JP2004315858A - Steel member with excellent impact characteristic - Google Patents

Steel member with excellent impact characteristic Download PDF

Info

Publication number
JP2004315858A
JP2004315858A JP2003108859A JP2003108859A JP2004315858A JP 2004315858 A JP2004315858 A JP 2004315858A JP 2003108859 A JP2003108859 A JP 2003108859A JP 2003108859 A JP2003108859 A JP 2003108859A JP 2004315858 A JP2004315858 A JP 2004315858A
Authority
JP
Japan
Prior art keywords
steel member
impact
value
steel
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003108859A
Other languages
Japanese (ja)
Inventor
Shinya Sakamoto
真也 坂本
Yoshio Terada
好男 寺田
Shunji Hiwatari
俊二 樋渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003108859A priority Critical patent/JP2004315858A/en
Publication of JP2004315858A publication Critical patent/JP2004315858A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel member which is subjected to impacts from specific directions and has excellent impact characteristics. <P>SOLUTION: The steel member with excellent impact characteristics has ≥1.0 Lankford value (r-value) in an impact direction 2. In the steel member with excellent impact characteristics, the r-value in the impact direction 2 takes a value higher by ≥0.2 than the average r-value. In the case where a direction 3 from which an impact comes is an axial direction 4 of the steel member 1, the impact direction 2 is the axial direction 4 of the steel member 1. In the case where the direction 3 from which an impact comes is a direction perpendicular to the axial direction 4 of the steel member 1, the impact direction 2 is a peripheral direction 5 of the steel member 1. The r-value in the impact direction 2 can be elevated by regulating a rolling direction 18 of a rolled steel sheet 11 constituting the steel member 1 so that it obliques with respect to the axial direction 4 of the steel member 1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、特定の方向から衝撃を受ける鋼部材であって、衝撃特性に優れた鋼部材に関するものである。
【0002】
【従来の技術】
自動車の車体を構成する各鋼部材は、衝突安全性を確保するために高い剛性強度が要求される。一方、自動車の燃費改善のため、あるいは走行性能の向上のためには、車体の軽量化が必要とされる。部材の剛性を向上するためには、部材を構成する素材の厚肉化が有効であるが、逆に軽量化のためには部材の薄肉化が必要である。
【0003】
自動車の衝突安全性の更なる向上と車体軽量化の両立をはかるために、車体構造ならびに新材料の研究・開発が進められている。衝突安全の観点からみた車体の構造要件では、客室は変形を最小限に止めて乗員の生存空間を確保する強固な構造とされ、客室以外は変形により効率よく衝突エネルギを吸収する構造とされる。そこで、車体構造部材のなかでも、エネルギ吸収部材としての役割を兼ねたフロントサイドメンバなどの鋼部材については、エネルギ吸収特性の最適化を図ることによって衝撃特性を向上することが重要となる。従来は、素材の高強度化や部材形状の工夫によって、剛性の向上と軽量化との両立がなされてきた。
【0004】
特許文献1においては、優れた曲げ強度と吸収エネルギー特性を発揮することができ、しかも軽量化も図ることができる自動車用構造部材として、引張強さが1400Mpa以上、伸び率が5%以上で断面形状が閉断面構造の高張力鋼管で形成され、長手方向の最大寸法をa、これと直角方向の最大寸法をb、外周長さをL、肉厚をtとした場合に、断面形状が0.65≦b/a≦0.75、0.014≦t/L≦0.020を満足するものであり、車体に取り付けた場合に部材断面形状において前記長手方向が側面衝突方向と一致するように配置される部材が開示されている。
