JP2004316591A - Hermetic compressor - Google Patents

Hermetic compressor Download PDF

Info

Publication number
JP2004316591A
JP2004316591A JP2003113868A JP2003113868A JP2004316591A JP 2004316591 A JP2004316591 A JP 2004316591A JP 2003113868 A JP2003113868 A JP 2003113868A JP 2003113868 A JP2003113868 A JP 2003113868A JP 2004316591 A JP2004316591 A JP 2004316591A
Authority
JP
Japan
Prior art keywords
compression mechanism
discharge chamber
oil
hermetic compressor
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003113868A
Other languages
Japanese (ja)
Other versions
JP4127108B2 (en
Inventor
Takashi Morimoto
敬 森本
Hiroyuki Kono
博之 河野
Hirofumi Yoshida
裕文 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003113868A priority Critical patent/JP4127108B2/en
Priority to PCT/JP2004/005286 priority patent/WO2004092587A1/en
Publication of JP2004316591A publication Critical patent/JP2004316591A/en
Application granted granted Critical
Publication of JP4127108B2 publication Critical patent/JP4127108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/065Noise dampening volumes, e.g. muffler chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/068Silencing the silencing means being arranged inside the pump housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hermetic compressor which is made compact and for high speed operation and can enhance a gas-liquid separation effect of oil and refrigerant gas, as the gas-liquid separation effect of oil and refrigerant gas in the hermetic compressor which is progressing in downsizing and high speeding reaches a limit. <P>SOLUTION: A first discharge chamber formed of a muffler and a second discharge chamber formed of a hermetic vessel, a hermetic container upper cover and a compression mechanism section are provided on an upper portion of a compression mechanism. A ratio VR of volume V1 of the first discharge chamber to volume V2 of the second discharge chamber is set to be not more than about 0.35. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、業務用または家庭用、あるいは乗り物用の冷凍空調、あるいは冷蔵庫などに用いられる密閉型圧縮機に関するものである。
【0002】
【従来の技術】
従来、この種の密閉型圧縮機は、本実施の形態に係る密閉型のスクロール圧縮機を示す図1を参照して、密閉容器1内に圧縮機構2、この圧縮機構2の下方に設けた圧縮機構2を駆動するための電動機3と、この電動機3の回転力を圧縮機構2に伝達するためのクランク軸4とを備え、密閉容器1内の下部に設けたオイル溜め20のオイル6をクランク軸4を通じてクランク軸4の軸受部66や圧縮機構2の摺動部に供給する給油機構7とを備えている。
【0003】
これによって、オイル6は給油機構7によって重力に逆らって軸受部66や圧縮機構2の摺動部に強制給油されて、円滑な動作を確保しながら、圧縮機構2で圧縮した冷媒ガスを密閉容器1内の電動機3の部分を通して電動機3を冷却した後密閉容器1外に吐出するようにしており、前記軸受部66や圧縮機構2の摺動部に供給した後のオイルが供給圧や重力によって下方に移動しオイル溜め20に自然回収されるようにすることができる。しかし、冷媒ガスは常時オイルと接触してこれを随伴させ、密閉容器から冷凍サイクルに供給される際にオイルを持ち込んでしまい、冷凍サイクル中での配管圧力損失や凝縮器や蒸発器などの熱交換器での熱交換効率の低下をもたらす問題がある。
【0004】
これを解消するのに従来、圧縮機構から密閉容器内に吐出した冷媒ガスが電動機を通ってそれを冷却しながら密閉容器外に吐出されるまでの冷媒ガスの通路を、オイルの衝突分離や遠心分離が繰り返し生じるように設計して、密閉容器外に吐出される冷媒ガスにオイルが随伴しないように工夫したり、圧縮機構2から吐出されるガスが、圧縮機構上部の第1吐出室31、この第1吐出室31から圧縮機構2の下部に連通させる圧縮機構連通路32、この圧縮機構連通路32から回転子上部室33まで続くように通路カバーで囲われた連絡路34、回転子上部室33と回転子下部室35を連通させるように回転子3bに設けた回転子通路36、回転子下部室35、を順次経て電動機下に至り、さらに固定子3aの下部と上部とを連通させるように固定子3aまたは固定子3aと密閉容器1との間に設けられた固定子通路37を通って連絡路34外まわりの固定子上部室38に抜けた後、密閉容器1の固定子上部室38の位置以上の部分に設けられた外部吐出口39を通って密閉容器1外に吐出されるようにする容器内ガス通路を設けたりしている。(例えば特許文献1参照)
【0005】
【特許文献1】
特開2001−280252号公報
【0006】
【発明が解決しようとする課題】
上記従来の技術においてはオイルと冷媒ガスの気液分離効果は改善されるものの、小型の密閉型圧縮機での高速運転化が進むにつれて、気液分離効果が十分に行なえきれず、圧縮機の機外にオイルが吐出され、冷凍サイクルでの効率低下を招いている。
【0007】
上記従来の技術のように、密閉容器内の圧縮機構より下方に配置されている電動機周りや圧縮機構周りの冷媒ガス通路等の配置だけでは、小型高速化が進む密閉型圧縮機でのオイルと冷媒ガスの気液分離効果は限界に達しているという課題を有していた。
【0008】
本発明はこのような従来の課題を解決するものであり、小型で高速運転化されてもオイルと冷媒ガスの気液分離効果を高めることができ、圧縮機からのオイル吐出量を大幅に低減できる密閉型圧縮機を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決するために本発明は、密閉型圧縮機において、圧縮機構と、この圧縮機構の下方に設けた圧縮機構を駆動するための電動機と、この電動機の回転力を圧縮機構に伝達するためのクランク軸と、密閉容器内の下部に設けたオイル溜めのオイルをクランク軸を通じてクランク軸の軸受部や圧縮機構摺動部に供給する給油機構とを備えて、圧縮機構から吐出されるガスが、圧縮機構の上部吐出口を覆うように設けられたマフラーにより形成された第1吐出室、この第1吐出室と圧縮機構の下部を連通させる圧縮機構連通路、この圧縮機構連通路から電動機上部まで続く通路カバーで囲われた連絡路、電動機に設けられた下降通路、を順次経て電動機下に至り、さらに電動機に設けられた上昇通路、圧縮機構または圧縮機構と密閉容器との間に設けられた圧縮機構上昇通路を経て、密閉容器と密閉容器上ふたと圧縮機構とで形成される第2吐出室に至り、圧縮機構の位置以上の部分に設けられた外部吐出口を通って密閉容器外に吐出されるように冷媒通路を設けた密閉型圧縮機において、第1吐出室の容積V1と第2吐出室の容積V2の比率VRすなわちV1をV2で除した値を0.35以下(更に好ましくは0.3以下)に設定したものである。
【0010】
上記構成において、小型の密閉型圧縮機が高速運転された場合においても、オイルと冷媒ガスの気液分離効果を高めることができ、圧縮機からのオイル吐出量を大幅に低減することができる。
【0011】
【発明の実施の形態】
以下本発明の実施の形態について図面を参照して説明する。
【0012】
(実施の形態1)
図1は、本発明の実施の形態1に係わる縦型でスクロール式の圧縮機構を内蔵した冷凍サイクル用の密閉型圧縮機の場合の一例であり、圧縮対象は冷媒ガスである。しかし、本発明はこれに限られることはなく、各種の圧縮機構をそれを駆動する電動機とともに密閉容器内に内蔵したガス一般を対象として圧縮し、圧縮機構が密閉容器内を上下に仕切り、その下部に電動機を収容する密閉型圧縮機であればその全般に適用して有効であり、本発明の範疇に属する。
【0013】
図1に示すように、密閉容器1内に溶接や焼き嵌めなどして固定したクランク軸4の主軸受部材11と、この主軸受部材11上にボルト止めした固定スクロール12との間に、固定スクロール12と噛み合う旋回スクロール13を挟み込んでスクロール式の圧縮機構2を構成し、旋回スクロール13と主軸受部材11との間に旋回スクロール13の自転を防止して円軌道運動するように案内するオルダムリングなどによる自転規制機構14を設けて、クランク軸4の上端にある主軸部4aにて旋回スクロール13を偏心駆動することにより旋回スクロール13を円軌道運動させ、これにより固定スクロール12と旋回スクロール13との間に形成している圧縮室15が外周側から中央部に移動しながら小さくなるのを利用して、密閉容器1外に通じた吸入パイプ16および固定スクロール12の外周部の吸入口17から冷媒ガスを吸入して圧縮していき所定圧以上になった冷媒ガスは固定スクロール12の中央部の吐出口18からリード弁19を押し開いて密閉容器1内に吐出させることを繰り返す。
【0014】
クランク軸4の下端は密閉容器1の下端部のオイル溜め20に達して、密閉容器1内に溶接や焼き嵌めして固定された副軸受部材21により軸受され、安定に回転することができる。電動機3は主軸受部材11と副軸受部材21との間に位置して、密閉容器1に溶接や焼き嵌めなどして固定された固定子3aと、クランク軸4の途中の外まわりに一体に結合された回転子3bとで構成され、回転子3bの上下端面の外周部分にはピン22により止め付けられたバランスウエイト23、24が設けられ、これにより回転子3bおよびクランク軸4が安定して回転し、旋回スクロール13を安定して円軌道運動させることができる。
【0015】
給油機構7はクランク軸4の下端で駆動されるポンプ25によってオイル溜め20内のオイル6をクランク軸4を通縦しているオイル供給穴26を通じて圧縮機構2の各部の軸受部66や圧縮機構2の各摺動部に供給する。供給後のオイル6は供給圧や重力によって逃げ場を求めるようにして軸受部66を通じ主軸受部材11の下に流出して滴下し、最終的にオイル溜め20に回収される。
【0016】
しかしながら実際には、圧縮機構2から吐出される破線矢印で示す冷媒ガス27には圧縮機構2内で接触したオイル6を随伴させていたり、主軸受部材11の下に滴下してくる供給後のオイル6を飛散させて随伴させたりしていて、従来これを十分に分離できず密閉容器1外に吐出する冷媒ガスとともにオイルも吐出されてしまう問題があり、それを防止するために以下のような構成をとっている。
【0017】
圧縮機構2から吐出される冷媒ガス27が、圧縮機構2の上部の第1吐出室31、この第1吐出室31と圧縮機構2の下部を連通させる圧縮機構連通路32、この圧縮機構連通路32から回転子上部室33に続く連絡路34、回転子上部室33と回転子下部室35を連通させるように回転子3bに設けた回転子通路36、回転子下部室35、を順次経て電動機3の下に至り、さらに固定子3aの下部と上部とを連通させるように固定子3aまたは固定子3aと密閉容器1との間に設けられた固定子通路37を通って前記連絡路34の外まわりの固定子上部室38に抜けた後、密閉容器1の固定子上部室38の位置以上の部分に設けられた外部吐出口39を通って密閉容器1外に吐出されるようにする容器内ガス通路Aを設けてある。
【0018】
このような容器内ガス通路Aの第1吐出室31と、圧縮機構連通路32とは、圧縮機構2およびその軸受部66の外回りに位置して、圧縮機構2から吐出される冷媒ガス27を一括して圧縮機構2の下部の連絡路34に吐出させる。続いて連絡路34は吐出されてきた冷媒ガス27を回転子上部室33に導く。冷媒ガス27の一部は、回転子3bおよびバランスウエイト23の回転による影響で緩く旋回する状態で回転子通路36内に進入させて下方に通りぬけ、オイル6を分離する分離板に強く衝突して、随伴しているオイル6を効果的に分離し、またオイル6のミストを液滴化しかつ成長させて、分離板と回転子3bの下端との間の空間の円周上の少なくとも一部が側方へ開口していることにより遠心分離作用が働き、オイル6の分離効果を高めている。また、残りの冷媒ガス27は、固定子連通路72に導かれ、オイル6が液滴化しかつ成長させて気液分離を効果的に行なっている。
【0019】
以上のようにしてオイル6を分離された冷媒ガス27は、固定子通路37を通って軸受部66まわりにある連絡路34のさらに外まわりの固定子上部室38に達して、圧縮機構2に設けられた圧縮機構上昇通路43を経て、第2吐出室42に至る。
【0020】
圧縮機構上昇通路43は圧縮機構2内あるいは圧縮機構2と密閉容器1との間に設けられているために通路面積としては大きく構成することが難しい。このような理由から第2吐出室42に噴出される冷媒ガス27の流速を低下させることは容易ではない。密閉型圧縮機が高速運転され冷媒ガス27の循環量が増加した場合には、流速としては毎秒数メートル以上に達することも起こり得る。圧縮機構上昇通路43から噴出した冷媒ガス27は相当の流速をもって密閉容器上ふた76に衝突し、その方向を強制的に変更される。冷媒ガス27の循環量が比較的少ない場合には前述の気液分離機構が有効に作用し、第2吐出室42に至る冷媒ガス27中のオイル6は非常に少なくなっているが、冷媒ガス27の循環量が増加している場合にはオイル6の残存率も高くなっている。このような冷媒ガス27が相当の流速をもって密閉容器上蓋76に衝突した場合、冷媒ガス27中のオイル6が容易に細分化、噴霧化して外部吐出口39から密閉容器1外に吐出されてしまう。
【0021】
圧縮機構2上部の第2吐出室42内に第1吐出室31が構成されている場合、第2吐出室42は複雑な形状に構成されている場合が多く、相当の流速をもって密閉容器上蓋76に衝突した冷媒ガス27は、複雑な形状の第2吐出室42内で旋廻運動や回転運動を繰り返した後、外部吐出口39から密閉容器1外へ吐出されている。
【0022】
このような場合、複雑な形状をもつ第2吐出室42の容積と第1吐出室31の容積との間にはオイル6の気液分離効果に関係する何らかの相関が存在することが考えられる。しかしながら、両者の相関は複雑なものではなく比較的単純な相関であることが実験的に明らかになった。
【0023】
図2は本発明の実施の形態1に係わる上記相関として、密閉型圧縮機のオイル6の気液分離効果であるオイル吐出量を第1吐出室31と第2吐出室42の比率で表したものである。
【0024】
ここでVRは、V1を圧縮機構部上面とマフラーにより形成される第1吐出室の空間が占める容積、V2を密閉容器と密閉容器上ふたとマフラーを含む圧縮機構部とで形成される第2吐出室の空間が占める容積としたときに、V1をV2で除した値である。
【0025】
図2中の曲線▲1▼および曲線▲2▼は第1吐出室の配置違いを示したものであるが、いずれの場合もVR=0.35をおおよそ境としてオイル吐出量が急激に増加していることがわかる。したがって、圧縮機構2上部の第2吐出室42内に第1吐出室31が構成されている場合、VRを0.35以下(更に好ましくは0.3以下)に設定することが好適であり、VRがオイル6の気液分離効果に大きな影響を与えることを表したものである。
