JP2004315948A - Contamination prevention device for thin film deposition system - Google Patents
Contamination prevention device for thin film deposition system Download PDFInfo
- Publication number
- JP2004315948A JP2004315948A JP2003115244A JP2003115244A JP2004315948A JP 2004315948 A JP2004315948 A JP 2004315948A JP 2003115244 A JP2003115244 A JP 2003115244A JP 2003115244 A JP2003115244 A JP 2003115244A JP 2004315948 A JP2004315948 A JP 2004315948A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- film forming
- forming apparatus
- support plate
- contamination prevention
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
この発明は、薄膜形成装置、特にスパッタリングによる成膜中にパ−ティクルの発生を効果的に防止できる薄膜形成装置用汚染防止装置に関する。なお、本明細書において、特に区別して記載しない限り、上記薄膜形成装置内の周辺の機器にはターゲット及びバッキングプレートを含むものとする。
【0002】
【従来の技術】
近年、集積回路の電極や拡散バリヤ用薄膜、磁気記録媒体用磁性薄膜、液晶表示装置のITO透明導電膜などの多くに気相成長による薄膜形成技術が使用されている。気相成長法による薄膜形成技術には、熱分解法、水素還元法、不均等化反応法、プラズマCVD法等の化学的気相成長法、真空蒸着法、スパッタリング法、イオンビーム法等の物理的気相成長法、さらには放電重合法等がある。
特に、気相成長法の一つであるスパッタリング法は上記のような広範囲な材料に適用でき、また薄膜形成の制御が比較的容易であることから広く利用されている。
このスパッタリング法は周知のように、荷電粒子によりスパッタリングタ−ゲットを衝撃し、その衝撃力により該タ−ゲットからそれを構成する物質の粒子をたたき出し、これをタ−ゲットに対向させて配置した、例えばウエハ等の基板に付着させて薄膜を形成する成膜法である。
【0003】
上記のスパッタリングなどの気相成長による薄膜の形成に際し、パ−ティクルの発生という問題が大きく取り上げられるようになってきた。
このパ−ティクルは、例えばスパッタリング法におけるタ−ゲット起因の物について説明すると、タ−ゲットをスパッタリングした場合、薄膜は基板以外に薄膜形成装置の内壁や内部にある部材などいたるところに堆積する。そして該薄膜形成装置内にある部材等から剥離した薄片が直接基板表面に飛散して付着することがパ−ティクル発生の一要因であると考えられている。
【0004】
この他、タ−ゲット表面にはタ−ゲット側面や薄膜形成装置内にある部材等から剥離した薄片が核となって発生すると考えられているノジュールと呼ばれる異物が直径数μm程度に成長する。そしてこのようなノジュールはある程度成長した時点で破砕し、基板表面に飛散して付着することがパ−ティクル発生の一要因であると考えられている。
そして、上記のようなパ−ティクルが基板上の細い配線などに堆積すると、例えばLSIの場合は配線の短絡や逆に断線を引き起こすなどの問題を生ずる。
【0005】
最近では、LSI半導体デバイスの集積度が上がる(16Mビット、64Mビットさらには256Mビット等)一方、配線幅(ルール)が0.25μm以下になるなどより微細化されつつあるので、上記のようなパ−ティクルによる配線の断線や短絡等といった問題が、より頻発するようになった。このように電子デバイス回路の高集積度化や微細化が進むにつれてパ−ティクルの発生は一層大きな問題となってきたのである。
【0006】
上記に述べたようにパ−ティクル発生の原因の一つとして薄膜形成装置の内壁や内部に存在する部材の、本来ならば膜の形成が不必要である部分への薄膜の堆積の問題が大きく上げられる。具体的には基板の周辺部、シールド、バッキングプレート、シャッター、ターゲットおよびこれらの支持具などへの堆積である。
【0007】
上記のように、不必要な薄膜の堆積があったところから、この膜が剥離、飛散しパ−ティクルの発生原因となるので、これらの堆積物が厚くなり、剥離する前に薄膜形成装置の内壁や基板の周辺部、シールド、バッキングプレート、シャッター、ターゲットおよびこれらの支持具などを定期的にクリーニングするかまたは交換する手法がとられた。