【0005】
【特許文献1】
特開2002−248941号公報
【0006】
【発明が解決しようとする課題】
材料の高強度化及び形状の最適化により、上記のように衝突安全性の向上と部材の軽量化との両立が図られているが、さらなる衝突安全性の向上と部材の軽量化とが求められている。本発明は、より一層衝撃特性に優れた鋼部材を提供することを目的とする。
【0007】
【課題を解決するための手段】
圧延鋼板が有する材質のうちには、異方性を有するものがある。また、自動車の車体を構成する部材は、衝撃を受ける方向が特定の方向に限定されるものが多い。材質の異方性と衝撃を受ける方向とをうまく組み合わせることにより、従来と同じ材質、同じ形状の部材であっても、衝撃特性を向上させることが可能となることがある。本発明は以上の知見に基づいてなされたものであり、その要旨とするところは以下の通りである。
【0008】
(1)衝撃方向2のランクフォード値が1.0以上となることを特徴とする衝撃特性に優れた鋼部材。
(2)衝撃方向2のランクフォード値が平均ランクフォード値より0.2以上高い値となることを特徴とする衝撃特性に優れた鋼部材。
(3)衝撃を受ける方向3が鋼部材1の軸方向4であり、衝撃方向2が鋼部材1の軸方向4であることを特徴とする上記(1)又は(2)に記載の衝撃特性に優れた鋼部材。
(4)衝撃を受ける方向3が鋼部材1の軸方向4と直角の方向であり、衝撃方向2が鋼部材1の周方向5であることを特徴とする上記(1)又は(2)に記載の衝撃特性に優れた鋼部材。
(5)鋼部材1を構成する圧延鋼板11の圧延方向18は鋼部材1の軸方向4に対して斜めであることを特徴とする上記(1)乃至(3)のいずれかに記載の衝撃特性に優れた鋼部材。
【0009】
【発明の実施の形態】
自動車の車体を構成する鋼部材1であって、耐衝撃特性を要求される部材については、図2に示すように、その部材の断面形状が円筒形状のもの(図2(a))、角筒形状のもの(図2(b))、断面C字形状のもの(図2(c))、断面コの字形状のもの(図2(d))、断面X字形状のもの(図2(e))など、種々の形状が用いられる。これら形状の部材について、断面形状が定義できる面と垂直な方向を軸方向4とすることができる。軸方向4が直線ではなく、曲線状であっても良い(図2(f))。また、断面形状(断面の大きさや形)が軸方向4に変動する形状であっても良い(図2(f))。
【0010】
図1に示すように、鋼部材1が衝撃を受ける方向3としては、第1に鋼部材1の軸方向4に衝撃を受ける部材がある(図1(a))。フロントサイドメンバ等が該当する。第2に、鋼部材1の軸方向4に直角の方向が衝撃を受ける方向3である部材がある(図1(b))。ドアガードバー、センターピラー等が該当する。
【0011】
鋼部材3が特定の方向から衝撃を受けたときに、鋼部材を構成する材料の各部において「衝撃方向2」を定義することができる。例えば、図1(a)に示すように衝撃を受ける方向3が鋼部材1の軸方向4であれば、衝撃方向2も同様に鋼部材1の軸方向4となる。また、鋼部材1の断面形状が筒状、C字状、コの字状などのように「周方向5」を定義できる形状であって、かつ図1(b)に示すように衝撃を受ける方向3が鋼部材1の軸方向4と直角の方向であれば、衝撃方向2は鋼部材1の周方向5となる。鋼部材1が上記特定の方向から衝撃を受けたとき、鋼部材1を構成する材料が衝撃を吸収するのは主に上記「衝撃方向2」においてであり、衝撃方向2の耐衝撃特性が優れた材料を用いていれば、衝撃方向以外の方向における耐衝撃特性がそれよりも程度が低いという異方性を有していても、鋼部材1は優れた衝撃特性を実現することができる。
【0012】
本発明においては、衝撃方向2のランクフォード値(以下「r値」という。)が高い値であると、その鋼部材1の衝撃特性を優れたものとすることができる。
【0013】
ランクフォード値(r値)は以下のように定義される。
r値=ln(w/w)÷ln(t/t)
、t:試験片の幅、厚さ
w、t:試験片にε%の伸びを与えたときの幅、厚さ
【0014】
通常、圧延鋼板のr値は大きな異方性を有している。鋼板の平均ランクフォード値(以下「平均r値」という。)が以下のように定義される。
平均r値={r(圧延方向)+r(圧延方向に対して90°方向)+2r(圧延方向に対して45°方向)}/4
【0015】
鋼部材1の衝撃方向2において、以上のように定義されたr値が1.0以上であると、鋼部材1の衝撃特性として優れた特性を発揮することができる。また、鋼部材1の衝撃方向2において、r値が平均r値より0.2以上高い値であるときに、鋼部材1の衝撃特性として優れた特性を発揮することができる。衝撃方向2のr値が平均r値より0.4以上高い値であるとより好ましい。
【0016】
図3に示すように圧延鋼板11から鋼部材1の素材を切り出すに際し、鋼部材1の衝撃方向2となる方向がr値の高い方向となるように採片を行えば、その素材を用いて製造した鋼部材1は、衝撃方向2のr値として本発明の特性を有するものとすることができる。衝撃方向2が鋼部材1の軸方向4である場合には、軸方向4と圧延鋼板11のr値が高い方向とが一致するように斜めの方向に素材を切り出す。衝撃方向2が鋼部材1の周方向5である場合には、周方向5と圧延鋼板11のr値が高い方向とが一致するように斜めの方向に素材を切り出す。
【0017】
鋼部材1の形状が円筒形状であるような場合を例にとって、衝撃方向2のr値が1.0以上である鋼部材を製造する際の本発明について説明を行う。
【0018】
衝撃を受ける方向3が鋼部材1の軸方向4であり、衝撃方向2が同じく軸方向4である場合には、円筒形状の鋼部材1を製造する方法としては、圧延鋼板11を管状に成形するに際し、1.0以上のr値を有する方向と図3に示す切り出し方向14とが一致するように所定の幅と長さの薄鋼板12を切り出し、切り出し方向14と鋼管の軸方向4が一致するように造管することである。