【0026】
上記関係を保つことにより、外部吐出口39から密閉容器1外に吐出される冷媒ガス27中のオイル6は最小限に抑えることができ、オイル6が十分に分離された状態で密閉容器1外に吐出して冷凍サイクルに供給することができる。
【0027】
(実施の形態2)
本発明の実施の形態1に係わる構成を説明した図2を用いて本発明の実施の形態2についても説明するとともに、図1のB−B断面図である図3を用いて本発明の実施の形態2に係わる密閉型圧縮機の説明を行なう。
【0028】
図2中の曲線▲1▼および曲線▲2▼は第1吐出室31の配置違いでのオイル吐出量の変化を示したものであるが、曲線▲1▼が第1吐出室31が圧縮機構2のおおよそ中心に配置された場合のオイル吐出量変化、曲線▲2▼が第1吐出室31が圧縮機構2から偏心して配置された場合のオイル吐出量変化を示したものである。図2中の曲線▲2▼は図3に示すように、第1吐出室31が圧縮機構2のおおよそ中心から偏心して配置された構成を示したものであり、図3中には図示していないが外部吐出口39は圧縮機構2のおおよそ中心に配置されている。
【0029】
図2から明らかように、オイル吐出量は第1吐出室31が圧縮機構2から偏心して配置された場合の方が少なく抑えられることがわかる。圧縮機構上昇通路43から噴出された冷媒ガス27は相当の流速をもって密閉容器上蓋76に衝突し、冷媒ガス27中のオイル6が細分化、噴霧化した状態で第2吐出室42内で対流していると考えられ、この冷媒ガス27の対流の変化が第1吐出室31の配置により変化している結果である。
【0030】
冷媒ガス27は最終的には外部吐出口39から密閉容器1外へ吐出されるが、第1吐出室31が圧縮機構2のおおよそ中心に配置された場合は、冷媒ガス27の第2吐出室42内での対流時間が少なくなり、第1吐出室31を構成するマフラー77に誘導されるように外部吐出口39から吐出される。結果、細分化、噴霧化したオイル6の気液分離効果が低下し、オイル吐出量が増加している。
【0031】
逆に、第1吐出室31が圧縮機構2から偏心して配置された場合は、マフラー77に誘導されることも少なくなり、第2吐出室42内での対流時間が長くなり、オイル6の気液分離効果が高まっている。このように、圧縮機構2上部の第2吐出室42内に第1吐出室31が構成されている場合、第1吐出室31は圧縮機構2から偏心して配置することが好適である。
【0032】
この実施の形態によれば、第1吐出室31と第2吐出室42の容積の比率を最適に設定した密閉型圧縮機においても、さらにオイル6の気液分離効果を高めることが可能となる。
【0033】
(実施の形態3)
本発明の実施の形態3に係わる図1のB−B断面図である図4、および本発明の実施の形態3に係わる関係として、密閉型圧縮機のオイル6の気液分離効果であるオイル吐出量を第1吐出室31と圧縮機上昇通路43の位置違いで表した図5を用いて実施の形態3に係わる密閉型圧縮機について説明する。
【0034】
図4に示すように、圧縮機構上昇通路43は圧縮機構2の外周部に構成されているが、圧縮機構連通路32、吸入パイプ16等の配置の関係から圧縮機構2に均等に構成されることは難しく、図示するようにある方向に偏った構成になることが多い。第1吐出室31は圧縮機構上昇通路43と出来るだけ距離を離す構成として、図示するように圧縮機構上昇通路43におおよそ対向する位置に設けられている。
【0035】
図5中の曲線▲3▼および曲線▲4▼は第1吐出室31の配置違いでのオイル吐出量の変化を示したものであるが、曲線▲3▼が第1吐出室31が圧縮機構上昇通路43に近い位置に構成された場合のオイル吐出量変化、曲線▲4▼が第1吐出室31が圧縮機構上昇通路43から出来るだけ距離を離す構成として、図4に図示したように圧縮機構上昇通路43におおよそ対向する位置に構成した場合のオイル吐出量変化を示したものである。曲線▲3▼の配置の一例としては、前述の図3に示す第1吐出室31の構成等がある。
【0036】
図5から明らかように、オイル吐出量は第1吐出室31が圧縮機構上昇通路43から出来るだけ距離を離す構成とした場合の方が少なく抑えられることがわかる。前述のように、圧縮機構上昇通路43から噴出された冷媒ガス27は相当の流速をもって密閉容器上蓋76に衝突し、冷媒ガス27中のオイル6が細分化、噴霧化した状態で第2吐出室42内で対流していると考えられる。この冷媒ガス27の対流量や対流せずに直接外部吐出口39から密閉容器1外へ吐出される冷媒ガス27の量が、第1吐出室31と圧縮機構上昇通路43との配置の関係で変化している結果である。
【0037】
冷媒ガス27は最終的には外部吐出口39から密閉容器1外へ吐出されるが、第1吐出室31が圧縮機構上昇通路43に比較的近い位置に構成された場合、第2吐出室42内で対流せずに直接外部吐出口39から密閉容器1外へ吐出される冷媒ガス27の量が増加している。これは第1吐出室31を構成するマフラー77が、圧縮機構上昇通路43から噴出した冷媒ガス27を直接外部吐出口39へ誘導させる効果をもっているためである。逆に第1吐出室31を圧縮機構上昇通路43から遠ざけると、この効果が低下する。
【0038】
このようにオイル6の気液分離効果を高めるためには、マフラー77を圧縮機構上昇通路43から出来るだけ距離を離す構成、言いかえれば圧縮機構上昇通路43におおよそ対向する位置に配置することが好適である。
【0039】
この実施の形態によれば、第1吐出室31と第2吐出室42の容積の比率を最適に設定した密閉型圧縮機においても、圧縮機構上昇通路43から噴出した冷媒ガス27が直接外部吐出口39から吐出されることを抑制し、さらにオイル6の気液分離効果を高めることが可能となる。
【0040】
(実施の形態4)
図6は本発明の実施の形態4に係わる密閉型圧縮機の上面図であり、図1の上面図に相当するものである。圧縮機構2、圧縮機構上昇通路43、マフラー77、第1吐出室31、圧縮機構連通路32等は破線で示している。この図6を用いて、本発明の実施の形態4に係わる密閉型圧縮機について説明する。
【0041】
図6に示すように、圧縮機構上昇通路43は圧縮機構2に対してある方向に偏って構成されており(前述)、外部吐出口39は圧縮機構上昇通路43からできるだけ距離をおく位置、すなわち圧縮機構上昇通路43におおよそ対向する位置に構成されている。この構成は、圧縮機構上昇通路43から噴出された冷媒ガス27が外部吐出口39へと誘導されるのを極力抑制できる構成である。したがって、第1吐出室31の配置構成の自由度が低い場合であっても、外部吐出口39の配置を変更することにより、オイル6の気液分離効果を最大限に発揮することが可能となる。
【0042】
この実施の形態によれば、第1吐出室31と第2吐出室42の容積の比率を最適に設定した密閉型圧縮機において、第1吐出室31の配置構成の自由度が低い場合であっても、圧縮機構上昇通路43から噴出した冷媒ガス27が直接外部吐出口39から吐出されることを抑制し、さらにオイル6の気液分離効果を高めることが可能となる。
【0043】
(実施の形態5)
図7は本発明の実施の形態5に係わる密閉型圧縮機の要部拡大縦断面図であり、この図7を用いて、本発明の実施の形態5に係わる密閉型圧縮機の説明を行なう。
【0044】
図示するように、密閉容器上ふた76に配置された外部吐出口39の直下には第1吐出室31が構成されていない。この構成の場合には、第1吐出室31を構成するマフラー77の一部と外部吐出口39の空間距離は最大限に設定することが可能となる。外部吐出口39の直下に第1吐出室31が構成された場合で、前記空間距離を大きくするには、密閉容器上ふた76を第1吐出室31から離す必要があり密閉容器1の全高が大きくなる欠点があるが、本実施の形態によればその問題は少ない。前記空間距離が大きくなった場合には、結果的に実施の形態1で前述のVRを小さく設定することと同様の効果が得られ、圧縮機構2周辺の設計余裕度が低い場合においても、比較的自由度が高い外部吐出口39の配置を考慮することにより、オイル6の気液分離効果を高めることが可能となる。
【0045】
この実施の形態によれば、圧縮機構2周辺の設計余裕度が低い場合においても、VRを小さく設定したことと同様の効果が得られ、オイル6の気液分離効果を高めた密閉型圧縮機の提供が可能となる。
【0046】
【発明の効果】
上記から明らかなように、本発明の密閉型圧縮機によれば、第1吐出室の容積V1と第2吐出室の容積V2の比率VRを0.35以下(更に好ましくは0.3以下)に設定されたものであり、この構成によれば、小型の密閉型圧縮機が高速運転された場合においても、オイルと冷媒ガスの気液分離効果を高めることができ、密閉型圧縮機からのオイル吐出量を大幅に低減することができる。
【0047】
また、本発明は、外部吐出口が圧縮機構部のおおよそ中心に配置された密閉型圧縮機において、第1吐出室が圧縮機構部の中心から偏心して配置されたものであり、この構成によれば、第1吐出室の容積V1と第2吐出室の容積V2の比率VRを最適に設定した密閉型圧縮機においても、さらにオイルの気液分離効果を高めることができる。
【0048】
また、本発明は、第1吐出室が圧縮機構上昇通路とおおよそ対向する位置に配置されたものであり、この構成によれば、第1吐出室の容積V1と第2吐出室の容積V2の比率VRを最適に設定した密閉型圧縮機においても、圧縮機構上昇通路から噴出した冷媒ガスが直接外部吐出口から吐出されることを抑制し、さらにオイルの気液分離効果を高めることができる。
【0049】
また、本発明は、外部吐出口が圧縮機構上昇通路とおおよそ対向する位置に配置されたものであり、この構成によれば、第1吐出室の配置構成の自由度が低い場合であっても、圧縮機構上昇通路から噴出した冷媒ガスが直接外部吐出口から吐出されることを抑制し、さらにオイルの気液分離効果を高めることができる。
【0050】
また、本発明は、第1吐出室が外部吐出口の直下に構成されないものとしたもので、この構成によれば、圧縮機構周辺の設計余裕度が低い場合においても、VRを小さく設定したことと同様の効果が得られ、オイルの気液分離効果を高めた密閉型圧縮機の提供ができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態を示す密閉型圧縮機の縦断面図
【図2】本発明の実施の形態1に係わるオイル吐出量の関係を示した図
【図3】本発明の実施の形態2に係わる密閉型圧縮機の断面図
【図4】本発明の実施の形態3に係わる密閉型圧縮機の断面図
【図5】本発明の実施の形態3に係わるオイル吐出量の関係を示した図
【図6】本発明の実施の形態4に係わる密閉型圧縮機の断面図
【図7】本発明の実施の形態5に係わる密閉型圧縮機の要部縦断面図
【符号の説明】
1 密閉容器
2 圧縮機構
3 電動機
3a 固定子
3b 回転子
4 クランク軸
6 オイル
7 給油機構
17 吸入口
18 吐出口
20 オイル溜め
23 バランスウエイト
24 バランスウエイト
27 冷媒ガス
31 容器内吐出室
32 圧縮機構連通路
33 回転子上部室
34 連絡路
35 回転子下部室
36 回転子通路
37 固定子通路
38 固定子上部室
39 外部吐出口
42 圧縮機構上部室
43 圧縮機構上昇連通路
51 通路カバー
61 分離板
72 固定子連通路
76 密閉容器上ふた
77 マフラー
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hermetic compressor used for refrigeration and air conditioning for business use, home use, or vehicles, or a refrigerator.
[0002]
[Prior art]
Conventionally, this type of hermetic compressor is provided with a compression mechanism 2 in a closed vessel 1 and below the compression mechanism 2 with reference to FIG. 1 showing a hermetic scroll compressor according to the present embodiment. An electric motor 3 for driving the compression mechanism 2 and a crankshaft 4 for transmitting the rotational force of the electric motor 3 to the compression mechanism 2 are provided. An oil supply mechanism 7 for supplying the bearing 66 of the crankshaft 4 and the sliding part of the compression mechanism 2 through the crankshaft 4 is provided.
[0003]
As a result, the oil 6 is forcibly supplied to the bearing 66 and the sliding portion of the compression mechanism 2 against the gravity by the oil supply mechanism 7, and the refrigerant gas compressed by the compression mechanism 2 is sealed in a sealed container while ensuring smooth operation. After cooling the motor 3 through a portion of the motor 3 in the motor 1, the motor 3 is discharged to the outside of the closed container 1. The oil supplied to the bearing 66 and the sliding portion of the compression mechanism 2 is supplied by supply pressure or gravity. It can be moved downward and naturally collected in the oil reservoir 20. However, the refrigerant gas always comes in contact with the oil and accompanies it. When the refrigerant gas is supplied from the sealed container to the refrigeration cycle, the oil is brought into the refrigeration cycle. There is a problem that the heat exchange efficiency in the exchanger is reduced.
[0004]