また、多量に堆積する部材(機器)の部位には一旦付着した薄膜が再び剥離、飛散しないように、金属溶射皮膜を形成すること(特許文献1及び2参照)あるいはブラスト処理などの物理的な表面粗化処理を施して堆積物を捕獲しておくという手段がとられた(特許文献3参照)。
【0008】
さらにまた、上記のような作業は薄膜形成の作業能率を低下させる原因と考えられたので、堆積物が剥離・飛散しないように捕獲する防着板という取り外し可能な板が考案され、さらにこの板の熱膨張係数を変たり、板の表面にサンドブラスト処理やヘヤライン処理をするなどの工夫がなされた(特許文献4、5、6参照)。
これらの中では、特別な表面処理を施した、いわゆるパーティクルゲッターが当時の技術の中ではパ−ティクルの発生を効果的に防止する画期的なもの(特許文献7、8参照)であった。
しかし、薄膜形成装置の内壁や基板の周辺部、シールド、バッキングプレート、シャッター、ターゲット等のパーティクルゲッターを交換する場合には、点溶接した機器からパーティクルゲッターを剥がし、そこに新しいパーティクルゲッターを再度点溶接等により取付けるという、かなり煩雑な操作が必要である。また、この交換作業の際は、薄膜形成装置を休止させる必要があるという問題があった。
【0009】
【特許文献1】
特開昭61−56277号
【特許文献2】
特開平8−176816号
【特許文献3】
特開昭62−142758号
【特許文献4】
特開昭63−162861号
【特許文献5】
特開平2−285067号
【特許文献6】
特開平3−138354号
【特許文献7】
特開平1−316456号
【特許文献8】
特開平3−87357号
【0010】
【発明が解決しようとする課題】
本発明は、薄膜形成装置内のパーティクルゲッターの取替えを容易にし、装置の休止期間を短時間にすることができ、かつ薄膜形成装置の内壁や装置の内部にある機器部材表面に形成された堆積物の剥離を効果的に防止し、パ−ティクルの発生を抑制できる薄膜形成装置用汚染防止装置を提供することにある。
【0011】
【課題を解決するための手段】
本発明は、
1.薄膜形成装置において、基板以外の周辺の機器に付着した物質を捕獲する金属箔を予め支持板に取付け、該金属箔を取付けた支持板の1又は複数枚を薄膜形成装置内の機器に取替え可能に設置したことを特徴とする薄膜形成装置用汚染防止装置
2.金属箔をスポット溶接により支持板に取付けたことを特徴とする上記1記載の薄膜形成装置用汚染防止装置
3.支持板がステンレス、チタン、アルミニウム等の金属板であることを特徴とする上記1又は2記載の薄膜形成装置用汚染防止装置
4.薄膜形成装置内の機器がシールドであることを特徴とする上記1〜3のいずれかに記載の薄膜形成装置用汚染防止装置
5.基板への付着を防止するためのシールドエッジ部の上面にテーパーが付与されており、該テーパーを覆う面に金属箔を取付けた支持板を設置したことを特徴とする上記4記載の薄膜形成装置用汚染防止装置
6.テーパーの幅が20〜30mmであることを特徴とする上記5記載の薄膜形成装置用汚染防止装置
を提供する。
【0012】
本発明は、また
7.金属箔を5〜15mm間隔でスポット溶接した支持板をテーパーに設置したことを特徴とする上記5又は6記載の薄膜形成装置用汚染防止装置
8.テーパー以外のスポット溶接部を、5〜50mm間隔で溶接することを特徴とする上記7記載の薄膜形成装置用汚染防止装置
9.複数の支持板をすき間1mm以下の間隔で、密に設置することを特徴とする上記1〜8のいずれかに記載の薄膜形成装置用汚染防止装置
10.支持板を掛止め、指し込み固定、ネジ止め等の機械的手段により固定したことを特徴とする上記1〜9のいずれかに記載の薄膜形成装置用汚染防止装置
11.薄膜形成装置がスパッタリング装置であることを特徴とする上記1〜10のいずれかに記載の薄膜形成装置用汚染防止装置
12.支持板の厚さが0.5〜3mmであることを特徴とする上記1〜11のいずれかに記載の薄膜形成装置用汚染防止装置
13.支持板を掛止め、指し込み固定、ネジ止め等の機械的手段により固定する固着具の薄膜形成装置内露出部分の表面にマクロ的な凹凸を形成し、さらにブラスト処理等によりミクロ凹凸を形成し、表面粗さRa1〜20μmの粗面とすることを特徴とする上記1〜11のいずれかに記載の薄膜形成装置用汚染防止装置
14.支持板を分割し、1枚の重量を3kg以下とすることを特徴とする上記1〜12のいずれかに記載の薄膜形成装置用汚染防止装置
、を提供する。
【0013】
【発明の実施の形態】
本発明の薄膜形成装置用汚染防止装置は、薄膜形成装置内のシャッター、基板シールド(マスク)、磁気シールド、内壁等の機器、ターゲット、バッキングプレート等の全てに適用できる。
また、薄膜形成装置としては、熱分解薄膜形成装置、水素還元薄膜形成装置、不均等化反応による薄膜形成装置、プラズマCVD薄膜形成装置等の化学的気相成長薄膜形成装置、真空蒸着装置、スパッタリング装置、イオンビーム薄膜形成装置等の物理的気相成長装置、放電重合薄膜形成装置等の全ての装置に使用することができる。特に、スパッタリング装置に有効である。
