JP2004316318A - Arrival section structure of arrival shaft and arrival method for shield machine - Google Patents

Arrival section structure of arrival shaft and arrival method for shield machine Download PDF

Info

Publication number
JP2004316318A
JP2004316318A JP2003113929A JP2003113929A JP2004316318A JP 2004316318 A JP2004316318 A JP 2004316318A JP 2003113929 A JP2003113929 A JP 2003113929A JP 2003113929 A JP2003113929 A JP 2003113929A JP 2004316318 A JP2004316318 A JP 2004316318A
Authority
JP
Japan
Prior art keywords
shaft
reaching
wall
chamber
shield excavator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003113929A
Other languages
Japanese (ja)
Inventor
Toshimitsu Aso
利光 阿曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2003113929A priority Critical patent/JP2004316318A/en
Publication of JP2004316318A publication Critical patent/JP2004316318A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an arrival section structure of an arrival shaft and an arrival method for a shield machine capable of safely arriving at a shaft so that the shield machine for advancing a hole in the ground does not give an influence on the peripheral ground of the arrival shaft. <P>SOLUTION: A through-hole 4 is bored in a wall in an arrival scheduled site of the shield machine 3 of a shaft side caisson block constructed in an edge installing position on the ground. The outside of the through-hole 4 is blocked by a temporary external wall 12, at the same time, a steel-made bulkhead 16 is detachably mounted to the inside of the wall, and a space defined by the temporary external wall 12, the wall through-hole 4 and the bulkhead 16 is used as an arrival section chamber 20. A ring tube 25 and a ring seal 26 as an annular seal section are provided on a position on a predetermined inner circumferential surface in the arrival section chamber 20 and, at the same time, the inside of the chamber 20 is filled with a stabilizing filler 21. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は到達立坑の到達部構造および同立坑へのシールド掘削機の到達方法に係り、地中を掘進してきたシールド掘削機を、到達立坑周辺地盤へ影響を及ぼさないように立坑に安全に到達させるための到達立坑の到達部構造およびシールド掘削機の到達方法に関する。
【0002】
【従来の技術】
従来、シールド掘削機によるトンネル掘削工事において、掘削区間の終点にあたる到達立坑の周辺地盤には、シールド掘削機の到達、貫通に必要な部分の壁体を撤去する際の周辺地盤の安定と、シールド掘削機の立坑内貫入時の出水防止のため、立坑周囲の所定範囲に地盤改良を必要とした。また、立坑内が加圧されていないような在来立坑にシールド掘削機を到達させる場合、シールド掘削機の到達後の壁体の撤去時にシールド掘削機のカッタ面での泥水圧や泥土圧を立坑内と同じ大気圧まで下げる必要がある。さらに、立坑にシールド掘削機が貫入する際、撤去した壁体内を通ってシールド掘削機がエントランスパッキンに到達するまでの間、シールド掘削機の周囲と地盤改良との隙間や地盤改良の損傷により立坑内へ出水し、到達立坑の周辺地山が沈下するおそれもあった。
【0003】
これに対して、出願人は、立坑の周囲地盤に地盤改良を行なわずに、発進あるいは到達立坑におけるシールド掘削機貫通部分にシールド掘削機のカッタで切削可能な仮設壁体を用いた技術を提案している(特許文献1参照)。また、シールド掘削機が貫入時に立坑内へ出水し、立坑に被害が発生したり、到達部周辺地山が沈下するのを防止する技術として、立坑底部にシールド掘削機全体を収容可能な到達函体を設置し、シールド掘削機が立坑に到達した際に、この到達函体内に水を満たし所定の圧力下においた函体内にシールド掘削機を貫入させるようにした技術も提案されている(特許文献2参照)。
【0004】
特許文献1に開示された技術では、2列に密着して造成されたコンクリート壁体内に、従来の補強鉄筋に代えて繊維強化樹脂製棒状体を配置し、シールド掘削機の立坑到達時にシールド掘削機のカッタでコンクリート壁体を切削して貫通させるようになっている。また、特許文献2に開示された技術では、シールド掘削機全体を収容可能な大きさの到達函体を立坑内に設けるようになっている。
【0005】
【特許文献1】
特許第2662572号公報第2頁右下(i)項記載参照。
【特許文献2】
特開平6−42288号公報第2頁[0007]記載参照。
【0006】
【発明が解決しようとする課題】
ところで、上述の繊維強化樹脂製棒状体を用いた場合、通常、躯体全体が鉄筋コンクリートで構築される立坑構造の一面をこの繊維強化樹脂製棒状体及び鉄筋で補強された柱列壁体で構築しなければならず、異種構造による複合構造としての特別な構造設計が必要である上、異なる工種の作業を同時に行う必要がある。このため工程の煩雑さに加え、材料、機械設備面でも工費の増大につながることが予想される。また立坑へ貫入直前にシールド掘削機前面のカッタ付近の圧力を下げる必要があるため、加圧しない従来の立坑と同様に貫入時に立坑内へ出水し、到達部付近の地盤が沈下する恐れがあった。
【0007】
一方の到達函体を備える立坑では、大きい容積の函体構築に加え、函体内を水封加圧するため函体に安定液を供給し、その圧力調整が可能な設備を設ける必要があり、設備の増大、工費増加という問題がある。
【0008】
そこで、本発明の目的は上述した従来の技術が有する問題点を解消し、立坑の躯体の一部に、シールド掘削機を収容可能な空間を形成し、この空間に安定液等の安定用充填材を満たした状態でシールド掘削機を立坑に安全に到達させるようにした到達立坑の到達部構造およびシールド掘削機の到達方法を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明は地上の刃口据え付け位置で構築された立坑側部ケーソンブロックのシールド掘削機の到達予定部位の壁体に貫通孔を形成し、該貫通孔の外側面を仮設外壁で閉塞するとともに、内側面にバルクヘッドを脱着可能に取り付け、前記仮設外壁とバルクヘッドとで画成された空間を到達部チャンバーとし、該到達部チャンバー内の所定内周面位置に環状シール部材を設けるとともに、該チャンバー内を安定用充填材で満たしたことを特徴とする。
【0010】
また、他の発明として地上の刃口据え付け位置で構築された立坑側部ケーソンブロックのシールド掘削機の到達予定部位の壁体に貫通孔を形成し、該貫通孔を仮設外壁で閉塞するとともに、内側面に筒体を連接し、該筒体の端面にバルクヘッドを脱着可能に取り付け、前記仮設外壁、筒体、バルクヘッドで画成された空間を到達部チャンバーとし、該到達部チャンバー内の所定内周面位置に環状シール部材を設けるとともに、該チャンバー内を安定用充填材で満たしたことを特徴とする。
【0011】
上述の発明において、前記到達部チャンバーに立坑外との水圧連通手段を設けることにより、到達部チャンバー内に外側と同じ水圧を安定的に作用させることが可能となり、安定用充填材とともに仮設外壁に作用する土水圧にバランスすることができる。また逆止弁により、水圧以上の力が外壁に作用した場合は、同じ力をチャンバーに保持できる。このため仮設外壁の内側と外側に同じ力が作用し、仮設壁体は鉄筋などの構造部材を使う必要がなく、シールド掘削機で切削しやすいモルタル材などを用いることができる。
【0012】
また、シールド掘削機の到達深度まで沈設された上述の到達立坑の到達部の外側直近までシールド掘削機を接近させ、前記仮設外壁に作用する内外圧力がバランスした状態で仮設外壁を切削しながら前記シールド掘削機を立坑に掘進貫入させ、シールド掘削機の胴殻の一部が環状シール部材を通過した後に、該環状シール部材を動作させて前記胴殻周囲のチャンバー空間を仕切り、シールド掘削機のカッタヘッド前面加圧を解除するとともに前記バルクヘッドとの間の安定用充填材を除去し、前記バルクヘッドを撤去するようにしてシールド掘削機を立坑内に収容させるシールド掘削機の到達方法を特徴とする。
【0013】
【発明の実施の形態】
以下、本発明の到達立坑の到達部構造および同到達部構造へのシールド掘削機の到達方法についての実施の形態について、添付図面を参照して説明する。
図1は、本発明の到達立坑1の底部と、地中を掘進してきたシールド掘削機3がこの到達立坑1の到達部2に接近した状態を示した全体図である。この到達立坑1は、図示したように鉄筋コンクリート製ケーソンなどを地中の所定深さまで沈設して設置された地中構造物で、側方から接近するシールド掘削機3に対向した部分のコンクリート躯体が箱抜きされ、その貫通孔4に到達部構造10が組み込まれている。
【0014】
図2は、この到達部構造10の一実施の態様を示した断面図である。貫通孔4は到達するシールド掘削機3の胴殻外径よりわずかに大きい内径の円筒形状をなす。地上の刃口据え付け位置において、立坑側部ケーソンブロックを構築する躯体型枠組立時に所定の箱抜き型枠を用いることにより、コンクリート壁体11の一部に円筒状の貫通孔4が形成されたものである。本実施の形態では、ケーソン底部のコンクリート壁体11の厚さは2〜3mであり、この貫通孔4の外周面側11aには厚さ0.2〜0.5mの仮設外壁12が貫通孔4を閉塞するように構築されている。この仮設外壁12は、無筋の低強度モルタル(強度100〜300N/mm程度を想定)を打設したもので、この程度の強度のモルタルはシールド掘削機3のカッタ動作により切削が可能である。仮設外壁12とコンクリート壁体11の開口縁部11bとの間には短い差筋15が配筋され、面外荷重に抵抗できるようにせん断補強されている。仮設外壁12を構成する材質としては、シールド掘削機の掘進により容易に切削可能な材料としてモルタルの他、コンクリート、樹脂板等を用いることができる。
【0015】
一方、貫通孔4の内周面側11cは鋼製バルクヘッドで覆われている。この鋼製バルクヘッド16は、図2に示したように、コンクリート壁体11に形成された円孔(貫通孔4)の直径より大きく、その開口縁部11dに所定の重なり部分を有する円板形状または正方形をなし、後述する安定液等の作用内圧に抵抗できるように、面板が形鋼等の補剛部材により補強された鋼板加工品である。この鋼製バルクヘッド16は開口縁部11dに沿って周設されたアンカーボルト17によりコンクリート壁体11の内周面に固定されている。このとき鋼製バルクヘッド16とコンクリート壁体11との間にはリング状のパッキン18が介装され、後述する安定液の漏出が防止されている。
【0016】
このように、立坑側部ケーソンブロックのコンクリート壁体11を仮設外壁12と鋼製バルクヘッド16とにより仕切ることにより、空間としての到達部チャンバーが画成される。この到達部チャンバー20内は安定液体、安定用加工材、安定粘性体、安定粘塑性体等の安定用充填材21で満たされることが好ましい。これら充填材21は、立坑ケーソンブロックの沈設過程や所定深さに設置された際の仮設外壁12に作用する外圧に釣り合う内圧効果を果たすように機能させることが必要である。その一手段として、本実施の形態では、到達部チャンバー20内とケーソンブロック外とを連通させる連通管22を設けている。この連通管22には通水を制御する逆止弁28が設けられている。この連通管22の作用により立坑外部が粘性土層に挟まれた被圧水帯であるような場合に、外部被圧水と到達部チャンバー20内部との連通により、到達部チャンバー20内の液圧あるいは間隙水圧との釣り合いを図ることができ、仮設外壁12への外水圧の影響をキャンセルすることができる(図3参照)。
【0017】
到達部チャンバー20内に充填される安定液としてはベントナイト安定液、泥水が、安定用固形材としては、粒状硬質発泡樹脂、軟質フォーム樹脂、単粒砕石、砂、安定粘弾性体としてゲル状物質、粘塑性体として粘土、気泡土等、種々の材料を単体、混合させて使用することができる。なお、これらの充填材料は、上述の鋼製バルクヘッド16の一部に設けられた供給管(図示せず)から搬送可能な流体に混合したりして到達部チャンバー20内に充填することが好ましい。到達部チャンバー20内に充填材21を満たす工程は、外圧とのバランスを逐次とる機構を備えることで沈設開始前に地上で行ってもよい。
【0018】
さらに、到達部チャンバー20内の内周面の一部にはリング状の凹所23が形成されており、この凹所23内にシール部材としてのエントランスパッキン24が装着されている。このエントランスパッキン24は、図2及び図4各図に示したように、到達部チャンバー20内に収容され、チャンバー20外の圧源(図示せず)から空気供給管27を介して供給される圧縮空気によって環状(ドーナッツ状)に膨張する合成ゴム製のリングチューブ25と、リングチューブ25を覆うように、一端が支持部23aに固定されたスチールワイヤ製のリングシール26で覆われている。このリングシール26は、本実施の形態では、シールド掘削機の胴殻後端に装着されるテールシールに類似した略刷毛状の構造からなり、多段に密に植設されたスチールワイヤ間にグリースパテを充填して水密効果が高められている。なお、このリングシール26としては、他に湾曲可能なフィン形状をなす天然ゴム、合成ゴム製のリングシール26等も適宜使用することができる。このリングシール26は、シールド掘削機がチャンバー20内に貫入していない初期状態においては図4(a)に示したように、凹所23内で扁平状態にあるリングチューブ25を覆ってチャンバー20の内周面に沿っている。この状態から到達部チャンバー20内にシールド掘削機3が貫入したら、リングチューブ25を膨張させると、その膨張に伴い、図4(b)に示したように、リングシール26の開放端がチャンバー20内部に向けて傾斜し、その先端がシールド掘削機の胴殻3a表面に密着し、図4(b)に示したように、このシール26を境としてチャンバー20内の空間を仕切ることができる。
【0019】
ここで、到達立坑1として機能する立坑ケーソンの沈設手順と、シールド掘削機3の到達状態について図5〜図7を参照して簡単に説明する。
まず、図5に示したように、到達立坑1の構築位置の地上の刃口据え付け位置において、立坑底部ケーソンの刃口、底版の構築を行う。このとき底版と一体的に構築される壁体側部の型枠組み立て作業において、シールド掘削機3(図7)が到達する側の壁面の所定位置に箱抜き型枠を組み込み、躯体コンクリート打設により円筒孔(貫通孔4)を有する底部ケーソンブロックを構築する。このときチャンバー20に接続される連通管22、空気供給管27の配管をあらかじめ組み込んでおく(図5:施工手順S1参照)。ついで、立坑ケーソンを、その側部に形成された到達部構造10がシールド掘削機3の進行してくるトンネル深度に達するまで沈下させる。この沈下作業手順は、公知のケーソン工事と同様である。このとき到達部チャンバー20の連通管22を開放することにより、各深度においてチャンバー20内をケーソン外部の被圧状態と同圧に保持することができる。このため、内外から作用圧がバランスし、仮設外壁12には曲げ応力は発生しない(図6:施工状態S2参照)。図7(S3)は、所定深度まで沈設した立坑ケーソンの到達部にシールド掘削機3のフェースを接近させ、到達部の仮設外壁12を破砕する直前の状態を示している。この位置から(S4)に示したように、シールド掘削機3の胴殻部分を到達部チャンバー20に掘進貫入させる。
【0020】
この間の到達部構造10でのシールド掘削機3の運転状況を、図8各図を参照して説明する。シールド掘削機3が到達部構造10に接近した状態(図8(a))では、到達部チャンバー20の内圧(充填材側圧+間隙水圧)は連通管22を介して立坑外の土水圧とバランスしている。チャンバー20内を安定液で満たしている場合には、立坑内に設けた液圧調整装置(図示せず)によって加圧バランスをとることもできる。この状態で同図(b)〜(c)に示したように、シールド掘削機3のカッタ(図示せず)で仮設外壁12を破砕し、シールド掘削機3の胴殻を到達部チャンバー20内に貫入させる。シールド掘削機3の胴殻3aのカッタヘッド部分がエントランスパッキン24位置を通過した時点でエントランスパッキン24に組み込まれたリングチューブ25を膨張させ、リングシール26先端をシールド掘削機3の胴殻表面に密着させる。その後、エントランスパッキン24と仮設外壁12との間の安定用の充填材21の加圧を解く。充填材21が安定液の場合は、排水経路(図示せず)から安定液を排出して除圧する。また、固形充填材の場合は、連通管22を閉塞させた後に間隙水を排水する。このときエントランスパッキン24と鋼製バルクヘッド16との間の安定用充填材21に作用する圧力は、シールド掘削機3のカッタヘッド前面圧と釣り合うように設定されているので、シールド掘削機3側の操作によりカッタヘッド前面圧を減圧するのに合わせて安定液を排出すればよい。そしてチャンバー20内が空になった後に鋼製バルクヘッド16を取り外せば、シールド掘削機3の前部をチャンバー20内に露出させることができる。
【0021】
その後、シールド掘削機3の胴殻を立坑内に引き出すのに合わせて立坑内までのセグメントを組み立て、立坑壁体部分とシールドトンネルのセグメントとを連結する。このとき、エントランスパッキン24と仮設外壁12との間にシール材を充填することにより立坑連結部の水密性を高めることができる。
【0022】
図9は別発明として、鋼製ケーソンを到達立坑1として適用した到達部構造10を備えた立坑全体構成図である。図10は、図9に示した到達部チャンバー20内での安定液による圧力調整状態を示した拡大断面図である。本発明における到達部チャンバー20は鋼製のケーソン外殻の開口部は仮設外壁12で内周面に、チャンバー20本体を構成する鋼製筒30を連接してPC鋼棒31によって緊張力を加えるとともに、鋼製筒30部分の端面を覆って到達部チャンバー20を構成するように鋼製バルクヘッド16が取り付けられている。この到達部チャンバー20には図2に示したものと同様に、リングチューブ25が組み込まれたリングシール26と、連通管22とが装備され充填材21で満たされており、シールド掘削機3の到達、貫入時における周辺地盤の沈下、出水等を同様に防止できるようになっている。なお、シールド掘削機3の規模に応じて複数段の鋼製筒30を直列に連結することでチャンバー20の奥行きを大きくできる。また、鋼製筒30に代えて同様の形状のプレキャストコンクリート製品を用いてもよい。
【0023】
【発明の効果】
以上に述べたように、本発明によれば、到達立坑周辺地盤に地盤改良を施工する必要がないため、経済面、工程面で有利である上、シールド掘削機の立坑到達時における周辺地盤の沈下、立坑への出水等を確実に防止できるという効果を奏する。
【図面の簡単な説明】
【図1】本発明による到達立坑の到達部構造へのシールド掘削機の到達状態を示した全体図。
【図2】本発明の到達立坑の到達部構造の一実施の形態を示した部分拡大断面図。
【図3】図2に示した到達部構造における土水圧作用状態を示した模式説明図。
【図4】到達部チャンバー内のシール部材の構成を示した部分断面図。
【図5】到達立坑用のケーソンの据え付け状態を示した施工状態説明図(1)。
【図6】到達立坑用のケーソンの据え付け状態を示した施工状態説明図(2)。
【図7】到達立坑用のケーソンの据え付け状態を示した施工状態説明図(3)。
【図8】シールド掘削機の到達立坑の到達部チャンバーへの接近〜貫入状態を示した状態説明図。
【図9】他の発明としての到達部構造の一実施の形態を示した到達立坑の全体図。
【図10】図9に示した到達部構造におけるシールド掘削機の貫入状態を示した状態説明図。
【符号の説明】
1 到達立坑
2 到達部
3 シールド掘削機
4 貫通孔
10 到達部構造
11 コンクリート壁体
12 仮設外壁
16 鋼製バルクヘッド
20 到達部チャンバー
22 連通管
24 エントランスパッキン
25 リングチューブ
26 リングシール
30 鋼製筒
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a reaching part structure of a reaching shaft and a method of reaching a shield excavator to the same shaft, and allows a shield excavator that has excavated in the ground to safely reach the shaft so as not to affect the ground around the reaching shaft. The present invention relates to a reaching portion structure of a reaching shaft and a method of reaching a shield excavator for making the shaft reach.
[0002]
[Prior art]
Conventionally, in tunnel excavation work using a shield excavator, the ground around the arrival shaft, which is the end point of the excavation section, has been used to secure the surrounding ground when removing the wall of the part necessary for reaching and penetrating the shield excavator, In order to prevent flooding when the excavator penetrates into the shaft, ground improvement was required in a predetermined area around the shaft. When the shield excavator reaches a conventional shaft where the inside of the shaft is not pressurized, the mud pressure and mud pressure on the shield surface of the shield excavator must be reduced when the wall is removed after the shield excavator arrives. It must be reduced to the same atmospheric pressure as in the shaft. In addition, when the shield excavator penetrates into the shaft, the clearance between the shield excavator and the ground improvement and the ground improvement damage until the shield excavator reaches the entrance packing through the removed wall. There was also a risk that water would flow inside and the ground around the reaching shaft would sink.
[0003]
On the other hand, the applicant has proposed a technique using a temporary wall body that can be cut with the cutter of the shield excavator in the part where the shield excavator penetrates in the starting or reaching shaft, without making the ground improvement around the shaft. (See Patent Document 1). In addition, as a technology to prevent the shield excavator from flooding into the shaft when penetrating, causing damage to the shaft and sinking of the ground around the reaching part, a reach box that can accommodate the entire shield excavator at the bottom of the shaft is used. A technique has also been proposed in which a shield excavator is installed in such a way that when the shield excavator reaches the shaft, water is filled in the reaching box and the shield excavator penetrates the box placed under a predetermined pressure (Patent Reference 2).
[0004]
In the technique disclosed in Patent Document 1, a fiber-reinforced resin rod is disposed in place of a conventional reinforcing bar in a concrete wall formed in close contact with two rows, and shield excavation is performed when the shield excavator reaches a shaft. The concrete wall is cut and penetrated by the cutter of the machine. In the technique disclosed in Patent Literature 2, a reaching box large enough to accommodate the entire shield excavator is provided in a shaft.
[0005]
[Patent Document 1]
See the description of the lower right (i) on page 2 of Japanese Patent No. 2662572.
[Patent Document 2]
See JP-A-6-42288, page 2, [0007].
[0006]
[Problems to be solved by the invention]
By the way, when the above-mentioned fiber reinforced resin rod is used, one side of a shaft structure where the entire frame is usually constructed of reinforced concrete is constructed by the fiber reinforced resin rod and a column wall reinforced with reinforcing bars. This requires a special structural design as a composite structure composed of different types of structures, and also requires simultaneous work of different types of construction. For this reason, in addition to the complexity of the process, it is expected that the work cost will increase in terms of materials and equipment. In addition, since it is necessary to reduce the pressure near the cutter in front of the shield excavator immediately before penetrating the shaft, there is a risk that water will flow into the shaft when penetrating, and the ground near the reaching part will sink, as in the case of conventional non-pressurized shafts. Was.
[0007]
On the other hand, in the vertical shaft with the arrival box, it is necessary to supply a stable liquid to the box in order to pressurize the inside of the box in addition to constructing a large volume box, and to provide equipment that can adjust the pressure. There is a problem that the cost and construction cost increase.
[0008]
Therefore, an object of the present invention is to solve the above-mentioned problems of the conventional technology, and to form a space capable of accommodating a shield excavator in a part of the shaft body, and to fill this space with a stabilizing liquid or the like for stabilization. It is an object of the present invention to provide a reaching shaft structure of a reaching shaft and a method of reaching the shield excavator that allow a shield excavator to safely reach a shaft while being filled with materials.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention forms a through hole in a wall of a shaft excavator to be reached by a shaft excavator of a shaft shaft side caisson block constructed at a cutting edge installation position on the ground, and an outer surface of the through hole. Is closed by a temporary outer wall, and a bulkhead is detachably attached to the inner surface, a space defined by the temporary outer wall and the bulkhead is defined as a reaching chamber, and at a predetermined inner peripheral surface position in the reaching chamber. An annular seal member is provided, and the inside of the chamber is filled with a stabilizing filler.
[0010]
Further, as another invention, a through hole is formed in a wall of a site where the shield excavator of the shaft excavator of the shaft shaft side caisson block constructed at the cutting edge installation position on the ground is to be reached, and the through hole is closed with a temporary outer wall, A cylindrical body is connected to the inner surface, a bulkhead is detachably attached to an end surface of the cylindrical body, the temporary outer wall, the cylindrical body, a space defined by the bulkhead is defined as a reaching chamber, and the inside of the reaching chamber is defined as a reaching chamber. An annular seal member is provided at a predetermined inner peripheral surface position, and the chamber is filled with a stabilizing filler.
[0011]
In the above-described invention, by providing the reaching part chamber with the hydraulic communication means with the outside of the shaft, it becomes possible to stably apply the same water pressure as the outside inside the reaching part chamber, and to the temporary outer wall together with the stabilizing filler. The working soil pressure can be balanced. When a force higher than the water pressure acts on the outer wall by the check valve, the same force can be held in the chamber. For this reason, the same force acts on the inside and outside of the temporary outer wall, and it is not necessary to use a structural member such as a reinforcing bar for the temporary wall, and it is possible to use a mortar material or the like that is easy to cut by a shield excavator.
[0012]
In addition, the shield excavator is brought close to the outer side of the reaching portion of the reaching shaft which has been sunk to the reaching depth of the shield excavator, and the temporary outer wall is cut while the internal and external pressures acting on the temporary outer wall are balanced. The shield excavator is made to penetrate the shaft, and after a part of the shell of the shield excavator passes through the annular seal member, the annular seal member is operated to partition the chamber space around the shell, and the shield excavator A method of arriving at the shield excavator in which the pressurizing of the cutter head is released, the filler for stabilization between the bulkhead and the bulkhead is removed, and the shield excavator is housed in the shaft by removing the bulkhead. And
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a reaching part structure of a reaching shaft and a method of a shield excavator reaching the reaching part structure according to the present invention will be described with reference to the accompanying drawings.
FIG. 1 is an overall view showing a state in which a bottom of a reaching shaft 1 of the present invention and a shield excavator 3 that has excavated in the ground have approached a reaching portion 2 of the reaching shaft 1. The reaching shaft 1 is an underground structure in which a caisson made of reinforced concrete or the like is sunk to a predetermined depth in the ground as shown in the figure, and a concrete body of a portion facing a shield excavator 3 approaching from the side is provided. The box is removed, and the reaching portion structure 10 is incorporated in the through hole 4.
[0014]
FIG. 2 is a cross-sectional view showing one embodiment of the reaching portion structure 10. As shown in FIG. The through hole 4 has a cylindrical shape with an inner diameter slightly larger than the outer shell diameter of the shield excavator 3 to be reached. At the position of the cutting edge installation on the ground, a cylindrical through hole 4 was formed in a part of the concrete wall body 11 by using a predetermined boxless formwork when assembling the body formwork for constructing the vertical caisson block. Things. In the present embodiment, the thickness of the concrete wall 11 at the bottom of the caisson is 2 to 3 m, and a temporary outer wall 12 having a thickness of 0.2 to 0.5 m is formed on the outer peripheral surface 11a of the through hole 4. 4 is closed. The temporary outer wall 12 is formed by casting unstripped low-strength mortar (assuming a strength of about 100 to 300 N / mm 2 ). The mortar having such a strength can be cut by the cutter operation of the shield excavator 3. is there. Short reinforcing bars 15 are arranged between the temporary outer wall 12 and the opening edge 11b of the concrete wall body 11, and are reinforced by shearing so as to resist out-of-plane loads. As a material for forming the temporary outer wall 12, mortar, concrete, a resin plate, or the like can be used as a material that can be easily cut by the excavation of the shield excavator.
[0015]
On the other hand, the inner peripheral surface side 11c of the through hole 4 is covered with a steel bulkhead. As shown in FIG. 2, the steel bulkhead 16 is a disk having a diameter larger than a circular hole (through hole 4) formed in the concrete wall body 11 and having a predetermined overlapping portion at an opening edge 11d. This is a steel plate processed product in which the face plate is reinforced by a stiffening member such as a shaped steel so as to have a shape or a square, and to be able to withstand the internal pressure of a stabilizing liquid or the like described later. The steel bulkhead 16 is fixed to the inner peripheral surface of the concrete wall 11 by anchor bolts 17 provided along the opening edge 11d. At this time, a ring-shaped packing 18 is interposed between the steel bulkhead 16 and the concrete wall 11 to prevent leakage of a stabilizing liquid described later.
[0016]
In this way, the reaching chamber as a space is defined by partitioning the concrete wall 11 of the shaft-side caisson block by the temporary outer wall 12 and the steel bulkhead 16. The inside of the reaching portion chamber 20 is preferably filled with a stabilizing filler 21 such as a stable liquid, a stable processing material, a stable viscous material, and a stable viscoplastic material. It is necessary that these fillers 21 function so as to achieve an internal pressure effect that balances the external pressure acting on the temporary outer wall 12 when the vertical shaft caisson block is settled or installed at a predetermined depth. As one of the means, in the present embodiment, a communication pipe 22 for communicating the inside of the reaching portion chamber 20 with the outside of the caisson block is provided. The communication pipe 22 is provided with a check valve 28 for controlling water flow. In the case where the outside of the shaft is a pressurized water zone sandwiched by a viscous soil layer due to the action of the communication pipe 22, the communication between the external pressurized water and the inside of the reaching portion chamber 20 causes the liquid in the reaching portion chamber 20 to communicate. The pressure and the pore water pressure can be balanced, and the effect of the external water pressure on the temporary outer wall 12 can be canceled (see FIG. 3).
[0017]
Bentonite stabilizing liquid and muddy water are used as the stabilizing liquid filled in the reaching portion chamber 20, and granular hard foamed resin, soft foam resin, single crushed stone, sand, and a gel-like substance as a stable viscoelastic material are used as the stabilizing solid material. Various materials such as clay and aerated clay can be used alone or as a mixture as a viscoplastic body. Note that these filling materials may be mixed with a fluid that can be conveyed from a supply pipe (not shown) provided in a part of the above-described steel bulkhead 16 to fill the reaching portion chamber 20. preferable. The step of filling the reaching part chamber 20 with the filler 21 may be performed on the ground before the start of the sedimentation by providing a mechanism for sequentially balancing with the external pressure.
[0018]
Further, a ring-shaped recess 23 is formed in a part of the inner peripheral surface in the reaching portion chamber 20, and an entrance packing 24 as a sealing member is mounted in the recess 23. As shown in FIGS. 2 and 4, the entrance packing 24 is housed in the arrival chamber 20 and supplied from a pressure source (not shown) outside the chamber 20 via an air supply pipe 27. A ring tube 25 made of synthetic rubber that expands in a ring shape (donut shape) by compressed air, and a ring seal 26 made of steel wire fixed at one end to the support portion 23a so as to cover the ring tube 25. In the present embodiment, the ring seal 26 has a substantially brush-like structure similar to a tail seal mounted on the rear end of the shell of the shield excavator, and has a grease pad between steel wires densely implanted in multiple stages. To enhance the watertight effect. In addition, as the ring seal 26, a ring seal 26 made of natural rubber or synthetic rubber having a bendable fin shape can be used as appropriate. In the initial state where the shield excavator does not penetrate into the chamber 20, the ring seal 26 covers the ring tube 25 which is flat in the recess 23 as shown in FIG. Along the inner circumference. When the shield excavator 3 penetrates into the reaching portion chamber 20 from this state, when the ring tube 25 is expanded, as shown in FIG. As shown in FIG. 4B, the inside of the chamber 20 can be partitioned by the seal 26 as a boundary.
[0019]
Here, the procedure for laying down the vertical shaft caisson functioning as the reaching shaft 1 and the reaching state of the shield excavator 3 will be briefly described with reference to FIGS.
First, as shown in FIG. 5, at the cutting edge installation position on the ground at the construction position of the reaching shaft 1, the cutting edge of the bottom caisson and the bottom plate are constructed. At this time, in the assembling work of the side wall part integrally formed with the bottom slab, a boxless formwork is installed at a predetermined position on the wall surface on the side where the shield excavator 3 (FIG. 7) reaches, and the concrete is cast by the frame concrete. Build a bottom caisson block with a cylindrical hole (through hole 4). At this time, the pipes of the communication pipe 22 and the air supply pipe 27 connected to the chamber 20 are installed in advance (see FIG. 5: construction procedure S1). Then, the shaft caisson is lowered until the reaching structure 10 formed on the side reaches the tunnel depth at which the shield excavator 3 travels. This subsidence operation procedure is the same as the known caisson construction. At this time, by opening the communication pipe 22 of the arrival part chamber 20, the inside of the chamber 20 can be maintained at the same pressure as the pressure state outside the caisson at each depth. For this reason, the working pressure is balanced from inside and outside, and no bending stress is generated on the temporary outer wall 12 (see FIG. 6: construction state S2). FIG. 7 (S3) shows a state immediately before the face of the shield excavator 3 approaches the reaching portion of the shaft caisson sunk to a predetermined depth and crushes the temporary outer wall 12 of the reaching portion. From this position, as shown in (S4), the hull portion of the shield excavator 3 is excavated and penetrated into the reaching portion chamber 20.
[0020]
The operation state of the shield excavator 3 in the reaching portion structure 10 during this time will be described with reference to FIGS. In a state where the shield excavator 3 approaches the reaching portion structure 10 (FIG. 8A), the internal pressure (filler side pressure + pore water pressure) of the reaching portion chamber 20 is balanced with the soil water pressure outside the shaft via the communication pipe 22. are doing. When the inside of the chamber 20 is filled with the stabilizing liquid, the pressure can be balanced by a liquid pressure adjusting device (not shown) provided in the shaft. In this state, the temporary outer wall 12 is crushed by a cutter (not shown) of the shield excavator 3 as shown in FIGS. To penetrate. When the cutter head of the shell 3a of the shield excavator 3 has passed the position of the entrance packing 24, the ring tube 25 incorporated in the entrance packing 24 is expanded, and the tip of the ring seal 26 is attached to the surface of the shell of the shield excavator 3. Adhere. Then, the pressurization of the stabilizing filler 21 between the entrance packing 24 and the temporary outer wall 12 is released. When the filling material 21 is a stable liquid, the pressure is reduced by discharging the stable liquid from a drainage path (not shown). In the case of a solid filler, pore water is drained after the communication pipe 22 is closed. At this time, the pressure acting on the stabilizing filler 21 between the entrance packing 24 and the steel bulkhead 16 is set to be balanced with the front pressure of the cutter head of the shield excavator 3. The stabilizing liquid may be discharged in accordance with the pressure reduction in the front surface of the cutter head by the above operation. Then, if the steel bulkhead 16 is removed after the chamber 20 is emptied, the front part of the shield excavator 3 can be exposed in the chamber 20.
[0021]
Thereafter, the segments up to the inside of the shaft are assembled in accordance with the extraction of the shell of the shield excavator 3 into the shaft, and the shaft wall portion and the shield tunnel segment are connected. At this time, by filling the space between the entrance packing 24 and the temporary outer wall 12 with a sealing material, the watertightness of the shaft connection portion can be improved.
[0022]
FIG. 9 is an overall configuration diagram of a shaft including a reaching portion structure 10 in which a steel caisson is applied as the reaching shaft 1 as another invention. FIG. 10 is an enlarged cross-sectional view showing a state of pressure adjustment by the stabilizing liquid in the reaching portion chamber 20 shown in FIG. In the reaching portion chamber 20 of the present invention, a steel caisson shell has an opening formed on a temporary outer wall 12 and an inner peripheral surface thereof connected to a steel cylinder 30 constituting the chamber 20 main body and tension is applied by a PC steel rod 31. At the same time, the steel bulkhead 16 is attached so as to cover the end face of the steel cylinder 30 and constitute the reaching chamber 20. This reaching section chamber 20 is equipped with a ring seal 26 in which a ring tube 25 is incorporated and a communication pipe 22 and is filled with a filler 21 similarly to the one shown in FIG. Subsidence of the surrounding ground at the time of arrival and intrusion, flooding and the like can be similarly prevented. The depth of the chamber 20 can be increased by connecting a plurality of stages of steel cylinders 30 in series according to the scale of the shield excavator 3. Further, a precast concrete product having a similar shape may be used instead of the steel tube 30.
[0023]
【The invention's effect】
As described above, according to the present invention, there is no need to perform ground improvement on the ground around the reaching shaft, which is economical and advantageous in terms of process, and in addition, the surrounding ground when the shield excavator reaches the shaft is improved. This has the effect that sinking, flooding into the shaft, etc. can be reliably prevented.
[Brief description of the drawings]
FIG. 1 is an overall view showing a state in which a shield excavator reaches a reaching part structure of a reaching shaft according to the present invention.
FIG. 2 is a partially enlarged cross-sectional view showing an embodiment of a reaching part structure of a reaching shaft according to the present invention.
FIG. 3 is a schematic explanatory view showing a state of soil water pressure action in the reaching portion structure shown in FIG. 2;
FIG. 4 is a partial cross-sectional view showing a configuration of a seal member in a reaching portion chamber.
FIG. 5 is a construction state explanatory view (1) showing an installation state of a caisson for an arrival shaft.
FIG. 6 is a construction explanatory view (2) showing an installation state of a caisson for reaching shaft.
FIG. 7 is a construction state explanatory view (3) showing an installation state of a caisson for an arrival shaft.
FIG. 8 is a state explanatory view showing a state in which the reaching shaft of the shield excavator approaches the reaching chamber of the reaching shaft;
FIG. 9 is an overall view of a reaching shaft showing one embodiment of a reaching part structure as another invention.
FIG. 10 is a state explanatory view showing a penetrating state of the shield excavator in the reaching portion structure shown in FIG. 9;
[Explanation of symbols]
Reference Signs List 1 reaching shaft 2 reaching part 3 shield excavator 4 through hole 10 reaching part structure 11 concrete wall 12 temporary outer wall 16 steel bulkhead 20 reaching part chamber 22 communication pipe 24 entrance packing 25 ring tube 26 ring seal 30 steel cylinder