Conventionally, to solve this problem, the refrigerant gas discharged from the compression mechanism into the closed container through the electric motor is cooled while passing through the passage of the refrigerant gas until it is discharged out of the closed container. It is designed so that separation occurs repeatedly, so that oil does not accompany the refrigerant gas discharged to the outside of the closed container, or the gas discharged from the compression mechanism 2 is supplied to the first discharge chamber 31 above the compression mechanism. A compression mechanism communication passage 32 communicating from the first discharge chamber 31 to a lower portion of the compression mechanism 2; a communication passage 34 surrounded by a passage cover so as to continue from the compression mechanism communication passage 32 to the rotor upper chamber 33; The rotor 33 passes through a rotor passage 36 provided in the rotor 3b and the rotor lower chamber 35 in order so that the chamber 33 communicates with the rotor lower chamber 35. The lower part of the stator 3a communicates with the lower part of the motor. Like After passing through the stator 3a or the stator passage 37 provided between the stator 3a and the closed casing 1 to the stator upper chamber 38 around the communication path 34, the stator upper chamber 38 of the closed casing 1 A gas passage in the container is provided such that the gas is discharged to the outside of the closed container 1 through an external discharge port 39 provided at a position higher than the position. (For example, see Patent Document 1)
[0005]
[Patent Document 1]
JP 2001-280252 A
[Problems to be solved by the invention]
In the above prior art, although the gas-liquid separation effect of oil and refrigerant gas is improved, as the high-speed operation of a small hermetic compressor advances, the gas-liquid separation effect cannot be sufficiently achieved, and Oil is discharged outside the machine, causing a decrease in efficiency in the refrigeration cycle.
[0007]
As in the prior art described above, only the arrangement of the refrigerant gas passage around the electric motor and around the compression mechanism disposed below the compression mechanism in the hermetic container, the oil and the oil in the hermetic compressor whose miniaturization and speeding up are increasing. There has been a problem that the gas-liquid separation effect of the refrigerant gas has reached its limit.
[0008]
The present invention solves such a conventional problem, and can enhance the gas-liquid separation effect of oil and refrigerant gas even when the operation is small and high-speed operation, and greatly reduces the amount of oil discharged from the compressor. An object of the present invention is to provide a hermetic compressor that can be used.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention provides a hermetic compressor, in which a compression mechanism, an electric motor for driving a compression mechanism provided below the compression mechanism, and transmitting a rotational force of the electric motor to the compression mechanism. Gas supplied from a compression mechanism including a crankshaft for supplying oil to an oil reservoir provided at a lower portion in the closed container to a bearing portion and a compression mechanism sliding portion of the crankshaft through the crankshaft. A first discharge chamber formed by a muffler provided so as to cover an upper discharge port of the compression mechanism, a compression mechanism communication path for communicating the first discharge chamber with a lower part of the compression mechanism, and an electric motor from the compression mechanism communication path. A communication path surrounded by a passage cover extending to the upper part, a descending passage provided in the electric motor, and sequentially down to the motor, an ascending passage provided in the electric motor, a compression mechanism or a compression mechanism and a sealed container. Through the compression mechanism ascending passage provided between them, it reaches the second discharge chamber formed by the closed container, the closed container upper lid, and the compression mechanism, and the external discharge port provided at a position higher than the position of the compression mechanism. In a hermetic compressor provided with a refrigerant passage so as to be discharged through the closed vessel through the outside, the ratio VR of the volume V1 of the first discharge chamber and the volume V2 of the second discharge chamber, that is, the value obtained by dividing V1 by V2 is 0. .35 or less (more preferably 0.3 or less).
[0010]
In the above configuration, even when the small hermetic compressor is operated at high speed, the effect of separating gas and liquid from oil and refrigerant gas can be enhanced, and the amount of oil discharged from the compressor can be significantly reduced.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012]
(Embodiment 1)
FIG. 1 shows an example of a hermetic compressor for a refrigeration cycle incorporating a vertical scroll-type compression mechanism according to Embodiment 1 of the present invention, in which a compression target is a refrigerant gas. However, the present invention is not limited to this, and compresses various compression mechanisms with the electric motor driving the same generally for the gas built in the closed vessel, the compression mechanism partitions the inside of the closed vessel up and down, and the Any hermetic compressor that accommodates an electric motor in the lower portion is effective when applied to the whole and is included in the category of the present invention.
[0013]
As shown in FIG. 1, a fixed bearing 12 is fixed between a main bearing member 11 of a crankshaft 4 fixed by welding or shrink fitting in a closed container 1 and a fixed scroll 12 bolted on the main bearing member 11. An ordham that constitutes a scroll-type compression mechanism 2 by sandwiching a orbiting scroll 13 that meshes with the scroll 12, prevents rotation of the orbiting scroll 13 between the orbiting scroll 13 and the main bearing member 11, and guides the orbiting scroll to move in a circular orbit. A rotation restricting mechanism 14 such as a ring is provided, and the orbiting scroll 13 is eccentrically driven by the main shaft portion 4a at the upper end of the crankshaft 4 to make the orbiting scroll 13 move in a circular orbit. Utilizing the fact that the compression chamber 15 formed between the outside and the outside becomes smaller while moving from the outer peripheral side to the central part. The refrigerant gas is sucked in from the suction pipe 16 and the suction port 17 in the outer peripheral portion of the fixed scroll 12 and compressed, and the refrigerant gas having a predetermined pressure or more is discharged from the discharge port 18 in the central portion of the fixed scroll 12 to the reed valve 19. Is repeatedly opened and pushed into the closed container 1.
[0014]
The lower end of the crankshaft 4 reaches the oil reservoir 20 at the lower end of the closed casing 1 and is supported by a sub-bearing member 21 fixed by welding or shrink fitting in the closed casing 1 so that it can rotate stably. The electric motor 3 is located between the main bearing member 11 and the sub-bearing member 21, and is integrally connected to a stator 3 a fixed to the closed casing 1 by welding, shrink fitting, or the like around the middle of the crankshaft 4. The balance weights 23 and 24 fixed by pins 22 are provided on the outer peripheral portions of the upper and lower end surfaces of the rotor 3b, whereby the rotor 3b and the crankshaft 4 are stabilized. By rotating, the orbiting scroll 13 can be stably moved in a circular orbit.
[0015]
The oil supply mechanism 7 supplies the oil 6 in the oil sump 20 to the bearing 66 of each part of the compression mechanism 2 and the compression mechanism by the pump 25 driven by the lower end of the crankshaft 4 through the oil supply hole 26 passing through the crankshaft 4. 2 to each sliding part. The supplied oil 6 flows out below the main bearing member 11 through the bearing 66 so as to find an escape by the supply pressure or gravity, and is finally collected in the oil reservoir 20.