【0014】
本発明の薄膜形成装置用汚染防止装置は、基板以外の周辺の機器に付着した物質を捕獲する金属箔を予め支持板に取付け、この金属箔を取付けた支持板を薄膜形成装置内の機器に取替え可能に設置する。
金属箔は、表面に無数の凹凸(銅箔の上に銅酸化物微粒子層)を形成した銅箔(通称:パーティクルゲッター)、同様に処理した鉄箔、Ti箔、ニッケルめっき箔、銅めっき箔、さらに蛇腹に形成した箔、エンボス加工箔、ブラスト処理箔、酸洗処理箔等であり、表面粗さRaが1μm以上である箔を使用することができる。
好ましくはRa1〜7.5μmが望ましい。この粗さはアンカー効果を高め、飛散物質の密着性が改善され剥離の発生を大幅に低減させる効果がある。
また、これらの金属箔の厚さとしては10〜500μm厚の箔を使用することができる。好ましい厚さは30〜250μmであり、特に70〜150μmが好ましい。支持板が補強の役目をするので、薄い箔も使用できる。
【0015】
支持板には、矩形(長方形)、L字形、その他機器の形状に合わせた小片の薄い金属板を用いる。支持板は分割して複数枚を、薄膜形成装置内に並べて設置できるので、形状は様々に変更することができる。
材料としては清浄面が容易に得られること、溶接性が良好であること、強度が高いこと、耐食性に優れていること、低価格であることからステンレスが好適である。チタン、アルミニウムも同様に使用できる。
支持板の厚さは0.5〜3mm、好ましくは1〜2mmとする。また、支持板を分割し、1枚の重量を3kg以下とすることが望ましい。
薄膜形成装置内には、支持板を掛止め、ネジ止め等の機械的手段により固定するのが簡便であり推奨できる。また、取付け位置も少なくできる利点がある。しかし、このような取付け方法は特に制限されるものではない。
【0016】
支持板を掛止め、指し込み固定、ネジ止め等の機械的手段により固定する固着具の薄膜形成装置内露出部分の表面にマクロ的な凹凸(最大高低差でおよそ0.1mm以上)を形成し、さらにブラスト処理によりミクロの凹凸を形成し、表面粗さ(中心線平均粗さ)Ra1〜20μmの粗面とすることが望ましい。これによって、小さな面積でも汚染物質の剥離を防止できる。固着具の露出部分にキャップを取付け、そこに凹凸を形成し粗面としても良い。
金属箔は支持板にスポット溶接により、しっかりと取付けることが望ましい。
支持板は、薄膜形成装置内に設置する前に準備できるので、従来に比べはるかに交換スピードが速くなる。また、ステンレス、チタン、アルミニウム等の支持板となる金属板は、腰の弱い金属箔の補強する役割をする。それによって、薄膜形成装置内への取付けが容易になる効果がある。
【0017】
図1はスパッタリング装置に使用する一体型のシールド1(シールドはマスクと呼称される場合もある)を示す。内側にはテーパー2を有する。このシールド1は支持構造体(機器)に、シールド固定ネジ3により取付ける。本発明の粗化処理された銅箔4を、例えば厚さ1.2mmの支持板となるステンレス板5に点溶接して張り合わせ、これをキャップネジ6等により固着する。
支持板であるステンレス板5は、腰の弱い銅箔4の補強としての役割をする。また、この場合に使用したステンレス板5は耐食性が高いので、スパッタリング装置内が腐食雰囲気下でも腐食及びそれによる汚染物質の放散がないという利点がある。
【0018】
図2には固着部の断面を示す。シールド固定ネジ3の頭はキャップ6により被覆されている。このキャップ6の面にマクロ的な凹凸を形成し、さらにブラスト処理等によりミクロ凹凸を形成して、表面粗さRa1〜20μmの粗面とする。
この銅箔4を点溶接したステンレス板5の1枚の重量は1500gであり、ネジ6による取付け及び取外しが極めて容易にできる。また、使用済みの金属箔4を取付けた支持板5は、通常そのまま廃棄される(材料としての再生は可能である)。
【0019】
図3は、図1のようなシールドに4分割した支持板7を設置した例を示す。夫々の支持板7には銅箔(パーティクルゲッター)を取り付けている。各支持板7のすき間8は1mm以下とする。
図4は、インナーシールド9とアウターシールド10を設けた例であり、インナーシールド9の内側にテーパー部2を有し、構造的には一体型と同一である。同様に、本発明の粗化処理された銅箔4を、例えば厚さ1.2mmの支持板となるステンレス板5に点溶接して張り合わせ、これをキャップネジ6等により固着することができる。
【0020】
本発明の薄膜形成装置用汚染防止装置は、特にスパッタリング等のシールドに使用する場合に効果的である。一般に、基板への付着を防止するためのシールドエッジ部の上面にテーパーが付与されているが、該テーパーを覆う面に金属箔を取付けた支持板を設置するのが有効である。