Claims (4)

地上の刃口据え付け位置で構築された立坑側部ケーソンブロックのシールド掘削機の到達予定部位の壁体に貫通孔を形成し、該貫通孔の外側面を仮設外壁で閉塞するとともに、壁体内側面にバルクヘッドを脱着可能に取り付け、前記仮設外壁、壁体貫通孔、バルクヘッドで画成された空間を到達部チャンバーとし、該到達部チャンバー内の所定内周面位置に環状シール部材を設けるとともに、該チャンバー内を安定用充填材で満たしたことを特徴とする到達立坑の到達部構造。A through-hole is formed in the wall of the shaft excavator at the site where the shield excavator is to be reached, and the outer side surface of the through-hole is closed with the temporary outer wall, and the inner surface of the wall The temporary outer wall, the wall body through-hole, and the space defined by the bulkhead are used as the reaching chamber, and an annular seal member is provided at a predetermined inner peripheral surface position in the reaching chamber. A reaching shaft structure of the reaching shaft, wherein the inside of the chamber is filled with a stabilizing filler. 地上の刃口据え付け位置で構築された立坑側部ケーソンブロックのシールド掘削機の到達予定部位の壁体に貫通孔を形成し、該貫通孔を仮設外壁で閉塞するとともに、壁体内側面に筒体を連接し、該筒体の端面にバルクヘッドを脱着可能に取り付け、前記仮設外壁、筒体、バルクヘッドで画成された空間を到達部チャンバーとし、該到達部チャンバー内の所定内周面位置に環状シール部材を設けるとともに、該チャンバー内を安定用充填材で満たしたことを特徴とする到達立坑の到達部構造。A through-hole is formed in the wall of the shaft excavator at the site where the shield excavator is to be reached, and the through-hole is closed by the temporary outer wall, and a cylindrical body is formed on the inner surface of the wall. And a bulkhead is detachably attached to the end surface of the cylindrical body, and a space defined by the temporary outer wall, the cylindrical body, and the bulkhead is defined as a reaching chamber, and a predetermined inner peripheral surface position in the reaching chamber is defined. An annular sealing member, and the inside of the chamber is filled with a filler for stabilization. 前記到達部チャンバーに立坑外との水圧連通手段が設けられたことを特徴とする請求項1または請求項2記載の到達立坑の到達部構造。The reaching shaft structure of the reaching shaft according to claim 1 or 2, wherein a hydraulic communication means with the outside of the shaft is provided in the reaching chamber. シールド掘削機の到達深度まで沈設された請求項1または請求項2に記載の到達立坑の到達部の外側直近までシールド掘削機を接近させ、前記仮設外壁に作用する内外圧力をバランスさせた状態で仮設外壁を切削しながら前記シールド掘削機を立坑に掘進貫入させ、シールド掘削機の胴殻の一部が環状シール部材を通過した後に、該環状シール部材を動作させて前記胴殻周囲のチャンバー空間を仕切り、シールド掘削機のカッタヘッド前面加圧を解除するとともに前記バルクヘッドとの間の安定用充填材を除去し、前記バルクヘッドを撤去するようにしてシールド掘削機を立坑内に収容させるようにしたことを特徴とするシールド掘削機の到達方法。The shield excavator is brought close to the outer side of the reaching part of the reaching shaft according to claim 1 or 2 which has been sunk to the reaching depth of the shield excavator, and the inner and outer pressures acting on the temporary outer wall are balanced. The shield excavator is dug into the shaft while cutting the temporary outer wall, and after a part of the shell of the shield excavator passes through the annular seal member, the annular seal member is operated to operate the chamber space around the shell. To release the pressurization of the cutter head front surface of the shield excavator, remove the stabilizing filler between the bulkhead, and remove the bulkhead so that the shield excavator is housed in the shaft. A method for reaching a shield excavator, characterized in that:
JP2003113929A 2003-04-18 2003-04-18 Arrival section structure of arrival shaft and arrival method for shield machine Pending JP2004316318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003113929A JP2004316318A (en) 2003-04-18 2003-04-18 Arrival section structure of arrival shaft and arrival method for shield machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003113929A JP2004316318A (en) 2003-04-18 2003-04-18 Arrival section structure of arrival shaft and arrival method for shield machine