[0016]
However, actually, the refrigerant gas 27 shown by the dashed arrow discharged from the compression mechanism 2 is accompanied by the oil 6 in contact with the inside of the compression mechanism 2, or after the supply after dropping below the main bearing member 11. Conventionally, the oil 6 is scattered and accompanied, and the oil 6 is conventionally unable to be separated sufficiently, and there is a problem that the oil is discharged together with the refrigerant gas discharged to the outside of the closed container 1. It has a simple configuration.
[0017]
A refrigerant gas 27 discharged from the compression mechanism 2 receives a first discharge chamber 31 at an upper part of the compression mechanism 2, a compression mechanism communication path 32 for communicating the first discharge chamber 31 with a lower part of the compression mechanism 2, and a compression mechanism communication path. An electric motor passes through a communication path 34 extending from 32 to the rotor upper chamber 33, a rotor passage 36 provided in the rotor 3 b so as to communicate the rotor upper chamber 33 with the rotor lower chamber 35, and a rotor lower chamber 35. 3 and through the stator passage 37 provided between the stator 3a or the stator 3a and the closed vessel 1 so as to communicate the lower part and the upper part of the stator 3a. After passing through the outer stator upper chamber 38 around the outside, the inside of the container is configured to be discharged to the outside of the closed vessel 1 through an external discharge port 39 provided at a position higher than the position of the stator upper chamber 38 of the closed vessel 1. A gas passage A is provided.
[0018]
The first discharge chamber 31 of the gas passage A in the container and the communication path 32 of the compression mechanism are located around the compression mechanism 2 and the bearing 66 thereof, and serve to store the refrigerant gas 27 discharged from the compression mechanism 2. The liquid is discharged to the communication path 34 below the compression mechanism 2 in a lump. Subsequently, the communication path 34 guides the discharged refrigerant gas 27 to the rotor upper chamber 33. A part of the refrigerant gas 27 enters the rotor passage 36 in a state where it is swirled loosely under the influence of the rotation of the rotor 3 b and the balance weight 23, passes through downward, and collides strongly with the separation plate for separating the oil 6. And effectively separates the entrained oil 6 and drips and grows the mist of the oil 6 so that at least a portion of the circumference of the space between the separation plate and the lower end of the rotor 3b Are opened to the side, a centrifugal separation action works, and the effect of separating the oil 6 is enhanced. Further, the remaining refrigerant gas 27 is guided to the stator communication passage 72, and the oil 6 is formed into droplets and grows, thereby effectively performing gas-liquid separation.
[0019]
The refrigerant gas 27 from which the oil 6 has been separated as described above passes through the stator passage 37, reaches the stator upper chamber 38 further around the communication path 34 around the bearing 66, and is provided in the compression mechanism 2. Through the compression mechanism ascending passage 43 thus obtained, it reaches the second discharge chamber 42.
[0020]
Since the compression mechanism ascending passage 43 is provided in the compression mechanism 2 or between the compression mechanism 2 and the closed casing 1, it is difficult to configure the passage area as a large passage area. For this reason, it is not easy to reduce the flow velocity of the refrigerant gas 27 ejected to the second discharge chamber 42. When the hermetic compressor is operated at high speed and the circulation amount of the refrigerant gas 27 is increased, the flow velocity may reach several meters per second or more. The refrigerant gas 27 ejected from the compression mechanism ascending passage 43 collides with the upper lid 76 at a considerable flow rate, and its direction is forcibly changed. When the circulation amount of the refrigerant gas 27 is relatively small, the above-described gas-liquid separation mechanism works effectively, and the oil 6 in the refrigerant gas 27 reaching the second discharge chamber 42 is very small. When the circulation amount of the oil 27 increases, the residual ratio of the oil 6 also increases. When the refrigerant gas 27 collides with the closed container upper lid 76 at a considerable flow rate, the oil 6 in the refrigerant gas 27 is easily divided and atomized, and is discharged from the external discharge port 39 to the outside of the closed container 1. .
[0021]
When the first discharge chamber 31 is formed in the second discharge chamber 42 above the compression mechanism 2, the second discharge chamber 42 is often formed in a complicated shape, and the closed container upper cover 76 has a considerable flow rate. The refrigerant gas 27 that has collided with the airtight container 1 repeats a swirling motion and a rotating motion in the second discharge chamber 42 having a complicated shape, and is then discharged from the external discharge port 39 to the outside of the closed container 1.
[0022]
In such a case, there may be some correlation between the volume of the second discharge chamber 42 having a complicated shape and the volume of the first discharge chamber 31 related to the gas-liquid separation effect of the oil 6. However, it has been experimentally revealed that the correlation between the two is not a complicated one but a relatively simple correlation.
[0023]
FIG. 2 shows, as the above-mentioned correlation according to Embodiment 1 of the present invention, an oil discharge amount which is a gas-liquid separation effect of the oil 6 of the hermetic compressor by a ratio between the first discharge chamber 31 and the second discharge chamber 42. Things.
[0024]
Here, VR is the volume occupied by the space of the first discharge chamber formed by the upper surface of the compression mechanism and the muffler, and V2 is the second volume formed by the closed container, the upper lid of the closed container, and the compression mechanism including the muffler. This is a value obtained by dividing V1 by V2, assuming the volume occupied by the space of the discharge chamber.
[0025]
Curves (1) and (2) in FIG. 2 show the difference in the arrangement of the first discharge chambers. In each case, the oil discharge amount sharply increases around VR = 0.35. You can see that it is. Therefore, when the first discharge chamber 31 is formed in the second discharge chamber 42 above the compression mechanism 2, it is preferable to set the VR to 0.35 or less (more preferably 0.3 or less), This shows that VR greatly affects the gas-liquid separation effect of the oil 6.
[0026]
By maintaining the above relationship, the amount of the oil 6 in the refrigerant gas 27 discharged from the external discharge port 39 to the outside of the closed container 1 can be minimized. And supplied to the refrigeration cycle.
[0027]
(Embodiment 2)
Embodiment 2 of the present invention will be described with reference to FIG. 2 illustrating the configuration according to Embodiment 1 of the present invention, and the embodiment of the present invention will be described with reference to FIG. The hermetic compressor according to the second embodiment will be described.