この面は、特に多量に物質が付着し、パーティクルの発生の原因となることが多い。したがって、より汚染防止の精度を高める必要がある。テーパーの幅は20〜30mmであるが、このテーパーの面に金属箔を5〜50mm間隔でスポット溶接した支持板を使用する。
【0021】
このテーパー部は堆積する膜厚が厚くなり、ストレスが大きくかかる部分である。特に、スポット溶接部が5mm未満(密)又は50mmを超えると、いずれの場合も膜の剥がれが生ず易くなる。適度な箔の微小な変形能が、剥がれを抑制する効果がある。さらに、上記のように、他所に比べてスポット溶接部を密にすることにより、溶接部からの剥がれを効果的に防止できる。
支持板へ溶接する場合に、テーパー以外のスポット溶接部を、15mmを超える間隔で溶接することが望ましい。密なスポット溶接は作業性(再生処理)を低下させる。複数の支持板は、汚染防止効果を高めるために1mm以下の間隔で、密に設置することが望ましい。アンカー効果による密着力を効果的に発揮させることができる。
【0022】
【発明の効果】
本発明の薄膜形成装置用汚染防止装置は、該汚染物質防止装置(パ−ティクルゲッター)の取替えを容易にし、装置の休止期間を短時間にすることができ、かつ薄膜形成装置の内壁や装置の内部にある機器部材表面に形成された堆積物の剥離を効果的に防止して、パ−ティクルの発生を抑制できるという優れた効果を有する。
【図面の簡単な説明】
【図1】スパッタリング装置の一体型のシールド装置の例を示す図である。
【図2】シールド及び支持板を固定する取付部分の断面を示す。
【図3】シールドにパーティクルゲッター(銅箔)を取り付けた4分割の支持板を設置した例を示す図である。
【図4】スパッタリング装置のインナーシールドとアウターシールドからなるシールド装置の例を示す図である。
【符号の説明】
1 一体型シールド
2 テーパー部
3 シールド固定ネジ
4 銅箔
5 支持板
6 キャップネジ
7 パーティクルゲッター(銅箔)を取り付けた分割支持板
8 すき間
9 インナーシールド
10 アウターシールド[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thin film forming apparatus, and more particularly to a pollution control apparatus for a thin film forming apparatus which can effectively prevent generation of particles during film formation by sputtering. In this specification, unless otherwise specified, peripheral devices in the thin film forming apparatus include a target and a backing plate.
[0002]
[Prior art]
2. Description of the Related Art In recent years, a thin film formation technique by vapor phase growth has been used for many of electrodes of an integrated circuit, a thin film for a diffusion barrier, a magnetic thin film for a magnetic recording medium, and an ITO transparent conductive film of a liquid crystal display device. Thin film formation techniques by vapor phase growth include chemical decomposition such as thermal decomposition, hydrogen reduction, non-uniform reaction, and plasma CVD, and physical vapor deposition such as vacuum deposition, sputtering, and ion beam. Vapor phase epitaxy, and discharge polymerization.
In particular, the sputtering method, which is one of the vapor deposition methods, is widely used because it can be applied to a wide range of materials as described above and the control of thin film formation is relatively easy.
