5686311B2 (en) Gas removal system
JP6898138B2 (en) Desiccant type humidity control device and its control method
JP2017194232A (en) Outside air treatment system, control device for outside air treatment system and control method
KR102385113B1 (en) Air conditioning system and controlling method thereof
JP6616973B2 (en) Waste heat utilization type dehumidification system
JP4011724B2 (en) Desiccant air conditioning method
JP2003166730A (en) Dehumidifying air conditioner
JP2007278619A (en) Air-conditioner
JPH0814600A (en) Desiccant type air conditioner
JP2006336926A (en) Air conditioner
JP4121116B2 (en) Dehumidification and humidification system
JP2004316975A (en) Desiccant air conditioner
JP4803816B2 (en) Desiccant air conditioner
JP2000283498A (en) Operation method for adsorption dehumidification air conditioner and adsorption dehumidification air conditioner
JP6452368B2 (en) Fuel cell equipment type air conditioning system