[0028]
Curves (1) and (2) in FIG. 2 show the change in the oil discharge amount due to the difference in the arrangement of the first discharge chambers 31. Curve (1) shows that the first discharge chamber 31 is the compression mechanism. 2 shows a change in the oil discharge amount when the first discharge chamber 31 is disposed eccentrically from the compression mechanism 2, and a curve (2) shows a change in the oil discharge amount when the first discharge chamber 31 is disposed eccentrically from the compression mechanism 2. Curve (2) in FIG. 2 shows a configuration in which the first discharge chamber 31 is arranged eccentrically from the center of the compression mechanism 2 as shown in FIG. 3, and is shown in FIG. Although not provided, the external discharge port 39 is disposed approximately at the center of the compression mechanism 2.
[0029]
As is apparent from FIG. 2, the oil discharge amount is suppressed to be smaller when the first discharge chamber 31 is arranged eccentrically from the compression mechanism 2. The refrigerant gas 27 ejected from the compression mechanism ascending passage 43 collides with the closed container upper lid 76 at a considerable flow rate, and convects in the second discharge chamber 42 in a state where the oil 6 in the refrigerant gas 27 is fragmented and atomized. It is considered that the change of the convection of the refrigerant gas 27 is changed by the arrangement of the first discharge chamber 31.
[0030]
Although the refrigerant gas 27 is finally discharged from the external discharge port 39 to the outside of the closed container 1, if the first discharge chamber 31 is arranged at approximately the center of the compression mechanism 2, the second discharge chamber of the refrigerant gas 27 The convection time in the inside 42 decreases, and the air is discharged from the external discharge port 39 so as to be guided by the muffler 77 constituting the first discharge chamber 31. As a result, the gas-liquid separation effect of the subdivided and atomized oil 6 is reduced, and the oil discharge amount is increased.
[0031]
Conversely, when the first discharge chamber 31 is arranged eccentrically from the compression mechanism 2, the convection time in the second discharge chamber 42 becomes longer due to less induction by the muffler 77, and the oil 6 The liquid separation effect is increasing. As described above, when the first discharge chamber 31 is formed in the second discharge chamber 42 above the compression mechanism 2, it is preferable that the first discharge chamber 31 be disposed eccentrically from the compression mechanism 2.
[0032]
According to this embodiment, even in a hermetic compressor in which the ratio of the volumes of the first discharge chamber 31 and the second discharge chamber 42 is optimally set, the gas-liquid separation effect of the oil 6 can be further enhanced. .
[0033]
(Embodiment 3)
FIG. 4 is a cross-sectional view taken along the line BB of FIG. 1 according to the third embodiment of the present invention, and an oil that is a gas-liquid separation effect of the oil 6 of the hermetic compressor as a relation according to the third embodiment of the present invention. The hermetic compressor according to the third embodiment will be described with reference to FIG.
[0034]
As shown in FIG. 4, the compression mechanism ascending passage 43 is formed on the outer peripheral portion of the compression mechanism 2, but is equally formed in the compression mechanism 2 due to the arrangement of the compression mechanism communication passage 32 and the suction pipe 16. This is difficult, and the configuration is often biased in a certain direction as shown. The first discharge chamber 31 is configured to be as far away from the compression mechanism ascending passage 43 as possible, and is provided at a position substantially opposite to the compression mechanism ascending passage 43 as illustrated.
[0035]
Curves {circle around (3)} and {circle over (4)} in FIG. 5 show the change in the oil discharge amount due to the difference in the arrangement of the first discharge chambers 31. Curve {circle around (3)} indicates that the first discharge chamber 31 is the compression mechanism. As shown in FIG. 4, the change in the oil discharge amount when configured at a position close to the ascending passage 43, and a curve (4) indicates that the first discharge chamber 31 is as far away from the compression mechanism assuring passage 43 as possible. The figure shows a change in the oil discharge amount when the system is configured at a position substantially opposite to the mechanism ascending passage 43. An example of the arrangement of the curve (3) is the configuration of the first discharge chamber 31 shown in FIG.
[0036]
As is apparent from FIG. 5, the oil discharge amount can be suppressed to be smaller when the first discharge chamber 31 is arranged as far as possible from the compression mechanism ascending passage 43. As described above, the refrigerant gas 27 ejected from the compression mechanism ascending passage 43 collides with the closed container upper lid 76 at a considerable flow rate, and the oil 6 in the refrigerant gas 27 is fragmented and atomized into the second discharge chamber. It is considered that there is convection in 42. The flow rate of the refrigerant gas 27 and the amount of the refrigerant gas 27 directly discharged from the external discharge port 39 to the outside of the closed container 1 without convection depend on the arrangement of the first discharge chamber 31 and the compression mechanism ascending passage 43. The result is changing.
[0037]
The refrigerant gas 27 is finally discharged from the external discharge port 39 to the outside of the closed container 1. However, when the first discharge chamber 31 is configured at a position relatively close to the compression mechanism ascending passage 43, the second discharge chamber 42 The amount of the refrigerant gas 27 discharged from the external discharge port 39 directly to the outside of the closed container 1 without convection inside increases. This is because the muffler 77 constituting the first discharge chamber 31 has an effect of directly guiding the refrigerant gas 27 ejected from the compression mechanism ascending passage 43 to the external discharge port 39. Conversely, if the first discharge chamber 31 is moved away from the compression mechanism ascending passage 43, this effect is reduced.
[0038]
In order to enhance the gas-liquid separation effect of the oil 6, the muffler 77 should be arranged as far as possible from the compression mechanism ascending passage 43, in other words, it should be arranged at a position approximately opposite to the compression mechanism ascending passage 43. It is suitable.
[0039]
According to this embodiment, even in the hermetic compressor in which the ratio of the volumes of the first discharge chamber 31 and the second discharge chamber 42 is optimally set, the refrigerant gas 27 ejected from the compression mechanism ascending passage 43 is directly discharged to the outside. It is possible to suppress discharge from the outlet 39 and further enhance the gas-liquid separation effect of the oil 6.
[0040]
(Embodiment 4)
FIG. 6 is a top view of a hermetic compressor according to Embodiment 4 of the present invention and corresponds to the top view of FIG. The compression mechanism 2, the compression mechanism rising passage 43, the muffler 77, the first discharge chamber 31, the compression mechanism communication passage 32, and the like are indicated by broken lines. Referring to FIG. 6, a hermetic compressor according to a fourth embodiment of the present invention will be described.