In this sputtering method, as is well known, the sputtering target is bombarded by charged particles, the particles of the material constituting the target are beaten out of the target by the bombardment force, and this is arranged to face the target. This is a film formation method for forming a thin film by attaching the film to a substrate such as a wafer.
[0003]
In the formation of a thin film by vapor phase growth such as the above-mentioned sputtering, the problem of generation of particles has been widely taken up.
For example, when the target is sputtered, the thin film is deposited not only on the substrate but also on the inner wall of the thin film forming apparatus and on the members inside the thin film forming apparatus. It is considered that the flakes separated from the members and the like in the thin film forming apparatus directly scatter and adhere to the surface of the substrate, which is one factor of the generation of particles.
[0004]
In addition, a foreign substance called a nodule which is considered to be generated as a nucleus from a flake separated from the target side surface or a member in the thin film forming apparatus grows to a diameter of about several μm on the target surface. It is considered that such nodules are crushed when they have grown to some extent, and scatter and adhere to the substrate surface as one of the factors of particle generation.
If the above-mentioned particles are deposited on the thin wiring on the substrate, for example, in the case of an LSI, problems such as short-circuiting of the wiring or disconnection may occur.
[0005]
Recently, the integration degree of LSI semiconductor devices has been increasing (16 Mbits, 64 Mbits, and even 256 Mbits, etc.), while the wiring width (rule) has been reduced to 0.25 μm or less. Problems such as disconnection or short circuit of wiring due to particles have become more frequent. As described above, as the degree of integration and miniaturization of electronic device circuits increase, the generation of particles has become a more serious problem.
[0006]
As described above, as one of the causes of the generation of particles, the problem of deposition of a thin film on a part of the inner wall or inside of the thin film forming apparatus where film formation is not necessary is large. Can be raised. More specifically, the deposition is performed on the peripheral portion of the substrate, the shield, the backing plate, the shutter, the target, and the support thereof.
[0007]
As described above, since unnecessary thin film deposition occurs, this film peels and scatters, causing particles to be generated. Therefore, these deposits become thick, and the thin film forming apparatus needs to be removed before peeling. A method of periodically cleaning or replacing the inner wall, the peripheral portion of the substrate, the shield, the backing plate, the shutter, the target, and their supports has been adopted.
In addition, a metal sprayed film is formed on a portion of a member (equipment) where a large amount of material is deposited so that the thin film once adhered does not peel off and scatter again (see Patent Documents 1 and 2), or a physical blast treatment or the like. Means has been taken to capture the sediment by performing a surface roughening treatment (see Patent Document 3).
[0008]
Furthermore, since the above-mentioned work was considered to be a cause of lowering the work efficiency of the thin film formation, a removable plate called an anti-adhesion plate for capturing the sediment so that the sediment was not separated and scattered was devised. (See
Among these, a so-called particle getter having a special surface treatment was an epoch-making technology that effectively prevented the generation of particles in the technology at that time (see
However, when replacing the particle getter such as the inner wall of the thin film forming apparatus or the peripheral part of the substrate, the shield, the backing plate, the shutter, the target, etc., peel the particle getter from the spot welded equipment and reapply the new particle getter there. A rather complicated operation of mounting by welding or the like is required. Further, at the time of this replacement work, there is a problem that the thin film forming apparatus needs to be stopped.
[0009]
[Patent Document 1]
JP-A-61-56277 [Patent Document 2]
JP-A-8-176816 [Patent Document 3]
Japanese Patent Application Laid-Open No. 62-142758 [Patent Document 4]
JP-A-63-162861 [Patent Document 5]
JP-A-2-285067 [Patent Document 6]
JP-A-3-138354 [Patent Document 7]
JP-A-1-316456 [Patent Document 8]
JP-A-3-87357
[Problems to be solved by the invention]
INDUSTRIAL APPLICABILITY The present invention facilitates replacement of a particle getter in a thin film forming apparatus, makes it possible to shorten the downtime of the apparatus, and deposits formed on the inner wall of the thin film forming apparatus or on the surface of equipment members inside the apparatus. An object of the present invention is to provide a pollution control apparatus for a thin film forming apparatus, which can effectively prevent peeling of an object and suppress generation of particles.