【0019】
本発明は、圧延方向18のr値が1.0以下の圧延鋼板11を用いた鋼部材1において特に有効である。圧延方向18のr値が1.0以下であっても、r値の面内異方性のため、圧延鋼板の圧延方向18に対して斜めに切り出すことによって切り出し方向14のr値を1.0以上とすることが可能である。また、圧延方向18のr値が1.0以下であれば、鋼板を安価に製造することができる。同じく、平均r値が1.0以下の鋼板を用いた場合においても、上記と同様の効果を得ることができる。
【0020】
圧延方向18のr値が高い薄鋼板を製造するためには冷延前の熱間圧延条件を定め、冷延の圧下率をある特定の範囲、例えば70〜80%にし、添加元素を用いて集合組織の改善を行うなどの工夫を必要としている。本発明は、従来は鋼部材1の軸方向4としていた圧延鋼板11の圧延方向18で高r値が得られなかった多くの鋼種を用いた場合においても、軸方向4のr値が高い鋼部材1を提供することができる。
【0021】
次に鋼部材1の軸方向4のr値が1.0以上を有する鋼部材1の製造方法について説明する。図3において、熱薄鋼板又は冷薄鋼板である圧延鋼板11から、圧延鋼板でのr値が1.0以上を有する方向の角度15を切り出し方向14とし、所定の幅と長さの薄鋼板12を切り出す。所定の幅と長さに切り出した鋼板12はr値が1.0以上である切り出し方向14が鋼部材1の軸方向4となるようにロールベンドおよびプレス成形により管状に成形し、突合せ部17を接合して鋼部材1とする。接合方法としては、高周波誘導加熱方法、あるいはレーザ溶接方法を採用することができる。突合せ部17の方向は軸方向4と一致する。
【0022】
本発明において、切り出し方向14を圧延方向18とは異なる斜め方向とする理由は、所望のランクフォード値に合わせて所定の長さの鋼板を歩留まり良く効率的に板取りするためである。それによって、圧延方向に直角な方向から板取りするよりもより長い鋼管を得ることができるからである。
【0023】
図3の例における本発明の鋼部材1は、圧延鋼板11を管状に成形し、突合せ部7を接合した溶接鋼管である。突合せ部17の方向は鋼管の軸方向4と一致している。鋼部材1を構成する圧延鋼板11の圧延方向18は軸方向4に対して斜めであるため、圧延方向と斜めのr値が1.0より大きい方向を軸方向4とすることができ、結果として軸方向4においてr値が1.0以上である。
【0024】
図1(b)に示すように衝撃を受ける方向3が鋼部材1の軸方向4と直角の方向であり、衝撃方向2が鋼部材1の周方向5となる場合には、鋼部材1を製造する方法としては、圧延鋼板11を管状に成形するに際し、1.0以上のr値を有する方向と切り出し方向14に直角の方向とが一致するように所定の幅と長さの薄鋼板12を切り出し、切り出し方向14と鋼部材1の軸方向4が一致するように造管することである。これによって、鋼管の周方向5におけるr値を1.0以上とすることができる。
【0025】
圧延鋼板11から上記のように切り出した鋼板12を用いてまず鋼管を形成し、その後この鋼管を素材としてハイドロフォーム加工を行えば、種々の形状を有する鋼部材1を形成することができる。鋼管の軸方向のr値が1.0以上となるように形成した鋼管においては、ハイドロフォーム加工性も優れているという特徴を有している。一方、圧延鋼板11において、r値が高い方向と直角の方向についても高いr値が得られる場合が多い。従って、鋼管の周方向5のr値が1.0以上となるように形成した鋼管においても、同時に鋼管の軸方向4のr値を高い値とすることが可能である場合が多く、そのような場合には同じくハイドロフォーム加工性が優れているという特徴を具備することができる。
【0026】
【実施例】
図1(a)に示すような円筒形状の鋼部材1(直径63.5mm、肉厚2.0mm)であって、衝撃を受ける方向3が鋼部材1の軸方向4であるような鋼部材1について、本発明を適用した。衝撃方向2も鋼部材1の軸方向4である。鋼部材1の素材として、平均r値が1.2である圧延鋼板11を用いた。この圧延鋼板11は、圧延方向18のr値が0.6、圧延方向18から90°の方向のr値が1.0、45°の方向のr値が1.5であった。
【0027】
本発明例1は、図3(a)に示すように切り出し角度15を圧延方向18から90°の方向に鋼板12を切り出し、本発明例2は斜めの方向の45°の方向に切り出した。比較例3は切り出し角度15を0°とした。その後、図3(b)に示すように、切り出し方向14が鋼部材1の軸方向4となるようにロールベンドおよびプレス成形により管状に成形し、突合せ部17を接合して鋼部材1とした。接合方法としては、レーザー溶接方法を採用した。
【0028】
このように成形した鋼部材1を用い、衝撃を受ける方向3を鋼部材の軸方向4となるように衝撃力を付与し、吸収エネルギーを比較した。エネルギー吸収量は衝撃時の時間毎での部材の反力と変形移動距離から吸収エネルギーを算出している。
【0029】
吸収エネルギーは、比較例3と対比し、衝撃方向2のr値が1.0である本発明例1は50%向上、衝撃方向2のr値が1.5である本発明例2は75%の向上を実現することができた。
【0030】
【発明の効果】
本発明は、圧延鋼板から鋼部材の素材を切り出すに際して切り出し方向に配慮することにより、衝撃方向のr値が高い値となる鋼部材を形成し、鋼部材の衝撃特性を向上することを可能にした。
【図面の簡単な説明】
【図1】鋼部材の衝撃を受ける方向及び衝撃方向について説明する斜視図であり、(a)は衝撃を受ける方向が鋼部材の軸方向である場合、(b)は衝撃を受ける方向が鋼部材の軸方向に直角の場合である。
【図2】本発明を適用することのできる鋼部材の形状の例を示す斜視図であり、(a)は断面形状が円筒形状のもの、(b)は角筒形状のもの、(c)は断面C字形状のもの、(d)は断面コの字形状のもの、(e)は断面X字形状のもの、(f)は軸方向が直線でなく、断面形状が軸方向に変動する例を示す図である。
【図3】本発明の鋼部材を形成する状況を示す斜視図であり、(a)は圧延鋼板から素材を切り出す状況を示す図、(b)は切り出した素材を用いて鋼部材を成形する状況を示す図である。
【符号の説明】
1 鋼部材
2 衝撃方向
3 衝撃を受ける方向
4 軸方向
5 周方向
11 圧延鋼板
12 切り出した鋼板
14 切り出し方向
15 切り出し角度
17 突き合せ部
18 圧延方向
19 曲げ加工
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a steel member which receives an impact from a specific direction, and which has excellent impact characteristics.
[0002]
[Prior art]
Each steel member constituting the body of the automobile is required to have high rigidity to ensure collision safety. On the other hand, in order to improve the fuel efficiency of the automobile or the driving performance, it is necessary to reduce the weight of the vehicle body. In order to improve the rigidity of the member, it is effective to increase the thickness of the material constituting the member, but conversely, in order to reduce the weight, it is necessary to reduce the thickness of the member.
[0003]
Research and development of body structures and new materials are being pursued in order to further improve the collision safety of automobiles and reduce the body weight. From the viewpoint of collision safety, the structural requirements of the vehicle body are such that the passenger cabin has a strong structure that minimizes deformation and secures the occupant's living space, and the cabin other than the cabin has a structure that efficiently absorbs collision energy by deformation. . Therefore, among steel structural members such as front side members that also function as energy absorbing members, it is important to improve the impact characteristics by optimizing the energy absorbing characteristics. Conventionally, both improvement in rigidity and reduction in weight have been achieved by increasing the strength of the material and devising the member shape.
[0004]
Patent Literature 1 discloses a structural member for an automobile that can exhibit excellent bending strength and absorption energy characteristics, and that can also be reduced in weight, has a tensile strength of 1400 Mpa or more, an elongation of 5% or more, and a cross section. When the shape is formed of a high-tensile steel pipe having a closed cross-sectional structure, the maximum dimension in the longitudinal direction is a, the maximum dimension in the direction perpendicular thereto is b, the outer peripheral length is L, and the wall thickness is t. .65 ≦ b / a ≦ 0.75, 0.014 ≦ t / L ≦ 0.020, so that when attached to the vehicle body, the longitudinal direction coincides with the side collision direction in the member cross-sectional shape. Are disclosed.
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-248941
[Problems to be solved by the invention]
By improving the strength of the material and optimizing the shape, both the improvement of the collision safety and the reduction of the weight of the member have been achieved as described above, but further improvement of the collision safety and the reduction of the weight of the member are required. Have been. An object of the present invention is to provide a steel member having more excellent impact characteristics.
[0007]
[Means for Solving the Problems]
Some of the materials of the rolled steel sheet have anisotropy. In many cases, members constituting a vehicle body of an automobile are limited to receive a shock only in a specific direction. By properly combining the anisotropy of the material and the direction in which the impact is received, it may be possible to improve the impact characteristics even with a member having the same material and the same shape as the conventional one. The present invention has been made based on the above findings, and the gist thereof is as follows.
[0008]
(1) A steel member excellent in impact characteristics, wherein a Rankford value in impact direction 2 is 1.0 or more.
(2) A steel member having excellent impact characteristics, wherein a Rankford value in the impact direction 2 is 0.2 or more higher than the average Rankford value.
(3) The impact characteristic according to (1) or (2), wherein the impact receiving direction 3 is the axial direction 4 of the steel member 1, and the impact direction 2 is the axial direction 4 of the steel member 1. Excellent steel member.
(4) In the above (1) or (2), the impact receiving direction 3 is a direction perpendicular to the axial direction 4 of the steel member 1, and the impact direction 2 is the circumferential direction 5 of the steel member 1. A steel member having excellent impact characteristics as described.
(5) The impact as described in any one of (1) to (3) above, wherein the rolling direction 18 of the rolled steel plate 11 constituting the steel member 1 is oblique to the axial direction 4 of the steel member 1. Steel members with excellent properties.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
As shown in FIG. 2, the steel member 1 constituting the body of the automobile, which is required to have impact resistance, has a cylindrical cross section (FIG. 2A), 2 (b), C-shaped section (FIG. 2C), U-shaped section (D), and X-shaped section (FIG. 2). Various shapes such as (e)) are used. With respect to the members having these shapes, the direction perpendicular to the plane on which the cross-sectional shape can be defined can be set as the axial direction 4. The axial direction 4 may be a curved line instead of a straight line (FIG. 2F). Further, the cross-sectional shape (the size or shape of the cross-section) may be a shape that varies in the axial direction 4 (FIG. 2F).
[0010]
As shown in FIG. 1, as the direction 3 in which the steel member 1 receives an impact, there is a member which receives a shock in the first axial direction 4 of the steel member 1 (FIG. 1A). The front side member etc. correspond. Secondly, there is a member in which the direction perpendicular to the axial direction 4 of the steel member 1 is the direction 3 in which the impact is received (FIG. 1B). Door guard bars, center pillars, etc. correspond.
[0011]
When the steel member 3 receives an impact from a specific direction, “impact direction 2” can be defined in each part of the material constituting the steel member. For example, if the impact receiving direction 3 is the axial direction 4 of the steel member 1 as shown in FIG. 1A, the impact direction 2 is also the axial direction 4 of the steel member 1. Further, the cross-sectional shape of the steel member 1 is a shape that can define the “circumferential direction 5” such as a cylindrical shape, a C-shape, and a U-shape, and receives a shock as shown in FIG. If the direction 3 is perpendicular to the axial direction 4 of the steel member 1, the impact direction 2 is the circumferential direction 5 of the steel member 1. When the steel member 1 receives an impact from the above specific direction, the material constituting the steel member 1 absorbs the impact mainly in the above “impact direction 2”, and the impact resistance in the impact direction 2 is excellent. If such a material is used, the steel member 1 can realize excellent impact characteristics even if it has anisotropy such that the impact resistance in directions other than the impact direction is lower than that.
[0012]
In the present invention, when the Rankford value in the impact direction 2 (hereinafter, referred to as “r value”) is a high value, the impact characteristics of the steel member 1 can be improved.
[0013]
The Rankford value (r value) is defined as follows.
r value = ln (w 0 / w) ÷ ln (t 0 / t)
w 0 , t 0 : width and thickness of the test piece w, t: width and thickness when the test piece is given ε% elongation
Usually, the r-value of a rolled steel sheet has a large anisotropy. The average Rankford value (hereinafter referred to as “average r value”) of the steel sheet is defined as follows.
Average r value = {r L (rolling direction) + r C (90 ° direction relative to rolling direction) + 2r D (45 ° direction relative to rolling direction)} / 4
[0015]
When the r value defined as above in the impact direction 2 of the steel member 1 is 1.0 or more, the steel member 1 can exhibit excellent impact characteristics. Further, when the r value is 0.2 or more higher than the average r value in the impact direction 2 of the steel member 1, excellent characteristics as impact characteristics of the steel member 1 can be exhibited. It is more preferable that the r value in the impact direction 2 be a value 0.4 or more higher than the average r value.
[0016]
As shown in FIG. 3, when cutting out the material of the steel member 1 from the rolled steel plate 11, if the cutting is performed such that the direction in which the impact direction 2 of the steel member 1 becomes the direction of the higher r value, the material is used. The manufactured steel member 1 can have the characteristics of the present invention as the r value in the impact direction 2. When the impact direction 2 is the axial direction 4 of the steel member 1, the material is cut out in an oblique direction so that the axial direction 4 matches the direction in which the r-value of the rolled steel plate 11 is high. When the impact direction 2 is the circumferential direction 5 of the steel member 1, the material is cut in an oblique direction so that the circumferential direction 5 and the direction in which the r-value of the rolled steel plate 11 is high match.
[0017]
The present invention when manufacturing a steel member having an r value of 1.0 or more in the impact direction 2 will be described by taking a case where the steel member 1 has a cylindrical shape as an example.
[0018]
When the impact receiving direction 3 is the axial direction 4 of the steel member 1 and the impact direction 2 is also the axial direction 4, a method for manufacturing the cylindrical steel member 1 is to form the rolled steel plate 11 into a tubular shape. In doing so, the thin steel plate 12 having a predetermined width and length is cut out so that the direction having an r value of 1.0 or more and the cutout direction 14 shown in FIG. 3 match, and the cutout direction 14 and the axial direction 4 of the steel pipe are aligned. It is to make a tube to match.
[0019]
The present invention is particularly effective in the steel member 1 using the rolled steel sheet 11 having an r value of 1.0 or less in the rolling direction 18. Even if the r value in the rolling direction 18 is 1.0 or less, the r value in the cutting direction 14 is set to 1. It can be 0 or more. If the r value in the rolling direction 18 is 1.0 or less, a steel sheet can be manufactured at low cost. Similarly, even when a steel sheet having an average r value of 1.0 or less is used, the same effect as described above can be obtained.
[0020]
In order to manufacture a thin steel sheet having a high r-value in the rolling direction 18, hot rolling conditions before cold rolling are determined, the rolling reduction of the cold rolling is set to a specific range, for example, 70 to 80%, and an additional element is used. Innovative measures such as improving the texture are required. The present invention provides a steel plate having a high r value in the axial direction 4 even when using many steel types in which a high r value could not be obtained in the rolling direction 18 of the rolled steel sheet 11 which was conventionally the axial direction 4 of the steel member 1. A member 1 can be provided.
[0021]
Next, a method of manufacturing the steel member 1 in which the r value in the axial direction 4 of the steel member 1 is 1.0 or more will be described. In FIG. 3, an angle 15 of a direction in which the r value of the rolled steel sheet has 1.0 or more is defined as a cutting direction 14 from a rolled steel sheet 11 that is a hot thin steel sheet or a cold thin steel sheet, and a thin steel sheet having a predetermined width and length. Cut out 12 The steel plate 12 cut to a predetermined width and length is formed into a tubular shape by roll bending and press forming so that the cutting direction 14 having an r value of 1.0 or more is the axial direction 4 of the steel member 1, and the butt portion 17 is formed. Are joined to form a steel member 1. As a joining method, a high-frequency induction heating method or a laser welding method can be adopted. The direction of the butting portion 17 coincides with the axial direction 4.
[0022]
In the present invention, the reason why the cutting direction 14 is an oblique direction different from the rolling direction 18 is to efficiently and efficiently remove a steel plate having a predetermined length in accordance with a desired Rankford value with a high yield. Thereby, a longer steel pipe can be obtained than in the case where the steel pipe is removed from a direction perpendicular to the rolling direction.
[0023]
The steel member 1 of the present invention in the example of FIG. 3 is a welded steel pipe in which a rolled steel plate 11 is formed into a tube and the butted portions 7 are joined. The direction of the butting portion 17 coincides with the axial direction 4 of the steel pipe. Since the rolling direction 18 of the rolled steel sheet 11 constituting the steel member 1 is oblique with respect to the axial direction 4, the direction in which the r value of the rolling direction and the oblique r value is greater than 1.0 can be regarded as the axial direction 4. In the axial direction 4, the r value is 1.0 or more.
[0024]
As shown in FIG. 1 (b), when the impact receiving direction 3 is a direction perpendicular to the axial direction 4 of the steel member 1 and the impact direction 2 is the circumferential direction 5 of the steel member 1, As a manufacturing method, when the rolled steel sheet 11 is formed into a tubular shape, a thin steel sheet 12 having a predetermined width and length is set so that a direction having an r value of 1.0 or more and a direction perpendicular to the cutting direction 14 coincide with each other. And pipe-forming such that the cutting direction 14 and the axial direction 4 of the steel member 1 coincide with each other. Thereby, the r value in the circumferential direction 5 of the steel pipe can be set to 1.0 or more.
[0025]
First, a steel pipe is formed using the steel sheet 12 cut out from the rolled steel sheet 11 as described above, and then, by performing hydroforming using the steel pipe as a raw material, the steel member 1 having various shapes can be formed. A steel pipe formed so that the r value in the axial direction of the steel pipe is 1.0 or more has a feature that hydroformability is excellent. On the other hand, in the rolled steel sheet 11, a high r value is often obtained also in a direction perpendicular to the direction in which the r value is high. Therefore, even in a steel pipe formed such that the r value in the circumferential direction 5 of the steel pipe is 1.0 or more, it is often possible to simultaneously increase the r value in the axial direction 4 of the steel pipe to a high value. In such a case, it is possible to provide a feature that hydroformability is excellent.
[0026]
【Example】
FIG. 1 (a) is a cylindrical steel member 1 (diameter 63.5 mm, wall thickness 2.0 mm), in which the direction of impact 3 is the axial direction 4 of the steel member 1. The present invention was applied to No. 1. The impact direction 2 is also the axial direction 4 of the steel member 1. As a material of the steel member 1, a rolled steel sheet 11 having an average r value of 1.2 was used. In this rolled steel sheet 11, the r value in the rolling direction 18 was 0.6, the r value in a direction at 90 ° from the rolling direction 18 was 1.0, and the r value in a direction at 45 ° was 1.5.
[0027]
In Example 1 of the present invention, as shown in FIG. 3A, the steel sheet 12 was cut out at a cutting angle 15 of 90 ° from the rolling direction 18, and in Example 2 of the present invention, the steel sheet 12 was cut in an oblique direction of 45 °. In Comparative Example 3, the cutout angle 15 was 0 °. Thereafter, as shown in FIG. 3B, the steel member 1 is formed by rolling and press-forming so that the cutout direction 14 is the axial direction 4 of the steel member 1, and the butted portions 17 are joined. . As a joining method, a laser welding method was employed.
[0028]
Using the steel member 1 thus formed, an impact force was applied so that the impact receiving direction 3 became the axial direction 4 of the steel member, and the absorbed energy was compared. The amount of energy absorption is calculated from the reaction force of the member and the deformation movement distance at each time of impact.
[0029]
In comparison with Comparative Example 3, the absorbed energy was improved by 50% in Inventive Example 1 in which the r value in the impact direction 2 was 1.0, and in Inventive Example 2 in which the r value in the impact direction 2 was 1.5. % Improvement could be realized.
[0030]
【The invention's effect】
The present invention makes it possible to form a steel member having a high r value in the impact direction by considering the cutting direction when cutting a material of the steel member from the rolled steel sheet, and to improve the impact characteristics of the steel member. did.
[Brief description of the drawings]
FIGS. 1A and 1B are perspective views illustrating a direction in which a steel member receives an impact and an impact direction, wherein FIG. 1A illustrates a case in which the direction of the impact is the axial direction of the steel member, and FIG. This is a case where it is perpendicular to the axial direction of the member.
FIG. 2 is a perspective view showing an example of a shape of a steel member to which the present invention can be applied, (a) having a cylindrical cross-sectional shape, (b) having a rectangular cylindrical shape, and (c). Is a C-shaped cross section, (d) is a U-shaped cross section, (e) is an X-shaped cross section, (f) is not a straight line in the axial direction, and the cross-sectional shape varies in the axial direction. It is a figure showing an example.
FIGS. 3A and 3B are perspective views showing a state of forming a steel member of the present invention, wherein FIG. 3A is a view showing a state of cutting a material from a rolled steel plate, and FIG. It is a figure showing a situation.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steel member 2 Impact direction 3 Impact receiving direction 4 Axial direction 5 Circumferential direction 11 Rolled steel plate 12 Cut out steel plate 14 Cutting direction 15 Cutting angle 17 Butting part 18 Rolling direction 19 Bending process

Claims (5)

衝撃方向のランクフォード値が1.0以上となることを特徴とする衝撃特性に優れた鋼部材。A steel member having excellent impact characteristics, wherein a Rankford value in an impact direction is 1.0 or more. 衝撃方向のランクフォード値が平均ランクフォード値より0.2以上高い値となることを特徴とする衝撃特性に優れた鋼部材。A steel member having excellent impact properties, characterized in that the Rankford value in the impact direction is 0.2 or more higher than the average Rankford value. 衝撃を受ける方向が前記鋼部材の軸方向であり、前記衝撃方向が前記鋼部材の軸方向であることを特徴とする請求項1又は2に記載の衝撃特性に優れた鋼部材。The steel member having excellent impact characteristics according to claim 1 or 2, wherein the direction in which the impact is received is an axial direction of the steel member, and the impact direction is an axial direction of the steel member. 衝撃を受ける方向が前記鋼部材の軸方向と直角の方向であり、前記衝撃方向が前記鋼部材の周方向であることを特徴とする請求項1又は2に記載の衝撃特性に優れた鋼部材。The steel member having excellent impact characteristics according to claim 1 or 2, wherein the direction in which the impact is applied is a direction perpendicular to the axial direction of the steel member, and the impact direction is a circumferential direction of the steel member. . 鋼部材を構成する圧延鋼板の圧延方向は鋼部材の軸方向に対して斜めであることを特徴とする請求項1乃至3のいずれかに記載の衝撃特性に優れた鋼部材。The steel member having excellent impact characteristics according to any one of claims 1 to 3, wherein the rolling direction of the rolled steel sheet constituting the steel member is oblique to the axial direction of the steel member.
JP2003108859A 2003-04-14 2003-04-14 Steel member with excellent impact characteristic Withdrawn JP2004315858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003108859A JP2004315858A (en) 2003-04-14 2003-04-14 Steel member with excellent impact characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003108859A JP2004315858A (en) 2003-04-14 2003-04-14 Steel member with excellent impact characteristic

Publications (1)

Publication Number Publication Date
JP2004315858A true JP2004315858A (en) 2004-11-11

Family

ID=33470201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003108859A Withdrawn JP2004315858A (en) 2003-04-14 2003-04-14 Steel member with excellent impact characteristic

Country Status (1)

Country Link
JP (1) JP2004315858A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020152257A (en) * 2019-03-20 2020-09-24 日本製鉄株式会社 Vehicle body member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020152257A (en) * 2019-03-20 2020-09-24 日本製鉄株式会社 Vehicle body member
JP7288183B2 (en) 2019-03-20 2023-06-07 日本製鉄株式会社 body parts

Similar Documents

Publication Publication Date Title
JP4934283B2 (en) Body reinforcement members
WO2006014523A2 (en) Reinforced structural member and method for its manufacture
JP4388340B2 (en) Strength members for automobiles
WO2017170561A1 (en) Metal tube and structural member using metal tube
JP4045846B2 (en) Impact energy absorbing member
JP4875715B2 (en) Bracket-integrated impact beam for automobile and manufacturing method thereof
JP4736905B2 (en) Vehicle center pillar reinforcement structure
JP5049210B2 (en) Bumper stay
JPH09277953A (en) Shock absorbing member
JP2009280141A (en) Bumper stay and bumper structure
JP4039032B2 (en) Impact energy absorbing member
JP2004315858A (en) Steel member with excellent impact characteristic
JP5419401B2 (en) Roll bending member and roll bending method
JP5283405B2 (en) Automotive reinforcement
CN101336172A (en) Automobile impact beam with integrated brackets and the manufacturing method thereof
JP2003139179A (en) Collision energy absorption member
JP2001219226A (en) High-strength steel tube for hydroforming
JP2023509623A (en) Expanded tube for automobile crash box and manufacturing method thereof
JP2005153567A (en) Shock absorbing member
JP2004330242A (en) Steel pipe with superior stiffness, and its manufacturing method
JP3015894B2 (en) Impact beam for automobile door and method of manufacturing the same
JP7364225B2 (en) Instrument panel reinforcement member
JPH0475715A (en) Steel tube for reinforcing car body
JP2005170232A (en) Shock absorbing member
JPH04143014A (en) Steel tube for reinforcing car body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060704