[0041]
As shown in FIG. 6, the compression mechanism ascending passage 43 is configured to be deviated in a certain direction with respect to the compression mechanism 2 (described above), and the external discharge port 39 is positioned as far as possible from the compression mechanism ascending passage 43, The compression mechanism is formed at a position substantially opposite to the ascending passage 43. This configuration can minimize the refrigerant gas 27 ejected from the compression mechanism ascending passage 43 from being guided to the external discharge port 39. Therefore, even if the degree of freedom of the arrangement of the first discharge chamber 31 is low, it is possible to maximize the gas-liquid separation effect of the oil 6 by changing the arrangement of the external discharge ports 39. Become.
[0042]
According to this embodiment, in the hermetic compressor in which the ratio of the volumes of the first discharge chamber 31 and the second discharge chamber 42 is optimally set, the degree of freedom in the arrangement of the first discharge chamber 31 is low. However, it is possible to suppress the refrigerant gas 27 ejected from the compression mechanism ascending passage 43 from being directly discharged from the external discharge port 39, and to further enhance the gas-liquid separation effect of the oil 6.
[0043]
(Embodiment 5)
FIG. 7 is an enlarged vertical sectional view of a main part of a hermetic compressor according to a fifth embodiment of the present invention. The hermetic compressor according to the fifth embodiment of the present invention will be described with reference to FIG. .
[0044]
As shown in the figure, the first discharge chamber 31 is not configured immediately below the external discharge port 39 arranged on the upper lid 76 of the closed container. In the case of this configuration, the spatial distance between a part of the muffler 77 forming the first discharge chamber 31 and the external discharge port 39 can be set to the maximum. In the case where the first discharge chamber 31 is configured immediately below the external discharge port 39, in order to increase the space distance, the closed container upper lid 76 needs to be separated from the first discharge chamber 31, and the total height of the closed container 1 is reduced. Although there is a disadvantage that it becomes large, the problem is small according to the present embodiment. When the space distance is increased, the same effect as that of setting the above-described VR to a small value in the first embodiment is obtained, and even when the design margin around the compression mechanism 2 is low, the comparison is made. The gas-liquid separation effect of the oil 6 can be enhanced by considering the arrangement of the external discharge port 39 having a high degree of freedom.
[0045]
According to this embodiment, even when the design margin around the compression mechanism 2 is low, the same effect as that of setting the VR small can be obtained, and the hermetic compressor in which the gas-liquid separation effect of the oil 6 is enhanced. Can be provided.
[0046]
【The invention's effect】
As is clear from the above, according to the hermetic compressor of the present invention, the ratio VR of the volume V1 of the first discharge chamber to the volume V2 of the second discharge chamber is 0.35 or less (more preferably 0.3 or less). According to this configuration, even when the small hermetic compressor is operated at a high speed, the gas-liquid separation effect of oil and refrigerant gas can be enhanced, and the The oil discharge amount can be significantly reduced.
[0047]
Further, according to the present invention, in the hermetic compressor in which the external discharge port is arranged approximately at the center of the compression mechanism, the first discharge chamber is arranged eccentrically from the center of the compression mechanism. For example, even in a hermetic compressor in which the ratio VR between the volume V1 of the first discharge chamber and the volume V2 of the second discharge chamber is optimally set, the gas-liquid separation effect of oil can be further enhanced.
[0048]
Further, according to the present invention, the first discharge chamber is disposed at a position substantially opposite to the compression mechanism ascending passage. According to this configuration, the volume V1 of the first discharge chamber and the volume V2 of the second discharge chamber are reduced. Even in the hermetic compressor in which the ratio VR is optimally set, it is possible to suppress the refrigerant gas ejected from the compression mechanism ascending passage from being directly discharged from the external discharge port, and to further enhance the gas-liquid separation effect of oil.
[0049]
Further, according to the present invention, the external discharge port is disposed at a position substantially facing the compression mechanism ascending passage, and according to this configuration, even when the degree of freedom of the configuration of the first discharge chamber is low. Further, it is possible to suppress the refrigerant gas ejected from the compression mechanism ascending passage from being directly discharged from the external discharge port, and to further enhance the gas-liquid separation effect of the oil.
[0050]
Further, in the present invention, the first discharge chamber is not configured immediately below the external discharge port. According to this configuration, even if the design margin around the compression mechanism is low, the VR is set small. The same effect as described above can be obtained, and it is possible to provide a hermetic compressor having an enhanced gas-liquid separation effect of oil.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a hermetic compressor showing a first embodiment of the present invention. FIG. 2 is a diagram showing a relationship between oil discharge amounts according to a first embodiment of the present invention. FIG. 4 is a sectional view of a hermetic compressor according to a second embodiment of the present invention. FIG. 4 is a sectional view of a hermetic compressor according to a third embodiment of the present invention. FIG. 5 is an oil discharge amount according to the third embodiment of the present invention. FIG. 6 is a cross-sectional view of a hermetic compressor according to a fourth embodiment of the present invention. FIG. 7 is a longitudinal sectional view of a main part of a hermetic compressor according to a fifth embodiment of the present invention. Explanation of code]
DESCRIPTION OF SYMBOLS 1 Closed container 2 Compression mechanism 3 Electric motor 3a Stator 3b Rotor 4 Crankshaft 6 Oil 7 Oil supply mechanism 17 Suction port 18 Discharge port 20 Oil reservoir 23 Balance weight 24 Balance weight 27 Refrigerant gas 31 Container discharge chamber 32 Compression mechanism communication path 33 Rotor upper chamber 34 Communication path 35 Rotor lower chamber 36 Rotor passage 37 Stator passage 38 Stator upper chamber 39 External discharge port 42 Compression mechanism upper chamber 43 Compression mechanism ascending communication passage 51 Passage cover 61 Separator plate 72 Stator Communication path 76 Sealed container lid 77 Muffler

Claims (5)

密閉容器内に圧縮機構と、この圧縮機構の下方に設けた圧縮機構を駆動するための電動機と、この電動機の回転力を圧縮機構に伝達するためのクランク軸と、密閉容器内の下部に設けたオイル溜めのオイルをクランク軸を通じてクランク軸の軸受部や圧縮機構摺動部に供給する給油機構とを備え、圧縮機構から吐出されるガスが、圧縮機構の上部吐出口を覆うように設けられたマフラーにより形成された第1吐出室、この第1吐出室と圧縮機構の下部を連通させる圧縮機構連通路、この圧縮機構連通路から電動機上部まで続く通路カバーで囲われた連絡路、電動機に設けられた下降通路、を順次経て電動機下に至り、さらに電動機に設けられた上昇通路、圧縮機構または圧縮機構と密閉容器との間に設けられた圧縮機構上昇通路を経て、密閉容器と密閉容器上ふたと圧縮機構とで形成される第2吐出室に至り、圧縮機構の位置以上の部分に設けられた外部吐出口を通って密閉容器外に吐出されるようにする密閉型圧縮機において、第1吐出室の容積V1と第2吐出室の容積V2の比率VRを0.35以下に設定したことを特徴とする密閉型圧縮機。A compression mechanism in a closed container, an electric motor for driving the compression mechanism provided below the compression mechanism, a crankshaft for transmitting the rotational force of the electric motor to the compression mechanism, and a lower portion in the closed container An oil supply mechanism for supplying the oil in the oil sump to the bearing portion of the crankshaft and the sliding portion of the compression mechanism through the crankshaft, and a gas discharged from the compression mechanism is provided so as to cover an upper discharge port of the compression mechanism. A first discharge chamber formed by a muffler, a compression mechanism communication path for communicating the first discharge chamber with a lower part of the compression mechanism, a communication path surrounded by a passage cover extending from the compression mechanism communication path to an upper part of the motor, and a motor. Through the descending passages provided to the electric motor, and further through the ascending passage provided in the electric motor, the compression mechanism ascending passage provided between the compression mechanism or the compression mechanism and the closed vessel, and hermetically closed. A closed type that reaches the second discharge chamber formed by the container, the upper lid of the closed container, and the compression mechanism, and is discharged to the outside of the closed container through an external discharge port provided at a position higher than the position of the compression mechanism. A hermetic compressor, wherein a ratio VR between a volume V1 of the first discharge chamber and a volume V2 of the second discharge chamber is set to 0.35 or less. 請求項1記載の密閉型圧縮機であって、外部吐出口が圧縮機構のおおよそ中心に配置され、第1吐出室が圧縮機構の中心から偏心して配置されたことを特徴とする密閉型圧縮機。2. The hermetic compressor according to claim 1, wherein the external discharge port is arranged approximately at the center of the compression mechanism, and the first discharge chamber is arranged eccentrically from the center of the compression mechanism. . 請求項1乃至2記載の密閉型圧縮機であって、第1吐出室が圧縮機構上昇通路と略対向する位置に配置されたことを特徴とする密閉型圧縮機。3. The hermetic compressor according to claim 1, wherein the first discharge chamber is disposed at a position substantially opposed to the compression mechanism ascending passage. 請求項1記載の密閉型圧縮機であって、外部吐出口が圧縮機構上昇通路とおおよそ対向する位置に配置されたことを特徴とする密閉型圧縮機。2. The hermetic compressor according to claim 1, wherein the external discharge port is arranged at a position substantially facing the compression mechanism ascending passage. 請求項1記載の密閉型圧縮機であって、第1吐出室が外部吐出口の直下に構成されないことを特徴とする密閉型圧縮機。The hermetic compressor according to claim 1, wherein the first discharge chamber is not configured immediately below the external discharge port.
JP2003113868A 2003-04-18 2003-04-18 Hermetic compressor Expired - Fee Related JP4127108B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003113868A JP4127108B2 (en) 2003-04-18 2003-04-18 Hermetic compressor
PCT/JP2004/005286 WO2004092587A1 (en) 2003-04-18 2004-04-14 Enclosed compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003113868A JP4127108B2 (en) 2003-04-18 2003-04-18 Hermetic compressor

Publications (2)

Publication Number Publication Date
JP2004316591A true JP2004316591A (en) 2004-11-11
JP4127108B2 JP4127108B2 (en) 2008-07-30

Family

ID=33296134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003113868A Expired - Fee Related JP4127108B2 (en) 2003-04-18 2003-04-18 Hermetic compressor

Country Status (2)

Country Link
JP (1) JP4127108B2 (en)
WO (1) WO2004092587A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1876358A1 (en) * 2006-07-03 2008-01-09 LG Electronics Inc. Scroll compressor with muffler
US7527484B2 (en) * 2006-07-06 2009-05-05 Lg Electronics Inc. Muffler of scroll compressor
JP2009180106A (en) * 2008-01-29 2009-08-13 Mitsubishi Heavy Ind Ltd Scroll compressor
WO2014067455A1 (en) * 2012-11-01 2014-05-08 艾默生环境优化技术(苏州)有限公司 Compressor
WO2014118855A1 (en) * 2013-01-30 2014-08-07 株式会社デンソー Compressor
EP2177768A4 (en) * 2007-08-17 2015-06-24 Mitsubishi Heavy Ind Ltd Multi-stage compressor
CN108779776A (en) * 2016-03-21 2018-11-09 艾默生环境优化技术有限公司 Compressor oil detaches and assemble method
CN110159536A (en) * 2019-06-10 2019-08-23 珠海格力节能环保制冷技术研究中心有限公司 Screw compressor, air conditioner and vehicle
WO2020166431A1 (en) * 2019-02-15 2020-08-20 パナソニックIpマネジメント株式会社 Compressor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140483A (en) * 1984-07-31 1986-02-26 Toshiba Corp Scroll type compressor
JP3391072B2 (en) * 1993-12-28 2003-03-31 松下電器産業株式会社 Hermetic scroll compressor
JPH09170581A (en) * 1995-12-19 1997-06-30 Daikin Ind Ltd Compressor
JP3709103B2 (en) * 1999-07-07 2005-10-19 松下電器産業株式会社 Hermetic vertical compressor
JP3961189B2 (en) * 2000-03-31 2007-08-22 松下電器産業株式会社 Hermetic compressor and gas-liquid separation and discharge method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1876358A1 (en) * 2006-07-03 2008-01-09 LG Electronics Inc. Scroll compressor with muffler
US7527484B2 (en) * 2006-07-06 2009-05-05 Lg Electronics Inc. Muffler of scroll compressor
EP2177768A4 (en) * 2007-08-17 2015-06-24 Mitsubishi Heavy Ind Ltd Multi-stage compressor
JP2009180106A (en) * 2008-01-29 2009-08-13 Mitsubishi Heavy Ind Ltd Scroll compressor
WO2014067455A1 (en) * 2012-11-01 2014-05-08 艾默生环境优化技术(苏州)有限公司 Compressor
WO2014118855A1 (en) * 2013-01-30 2014-08-07 株式会社デンソー Compressor
JP2014145353A (en) * 2013-01-30 2014-08-14 Denso Corp Compressor
US9828997B2 (en) 2013-01-30 2017-11-28 Denso Corporation Scroll compressor with a resonator
CN108779776A (en) * 2016-03-21 2018-11-09 艾默生环境优化技术有限公司 Compressor oil detaches and assemble method
US10634142B2 (en) 2016-03-21 2020-04-28 Emerson Climate Technologies, Inc. Compressor oil separation and assembly method
WO2020166431A1 (en) * 2019-02-15 2020-08-20 パナソニックIpマネジメント株式会社 Compressor
CN110159536A (en) * 2019-06-10 2019-08-23 珠海格力节能环保制冷技术研究中心有限公司 Screw compressor, air conditioner and vehicle

Also Published As

Publication number Publication date
WO2004092587A1 (en) 2004-10-28
JP4127108B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
JP5516607B2 (en) Compressor and refrigeration equipment
JP4175148B2 (en) Hermetic compressor
US8888476B2 (en) Horizontal scroll compressor
EP3141753B1 (en) Scroll compressor
JP2004316591A (en) Hermetic compressor
JP4979503B2 (en) Scroll compressor
WO2018130134A1 (en) Compressor
JP3961189B2 (en) Hermetic compressor and gas-liquid separation and discharge method
JP2006348928A (en) Compressor
JP2001050162A (en) Closed type compressor
JP2006336599A (en) Sealed compressor
JP3633638B2 (en) Electric compressor
JP2009030464A (en) Hermetic compressor
JP4241182B2 (en) Compressor, refrigeration cycle and heat pump water heater
JPS6258094A (en) Horizontal scroll compressor
JP3616123B2 (en) Hermetic electric compressor
JP2004332628A (en) Hermetic compressor
JP2005344537A (en) Scroll compressor
JP2004316590A (en) Sealed type compressor
JPS597793A (en) Closed type scroll compressor
JPH07189964A (en) Closed type motor-driven compressor
JP2006226207A (en) Hermetic compressor
JP2008031880A (en) Hermetic compressor
JP2009257272A (en) Hermetically-sealed compressor
JP2009062839A (en) Hermetic compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050615

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080505

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4127108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees