JP2004316777A - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP2004316777A
JP2004316777A JP2003111764A JP2003111764A JP2004316777A JP 2004316777 A JP2004316777 A JP 2004316777A JP 2003111764 A JP2003111764 A JP 2003111764A JP 2003111764 A JP2003111764 A JP 2003111764A JP 2004316777 A JP2004316777 A JP 2004316777A
Authority
JP
Japan
Prior art keywords
bearing
raceway
rolling
axial
cage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003111764A
Other languages
Japanese (ja)
Inventor
Takashi Murai
隆司 村井
Kenji Kotaki
賢司 小滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2003111764A priority Critical patent/JP2004316777A/en
Publication of JP2004316777A publication Critical patent/JP2004316777A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • F16C19/166Four-point-contact ball bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin-wall bearing capable of realizing cost reductions while restraining an axial space at the time of fixing a housing. <P>SOLUTION: In a thin-wall bearing device A of which one bearing receives a radial load, an axial load in both directions and a moment load and which is fixed in a housing B, either or both bearing rings1 (2) are radially formed in a thick-wall manner. The bearing ring 1 (2) formed in the thick-wall manner. The axial width of the bearing ring 1 (2) including a bolt tightening portion 9 is the same in width over the whole range in the radial direction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、1個の軸受で、ラジアル荷重と両方向のアキシアル荷重、モーメント荷重を受けられ、一般産業機械、搬送用ロボット、医療機器、食品機械、半導体/液晶製造装置、DDモータ(ダイレクトドライブモータ)、光学及びオプトエレクトロニクス装置などに組み込まれる薄肉軸受に関する。
【0002】
【従来の技術】
昨今、産業機械・医療機器などの小型化・省スペース化が図られており、また、機械などの構造が複雑化し、内部空間には種々多数の部品が組み込まれ、必然的に軸受組込みスペースの減少が余儀なくされ、転がり軸受の薄肉化(幅狭)が要求されている。
そこでこのような要求に応え得る薄肉軸受としては、クロスローラ軸受、クロステ−パ軸受、4点接触玉軸受、若しくは3点接触玉軸受などが知られている。クロスローラ軸受、クロステーパ軸受、4点接触玉軸受若しくは3点接触玉軸受等は、一つの軸受でラジアル荷重と両方向のアキシアル荷重、モーメント荷重を受けられ、その軸方向のスペースを省略できるものである。
そして、これらの軸受をハウジングに固定する方法としては、図8に示すように軸受(4点接触玉軸受)100を、軸方向からハウジング200に挟み込むタイプや、図9に示すように外輪101(又は内輪201)に径方向に段部のあるフランジ300を設け、該フランジ300のボルト用穴(ネジ穴)301にボルト(ネジ)を介してハウジングに固定するタイプなどがある(例えば、特許文献1参照)。ちなみに図9(a)は外輪二分割タイプ、図9(b)は内輪二分割タイプを夫々示す。
【0003】
【特許文献1】
特開2002−130289(図15,図16)
【0004】
【発明が解決しようとする課題】
しかしながら、ハウジング200に軸受100を固定する場合、図8に示すハウジングに軸受を挟み込むタイプでは、軸受固定用の円盤400が必要な為、実質上軸受幅よりどうしても軸方向スペースが長くなるという課題がある。
また、図9に示すような外輪101の外径面(又は内輪内径面)に段部のあるフランジ300を設け、該フランジのボルト用穴301を介してハウジングにボルト止めするタイプにあっては、固定による軸方向スペースが抑えられる反面、外輪外径面(内輪内径面)にフランジ部を突設させるため、量産時における加工コストアップにつながる原因になっていた。
本発明は、従来技術の有するこのような問題点に鑑みなされたものであり、その目的とするところは、ハウジング固定時における軸方向スペースを抑えつつ低価格化が図り得る薄肉軸受を提供することである。
【0005】
【課題を解決するための手段】
上記課題を達成するために本発明がなした技術的手段は、1個の軸受で、ラジアル荷重と両方向のアキシアル荷重、モーメント荷重を受けられ、ハウジングに固定される薄肉軸受において、いずれか一方又は双方の軌道輪を半径方向に肉厚状に形成すると共に、厚肉状に形成した軌道輪には軸方向のボルト締結部を備え、該ボルト締結部を含めた軌道輪の軸方向幅は、半径方向全域にわたって同幅で厚肉状に形成されている。
薄肉軸受は、一対の軌道輪間に保持器を介して複数の転動体が組み込まれ、上記各軌道輪は転動体の半径より大径状の軌道面からなる軌道溝を夫々有し、その中に少なくとも一つの軌道輪は二つの軌道面からなり、上記各転動体は転がり接触面となる外径が軸方向にも曲率を持ち、円周上に夫々交差状に配されると共に、各転動体の外径が常に相対する一方の軌道輪の軌道面と他方の軌道輪の軌道面にて夫々一点ずつ合計二点で接触しているものであって、一対の軌道輪は夫々一体型で形成され、該軌道輪のいずれか一方若しくは双方の軌道溝の一部には、該軌道溝よりも小さな溝を設けた構成とする。
また、クロスローラ軸受、クロステーパ軸受、4点接触玉軸受若しくは3点接触玉軸受とすることもできる。
上記保持器は、転動体を保持する夫々のポケットにおいて、軸方向ポケット面は一面のみ有し、相対する面側は開放されており、該軸方向のポケット面は、周方向互いに交差状に組み込まれる転動体の傾斜の向きに対応して、互いに軸方向の反対側に傾斜状に配列されている。転動体は、少なくとも一平面部を有し、該平面部が保持器の軸方向ポケット面と接する。
ハウジングに固定する側の軌道輪を半径方向に厚肉状にすると共に、その厚肉とした部分にハウジングへ固定するボルト締結部を備えた構成とすることで、その半径方向に厚肉とした部分でフランジ部と同様の作用を奏する。
よって、従来のように特別に段部を設けたフランジでないことから、量産時の加工においても特にフランジ部の有無に関係なく加工ができるので加工によるコストアップはほとんどない。
さらにこのような技術的手段により、転動体は、内外輪保持器を組み立てた状態でも挿入可能である。そして、挿入された転動体は、軌道溝に小さな溝を設けたことにより、軌道輪が一体型であっても、その軌道輪間で形成される溝空間内で転動体が回転可能となる。また、保持器ポケットの軸方向の片側が開放しているので、内外輪、保持器を組み込んだ状態で、片側ずつ組み込むことが可能となる。また、このような保持器構成を採用することにより、転動体の軸方向案内面が、従来の二面から一面に減少しているため、転動体を拘束する力が減少する。その結果、保持器と転動体の間に生じる端面摩擦が大幅(約半分)に小さくなるためトルクも減少する。
【0006】
【発明の実施の形態】
以下、本発明転がり軸受の一実施形態を図に基いて説明する。なお、本実施形態は本発明の一実施形態にすぎず、これに限定して解釈されるものではなく本発明の範囲内で設計変更可能である。
本発明転がり軸受Aは、1個の軸受で、ラジアル荷重と両方向のアキシアル荷重、モーメント荷重を受けられ、ハウジングBに固定される薄肉軸受であり、例えば、一般産業機械、搬送用ロボット、医療機器、食品機械、半導体/液晶製造装置、DDモータ(ダイレクトドライブモータ)、光学及びオプトエレクトロニクス装置などに組み込まれる。
転がり軸受Aは、図1に開示しているように、一体型で成形された軸受軌道輪(軸受外輪)1の内径と、同じく一体型に成形された軸受軌道輪(軸受内輪)2の外径に形成される軌道溝3に、保持器6を介して複数の転動体5,5…が組み込まれて構成されている。
【0007】
「第一実施形態」
本実施形態では、外輪1を同幅で標準寸法よりも半径方向(外径方向)に厚肉状(標準寸法より約3倍近く厚肉)に形成したもので、内輪2は標準寸法となっている。外輪1において標準寸法部分よりも厚肉とした部分(この部分をフランジ部ともいう)1dには、ハウジングBへの固定用のボルト締結部9が備えられている。
ボルト締結部9は、軸方向に貫通するボルト用穴10(ボルト通し用穴10aと頭部埋没用穴10bの双方をいう、以下同じ。)が円周上数箇所設けられている。ボルト13は、予めセットされていても良いが、別体として用意することも可能である。本実施形態では、外輪1の側面からハウジングBに向けてボルト13を締結する形態で、ハウジングBの取付面には、対応するボルト受ネジ穴14が設けられている。なお、ハウジングB側から外輪1のボルト用穴10側に向けてボルト13を締結する形態を採用することも可能である。半径方向同一P.C.D(Pitch Circle Diameter)上に複数個のボルト締結部9を設けているが、これに限定されず、半径方向に異なるP.C.D(Pitch Circle Diameter)上に複数個設けることも可能である。また、本実施形態では、ボルト13の頭部13aを埋没させるスペース(頭部埋没用穴10b)を外輪1の側面に設け、ボルト13の頭部13aが外輪1の側面から突出しないように配慮されている。
本実施形態の軸受Aはボルト締結部9を介してハウジングBに固定されているが、軸方向スペースは軸受幅で抑えられている。
本実施形態では各ボルト用穴10を円周上分割してミーリング等で設けているが、当然、切削による円周上連続溝として頭部埋没用穴10bを加工し、ボルト通し用穴10aのみを分割して形成しても良い。
ボルト締結部9の形状は特に図示形態に限定されるものではなく、用いられるボルトもそのサイズ大小任意で、ネジの範疇のものも含まれる。
また、図中、8は密封板(接触シール)であるが、密封板は必要に応じて適宜所望な構成の密封板(接触若しくは非接触シール、又はシールド)を設けることが出来る。なお、密封板は本実施形態では左右双方に備えたが、いずれか一方のみに備える形態でもよく、あるいは密封板を備えない開放型を採用することも実施形態に応じて可能である。
なお、軸受寸法・接触角・転動体径あるいは材質などの諸構成は限定されない。本実施形態によれば、軌道輪としての外輪1と内輪2のいずれも一体型で成形されているため、外輪・内輪組立て用の締結ボルトなどの関連部品を含めた軌道輪の製作コスト・組み立て管理および組み立て費が大幅に削減できる。
【0008】
軌道溝3は、転動体5の半径よりも大きな半径の軌道面1a,2a・2bにより形成されている。
また、少なくともいずれか一方の軌道輪の軌道溝が、二つの軌道面から構成されているものであればよく本発明の範囲内で適宜選択される。
各軌道面1a,2a・2bの形状は、転動体5の転がりに適切な形状を有しているものであれば、断面アーチ状あるいはV字状等任意で、また曲線状あるいは直線状等のいずれであってもよく特に限定されるものではないが、例えば本実施形態では、円心をクロスに配置した両円弧で形成されている、いわゆるゴシックアーチが適用される。
そして、内輪2の軌道溝3の一部に、この軌道溝3よりも小さな溝(転動体組込み用回転溝)4を凹設している。
本実施形態では、内輪軌道面2a,2bからなる軌道溝3の中心に、周方向に連続する所望深さの断面半円状の小径(例えば溝半径は約0.8mm)な溝とする。この溝4は、転動体5の組み込み時における回転用溝として主に使用される。すなわち、後述する転動体5の転がり接触面5aと平面部5bとの繋ぎ部(交点)5fを、組み込み時に溝4内に挿入させることによって、転動体5を軌道溝3空間内で回転可能とする。なお、溝4は、その溝4内に潤滑剤を保有させておくことも可能で、軌道面内に備えられる潤滑剤(油、グリースなど)保有機能としての作用もあり、安定した軸受寿命が期待できる。
溝4の形状・径方向深さ・軸方向幅は、軌道面を可能な限り大きく取れるように最小限の大きさにするのが好ましいが、転動体5の転がり接触面5aと平面部5bとの繋ぎ部5fが溝4内に一部挿入可能であれば全て本発明の範囲内であり、特に図示形態に限定されず本発明の範囲内で適宜設計変更可能である。例えば45度程度の面取り程度でもよい。
また、転動体5の周方向配設間隔を考慮すれば、溝4は所望長さをもって周方向に断続して設けてもよく本発明の範囲内である。
なお、軌道面2a,2bとの繋ぎ部2cのエッジを無くしR状に形成してもよい。
この溝4は、本実施形態では上述の通り内輪2の軌道溝3にのみ設けているが、外輪1の軌道溝3に設けてもよく、また外輪1と内輪2の双方に設けてもよい。
【0009】
転動体5は、転がり接触面となる外径5aが軸方向に曲率を持ち、かつ軌道面1a,2a・2bの夫々の半径よりも小径の半径を有する任意形状で、該転動体5は、隣接する転動体5が夫々交互に交差状に配されると共に、各転動体5の外径5aが、常に外輪1の軌道面1aと内輪2の軌道面2a又は2bにて二点接触している。
転動体5は、例えば本実施形態では図2に拡大して開示しているように、一組の平面部(本実施形態では相対面)5b,5bを有する上下切断状玉(玉の上下部分を切断して平面部5b,5bを形成した構造のものをいう。以下同じ。)で、該平面部5b,5bに垂直する自転中心軸5cが夫々交差状となるように夫々の転動体5,5…が組込まれると共に、各転動体5の外径5aが、常に外輪1の軌道面1aと内輪2の軌道面2a又は2bにて二点接触している。図中5fは、転動体5の転がり接触面5aと平面部5bとの繋ぎ部(交点)である。
転動体5は、その上下の切断幅は特に限定されず、また上下の切断割合は、均等あるいは均等でないものであってもよく、本発明の範囲内で任意に選択可能である。すなわち、本実施形態では、平面部5b,5bを対称としたが、転動体5の平面部5b,5bは、対称であっても非対称であってもよくいずれも本発明の範囲内である。
また、図3に示す非対称の平面部5b,5dを有する転動体(上下切断状玉)5の場合、大端側の平面部5dが軸受の内輪2に向くように配することで、転動体5の回転がより安定になり、より低トルクを実現することができる。
転動体5の全体形状、相対面5b,5bの有無や、外径5aにおける軸方向の曲率の大小等は、上記具体的形状に何等限定されるものではなく、本発明の範囲内において任意に変更可能である。すなわち、例えば、平面部5b,5bに代えて、非平行状の両面(平面部)を備え、該両面に垂直する自転中心軸を有するものとしてもよい(図示省略)。
また、図4に示す玉の片側をカット(切断)して一つの平面部(カット面)5eを設けた片側カット状玉としたものであってもよい。
また、平面部5b(5d,5e)は、任意形状であって、適宜最適な形状・大きさに変更・選択できる。
【0010】
転動体5,5…の組込みは、隣り合う転動体5,5における各平面部5b・5b,5b・5bに垂直する自転中心軸5c,5cが交互に交差状となるようにする。なお、その交差状態は直交状・非直交状のいずれでも構わない。
また、転動体5の交差状に配される方式は、両方のなりで数が同じなら、周方向に交互に配されるものでなくともよく特に限定されない。すなわち、転動体5が1個毎に交差してもよく、1個毎に交差しなくとも両方のなりで数が同じなら、2個ずつ交差あるいは2個1個1個2個等のように交差していてもよくいずれも本発明の範囲内である。
【0011】
各転動体5,5の運動は、保持器6で案内される(図5参照)。
保持器6は、転動体5を保持案内するポケット(保持部)7…が、周方向に複数個備えられた円環状に形成され、夫々のポケット7が、周方向に相対する二面のポケット面(周方向案内面)7a,7aを有すると共に、軸方向は一面のポケット面(軸方向に転動体姿勢を安定させる軸方向案内面)7bのみ有し、相対する面側は開放(開放面)されており、該軸方向のポケット面7bは、互いに交差状に組み込まれる転動体5の傾斜の向きに対応して、互いに軸方向の反対側に傾斜状に配列されている。なお周方向のポケット面7aの形状は特に限定されず任意である。
軸方向のポケット面7bは、転動体5の外輪対向側の平面部5b(図1で左下方に向いている面)を案内するよう外径6aから内径6bにわたり傾斜状に形成されている。よって、ポケット7の外径側開口7cより内径側開口7dが広く形成されることとなる。
このポケット面7bの傾斜角度は任意で、軌道溝3空間内で配される転動体5の角度を考慮して決定される。
本実施形態では、円周上で転動体5…数量と同一数量をもって等間隔で設けられると共に、周方向で隣り合うポケット7の軸方向ポケット面7bは、周方向に交互に交差状に配されており、隣り合う各転動体5,5を上述の通り平面部5b・5b,5b・5bに垂直する自転中心軸5c,5cが夫々交差状になるように交互に組み込み可能とする。
なお、本実施形態では、円周上で転動体5…数量と同一数量のポケット7…が等間隔で、かつ交互に交差状に配されているが、特に限定されず、両方のなりで数が同じなら、2個ずつ交差あるいは2個1個1個2個等のように交差していても良く本発明の範囲内である。よって、上述した転動体5の配される方式に応じたポケット構成を周方向に設けた保持器とする。
保持器6の案内方式は特に限定されるものではなく、内輪案内でも、外輪案内でも、転動体案内でもよい。また、本実施形態では保持器6を一体型の構成としているが、特に限定されるものではなく、幾つかの部分から形成したものでも良い。
本実施形態の保持器6によれば、外輪1、内輪2と共に組み立てた後、転動体5を保持器6の開放側より軸受軌道溝3空間内へ順次挿入できる。
【0012】
本実施形態は予圧品であるが、すきま品でもよいことは言うまでもない。
転動体と軌道面との間における予圧の付与される状態は特に限定されず、すなわち、製造段階で予圧が付与されても付与されなくてもよくいずれも本発明の範囲内である。
【0013】
これら軸受の軌道輪1,2と転動体5の材質としては、通常軸受鋼が用いられるが、使用環境に応じて耐食性や、耐熱性を向上させる場合にはステンレス鋼やセラミック等が適宜選択される。
また保持器6の材料としては、もみ抜き保持器、プレス保持器、樹脂保持器等が適宜選択されるので、例えば黄銅や鉄等の金属や、例えばポリアミド66(ナイロン66)・ポリフェニレンサルファイド(PPS)等の合成樹脂が本発明の範囲内で選ばれる。
【0014】
この実施形態によれば、転動体5の外径5aが相対する外輪1の軌道面1aと内輪2の軌道面2aに夫々点接触(接触点を11,11で示す)し、隣接する転動体5が外輪1の軌道面1aと内輪2の軌道面2bに夫々点接触(接触点を12,12で示す)する。転動体5,5の接触角交互に交差するので、一つの軸受でラジアル荷重と両方向のアキシアル荷重、モーメント荷重を受けることができる。
【0015】
「第二実施形態」
図6は、本発明の第二実施形態を示し、外輪1を標準寸法とし、内輪2を同幅で標準寸法よりも半径方向(内径方向)に厚肉状(標準寸法より約3倍近く厚肉)に形成したものとなっている。内輪2において標準寸法部分よりも厚肉とした部分(この部分をフランジ部ともいう)2dには、ハウジングBへの固定用のボルト締結部9が備えられている。
本実施形態では、厚肉とした部分2dの一部を任意の深さで逃げた形状(逃げ部2e)にしたもので、これは肉厚部分2dの全面加工時の負担を軽減したものである。
また、本実施形態では、ハウジングB側から内輪2のボルト用穴10側に向けてボルト13を締結する形態を採用し、ハウジングB側にボルト13の頭部13aを埋没させるスペース(頭部埋没用穴10b)を設けている。
その他の構成は、第一実施形態と同様であるためその説明は省略する。
【0016】
「第三実施形態」
図7は、第3実施形態を示し、外輪1と内輪2の双方共に同幅で標準寸法よりも厚肉状に形成し、夫々の厚肉とした部分1d,2dにハウジングBへの固定用のボルト締結部9が備えられている。図中1eは、厚肉とした部分1dの一部を任意の深さで逃げた形状(第二実施形態の逃げ部2eと同じ)にしたものである。
本実施形態では、クロスローラ軸受(外輪分割タイプ)を用いた実施の一形態である。クロスローラ軸受は、一対の軌道輪(外輪1・内輪2)間に複数のころ5´が組み込まれ、該ころ5´が円周上に夫々交差状に配されてなるものである。
本実施形態のクロスローラ軸受は、外輪1を二分割したタイプであるが、当然に内輪2を二分割したタイプ、あるいは外内輪1,2共に分割しない一体タイプでも良い。その他の構成は第一実施形態と同様であるため説明は省略する。
本実施形態では、円筒状のころを用いたクロスローラ軸受であるが、円すい状のころを用いたクロステーパ軸受とすることも可能である。なお、このように円すい状のころを用いるクロステーパ軸受の場合、大径端側が外輪軌道面に向いて円周上に交差状に配する。このようにクロステーパ軸受とすると、転動体と軌道輪の間のすべりを小さくできるため、軸受トルクをクロスローラ軸受よりも小さくでき、発熱も抑えられ使用回転速度範囲を広くできる。
なお、本実施形態で説明したクロスローラ軸受・クロステーパ軸受部分(厚肉部分とボルト締結部以外の構成)は一般的な構成が採用可能で、図示例に限定はされない。
【0017】
なお、上記実施形態のほかに、4点接触玉軸受、3点接触玉軸受などの薄肉軸受を使用し、その外輪1と内輪2のいずれか一方若しくは双方の半径方向肉厚を厚肉状とすると共に、その厚肉とした部分にボルト締結部を備える構成としてもよく、1個の軸受で、ラジアル荷重と両方向のアキシアル荷重、モーメント荷重を受けられ、ハウジングに固定される薄肉軸受であれば適宜適用可能である。
【0018】
【発明の効果】
本発明は、上述の通りの構成としたため次の作用効果を奏する。
軸受を固定するハウジング軸方向スペースを軸受幅以内に抑えられることが可能であり、軸方向に余分なスペースや固定用の円盤など不要となる為、固定が大幅に簡素化できる。また、従来の軸受を挟むことによる変形の心配もなく軸受機能を損なう事もない。
【図面の簡単な説明】
【図1】本発明の第一実施形態を示す概略断面図。
【図2】図1に組み込まれる転動体の一実施形態を示す概略斜視図。
【図3】転動体の他の実施形態を示す概略斜視図。
【図4】転動体の他の実施形態を示す概略斜視図。
【図5】保持器への転動体組込み方向を一部省略して示す概略平面図。
【図6】本発明の第二実施形態を示す概略断面図。
【図7】本発明の第三実施形態を示す概略断面図。
【図8】従来技術を示す概略断面図。
【図9】従来技術の他の形態を示す概略図。
【符号の説明】
A:薄肉軸受
1:外輪 1d:厚肉とした部分
2:内輪 2d:厚肉とした部分
5:転動体 6:保持器
9:ボルト締結部 B:ハウジング
[0001]
BACKGROUND OF THE INVENTION
The present invention can receive a radial load, an axial load in both directions, and a moment load with a single bearing, and can be used for general industrial machines, transport robots, medical devices, food machines, semiconductor / liquid crystal manufacturing apparatuses, DD motors (direct drive motors). ), And thin-walled bearings incorporated in optical and optoelectronic devices.
[0002]
[Prior art]
In recent years, miniaturization and space-saving of industrial machines and medical equipment have been achieved, and the structure of machines and so on has become complicated, and a large number of parts have been incorporated into the internal space. Reduction is inevitable, and rolling bearings are required to be thinner (narrower).
Therefore, as a thin bearing capable of meeting such a requirement, a cross roller bearing, a cross taper bearing, a 4-point contact ball bearing, a 3-point contact ball bearing, or the like is known. Cross roller bearings, cross taper bearings, 4-point contact ball bearings or 3-point contact ball bearings can receive radial load, axial load in both directions, and moment load with a single bearing, eliminating the space in the axial direction. is there.
As a method of fixing these bearings to the housing, as shown in FIG. 8, a bearing (four-point contact ball bearing) 100 is sandwiched between the housing 200 from the axial direction, or as shown in FIG. Alternatively, a flange 300 having a stepped portion in the radial direction is provided on the inner ring 201), and a bolt hole (screw hole) 301 of the flange 300 is fixed to a housing via a bolt (screw). 1). Incidentally, FIG. 9 (a) shows an outer ring split type, and FIG. 9 (b) shows an inner ring split type.
[0003]
[Patent Document 1]
JP 2002-130289 A (FIGS. 15 and 16)
[0004]
[Problems to be solved by the invention]
However, in the case of fixing the bearing 100 to the housing 200, the type in which the bearing is sandwiched between the housings shown in FIG. 8 requires the disk 400 for fixing the bearing. Therefore, there is a problem that the axial space is substantially longer than the bearing width. is there.
Further, in the type in which a flange 300 having a stepped portion is provided on the outer diameter surface (or inner ring inner diameter surface) of the outer ring 101 as shown in FIG. 9 and bolted to the housing through the bolt hole 301 of the flange. While the axial space by fixing is suppressed, the flange portion is projected on the outer ring outer diameter surface (inner ring inner diameter surface), which causes an increase in processing costs during mass production.
The present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide a thin bearing capable of reducing the cost while suppressing the axial space when the housing is fixed. It is.
[0005]
[Means for Solving the Problems]
The technical means made by the present invention in order to achieve the above-described object is that in a thin-walled bearing fixed to a housing that can receive a radial load, an axial load in both directions, and a moment load with a single bearing. Both the bearing rings are formed thick in the radial direction, and the thickened bearing ring is provided with an axial bolt fastening portion, and the axial width of the bearing ring including the bolt fastening portion is: It is formed in a thick shape with the same width over the entire radial direction.
Thin-walled bearings have a plurality of rolling elements built in between a pair of raceways via a cage, and each of the raceways has a raceway groove having a raceway surface that is larger in diameter than the radius of the rolling element. At least one raceway is composed of two raceways, and each rolling element has a rolling contact surface with an outer diameter that also has a curvature in the axial direction and is arranged in a cross shape on the circumference. The outer surface of the moving object is always in contact with the raceway surface of one raceway and the raceway surface of the other raceway, which are in contact with each other at a total of two points. A configuration is adopted in which a groove smaller than the raceway groove is provided in a part of one or both raceway grooves.
Moreover, it can also be set as a cross roller bearing, a cross taper bearing, a 4-point contact ball bearing, or a 3-point contact ball bearing.
In each of the pockets for holding the rolling elements, the cage has only one axial pocket surface, the opposing surface sides are open, and the axial pocket surfaces are assembled in a crossing manner in the circumferential direction. Corresponding to the direction of the inclination of the rolling elements, they are arranged in an inclined manner on the opposite sides in the axial direction. The rolling element has at least one plane portion, and the plane portion is in contact with the axial pocket surface of the cage.
The raceway on the side fixed to the housing is thickened in the radial direction, and the bolt fastening part for fixing to the housing is provided in the thickened part, so that the radial ring is thickened. The part has the same effect as the flange part.
Therefore, since the flange is not specially provided with a step portion as in the prior art, the processing can be performed regardless of the presence or absence of the flange portion even in the processing at the time of mass production.
Furthermore, by such technical means, the rolling element can be inserted even when the inner and outer ring cages are assembled. And since the inserted rolling element provided the small groove | channel in the raceway groove | channel, even if a raceway ring is an integral type, a rolling element can rotate within the groove space formed between the raceway rings. Further, since one side of the cage pocket in the axial direction is open, it is possible to incorporate one side at a time with the inner and outer rings and the cage assembled. Further, by adopting such a cage configuration, the axial guide surface of the rolling element is reduced from two conventional surfaces to one surface, so that the force for restraining the rolling element is reduced. As a result, the end face friction generated between the cage and the rolling element is greatly reduced (about half), so that the torque is also reduced.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the rolling bearing of the present invention will be described with reference to the drawings. In addition, this embodiment is only one embodiment of the present invention, and is not construed as being limited thereto. The design can be changed within the scope of the present invention.
The rolling bearing A of the present invention is a thin-walled bearing that can receive a radial load, an axial load in both directions, and a moment load with a single bearing, and is fixed to the housing B. For example, a general industrial machine, a transfer robot, and a medical device Incorporated in food machinery, semiconductor / liquid crystal manufacturing equipment, DD motor (direct drive motor), optical and optoelectronic devices.
As shown in FIG. 1, the rolling bearing A has an inner diameter of an integrally formed bearing race ring (bearing outer ring) 1 and an outer surface of a bearing race ring (bearing inner ring) 2 that is also integrally molded. A plurality of rolling elements 5, 5... Are incorporated into a raceway groove 3 formed in a diameter via a cage 6.
[0007]
"First embodiment"
In this embodiment, the outer ring 1 has the same width and is formed thicker in the radial direction (outer diameter direction) than the standard dimension (thickness is about three times thicker than the standard dimension), and the inner ring 2 has the standard dimension. ing. A bolt fastening portion 9 for fixing to the housing B is provided in a portion (also referred to as a flange portion) 1 d that is thicker than the standard dimension portion in the outer ring 1.
The bolt fastening portion 9 is provided with several bolt holes 10 (both the bolt insertion hole 10a and the head embedding hole 10b, which are the same hereinafter) penetrating in the axial direction on the circumference. The bolt 13 may be set in advance, but may be prepared as a separate body. In this embodiment, the bolt 13 is fastened from the side surface of the outer ring 1 toward the housing B, and a corresponding bolt receiving screw hole 14 is provided on the mounting surface of the housing B. It is also possible to adopt a form in which the bolt 13 is fastened from the housing B side toward the bolt hole 10 side of the outer ring 1. The same radial direction C. A plurality of bolt fastening portions 9 are provided on D (Pitch Circle Diameter), but the present invention is not limited to this, and P. D. different in the radial direction. C. It is also possible to provide a plurality on D (Pitch Circle Diameter). In the present embodiment, a space (head embedding hole 10b) for burying the head portion 13a of the bolt 13 is provided on the side surface of the outer ring 1, and consideration is given so that the head portion 13a of the bolt 13 does not protrude from the side surface of the outer ring 1. Has been.
Although the bearing A of this embodiment is being fixed to the housing B via the bolt fastening part 9, the axial space is suppressed by the bearing width.
In this embodiment, each bolt hole 10 is divided on the circumference and provided by milling or the like. Naturally, the head embedding hole 10b is processed as a circumferential continuous groove by cutting, and only the bolt passage hole 10a is processed. May be formed separately.
The shape of the bolt fastening portion 9 is not particularly limited to the form shown in the drawings, and the bolt used may be any size, including those in the category of screws.
In the figure, reference numeral 8 denotes a sealing plate (contact seal). However, the sealing plate can be appropriately provided with a sealing plate (contact or non-contact seal or shield) having a desired configuration as required. In addition, although the sealing board was provided in both right and left in this embodiment, the form provided only in any one may be sufficient, or it is also possible to employ | adopt the open | release type which does not provide a sealing board according to embodiment.
Various configurations such as bearing dimensions, contact angles, rolling element diameters, and materials are not limited. According to the present embodiment, since both the outer ring 1 and the inner ring 2 as the bearing rings are integrally formed, the manufacturing cost and assembly of the bearing rings including the related parts such as the fastening bolts for assembling the outer ring and the inner ring. Management and assembly costs can be greatly reduced.
[0008]
The raceway groove 3 is formed by raceway surfaces 1a, 2a and 2b having a radius larger than the radius of the rolling element 5.
Further, it is sufficient that the raceway groove of at least one of the races is composed of two raceway surfaces, and it is appropriately selected within the scope of the present invention.
The shape of each raceway surface 1a, 2a, 2b is arbitrary as long as it has an appropriate shape for rolling of the rolling element 5, such as a cross-sectional arch shape or a V shape, or a curved shape or a straight shape. Any of them may be used, but is not particularly limited. For example, in the present embodiment, a so-called gothic arch formed by both arcs having circular centers arranged in a cross is applied.
A groove (rotating groove for incorporating rolling elements) 4 smaller than the raceway groove 3 is formed in a part of the raceway groove 3 of the inner ring 2.
In the present embodiment, a groove having a semicircular small diameter (for example, the groove radius is about 0.8 mm) having a desired depth continuous in the circumferential direction is formed at the center of the raceway groove 3 including the inner ring raceway surfaces 2a and 2b. The groove 4 is mainly used as a rotation groove when the rolling element 5 is assembled. That is, a rolling member 5 can be rotated in the space of the raceway groove 3 by inserting a connecting portion (intersection) 5f between a rolling contact surface 5a and a flat surface portion 5b of the rolling member 5 described later into the groove 4 at the time of assembly. To do. The groove 4 can also have a lubricant retained in the groove 4 and has a function of retaining a lubricant (oil, grease, etc.) provided in the raceway surface, and has a stable bearing life. I can expect.
The shape, radial depth, and axial width of the groove 4 are preferably set to a minimum size so that the raceway surface can be made as large as possible, but the rolling contact surface 5a and the flat surface portion 5b of the rolling element 5 As long as the connecting portion 5f can be partially inserted into the groove 4, it is within the scope of the present invention, and is not particularly limited to the illustrated form, and can be appropriately modified within the scope of the present invention. For example, a chamfering degree of about 45 degrees may be used.
In consideration of the circumferential arrangement interval of the rolling elements 5, the groove 4 may be provided intermittently in the circumferential direction with a desired length, and is within the scope of the present invention.
Note that the edge of the connecting portion 2c with the raceway surfaces 2a and 2b may be eliminated to form an R shape.
In the present embodiment, the groove 4 is provided only in the raceway groove 3 of the inner ring 2 as described above, but may be provided in the raceway groove 3 of the outer ring 1 or may be provided in both the outer ring 1 and the inner ring 2. .
[0009]
The rolling element 5 has an arbitrary shape in which the outer diameter 5a serving as a rolling contact surface has a curvature in the axial direction and has a radius smaller than the radius of each of the raceway surfaces 1a, 2a and 2b. The adjacent rolling elements 5 are alternately arranged in an intersecting manner, and the outer diameter 5a of each rolling element 5 is always in two-point contact with the raceway surface 1a of the outer ring 1 and the raceway surface 2a or 2b of the inner ring 2. Yes.
For example, as disclosed in the embodiment in an enlarged manner in FIG. 2, the rolling element 5 has a vertically cut ball (a top and bottom portion of a ball) having a pair of plane portions (relative surfaces in the present embodiment) 5 b and 5 b. In which the plane portions 5b and 5b are formed (the same applies hereinafter)), and the respective rolling elements 5 so that the rotation center axes 5c perpendicular to the plane portions 5b and 5b intersect each other. , 5... Are incorporated, and the outer diameter 5 a of each rolling element 5 is always in contact at two points on the raceway surface 1 a of the outer ring 1 and the raceway surface 2 a or 2 b of the inner ring 2. In the figure, 5f is a connecting portion (intersection) between the rolling contact surface 5a of the rolling element 5 and the flat portion 5b.
The upper and lower cutting widths of the rolling element 5 are not particularly limited, and the upper and lower cutting ratios may be equal or not equal, and can be arbitrarily selected within the scope of the present invention. That is, in this embodiment, although the plane parts 5b and 5b were made symmetrical, the plane parts 5b and 5b of the rolling element 5 may be symmetric or asymmetric, and both are within the scope of the present invention.
Further, in the case of the rolling elements (upper and lower cut balls) 5 having the asymmetrical plane portions 5b and 5d shown in FIG. 3, the rolling elements are arranged such that the large end plane portion 5d faces the inner ring 2 of the bearing. The rotation of 5 becomes more stable, and a lower torque can be realized.
The overall shape of the rolling element 5, the presence / absence of the relative surfaces 5b and 5b, the magnitude of the axial curvature of the outer diameter 5a, etc. are not limited to the above specific shape, and are arbitrarily set within the scope of the present invention. It can be changed. That is, for example, instead of the flat portions 5b and 5b, non-parallel surfaces (planar portions) may be provided and have a rotation center axis perpendicular to the both surfaces (not shown).
Moreover, the one side cut-out ball | bowl which cut (cut | disconnected) the one side of the ball | bowl shown in FIG. 4 and provided the one plane part (cut surface) 5e may be used.
Further, the flat portion 5b (5d, 5e) has an arbitrary shape, and can be changed and selected as appropriate in an optimal shape and size.
[0010]
Incorporation of the rolling elements 5, 5... Is such that the rotation center axes 5c, 5c perpendicular to the flat portions 5b, 5b, 5b, 5b in the adjacent rolling elements 5, 5 alternately intersect. The intersecting state may be either orthogonal or non-orthogonal.
Further, the method of arranging the rolling elements 5 in an intersecting manner is not particularly limited as long as the number is the same in both cases, and the rolling elements 5 may not be arranged alternately in the circumferential direction. That is, the rolling elements 5 may intersect one by one, and even if they do not intersect every one, if the number is the same in both cases, it intersects by two or two by one, two by one, etc. Any of them may be crossed and are within the scope of the present invention.
[0011]
The movements of the rolling elements 5 and 5 are guided by the cage 6 (see FIG. 5).
The cage 6 is formed in an annular shape in which a plurality of pockets (holding portions) 7 for holding and guiding the rolling elements 5 are provided in the circumferential direction, and each pocket 7 has two pockets facing each other in the circumferential direction. It has surfaces (circumferential guide surfaces) 7a, 7a, and has only one pocket surface (axial guide surface that stabilizes the rolling element posture in the axial direction) 7b in the axial direction, and the opposite surface side is open (open surface). The pocket surfaces 7b in the axial direction are arranged in an inclined manner on the opposite sides in the axial direction, corresponding to the direction of the inclination of the rolling elements 5 incorporated in a crossing manner. The shape of the pocket surface 7a in the circumferential direction is not particularly limited and is arbitrary.
The axial pocket surface 7b is formed in an inclined shape from the outer diameter 6a to the inner diameter 6b so as to guide the flat portion 5b (the surface facing the lower left in FIG. 1) on the outer ring facing side of the rolling element 5. Therefore, the inner diameter side opening 7d is formed wider than the outer diameter side opening 7c of the pocket 7.
The inclination angle of the pocket surface 7b is arbitrary and is determined in consideration of the angle of the rolling elements 5 arranged in the raceway groove 3 space.
In the present embodiment, the same number of rolling elements 5 as the number of rolling elements 5 on the circumference are provided at equal intervals, and the axial pocket surfaces 7b of the pockets 7 adjacent in the circumferential direction are alternately arranged in the circumferential direction. As described above, the adjacent rolling elements 5 and 5 can be alternately assembled so that the rotation center axes 5c and 5c perpendicular to the flat surfaces 5b and 5b and 5b and 5b intersect each other.
In the present embodiment, the same number of pockets 7 as the number of rolling elements 5 on the circumference are arranged at equal intervals and alternately in an intersecting manner. Are the same, it is possible to intersect two by two or two by one, one by two, etc., and this is within the scope of the present invention. Therefore, it is set as the holder | retainer which provided the pocket structure according to the system by which the rolling element 5 mentioned above was arranged in the circumferential direction.
The guide method of the cage 6 is not particularly limited, and may be an inner ring guide, an outer ring guide, or a rolling element guide. Further, in the present embodiment, the cage 6 has an integral configuration, but is not particularly limited, and may be formed from several parts.
According to the cage 6 of the present embodiment, after assembling together with the outer ring 1 and the inner ring 2, the rolling elements 5 can be sequentially inserted into the bearing raceway groove 3 space from the open side of the cage 6.
[0012]
Although the present embodiment is a preload product, it goes without saying that it may be a clearance product.
The state in which the preload is applied between the rolling elements and the raceway is not particularly limited, that is, the preload may or may not be applied in the manufacturing stage, and both are within the scope of the present invention.
[0013]
As the material of the bearing rings 1 and 2 and the rolling elements 5 of these bearings, bearing steel is usually used. However, in order to improve the corrosion resistance and heat resistance according to the use environment, stainless steel or ceramic is appropriately selected. The
As the material of the cage 6, a machined cage, a press cage, a resin cage or the like is appropriately selected. For example, a metal such as brass or iron, for example, polyamide 66 (nylon 66), polyphenylene sulfide (PPS) ) And the like are selected within the scope of the present invention.
[0014]
According to this embodiment, the outer diameter 5a of the rolling element 5 makes point contact with the raceway surface 1a of the outer ring 1 and the raceway surface 2a of the inner ring 2 respectively (contact points are indicated by 11 and 11), and the adjacent rolling elements. 5 contacts the raceway surface 1a of the outer ring 1 and the raceway surface 2b of the inner ring 2 respectively (contact points are indicated by 12 and 12). Since the contact angles of the rolling elements 5 and 5 intersect alternately, it is possible to receive a radial load, an axial load in both directions, and a moment load with a single bearing.
[0015]
"Second embodiment"
FIG. 6 shows a second embodiment of the present invention, in which the outer ring 1 has a standard dimension, and the inner ring 2 has the same width and is thicker in the radial direction (inner diameter direction) than the standard dimension (approximately three times thicker than the standard dimension). Meat). The inner ring 2 is provided with a bolt fastening portion 9 for fixing to the housing B in a portion (this portion is also referred to as a flange portion) 2d that is thicker than the standard dimension portion.
In the present embodiment, a part of the thick part 2d is made to have a shape that escapes at an arbitrary depth (escape part 2e), which reduces the burden on the entire processing of the thick part 2d. is there.
Moreover, in this embodiment, the form which fastens the volt | bolt 13 from the housing B side toward the bolt hole 10 side of the inner ring | wheel 2 is employ | adopted, and the space (head burial) where the head 13a of the volt | bolt 13 is buried in the housing B side. A hole 10b) is provided.
Since other configurations are the same as those of the first embodiment, description thereof is omitted.
[0016]
"Third embodiment"
FIG. 7 shows a third embodiment, in which both the outer ring 1 and the inner ring 2 are formed with the same width and thicker than the standard dimensions, and the thickened portions 1d and 2d are fixed to the housing B. The bolt fastening portion 9 is provided. In the figure, 1e is a shape in which a part of the thickened portion 1d escapes at an arbitrary depth (the same as the escape portion 2e of the second embodiment).
This embodiment is an embodiment using a cross roller bearing (outer ring division type). In the cross roller bearing, a plurality of rollers 5 ′ are incorporated between a pair of race rings (outer ring 1 and inner ring 2), and the rollers 5 ′ are arranged on the circumference in a crossing manner.
The cross roller bearing of the present embodiment is of a type in which the outer ring 1 is divided into two parts, but of course, a type in which the inner ring 2 is divided into two parts or an integral type in which neither the outer inner rings 1 and 2 are divided. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
In the present embodiment, the cross roller bearing uses cylindrical rollers, but a cross taper bearing using conical rollers can also be used. In the case of a cross taper bearing using conical rollers as described above, the large-diameter end side faces the outer ring raceway surface and is arranged in a cross shape on the circumference. When the cross taper bearing is used in this manner, the slip between the rolling element and the race can be reduced, so that the bearing torque can be made smaller than that of the cross roller bearing, the heat generation can be suppressed, and the operating rotational speed range can be widened.
The cross roller bearing / cross taper bearing portion described in the present embodiment (a configuration other than the thick portion and the bolt fastening portion) can adopt a general configuration, and is not limited to the illustrated example.
[0017]
In addition to the above embodiment, a thin-walled bearing such as a 4-point contact ball bearing or a 3-point contact ball bearing is used, and the radial thickness of either or both of the outer ring 1 and the inner ring 2 is thick. In addition, it may be configured to have a bolt fastening portion in the thickened portion as long as it is a thin-walled bearing that can receive a radial load, an axial load in both directions, and a moment load and is fixed to the housing with a single bearing. Applicable as appropriate.
[0018]
【The invention's effect】
Since this invention is set as the above-mentioned structure, there exists the following effect.
The housing axial space for fixing the bearing can be suppressed within the bearing width, and an extra space in the axial direction and a fixing disk are not required, so that fixing can be greatly simplified. Further, there is no fear of deformation caused by sandwiching a conventional bearing, and the bearing function is not impaired.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing a first embodiment of the present invention.
FIG. 2 is a schematic perspective view showing an embodiment of a rolling element incorporated in FIG.
FIG. 3 is a schematic perspective view showing another embodiment of the rolling element.
FIG. 4 is a schematic perspective view showing another embodiment of the rolling element.
FIG. 5 is a schematic plan view showing a rolling element assembling direction in a cage, partially omitted.
FIG. 6 is a schematic sectional view showing a second embodiment of the present invention.
FIG. 7 is a schematic sectional view showing a third embodiment of the present invention.
FIG. 8 is a schematic sectional view showing a conventional technique.
FIG. 9 is a schematic view showing another embodiment of the prior art.
[Explanation of symbols]
A: Thin bearing 1: Outer ring 1d: Thick part 2: Inner ring 2d: Thick part 5: Rolling element 6: Cage 9: Bolt fastening part B: Housing

Claims (5)

1個の軸受で、ラジアル荷重と両方向のアキシアル荷重、モーメント荷重を受けられ、ハウジングに固定される薄肉軸受において、
いずれか一方又は双方の軌道輪を半径方向に厚肉状に形成すると共に、
厚肉状に形成した軌道輪には軸方向のボルト締結部を備え、該ボルト締結部を含めた軌道輪の軸方向幅は、半径方向全域にわたって同幅で厚肉状に形成されていることを特徴とする転がり軸受。
Thin bearings that can receive radial load, axial load in both directions, and moment load with one bearing and are fixed to the housing.
While either or both of the race rings are formed thick in the radial direction,
The bearing ring formed in a thick shape is provided with an axial bolt fastening portion, and the axial width of the bearing ring including the bolt fastening portion is formed thick with the same width over the entire radial direction. Rolling bearing characterized by
薄肉軸受は、一対の軌道輪間に保持器を介して複数の転動体が組み込まれ、
上記各軌道輪は転動体の半径より大径状の軌道面からなる軌道溝を夫々有し、
その中に少なくとも一つの軌道輪は二つの軌道面からなり、
上記各転動体は転がり接触面となる外径が軸方向にも曲率を持ち、円周上に夫々交差状に配されると共に、
各転動体の外径が常に相対する一方の軌道輪の軌道面と他方の軌道輪の軌道面にて夫々一点ずつ合計二点で接触しているものであって、
一対の軌道輪は夫々一体型で形成され、
該軌道輪のいずれか一方若しくは双方の軌道溝の一部には、該軌道溝よりも小さな溝を設けたことを特徴とする請求項1に記載の転がり軸受。
A thin-walled bearing has a plurality of rolling elements incorporated between a pair of bearing rings via a cage,
Each of the race rings has raceway grooves each having a raceway surface having a diameter larger than the radius of the rolling element,
Among them, at least one raceway consists of two raceways,
Each of the rolling elements has an outer diameter that becomes a rolling contact surface in the axial direction, and is arranged in a crossing manner on the circumference,
The outer diameter of each rolling element is always in contact with the raceway surface of one raceway ring and the raceway surface of the other raceway raceway, and the contact surface at a total of two points, one point each,
Each of the pair of raceways is formed as an integral type,
2. The rolling bearing according to claim 1, wherein a groove smaller than the raceway groove is provided in a part of one or both raceway grooves of the raceway ring.
薄肉軸受は、クロスローラ軸受、クロステーパ軸受、4点接触玉軸受若しくは3点接触玉軸受であることを特徴とする請求項1に記載の転がり軸受。The rolling bearing according to claim 1, wherein the thin bearing is a cross roller bearing, a cross taper bearing, a four-point contact ball bearing, or a three-point contact ball bearing. 保持器は、転動体を保持する夫々のポケットにおいて、軸方向ポケット面は一面のみ有し、相対する面側は開放されており、該軸方向のポケット面は、周方向互いに交差状に組み込まれる転動体の傾斜の向きに対応して、互いに軸方向の反対側に傾斜状に配列されていることを特徴とする請求項2に記載の転がり軸受。In each pocket that holds the rolling elements, the cage has only one axial pocket surface, the opposing surface sides are open, and the axial pocket surfaces are incorporated in a cross shape with each other in the circumferential direction. The rolling bearing according to claim 2, wherein the rolling bearings are arranged in an inclined manner on opposite sides in the axial direction corresponding to the direction of inclination of the rolling elements. 転動体は、少なくとも一平面部を有し、該平面部が保持器の軸方向ポケット面と接することを特徴とする請求項4に記載の転がり軸受。The rolling bearing according to claim 4, wherein the rolling element has at least one flat surface portion, and the flat surface portion is in contact with the axial pocket surface of the cage.
JP2003111764A 2003-04-16 2003-04-16 Rolling bearing Pending JP2004316777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003111764A JP2004316777A (en) 2003-04-16 2003-04-16 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003111764A JP2004316777A (en) 2003-04-16 2003-04-16 Rolling bearing

Publications (1)

Publication Number Publication Date
JP2004316777A true JP2004316777A (en) 2004-11-11

Family

ID=33472218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003111764A Pending JP2004316777A (en) 2003-04-16 2003-04-16 Rolling bearing

Country Status (1)

Country Link
JP (1) JP2004316777A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243662A (en) * 2008-03-31 2009-10-22 Thk Co Ltd Rotary bearing, and rotary table device
JP2010014130A (en) * 2008-06-30 2010-01-21 Thk Co Ltd Bearing
JP2011109755A (en) * 2009-11-13 2011-06-02 Sinfonia Technology Co Ltd Direct drive motor and rotary machine using the same
JP2012193859A (en) * 2012-07-10 2012-10-11 Thk Co Ltd Bearing
CN111795066A (en) * 2020-08-28 2020-10-20 苏州市华菁智能科技有限公司 Robot bearing with inner ring stop block

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243662A (en) * 2008-03-31 2009-10-22 Thk Co Ltd Rotary bearing, and rotary table device
JP2010014130A (en) * 2008-06-30 2010-01-21 Thk Co Ltd Bearing
JP2011109755A (en) * 2009-11-13 2011-06-02 Sinfonia Technology Co Ltd Direct drive motor and rotary machine using the same
JP2012193859A (en) * 2012-07-10 2012-10-11 Thk Co Ltd Bearing
CN111795066A (en) * 2020-08-28 2020-10-20 苏州市华菁智能科技有限公司 Robot bearing with inner ring stop block

Similar Documents

Publication Publication Date Title
EP1355072B1 (en) Radial ball bearing retainer
WO2003060340A1 (en) Rolling bearing
JP4288903B2 (en) Ball screw device
JP2008133894A (en) Ball bearing retainer
JP2004316777A (en) Rolling bearing
JP7186580B2 (en) slewing bearing
JP2005214330A (en) Four-point contact ball bearing and manufacturing method thereof
JPH0830494B2 (en) Thin cross roller slewing ring bearing
JP2004011799A (en) Antifriction bearing
KR20210124434A (en) Double Row Thrust Ball Bearing
JP2004190734A (en) Rolling bearing
JP2021011918A (en) Cross roller bearing
JPH0410421Y2 (en)
JP2004324733A (en) Cross roller bearing
JP2004314203A (en) Machine tool table device and rolling bearing for machine tool table device
JP2005061508A (en) Angular contact ball bearing
JP2004308753A (en) Rolling bearing
JP2003148480A (en) Rolling bearing
JP2001050264A (en) Rolling bearing
JPH0642095Y2 (en) Ball bearing
WO2024105953A1 (en) Radial thrust bearing
JP2004060866A (en) Bearing for direct drive motor
WO2023037675A1 (en) Bearing
JP2005320983A (en) Rolling bearing
JP2004092799A (en) Linear guide device