Publications (1)

Publication Number Publication Date
JP2004316318A true JP2004316318A (en) 2004-11-11

Family

ID=33473674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003113929A Pending JP2004316318A (en) 2003-04-18 2003-04-18 Arrival section structure of arrival shaft and arrival method for shield machine

Country Status (1)

Country Link
JP (1) JP2004316318A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030285A (en) * 2007-07-25 2009-02-12 Oriental Shiraishi Corp Method of entering interior of underground structure having internal space and caisson structure for entering
JP2009179930A (en) * 2008-01-29 2009-08-13 Kidoh Construction Co Ltd Structure of start section or arrival section
JP2009235775A (en) * 2008-03-27 2009-10-15 Alpha Civil Engineering:Kk Wellhead system for vertical shaft
CN107387099A (en) * 2017-08-07 2017-11-24 北京市市政四建设工程有限责任公司 A kind of shield machine belt pressure reception device
CN108756908A (en) * 2018-04-03 2018-11-06 中铁十二局集团有限公司 A kind of Suporting structure for voluntarily abolishing portal and method of appearing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030285A (en) * 2007-07-25 2009-02-12 Oriental Shiraishi Corp Method of entering interior of underground structure having internal space and caisson structure for entering
JP2009179930A (en) * 2008-01-29 2009-08-13 Kidoh Construction Co Ltd Structure of start section or arrival section
JP2009235775A (en) * 2008-03-27 2009-10-15 Alpha Civil Engineering:Kk Wellhead system for vertical shaft
CN107387099A (en) * 2017-08-07 2017-11-24 北京市市政四建设工程有限责任公司 A kind of shield machine belt pressure reception device
CN108756908A (en) * 2018-04-03 2018-11-06 中铁十二局集团有限公司 A kind of Suporting structure for voluntarily abolishing portal and method of appearing
CN108756908B (en) * 2018-04-03 2019-10-11 中铁十二局集团有限公司 A kind of Suporting structure for voluntarily abolishing portal and method of appearing

Similar Documents

Publication Publication Date Title
JP2016011550A (en) Tunnel construction method
JP2003206691A (en) Shield machine arrival construction method
JP2004316318A (en) Arrival section structure of arrival shaft and arrival method for shield machine
CN115478543B (en) Artificial hole digging pile foundation pit supporting structure and construction method
JP6636774B2 (en) Integrated structure of pipe roof material
JP3194192B2 (en) Open shield method
JP4311676B2 (en) Construction method using casing
JP2829680B2 (en) Bottom construction method of large depth shaft constructed by vertical shield machine
JPH11210369A (en) Underground submerged object
JP2004332295A (en) Freezing method of starting/arrival part of jacking pipe and segment for freezing work
JP2693028B2 (en) Construction method of human hole in middle of pipeline
JP4323075B2 (en) Shaft opening structure
KR20140109009A (en) Open shield method
JPH10205280A (en) Tunnel construction method
JP4829593B2 (en) Shield machine and shield method using the same
JPH09279984A (en) Method for receiving shield machine into arrival shaft and receiving structure for shield machine in arrival shaft
JP3264437B2 (en) Water shielding device and method of measuring water permeability
JP3748615B2 (en) Construction method of cylindrical underground structure
JP2848289B2 (en) Open caisson blade structure
JP2637180B2 (en) Enlarged shield method
JP2668109B2 (en) Construction method for underground structures
JP3245528B2 (en) Starting method of shield excavator from branch tunnel entrance
JP3041434B2 (en) Open shield method
JP2023165499A (en) Method for placing lining concrete for tunnel
JPH11166387A (en) Form for lining back-filling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

A977 Report on retrieval

Effective date: 20071003

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A02 Decision of refusal

Effective date: 20080304

Free format text: JAPANESE INTERMEDIATE CODE: A02