[0011]
[Means for Solving the Problems]
The present invention
1. In a thin film forming apparatus, a metal foil that captures substances adhering to peripheral equipment other than the substrate is attached to a support plate in advance, and one or more of the support plates to which the metal foil is attached can be replaced with equipment in the thin film forming apparatus. 1. A pollution control device for a thin film forming apparatus, wherein 2. The pollution control device for a thin film forming apparatus according to the above item 1, wherein the metal foil is attached to the support plate by spot welding. 3. The contamination prevention device for a thin film forming apparatus according to the
[0012]
The present invention also relates to 7. 7. The contamination prevention apparatus for a thin film forming apparatus according to the above item 5 or 6, wherein a support plate obtained by spot welding metal foils at intervals of 5 to 15 mm is provided in a tapered manner. 8. The contamination prevention apparatus for a thin film forming apparatus according to the
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The contamination prevention apparatus for a thin film forming apparatus of the present invention can be applied to all devices such as a shutter, a substrate shield (mask), a magnetic shield, and inner walls, a target, a backing plate, and the like in the thin film forming apparatus.
Examples of the thin film forming apparatus include a thermal decomposition thin film forming apparatus, a hydrogen reduction thin film forming apparatus, a thin film forming apparatus by an uneven reaction, a chemical vapor deposition thin film forming apparatus such as a plasma CVD thin film forming apparatus, a vacuum deposition apparatus, and a sputtering apparatus. It can be used for all devices such as an apparatus, a physical vapor deposition apparatus such as an ion beam thin film forming apparatus, and a discharge polymerization thin film forming apparatus. In particular, it is effective for a sputtering apparatus.
[0014]
The contamination prevention device for a thin film forming apparatus of the present invention is configured such that a metal foil for capturing a substance attached to peripheral devices other than a substrate is attached to a support plate in advance, and the support plate to which the metal foil is attached is attached to a device in the thin film forming device. It is installed so that it can be replaced.
The metal foil may be a copper foil (commonly referred to as a particle getter) having a myriad of irregularities (a copper oxide fine particle layer formed on the copper foil) on its surface, an iron foil, a Ti foil, a nickel-plated foil, and a copper-plated foil similarly treated. Further, a foil formed in a bellows, an embossed foil, a blasted foil, a pickled foil and the like, and a foil having a surface roughness Ra of 1 μm or more can be used.
Preferably, Ra1 to 7.5 μm is desirable. This roughness enhances the anchor effect, improves the adhesion of the scattered substances, and has the effect of greatly reducing the occurrence of peeling.
Further, as the thickness of these metal foils, foils having a thickness of 10 to 500 μm can be used. The preferred thickness is 30 to 250 μm, particularly preferably 70 to 150 μm. Since the support plate serves as reinforcement, thin foils can also be used.
[0015]
As the support plate, a rectangular (rectangular), L-shaped, or other small thin metal plate according to the shape of the device is used. Since the support plate can be divided and a plurality of support plates can be arranged side by side in the thin film forming apparatus, the shape can be variously changed.
As a material, stainless steel is preferable because it can easily obtain a clean surface, has good weldability, has high strength, has excellent corrosion resistance, and is inexpensive. Titanium and aluminum can be used as well.
The thickness of the support plate is 0.5 to 3 mm, preferably 1 to 2 mm. In addition, it is desirable that the support plate is divided so that the weight of one support plate is 3 kg or less.
It is simple and recommended to fix the support plate in the thin film forming apparatus by mechanical means such as hooking and screwing. Also, there is an advantage that the mounting position can be reduced. However, such an attachment method is not particularly limited.
[0016]
The support plate is hooked and fixed by mechanical means such as fixing and screwing, etc. Forming macroscopic irregularities (maximum height difference of about 0.1 mm or more) on the surface of the exposed part in the thin film forming device of the fixing tool. Further, it is preferable that micro unevenness is formed by blast treatment to obtain a rough surface having a surface roughness (center line average roughness) of Ra1 to 20 μm. Thus, separation of the contaminant can be prevented even in a small area. A cap may be attached to the exposed portion of the fixing tool, and irregularities may be formed on the cap to form a rough surface.
It is desirable that the metal foil be firmly attached to the support plate by spot welding.
Since the support plate can be prepared before being installed in the thin film forming apparatus, the replacement speed is much faster than in the past. In addition, a metal plate serving as a support plate of stainless steel, titanium, aluminum or the like serves to reinforce a weak metal foil. This has the effect of facilitating attachment into the thin film forming apparatus.
[0017]
FIG. 1 shows an integrated shield 1 (a shield is sometimes called a mask) used in a sputtering apparatus. It has a
The stainless steel plate 5 serving as a support plate plays a role as reinforcement of the
[0018]
FIG. 2 shows a cross section of the fixing portion. The head of the
The weight of one stainless steel plate 5 to which the
[0019]
FIG. 3 shows an example in which a
FIG. 4 shows an example in which an
[0020]
The contamination prevention apparatus for a thin film forming apparatus of the present invention is particularly effective when used for shielding such as sputtering. In general, the upper surface of the shield edge portion is provided with a taper for preventing adhesion to the substrate, but it is effective to provide a support plate having a metal foil attached to a surface covering the taper.
In particular, a large amount of the substance adheres to this surface, which often causes generation of particles. Therefore, it is necessary to further improve the precision of contamination prevention. The width of the taper is 20 to 30 mm, and a support plate in which a metal foil is spot-welded to the tapered surface at intervals of 5 to 50 mm is used.
[0021]
The tapered portion is a portion where the film thickness to be deposited is large and a large stress is applied. In particular, when the spot-welded portion is less than 5 mm (dense) or more than 50 mm, peeling of the film easily occurs in any case. The appropriate minute deformability of the foil has the effect of suppressing peeling. Further, as described above, by making the spot welds denser than in other places, peeling from the welds can be effectively prevented.
When welding to a support plate, it is desirable to weld spot welds other than taper at intervals exceeding 15 mm. Dense spot welding reduces workability (regeneration processing). It is desirable that the plurality of support plates be densely arranged at intervals of 1 mm or less in order to enhance the pollution prevention effect. Adhesion due to the anchor effect can be effectively exerted.
[0022]
【The invention's effect】
The contamination preventing apparatus for a thin film forming apparatus of the present invention facilitates replacement of the contaminant preventing apparatus (particle getter), shortens the downtime of the apparatus, and reduces the inner wall and the apparatus of the thin film forming apparatus. This has an excellent effect that the separation of the deposits formed on the surface of the equipment member inside the device can be effectively prevented and the generation of particles can be suppressed.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an example of an integrated shield device of a sputtering device.
FIG. 2 shows a cross section of a mounting portion for fixing a shield and a support plate.
FIG. 3 is a diagram showing an example in which a 4-part support plate having a particle getter (copper foil) attached to a shield is installed.
FIG. 4 is a diagram illustrating an example of a shield device including an inner shield and an outer shield of a sputtering device.
[Explanation of symbols]
REFERENCE SIGNS LIST 1
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003115244A JP4519416B2 (en) | 2003-04-21 | 2003-04-21 | Anti-contamination device for thin film forming equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003115244A JP4519416B2 (en) | 2003-04-21 | 2003-04-21 | Anti-contamination device for thin film forming equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004315948A true JP2004315948A (en) | 2004-11-11 |
JP4519416B2 JP4519416B2 (en) | 2010-08-04 |
Family
ID=33474498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003115244A Expired - Fee Related JP4519416B2 (en) | 2003-04-21 | 2003-04-21 | Anti-contamination device for thin film forming equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4519416B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9957608B2 (en) | 2011-02-11 | 2018-05-01 | Spts Technologies Limited | Composite shielding |
KR20200090219A (en) | 2018-06-20 | 2020-07-28 | 가부시키가이샤 알박 | Desorption member and vacuum processing device |
KR20210006955A (en) | 2018-12-27 | 2021-01-19 | 가부시키가이샤 아루박 | Anti-seizure member and vacuum processing device |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0387357A (en) * | 1989-06-13 | 1991-04-12 | Nippon Mining Co Ltd | Thin film forming device |
JPH0522553U (en) * | 1991-09-06 | 1993-03-23 | 株式会社日鉱共石 | Particle getter jig cap |
JPH05230628A (en) * | 1992-02-18 | 1993-09-07 | Fujitsu Ltd | Metal film forming device and metal recovery method in metal film forming device |
JPH1060624A (en) * | 1996-08-20 | 1998-03-03 | Matsushita Electric Ind Co Ltd | Sputtering device |
JPH1192913A (en) * | 1997-09-22 | 1999-04-06 | Shibaura Mechatronics Corp | Film forming device provided with contamination preventing means |
JP2000017422A (en) * | 1998-07-07 | 2000-01-18 | Toray Ind Inc | Mask for patterning conductive film |
JP2001049419A (en) * | 1999-08-11 | 2001-02-20 | Vacuum Metallurgical Co Ltd | Parts for film forming device, and its manufacture |
JP2001316797A (en) * | 2000-05-08 | 2001-11-16 | Mitsubishi Electric Corp | Film deposition system, and deposition shield member used for film deposition system |
JP2002049047A (en) * | 2000-08-02 | 2002-02-15 | Toray Ind Inc | Device for depositing transparent conductive film |
JP2004169169A (en) * | 2002-11-22 | 2004-06-17 | Samsung Nec Mobile Display Co Ltd | Mask structure for vapor deposition, method of producing the same, and method of producing organic el element obtained by using the same |
-
2003
- 2003-04-21 JP JP2003115244A patent/JP4519416B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0387357A (en) * | 1989-06-13 | 1991-04-12 | Nippon Mining Co Ltd | Thin film forming device |
JPH0522553U (en) * | 1991-09-06 | 1993-03-23 | 株式会社日鉱共石 | Particle getter jig cap |
JPH05230628A (en) * | 1992-02-18 | 1993-09-07 | Fujitsu Ltd | Metal film forming device and metal recovery method in metal film forming device |
JPH1060624A (en) * | 1996-08-20 | 1998-03-03 | Matsushita Electric Ind Co Ltd | Sputtering device |
JPH1192913A (en) * | 1997-09-22 | 1999-04-06 | Shibaura Mechatronics Corp | Film forming device provided with contamination preventing means |
JP2000017422A (en) * | 1998-07-07 | 2000-01-18 | Toray Ind Inc | Mask for patterning conductive film |
JP2001049419A (en) * | 1999-08-11 | 2001-02-20 | Vacuum Metallurgical Co Ltd | Parts for film forming device, and its manufacture |
JP2001316797A (en) * | 2000-05-08 | 2001-11-16 | Mitsubishi Electric Corp | Film deposition system, and deposition shield member used for film deposition system |
JP2002049047A (en) * | 2000-08-02 | 2002-02-15 | Toray Ind Inc | Device for depositing transparent conductive film |
JP2004169169A (en) * | 2002-11-22 | 2004-06-17 | Samsung Nec Mobile Display Co Ltd | Mask structure for vapor deposition, method of producing the same, and method of producing organic el element obtained by using the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9957608B2 (en) | 2011-02-11 | 2018-05-01 | Spts Technologies Limited | Composite shielding |
KR20200090219A (en) | 2018-06-20 | 2020-07-28 | 가부시키가이샤 알박 | Desorption member and vacuum processing device |
KR20210006955A (en) | 2018-12-27 | 2021-01-19 | 가부시키가이샤 아루박 | Anti-seizure member and vacuum processing device |
Also Published As
Publication number | Publication date |
---|---|
JP4519416B2 (en) | 2010-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3449459B2 (en) | Method for manufacturing member for thin film forming apparatus and member for the apparatus | |
JP4623055B2 (en) | Metal film peeling prevention structure in metal film forming apparatus and semiconductor device manufacturing method using the structure | |
JP3791829B2 (en) | Sputtering target with less generation of particles | |
JP5921048B2 (en) | Sputtering method | |
WO2011122317A1 (en) | Tantalum coil for sputtering and method for processing the coil | |
JPH08277460A (en) | Parts constituting film forming device and their production | |
JPWO2013047232A1 (en) | Method for regenerating tantalum coil for sputtering and tantalum coil obtained by the method | |
JP2004315948A (en) | Contamination prevention device for thin film deposition system | |
JPH0387357A (en) | Thin film forming device | |
JP4763101B1 (en) | Tantalum coil for sputtering and processing method of the coil | |
JP2002004038A (en) | Sputtering target with less particle generation | |
JP2001295024A (en) | Member for thin film deposition system, and its manufacturing method | |
JP4709358B2 (en) | Sputtering target and sputtering apparatus, thin film, and electronic component using the same | |
JP4439652B2 (en) | Thin film forming apparatus member and manufacturing method thereof | |
JP2663025B2 (en) | Thin film forming equipment | |
JP5727740B2 (en) | Manufacturing method of backing plate | |
JPH1030174A (en) | Sputtering device and method for working backing plate used for the same device | |
JP2511545Y2 (en) | Particle getter jig cap | |
JP2004052082A (en) | Sputtering target assembly | |
JP4495853B2 (en) | Sputtering target and sputtering apparatus comprising the same | |
JP2001026862A (en) | Sputtering target and its production | |
JP2002069628A (en) | Sputtering target few in generation of particle | |
JP2001316798A (en) | Target device and sputtering system using it | |
JP2007107024A (en) | Sputtering apparatus, and target plate | |
JP2626823B2 (en) | Thin film forming equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060307 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080604 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081216 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100302 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100315 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100518 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100519 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130528 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130528 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130528 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |