JP7288183B2 - body parts - Google Patents

body parts Download PDF

Info

Publication number
JP7288183B2
JP7288183B2 JP2019053191A JP2019053191A JP7288183B2 JP 7288183 B2 JP7288183 B2 JP 7288183B2 JP 2019053191 A JP2019053191 A JP 2019053191A JP 2019053191 A JP2019053191 A JP 2019053191A JP 7288183 B2 JP7288183 B2 JP 7288183B2
Authority
JP
Japan
Prior art keywords
body member
curved portion
vehicle body
portions
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019053191A
Other languages
Japanese (ja)
Other versions
JP2020152257A (en
Inventor
雅彦 阿部
紘明 窪田
孝博 相藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019053191A priority Critical patent/JP7288183B2/en
Publication of JP2020152257A publication Critical patent/JP2020152257A/en
Priority to JP2023043604A priority patent/JP2023075317A/en
Application granted granted Critical
Publication of JP7288183B2 publication Critical patent/JP7288183B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば自動車用の車体部材に関する。 The present invention relates to a body member, for example for motor vehicles.

従来、車体部材として、鋼板を材料として形成され所定の断面形状を有する中空部材が用いられている。これらの車体部材は、軽量化を実現するとともに、十分な耐荷重を有することが求められる。このため、近年、高い強度を有する高張力鋼板が材料として使用されることがある。 2. Description of the Related Art Conventionally, a hollow member made of a steel plate and having a predetermined cross-sectional shape is used as a vehicle body member. These vehicle body members are required to be lightweight and have sufficient load resistance. For this reason, in recent years, high-strength steel sheets have been used as materials in some cases.

車体に対して衝突等による衝撃が加えられる場合には、車体部材は軸方向の圧縮荷重を受け得る。車体部材の十分な耐荷重を実現するためには、車体部材の高い軸方向圧縮耐力を確保し、例えば座屈を抑制することが求められる。下記の特許文献1には、軸方向圧縮曲げ変形を被る車体構造用部材において、より軽量で、軸方向圧縮曲げ強度が高い部材を実現するため、圧縮変形を受ける面を外側に凸に湾曲させる技術が記載されている。 When an impact such as a collision is applied to the vehicle body, the vehicle body member may receive an axial compressive load. In order to achieve a sufficient load bearing capacity of the vehicle body member, it is required to secure a high axial compressive strength of the vehicle body member, for example, to suppress buckling. In Patent Document 1 below, in order to realize a member for body structure that is subjected to axial compressive bending deformation, in order to realize a member that is lighter and has high axial compressive bending strength, the surface that undergoes compressive deformation is curved outwardly. technique is described.

特開2005-186777号公報JP 2005-186777 A

上記特許文献1に記載の技術は、部材の断面形状のうち、圧縮変形を受ける面の形状を外側に凸に湾曲させるのみであり、湾曲面に連続する平面も含めた断面形状が部材全体の軸方向圧縮耐力に与える影響を考慮していない。また、車体構造用部材に使用する材料の薄肉化・高強度化は、当該部材の弾性座屈応力を低下させうる。このため、軸方向圧縮荷重を受ける部位において、材料の降伏応力に到達する前に弾性座屈が生じるおそれがあり、これにより軸方向圧縮耐力が低下するおそれがある。しかし、上記特許文献1に記載の技術を含め、従来の技術は、このような観点から車体部材の断面形状を設定するものではなかった。 In the technique described in Patent Document 1, of the cross-sectional shape of the member, only the shape of the surface that undergoes compression deformation is curved outward, and the cross-sectional shape including the plane that is continuous with the curved surface is the entire member. The effect on axial compressive strength is not considered. Further, reduction in thickness and increase in strength of materials used for vehicle body structural members can reduce the elastic buckling stress of the members. For this reason, elastic buckling may occur before the yield stress of the material is reached at the portion receiving the axial compressive load, which may reduce the axial compressive strength. However, the conventional techniques, including the technique described in Patent Document 1, do not set the cross-sectional shape of the vehicle body member from such a viewpoint.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、より軽量で、かつ高い軸方向圧縮耐力を確保可能な、新規かつ改良された車体部材を提供することにある。 SUMMARY OF THE INVENTION Accordingly, the present invention has been made in view of the above problems, and an object of the present invention is to provide a new and improved vehicle body member that is lighter in weight and capable of ensuring high axial compressive strength. to do.

上記課題を解決するために、本発明のある観点によれば、板厚が1.6mm以下である鋼板により形成され、軸直角方向断面の形状が、外側または内側に凸の少なくとも1つの湾曲部と、少なくとも1つの平面部とを有し、曲率半径が最大である1つの湾曲部を基準湾曲部とし、基準湾曲部の長手方向両端のうち、一端のみに平面部が連続する場合は当該平面部、両端に平面部が連続する場合は当該平面部のうち長いほうの平面部を、それぞれ基準平面部とし、基準湾曲部の長手方向両端のうち基準平面部が連続しないほうの端から基準湾曲部の接線方向に延びる直線を第1直線とし、基準平面部の延長線を第2直線とし、第1直線と第2直線の交点と、基準平面部の長手方向両端のうち基準湾曲部に連続しないほうの端と、の間の長さをb0とし、基準平面部の長さをb1とし、基準湾曲部の曲率半径をRとするとき、以下の式(1)および式(2)を満足鋼板の引張強度が1180MPa以上であり、Rが15mm以上である、トンネル、キックリーンフォース、フロアクロスメンバ、アンダーリーンフォースのいずれかの車体部材が提供される。ただし、基準平面部を形成する部分の鋼板の、板厚をt、ヤング率をE、ポアソン比をν、降伏応力をσとする。

Figure 0007288183000001
Figure 0007288183000002
In order to solve the above problems, according to one aspect of the present invention, at least one curved portion is formed of a steel plate having a thickness of 1.6 mm or less and has a cross-sectional shape in the direction perpendicular to the axis that is outwardly or inwardly convex. and at least one flat portion, and one curved portion having the largest radius of curvature is defined as the reference curved portion, and when the flat portion continues to only one of the longitudinal ends of the reference curved portion, the plane If the plane portions are continuous at both ends, the longer plane portion of the plane portions is used as the reference plane portion, and the reference curve is started from the end of the longitudinal direction end of the reference curved portion where the reference plane portion is not continuous. A straight line extending in a tangential direction of the portion is defined as a first straight line, an extension line of the reference flat portion is defined as a second straight line, and the intersection of the first straight line and the second straight line is connected to the reference curved portion of both ends in the longitudinal direction of the reference flat portion. The following equations (1) and (2) are satisfied, where b0 is the length between the opposite end and b0, b1 is the length of the reference flat portion, and R is the radius of curvature of the reference curved portion. A vehicle body member selected from a tunnel, a kick reinforcement, a floor cross member, and an under reinforcement is provided, in which the steel plate has a tensile strength of 1180 MPa or more and an R of 15 mm or more . However, the thickness of the steel plate forming the reference flat portion is t, Young's modulus is E, Poisson's ratio is ν, and yield stress is σy .
Figure 0007288183000001
Figure 0007288183000002

上記b1が10mm以上であってもよい。 The b1 may be 10 mm or more.

上記基準湾曲部を間に挟んで第1直線と第2直線がなす角度が80°以上、150°以下であってもよい。 An angle formed by the first straight line and the second straight line with the reference curved portion interposed therebetween may be 80° or more and 150° or less.

上記軸直角方向断面が、閉断面であってもよい。 The cross section perpendicular to the axis may be a closed cross section.

以上説明したように本発明によれば、より軽量で、かつ高い軸方向圧縮耐力を確保可能な車体部材が提供される。 As described above, according to the present invention, there is provided a vehicle body member that is lighter in weight and capable of ensuring a high axial compressive strength.

本発明の第1の実施形態に係る車体部材の一例を示す軸直角方向断面図である。1 is an axis-perpendicular cross-sectional view showing an example of a vehicle body member according to a first embodiment of the present invention; FIG. 実施例1-1に係る車体部材の基準湾曲部の曲率半径と軸方向圧縮耐力との関係を示すグラフである。4 is a graph showing the relationship between the curvature radius of the reference curved portion of the vehicle body member according to Example 1-1 and the axial compressive strength. 実施例1-2に係る車体部材の基準湾曲部の曲率半径と軸方向圧縮耐力との関係を示すグラフである。10 is a graph showing the relationship between the curvature radius of the reference curved portion of the vehicle body member according to Example 1-2 and the axial compressive strength. 第1の実施形態の変形例1-1に係る車体部材を示す軸直角方向断面図である。FIG. 11 is a cross-sectional view in the direction perpendicular to the axis showing a vehicle body member according to modification 1-1 of the first embodiment; 同実施形態の変形例1-2に係る車体部材を示す軸直角方向断面図である。FIG. 11 is a cross-sectional view in the direction perpendicular to the axis showing a vehicle body member according to Modification 1-2 of the same embodiment. 同実施形態の変形例1-3に係る車体部材を示す軸直角方向断面図である。FIG. 11 is a cross-sectional view in the direction perpendicular to the axis showing a vehicle body member according to Modified Example 1-3 of the same embodiment; 本発明の第2の実施形態に係る車体部材の一例を示す軸直角方向断面図である。FIG. 5 is an axis-perpendicular cross-sectional view showing an example of a vehicle body member according to a second embodiment of the present invention; 同実施形態の変形例2-1に係る車体部材を示す軸直角方向断面図である。FIG. 11 is a cross-sectional view in the direction perpendicular to the axis showing a vehicle body member according to modification 2-1 of the same embodiment; 同実施形態の変形例2-2に係る車体部材を示す軸直角方向断面図である。FIG. 11 is a cross-sectional view in the direction perpendicular to the axis showing a vehicle body member according to modification 2-2 of the same embodiment. 同実施形態の変形例2-3に係る車体部材を示す軸直角方向断面図である。FIG. 11 is a cross-sectional view in the direction perpendicular to the axis showing a vehicle body member according to Modification 2-3 of the same embodiment; 同実施形態の変形例2-4に係る車体部材を示す軸直角方向断面図である。FIG. 11 is a cross-sectional view in the direction perpendicular to the axis showing a vehicle body member according to Modified Example 2-4 of the same embodiment; 実施形態に係る車体部材が適用される一例としての自動車骨格を示す図である。It is a figure which shows the motor vehicle skeleton as an example to which the vehicle body member which concerns on embodiment is applied.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. In the present specification and drawings, constituent elements having substantially the same functional configuration are denoted by the same reference numerals, thereby omitting redundant description.

<第1の実施形態>
まず、図1を参照して、第1の実施形態の構成について説明する。図1は、本実施形態に係る車体部材の一例を示す断面図である。車体部材1は、車体の構造部材、言い換えると骨格部材であってよい。車体は、例えば自動車の車体であってよい。車体部材1は、鋼板により形成された、例えば中空筒状の部材である。以下、車体部材1の軸に沿う長手方向を軸方向ともいう。車体部材1の材料となる鋼板は特に限定されないが、その引張強度が1180MPa以上であってもよい。なお、引張強度は、1.2GPa級に限らず、1.5GPa級、1.8GPa級、2.5GPa級等であってよい。該鋼板の板厚が1.6mm以下である場合に、本実施形態に係る車体部材1による後述の効果が発揮される。なお、鋼板の板厚は、車体部材1に求められる衝撃吸収特性等の観点から、例えば0.4mm以上であってよい。車体部材1は、鋼板に対し公知の種々の加工技術を適用することにより、形成され得る。一例として、ブランク材が、冷間絞りプレス加工により所定の形状に成形されることで、車体部材1が形成されてもよい。また、車体部材1は、例えば、ホットスタンプにより形成されてもよい。
<First Embodiment>
First, the configuration of the first embodiment will be described with reference to FIG. FIG. 1 is a cross-sectional view showing an example of a vehicle body member according to this embodiment. The vehicle body member 1 may be a structural member of a vehicle body, in other words a skeleton member. The bodywork may be, for example, the bodywork of an automobile. The vehicle body member 1 is, for example, a hollow tubular member made of a steel plate. Hereinafter, the longitudinal direction along the axis of the vehicle body member 1 will also be referred to as the axial direction. The steel plate that is the material of the vehicle body member 1 is not particularly limited, but the tensile strength thereof may be 1180 MPa or more. The tensile strength is not limited to 1.2 GPa class, and may be 1.5 GPa class, 1.8 GPa class, 2.5 GPa class, or the like. When the plate thickness of the steel plate is 1.6 mm or less, the vehicle body member 1 according to the present embodiment exhibits the effects described later. Note that the thickness of the steel plate may be, for example, 0.4 mm or more from the viewpoint of impact absorption properties required for the vehicle body member 1 . The vehicle body member 1 can be formed by applying various known processing techniques to steel plates. As an example, the vehicle body member 1 may be formed by forming a blank material into a predetermined shape by cold drawing press working. Also, the vehicle body member 1 may be formed by hot stamping, for example.

車体部材1は、一例として、角管状であってよい。図1は、角管状である車体部材1の、軸方向に直交する断面(軸直角方向断面)を示す。車体部材1の軸直角方向断面は、閉断面であり、4つの湾曲部100,101,102,103と、4つの平面部110,111,112,113とを有する。湾曲部100,101,102,103は、車体部材1の外側に凸の円弧状であり、互いに同じ形状および大きさであってよい。平面部110,111,112,113は、直線状であり、互いに同じ大きさであってよい。 The vehicle body member 1 may be in the shape of a square tube, for example. FIG. 1 shows a cross-section perpendicular to the axial direction (axis-perpendicular cross-section) of a square tubular body member 1 . A cross section of the vehicle body member 1 perpendicular to the axis is a closed cross section, and has four curved portions 100, 101, 102, and 103 and four flat portions 110, 111, 112, and 113. As shown in FIG. The curved portions 100 , 101 , 102 , 103 are arcuately convex outwardly of the vehicle body member 1 and may have the same shape and size. The planar portions 110, 111, 112, 113 may be linear and of the same size.

湾曲部100,101,102,103のうち、曲率半径が最大である1つの湾曲部を基準湾曲部10とする。ここで湾曲部の曲率半径は、例えば、以下のようにして得られる。すなわち、軸直角方向断面において、車体部材1の表面における鋼板の曲げの始点または終点(言い換えると曲線と直線との境界点)である2つのR止まり点と、上記表面のうち湾曲部において上記2つのR止まり点から上記表面に沿って等距離に位置する曲げ中央点と、の3点を求める。これら3点から公知の数学的手法により曲率を求めることで、当該湾曲部の曲率半径が得られる。なお、上記表面は、図1に示すように鋼板の曲げ外側の表面である。図1に示す例では、湾曲部100,101,102,103の曲率半径は互いに同じであるため、例えば湾曲部100を基準湾曲部10とすることができる。また、基準湾曲部10の曲率半径をRとする。 Of the curved portions 100 , 101 , 102 and 103 , one curved portion having the largest radius of curvature is defined as a reference curved portion 10 . Here, the radius of curvature of the curved portion is obtained, for example, as follows. That is, in the cross section in the axis-perpendicular direction, the two R stop points that are the starting point or the end point of the bending of the steel plate on the surface of the vehicle body member 1 (in other words, the boundary point between the curved line and the straight line), Find three points: the bend center point equidistant along the surface from one R stop point. By determining the curvature from these three points by a known mathematical method, the radius of curvature of the curved portion can be obtained. In addition, the said surface is the surface of the bending outer side of a steel plate, as shown in FIG. In the example shown in FIG. 1, since the curved portions 100, 101, 102, and 103 have the same radius of curvature, the curved portion 100 can be used as the reference curved portion 10, for example. Also, let R be the radius of curvature of the reference curved portion 10 .

軸直角方向断面において、基準湾曲部10の長手方向両端P,Qに、それぞれ平面部110,113が連続する。これら両端P,Qは、車体部材1の表面における上記2つのR止まり点である。平面部110,113のうち長いほうの平面部を基準平面部11とする。図1に示す例では、平面部110,113の長さは互いに同じであるため、例えば平面部110を基準平面部11とすることができる。なお、基準湾曲部10の長手方向両端P,Qのうち一端のみに平面部が連続する場合は、当該平面部を基準平面部11としてよい。 Flat portions 110 and 113 are continuous with both ends P and Q of the reference curved portion 10 in the longitudinal direction, respectively, in the cross section in the direction perpendicular to the axis. These ends P and Q are the two R stop points on the surface of the body member 1 . The longer plane portion of the plane portions 110 and 113 is defined as the reference plane portion 11 . In the example shown in FIG. 1, since the plane portions 110 and 113 have the same length, the plane portion 110 can be used as the reference plane portion 11, for example. If a plane portion continues to only one of the longitudinal ends P and Q of the reference curved portion 10 , the plane portion may be used as the reference plane portion 11 .

基準湾曲部10の長手方向両端P,Qのうち基準平面部11が連続しないほうの端Pから基準湾曲部10の接線方向に延びる直線、言い換えると端Pにおける基準湾曲部10の表面の接線を、第1直線L1とする。また、基準平面部11の表面(図1に示す例では、基準湾曲部10の曲げ外側の表面に連続する表面)の延長線を第2直線L2とする。 A straight line extending in the tangential direction of the reference curved portion 10 from the end P of the longitudinal direction ends P and Q of the reference curved portion 10 at which the reference plane portion 11 is not continuous, in other words, a tangent to the surface of the reference curved portion 10 at the end P , the first straight line L1. Further, an extension line of the surface of the reference plane portion 11 (in the example shown in FIG. 1, the surface that is continuous with the surface of the bending outer side of the reference curved portion 10) is defined as a second straight line L2.

第1直線L1と第2直線L2の交点Sと、基準平面部11の長手方向両端Q,Tのうち基準湾曲部10に連続しないほうの端Tと、の間の長さをb0とする。 Let b0 be the length between the intersection point S of the first straight line L1 and the second straight line L2 and the end T of the longitudinal direction ends Q and T of the reference flat portion 11 that is not connected to the reference curved portion 10 .

基準湾曲部10を間に挟んで第1直線L1と第2直線L2がなす角度をθとする。θは、80°以上、150°以下の範囲内に設定されてよい。図1に示す例では、θは90°またはその近傍に設定されている。 Let θ be the angle formed by the first straight line L1 and the second straight line L2 with the reference curved portion 10 interposed therebetween. θ may be set within a range of 80° or more and 150° or less. In the example shown in FIG. 1, θ is set at or near 90°.

軸直角方向断面において、基準平面部11の、長さ(幅)をb1とし、板厚をtとし、ヤング率をEとし、ポアソン比をνとし、降伏応力をσとする。このとき、基準湾曲部10の曲率半径Rは、以下の式(1)を満足するように設定される。なお、このように設定される曲率半径Rは、例えば、材料となる鋼板の引張強度が1180MPa以上である場合、15mm以上であってよい。また、曲率半径Rの上限値は特に限定されず、後述するように基準平面部11の長さb1が0超となるような曲率半径であればよい。

Figure 0007288183000003
Let b1 be the length (width), t be the plate thickness, E be the Young's modulus, ν be the Poisson's ratio, and σy be the yield stress of the reference plane portion 11 in the cross section in the direction perpendicular to the axis. At this time, the curvature radius R of the reference curved portion 10 is set so as to satisfy the following formula (1). For example, when the tensile strength of the steel plate used as the material is 1180 MPa or more, the radius of curvature R set in this manner may be 15 mm or more. Also, the upper limit of the radius of curvature R is not particularly limited, and may be any radius of curvature that makes the length b1 of the reference plane portion 11 greater than zero, as will be described later.
Figure 0007288183000003

基準平面部11の長さb1は、以下の式(2)を満足するように設定される。なお、このように設定される長さb1は、式(2)を満たす範囲において、例えば10mm以上であってよい。

Figure 0007288183000004
The length b1 of the reference plane portion 11 is set so as to satisfy the following formula (2). Note that the length b1 set in this way may be, for example, 10 mm or more within the range that satisfies the formula (2).
Figure 0007288183000004

次に、本実施形態の作用効果を説明する。車体部材1には、軸方向の圧縮荷重(軸方向圧縮荷重)が作用しうる。車体部材1のうち、湾曲部100~103に相当する部分は、その形状により、平面部110~113に相当する部分に比べ、軸方向圧縮荷重に対して高い剛性を有しており、弾性座屈しにくい。よって、基準湾曲部10の曲率半径Rを所定値以上に設定する。これにより、この基準湾曲部10を挟む両側の平面部のうち、一方(例えば平面部110)が弾性座屈しようとしても、この変形が他方(例えば平面部113)へ及ぼす影響、すなわち平面部同士が連動して弾性座屈しようとすることが、基準湾曲部10により遮断されうる。よって、車体部材1の全体として、弾性座屈を抑制し、軸方向圧縮耐力を向上できる。具体的には、基準湾曲部10の曲率半径Rを、上記式(1)の左辺で規定される下限値以上に設定することで、上記影響を抑制し、車体部材1の全体の弾性座屈を抑制できる。曲率半径Rは、鋼板の引張強度が1180MPa以上である場合、例えば15mm以上であってよく、この場合、軸方向圧縮耐力を効果的に向上できることを、本発明者らは確かめた(後述の実施例1-1を参照)。 Next, the effects of this embodiment will be described. An axial compressive load (axial compressive load) can act on the vehicle body member 1 . Of the vehicle body member 1, portions corresponding to the curved portions 100 to 103 have higher rigidity against an axial compressive load than portions corresponding to the flat portions 110 to 113 due to their shape. Hard to bend. Therefore, the curvature radius R of the reference curved portion 10 is set to a predetermined value or more. As a result, even if one of the plane portions on both sides of the reference bending portion 10 (for example, the plane portion 110) tries to elastically buckle, the deformation exerts on the other (for example, the plane portion 113). jointly trying to elastically buckle can be blocked by the reference curved portion 10 . Therefore, the vehicle body member 1 as a whole can suppress elastic buckling and improve the axial compressive strength. Specifically, by setting the radius of curvature R of the reference curved portion 10 to be equal to or greater than the lower limit defined by the left side of the above equation (1), the above influence is suppressed, and the elastic buckling of the entire vehicle body member 1 is suppressed. can be suppressed. The curvature radius R may be, for example, 15 mm or more when the tensile strength of the steel plate is 1180 MPa or more. See Example 1-1).

また、基準平面部11の長さb1を、上記式(2)の右辺で規定される上限値以下に設定することにより、基準湾曲部10に連続する平面部の弾性座屈を抑制できる。式(2)は、本発明者らが鋭意検討した結果得られた式である。かかる式(2)により、高強度かつ板厚が小さい鋼鈑から形成された車体部材1の軸方向圧縮荷重に対する変形モードを考慮した、平面部の有効最大長が算出される。ここで有効最大長は、軸直角方向断面において、平面部の長手方向の所定範囲(例えば全範囲)で弾性座屈応力が降伏応力以上となり、これにより弾性座屈が回避されるような、当該平面部の長さの上限値である。 Further, by setting the length b1 of the reference plane portion 11 to be equal to or less than the upper limit defined by the right side of the above equation (2), it is possible to suppress elastic buckling of the plane portion continuing to the reference bending portion 10 . Formula (2) is a formula obtained as a result of extensive studies by the present inventors. Using the equation (2), the effective maximum length of the flat portion is calculated in consideration of the deformation mode against the axial compressive load of the vehicle body member 1 formed of high-strength and small-thickness steel plate. Here, the effective maximum length is defined as such that the elastic buckling stress is equal to or higher than the yield stress in a predetermined range (for example, the entire range) in the longitudinal direction of the flat portion in the cross section in the direction perpendicular to the axis, thereby avoiding elastic buckling. This is the upper limit of the length of the flat portion.

基準平面部11の長さb1を有効最大長以下に設定することで、基準平面部の長手方向の所定範囲(例えば全範囲)で弾性座屈が抑制される。言い換えると、基準平面部の長手方向の所定範囲で、軸方向圧縮応力が材料の強さ限界に達するまでは、基準平面部に加えられる荷重は、材料の強さによって受け止められ、基準平面部の弾性座屈へと転換されにくい。基準湾曲部を両側で挟む2つの平面部のうち、基準平面部と反対側の平面部の長さは、基準平面部の定義上、基準平面部の長さ以下である。よって、この平面部の長さも、上記式(2)の右辺で規定される上限値以下となるため、当該平面部でも弾性座屈が抑制される。言い換えると、基準湾曲部を挟む両側の平面部で弾性座屈が抑制される。 By setting the length b1 of the reference flat portion 11 to be equal to or less than the effective maximum length, elastic buckling is suppressed in a predetermined range (for example, the entire range) of the reference flat portion in the longitudinal direction. In other words, until the axial compressive stress reaches the strength limit of the material within a predetermined range in the longitudinal direction of the reference flat portion, the load applied to the reference flat portion is absorbed by the strength of the material. less likely to be converted to elastic buckling; Of the two flat portions sandwiching the reference curved portion on both sides, the length of the flat portion on the side opposite to the reference flat portion is equal to or shorter than the length of the reference flat portion according to the definition of the reference flat portion. Therefore, since the length of this flat portion is also equal to or less than the upper limit defined by the right side of the above equation (2), elastic buckling is suppressed even in this flat portion. In other words, elastic buckling is suppressed in the flat portions on both sides of the reference curved portion.

上記式(1)の左辺で規定される曲率半径Rの下限値は、長さb0から、平面部の有効最大長を減じた大きさである。言い換えると、基準平面部の長さを有効最大長以下としつつ、基準湾曲部の曲率半径Rを可及的に大きく確保できるように、当該曲率半径Rの下限値が設定されている。よって、基準湾曲部を挟む両側の平面部で弾性座屈を抑制できるとともに、仮にこれら平面部のいずれか一方が座屈しようとしても、これが他方の平面部へ及ぼし得る影響を、両平面部の間に介在する基準湾曲部により、遮断することができる。このように、曲率半径Rの下限値と長さb1の上限値との相乗効果により、車体部材1の全体として、軸方向圧縮耐力を向上させ、弾性座屈を抑制することができる。 The lower limit of the radius of curvature R defined by the left side of the above equation (1) is the length b0 minus the maximum effective length of the planar portion. In other words, the lower limit of the curvature radius R is set so that the curvature radius R of the reference curved portion can be secured as large as possible while keeping the length of the reference flat portion equal to or less than the effective maximum length. Therefore, elastic buckling can be suppressed in the flat portions on both sides of the reference curved portion, and even if one of these flat portions tries to buckle, the other flat portion will not be affected by the buckling of both flat portions. Intervening reference bends can provide blocking. Thus, the synergistic effect of the lower limit value of the radius of curvature R and the upper limit value of the length b1 makes it possible to improve the axial compressive strength and suppress elastic buckling of the vehicle body member 1 as a whole.

第1直線L1と第2直線L2がなす角度θは、80°以上、150°以下であってよい。角度θが150°以下であることで、軸直角方向断面における平面部の長手方向端が、ある程度の角度をもって他部分により支持され、これにより、自由端とならずに単純支持されているとみなすことができる。よって、上記式(2)による基準平面部の有効最大長の規定が有効に機能し、長さb1が式(2)を満たすことによる上記作用効果を有効に得ることができる。また、角度θが80°以上であることで、基準湾曲部の曲率半径Rが式(1)を満たすことが容易となる。 The angle θ between the first straight line L1 and the second straight line L2 may be 80° or more and 150° or less. When the angle θ is 150° or less, the longitudinal end of the flat portion in the cross section in the direction perpendicular to the axis is supported by other portions at a certain angle. be able to. Therefore, the definition of the effective maximum length of the reference flat portion according to the above formula (2) functions effectively, and the above effect can be effectively obtained when the length b1 satisfies the formula (2). Further, when the angle θ is 80° or more, it becomes easy for the curvature radius R of the reference curved portion to satisfy the formula (1).

車体部材1は、引張強度が所定値以上であって、板厚が所定値以下である鋼板により形成される。このように、車体部材1に使用する材料を薄肉化・高強度化することで、車体部材1の軽量化とともに、耐荷重の向上が図られる。しかし、車体部材1の材料の薄肉化・高強度化は、当該部材の平面部の弾性座屈応力を低下させうる。すなわち、平面部の板厚tの低下により、平面部の弾性座屈応力が大きく低下する。また、軸方向圧縮荷重に対する平面部の強度が同じであっても、上記式(2)の右辺からわかるように、板厚tが小さくなるほど、また、降伏応力σが大きくなるほど、平面部の有効最大長が小さくなる。このため、軸直角方向における平面部の長さを何ら考慮しなければ、圧縮荷重を受ける部位において、材料の降伏応力に到達する前に弾性座屈が生じるおそれが高くなる。 The vehicle body member 1 is formed of a steel plate having a tensile strength of a predetermined value or more and a plate thickness of a predetermined value or less. In this way, by thinning and increasing the strength of the material used for the vehicle body member 1, the weight of the vehicle body member 1 can be reduced and the load resistance can be improved. However, thinning and increasing the strength of the material of the vehicle body member 1 can reduce the elastic buckling stress of the planar portion of the member. That is, the elastic buckling stress of the flat portion is greatly reduced due to the reduction in the plate thickness t of the flat portion. Further, even if the strength of the flat portion against the axial compressive load is the same, as can be seen from the right side of the above equation (2), the smaller the plate thickness t and the larger the yield stress σy , the greater the strength of the flat portion. Effective maximum length becomes smaller. Therefore, if no consideration is given to the length of the flat portion in the direction perpendicular to the axis, there is a high possibility that elastic buckling will occur before the yield stress of the material is reached at the portion receiving the compressive load.

これに対し、基準平面部11の長さb1を、上記式(2)の右辺で規定される上限値(有効最大長)以下に設定することで、材料を薄肉化・高強度化しても、平面部の弾性座屈を抑制できる。また、基準湾曲部10の曲率半径Rを、上記式(1)の左辺で規定される下限値以上に設定することで、材料を薄肉化・高強度化しても、車体部材1の全体としての弾性座屈を効果的に抑制できる。具体的には、車体部材1は、板厚が1.6mm以下である鋼板により形成されている。このような板厚であるため、上記のような弾性座屈応力の低下という課題が発生しやすい。これに対し上記式(1)(2)を用いて曲率半径Rまたは長さb1を設定することで、顕著な効果を得ることができる。また、車体部材1は、例えば、引張強度が1180MPa以上である鋼板により形成されてよい。このような引張強度である場合、上記のような弾性座屈応力の低下という課題が発生しやすく、これに対し上記式(1)(2)を用いて曲率半径Rまたは長さb1を設定することで、顕著な効果を得ることができる。 On the other hand, by setting the length b1 of the reference plane portion 11 to be equal to or less than the upper limit value (maximum effective length) defined by the right side of the above equation (2), even if the material is made thinner and stronger, Elastic buckling of the plane portion can be suppressed. Further, by setting the curvature radius R of the reference curved portion 10 to be equal to or greater than the lower limit defined by the left side of the above formula (1), even if the material is thinned and strengthened, the vehicle body member 1 as a whole can be improved. Elastic buckling can be effectively suppressed. Specifically, the vehicle body member 1 is made of a steel plate having a thickness of 1.6 mm or less. Due to such plate thickness, the problem of reduction in elastic buckling stress as described above is likely to occur. On the other hand, by setting the curvature radius R or the length b1 using the above formulas (1) and (2), a remarkable effect can be obtained. Moreover, the vehicle body member 1 may be formed of a steel plate having a tensile strength of 1180 MPa or more, for example. In the case of such tensile strength, the problem of a decrease in elastic buckling stress as described above is likely to occur. By doing so, a remarkable effect can be obtained.

基準平面部11の長さb1を、上記式(2)の左辺で規定される下限値よりも大きい値に設定することで、車体部材1の曲げや捩じりに対する剛性を向上できる。すなわち、図1に示すように、車体部材1の中立軸Nから湾曲部100,101までの距離d1(中立軸Nの周りのモーメントアーム)よりも、中立軸Nから平面部110までの距離d0(中立軸Nの周りのモーメントアーム)のほうが大きい。よって、基準平面部11の長さb1を0超に設定することで、言い換えると車体部材1に平面部を設けることで、車体の振動時または縁石乗り上げ時等の車体部材1の比較的小さい揺れに起因する、曲げや捩じり(小荷重)に対する圧縮耐力を向上できる。このような観点からは、長さb1は、平面部の有効最大長以下の範囲内で、できるだけ大きいほうがよい。長さb1を大きくすることで、すなわち車体部材1の断面形状において平面部が占める割合を大きくすることで、上記剛性をより向上できる。 By setting the length b1 of the reference flat portion 11 to a value larger than the lower limit defined by the left side of the above equation (2), the rigidity of the vehicle body member 1 against bending and twisting can be improved. That is, as shown in FIG. 1, the distance d0 from the neutral axis N to the plane portion 110 is greater than the distance d1 (moment arm around the neutral axis N) from the neutral axis N of the vehicle body member 1 to the curved portions 100 and 101. (moment arm about neutral axis N) is larger. Therefore, by setting the length b1 of the reference flat portion 11 to be greater than 0, in other words, by providing the flat portion on the vehicle body member 1, a relatively small vibration of the vehicle body member 1 when the vehicle body vibrates or runs over a curb is reduced. It is possible to improve the compressive strength against bending and torsion (small load) caused by From this point of view, the length b1 should be as large as possible within the range of the maximum effective length of the plane portion. By increasing the length b1, that is, by increasing the proportion of the flat portion in the cross-sectional shape of the vehicle body member 1, the rigidity can be further improved.

基準平面部11の長さb1が、0超である所定の下限値以上であってもよい。この場合、大荷重の入力時における車体部材1の(例えば曲げ側の)圧縮面の最大耐荷重を大きくできるため、車体部材1のエネルギ吸収量を増大できる。すなわち、車体部材1の軸直角方向断面が、例えば湾曲部のみから構成される(円形等である)場合よりも、平面部によっても構成される場合のほうが、同じ設計空間で比べると、上記断面における周方向長さ、すなわち断面積Aが大きくなりうる。車体部材1の強度は、材料の降伏応力σと断面積Aとの積に比例する。断面積Aを大きくすることで、車体部材1の圧縮面の最大耐荷重(軸方向圧縮耐力)を増加できるため、車体部材1のエネルギ吸収量を増大できる。長さb1の上記下限値は、車体部材1の材料となる鋼板の板厚tおよび降伏応力σとの関係に基づき設定可能である。例えば、長さb1が10mm以上であってよい。この10mmという値は、例えば鋼板の板厚t=0.5mm、σ=2GPaであるとき、上記断面積Aの過剰な減少を抑制するのに適切な上記下限値として選択しうる値である。 The length b1 of the reference plane portion 11 may be equal to or greater than a predetermined lower limit value greater than zero. In this case, the maximum load capacity of the compression surface (for example, on the bending side) of the vehicle body member 1 can be increased when a large load is input, so the energy absorption amount of the vehicle body member 1 can be increased. That is, when the cross section of the vehicle body member 1 in the direction perpendicular to the axis is made up of a flat portion as well, compared to the case where it is made up of only a curved portion (circular shape, etc.), the above cross section is better when compared in the same design space. , ie the cross-sectional area A can be increased. The strength of the vehicle body member 1 is proportional to the product of the yield stress σ y and the cross-sectional area A of the material. By increasing the cross-sectional area A, the maximum load resistance (axial compressive strength) of the compression surface of the vehicle body member 1 can be increased, so that the energy absorption amount of the vehicle body member 1 can be increased. The lower limit value of the length b1 can be set based on the relationship between the thickness t of the steel plate that is the material of the vehicle body member 1 and the yield stress σy . For example, the length b1 may be 10 mm or more. This value of 10 mm is a value that can be selected as the above-mentioned lower limit suitable for suppressing an excessive decrease in the cross-sectional area A when, for example, the thickness of the steel plate is t = 0.5 mm and σ y = 2 GPa. .

[実施例]
本発明者らは、図1の断面形状(角度θ=90°)を有する試験体(実施例1-1,1-2)に対して軸方向の圧縮荷重を作用させ、基準湾曲部の曲率半径R(mm)と試験体の軸方向圧縮耐力P(kN)との関係を調べた。実施例1-1の試験体の軸方向寸法は288mm、外形寸法Dは72mmであり、材料とした鋼板の板厚は1.6mm、ヤング率は206000MPa、ポアソン比は0.3、引張強度は1256MPa、降伏応力は943MPaだった。実施例1-1の試験結果を、長さb0、長さb1、式(1)の左辺および式(2)の右辺(すなわち平面部の有効最大長)と共に、表1に示す。
[Example]
The present inventors applied an axial compressive load to the specimens (Examples 1-1 and 1-2) having the cross-sectional shape (angle θ = 90°) shown in Fig. 1, and found that the curvature of the reference curved portion The relationship between the radius R (mm) and the axial compressive strength P (kN) of the specimen was investigated. The test piece of Example 1-1 had an axial dimension of 288 mm and an outer dimension D of 72 mm. 1256 MPa, yield stress was 943 MPa. The test results of Example 1-1 are shown in Table 1 together with the length b0, the length b1, the left side of Equation (1) and the right side of Equation (2) (ie, the effective maximum length of the flat portion).

Figure 0007288183000005
Figure 0007288183000005

実施例1-2の試験体の軸方向寸法は480mm、外形寸法Dは120mmであり、材料とした鋼板の板厚は1.6mm、ヤング率は206000MPa、ポアソン比は0.3、引張強度は431MPa、降伏応力は319MPaだった。実施例1-2の試験結果を、長さb0、長さb1、式(1)の左辺および式(2)の右辺(すなわち平面部の有効最大長)と共に、表2に示す。 The specimen of Example 1-2 had an axial dimension of 480 mm and an outer dimension D of 120 mm. 431 MPa, yield stress was 319 MPa. The test results of Example 1-2 are shown in Table 2 together with the length b0, the length b1, the left side of Equation (1) and the right side of Equation (2) (ie, the effective maximum length of the flat portion).

Figure 0007288183000006
Figure 0007288183000006

基準湾曲部の曲率半径Rが小さいとき、長さb0と長さb1は大きく、式(1)の左辺は大きい。このため、Rがある閾値R*未満であるとき、Rは式(1)の左辺未満であり、式(1)が成り立たない。また、RがR*未満であるとき、b1は式(2)の右辺より大きく、式(2)が成り立たない。一方、Rが大きいとき、b0とb1は小さく、式(1)の左辺は小さい。このため、Rが閾値R*以上であるとき、Rは式(1)の左辺以上であり、式(1)が成り立つ。また、Rが閾値R*以上であるとき、b1は式(2)の右辺以下であり、式(2)が成り立つ。実施例1-1では、式(2)の右辺は45.0mmであり、R*は13.5mmであった。実施例1-2では、式(2)の右辺は77.3mmであり、R*は21.4mmであった。 When the radius of curvature R of the reference curved portion is small, the lengths b0 and b1 are large and the left side of Equation (1) is large. Therefore, when R is less than a certain threshold value R*, R is less than the left side of equation (1), and equation (1) does not hold. Also, when R is less than R*, b1 is greater than the right side of equation (2), and equation (2) does not hold. On the other hand, when R is large, b0 and b1 are small and the left side of equation (1) is small. Therefore, when R is equal to or greater than the threshold R*, R is equal to or greater than the left side of Equation (1), and Equation (1) holds. Also, when R is equal to or greater than the threshold value R*, b1 is equal to or less than the right side of Equation (2), and Equation (2) holds. In Example 1-1, the right side of formula (2) was 45.0 mm and R* was 13.5 mm. In Example 1-2, the right side of equation (2) was 77.3 mm and R* was 21.4 mm.

図2は、実施例1-1の試験結果をグラフとして表す。基準湾曲部の曲率半径Rが所定値(=24mm)以下である場合、曲率半径Rが閾値R*(=13.5mm)未満の範囲では、軸方向圧縮耐力Pは315kN未満であり、小さかった。これは、式(1)(2)が成り立たないため、湾曲部の両側を挟む平面部同士が相互作用しやすい等により、弾性座屈が生じやすいからである、と考えられる。曲率半径RがR*(=13.5mm)以上の範囲では、軸方向圧縮耐力Pは315kN以上であり、大きかった。これは、式(1)(2)が成り立つため、上記相互作用が抑制される等により、弾性座屈の発生が抑制されるからである、と考えられる。なお、曲率半径Rが所定値(=24mm)を超えると、曲率半径Rの増加に応じて軸方向圧縮耐力Pが減少した。これは、断面形状に占める平面部の割合が減少することで、断面積が減少したからである、と考えられる。 FIG. 2 graphically represents the test results of Example 1-1. When the radius of curvature R of the reference curved portion is equal to or less than a predetermined value (=24 mm), the axial compressive strength P is less than 315 kN, which is small, in the range where the radius of curvature R is less than the threshold value R* (=13.5 mm). . It is considered that this is because the equations (1) and (2) do not hold, so that the planar portions sandwiching both sides of the curved portion are likely to interact with each other, and elastic buckling is likely to occur. In the range where the curvature radius R was R* (=13.5 mm) or more, the axial compressive strength P was 315 kN or more, which was large. It is considered that this is because the expressions (1) and (2) hold, so that the interaction is suppressed and the occurrence of elastic buckling is suppressed. Note that when the radius of curvature R exceeded a predetermined value (=24 mm), the axial compressive strength P decreased as the radius of curvature R increased. It is considered that this is because the cross-sectional area decreased due to the decrease in the proportion of the flat portion in the cross-sectional shape.

図3は、実施例1-2の試験結果をグラフとして表す。基準湾曲部の曲率半径Rが所定値(=40mm)以下である場合、曲率半径Rが閾値R*(=21.4mm)未満の範囲では、軸方向圧縮耐力Pは197kN未満であり、小さかった。これは、式(1)(2)が成り立たないため、湾曲部の両側を挟む平面部同士が相互作用しやすい等により、弾性座屈が生じやすいからである、と考えられる。曲率半径RがR*(=21.4mm)以上の範囲では、軸方向圧縮耐力Pは197kN以上であり、大きかった。これは、式(1)(2)が成り立つため、上記相互作用が抑制される等により、弾性座屈の発生が抑制されるからである、と考えられる。なお、曲率半径Rが所定値(=40mm)を超えると、曲率半径Rの増加に応じて軸方向圧縮耐力Pが減少した。これは、断面形状に占める平面部の割合が減少することで、断面積が減少したからである、と考えられる。 FIG. 3 graphically represents the test results of Examples 1-2. When the radius of curvature R of the reference curved portion is equal to or less than a predetermined value (=40 mm), the axial compressive strength P is less than 197 kN in the range where the radius of curvature R is less than the threshold value R* (=21.4 mm). . It is considered that this is because the equations (1) and (2) do not hold, so that the planar portions sandwiching both sides of the curved portion are likely to interact with each other, and elastic buckling is likely to occur. In the range where the curvature radius R was R* (=21.4 mm) or more, the axial compressive strength P was 197 kN or more, which was large. It is considered that this is because the expressions (1) and (2) hold, so that the interaction is suppressed and the occurrence of elastic buckling is suppressed. Note that when the radius of curvature R exceeded a predetermined value (=40 mm), the axial compressive strength P decreased as the radius of curvature R increased. It is considered that this is because the cross-sectional area decreased due to the decrease in the proportion of the flat portion in the cross-sectional shape.

実施例1-1では、実施例1-2に比べ、閾値R*以上の曲率半径Rの範囲で、大きな軸方向圧縮耐力Pが得られただけでなく、曲率半径Rを増加することによる軸方向圧縮耐力Pの増大代が大きかった。これは、実施例1-1では、引張強度が1180MPa以上である鋼板を用いたため、式(1)を用いて曲率半径Rを設定し、または式(2)を用いて長さb1を設定することによる上記作用効果を、実施例1-2よりも顕著に得ることができたからである、と考えられる。 In Example 1-1, compared with Example 1-2, not only was a large axial compressive strength P obtained in the range of the curvature radius R equal to or greater than the threshold value R*, The amount of increase in the directional compressive strength P was large. This is because in Example 1-1, a steel plate having a tensile strength of 1180 MPa or more was used, so the curvature radius R was set using formula (1), or the length b1 was set using formula (2) It is believed that this is because the above-mentioned effects could be obtained more remarkably than in Example 1-2.

[変形例1-1]
図4は、図1に示す断面形状の変形例を示す。湾曲部102,103の曲率半径は互いに同じであり、湾曲部100の曲率半径は、湾曲部103の曲率半径より大きい。湾曲部100,101の曲率半径は互いに同じであるため、例えば湾曲部100を基準湾曲部10としてよい。基準湾曲部10の長手方向両端にそれぞれ連続する平面部110,111のうち長いほうの平面部110を基準平面部11とする。基準湾曲部10の曲率半径Rが式(1)を満足し、基準平面部11の長さb1が式(2)を満足するように設定すれば、図1に示す例と同様の作用効果が得られる。例えば、曲率半径Rは15mm以上であってよく、長さb1は10mm以上であってよい。
[Modification 1-1]
FIG. 4 shows a modification of the cross-sectional shape shown in FIG. The curvature radii of the curved portions 102 and 103 are the same, and the curvature radius of the curved portion 100 is larger than the curvature radius of the curved portion 103 . Since the curved portions 100 and 101 have the same radius of curvature, the curved portion 100 may be used as the reference curved portion 10, for example. The longer planar portion 110 of the planar portions 110 and 111 that are continuous with both ends in the longitudinal direction of the reference curved portion 10 is referred to as the reference planar portion 11 . If the curvature radius R of the reference curved portion 10 satisfies the formula (1) and the length b1 of the reference flat portion 11 satisfies the formula (2), the same effect as the example shown in FIG. 1 can be obtained. can get. For example, the radius of curvature R may be 15 mm or more and the length b1 may be 10 mm or more.

[変形例1-2]
図5は、図1に示す断面形状の変形例を示す。湾曲部102,103の曲率半径は互いに同じであり、湾曲部100の曲率半径は、湾曲部103の曲率半径より大きい。湾曲部100,101の曲率半径は互いに同じであるため、例えば湾曲部100を基準湾曲部10としてよい。基準湾曲部10の長手方向両端にそれぞれ連続する平面部110,113のうち長いほうの平面部110を基準平面部11とする。基準湾曲部10の曲率半径Rが式(1)を満足し、基準平面部11の長さb1が式(2)を満足するように設定すれば、図1に示す例と同様の作用効果が得られる。例えば、曲率半径Rは15mm以上であってよく、長さb1は10mm以上であってよい。
[Modification 1-2]
FIG. 5 shows a modification of the cross-sectional shape shown in FIG. The curvature radii of the curved portions 102 and 103 are the same, and the curvature radius of the curved portion 100 is larger than the curvature radius of the curved portion 103 . Since the curved portions 100 and 101 have the same radius of curvature, the curved portion 100 may be used as the reference curved portion 10, for example. The longer planar portion 110 of the planar portions 110 and 113 that are continuous with both ends in the longitudinal direction of the reference curved portion 10 is referred to as the reference planar portion 11 . If the curvature radius R of the reference curved portion 10 satisfies the formula (1) and the length b1 of the reference flat portion 11 satisfies the formula (2), the same effect as the example shown in FIG. 1 can be obtained. can get. For example, the radius of curvature R may be 15 mm or more and the length b1 may be 10 mm or more.

[変形例1-3]
図6は、図1に示す断面形状の変形例を示す。湾曲部100,101,102,103のうち、曲率半径が最大である湾曲部100を基準湾曲部10とする。基準湾曲部10の長手方向両端にそれぞれ連続する平面部110,113のうち長いほうの平面部110を基準平面部11とする。基準湾曲部10を間に挟んで第1直線L1と第2直線L2がなす角度θは、100°~110°である。基準湾曲部10の曲率半径Rが式(1)を満足し、基準平面部11の長さb1が式(2)を満足するように設定すれば、図1に示す例と同様の作用効果が得られる。例えば、曲率半径Rは15mm以上であってよく、長さb1は10mm以上であってよい。
[Modification 1-3]
FIG. 6 shows a modification of the cross-sectional shape shown in FIG. Of the curved portions 100 , 101 , 102 and 103 , the curved portion 100 having the largest radius of curvature is defined as the reference curved portion 10 . The longer planar portion 110 of the planar portions 110 and 113 that are continuous with both ends in the longitudinal direction of the reference curved portion 10 is referred to as the reference planar portion 11 . The angle θ formed by the first straight line L1 and the second straight line L2 with the reference curved portion 10 interposed therebetween is 100° to 110°. If the curvature radius R of the reference curved portion 10 satisfies the formula (1) and the length b1 of the reference flat portion 11 satisfies the formula (2), the same effect as the example shown in FIG. 1 can be obtained. can get. For example, the radius of curvature R may be 15 mm or more and the length b1 may be 10 mm or more.

<第2の実施形態>
車体部材1は、所定の形状に成形された複数の部材が溶接等により1つに接合することで形成されてもよい。図7は、このように形成された車体部材1の軸直角方向断面の一例を示す。この断面は、閉断面であってよい。車体部材1は、第1部材1Aと第2部材1Bとが溶接により接合することで、筒状に形成されている。第1部材1Aの軸直角方向断面は、2つの湾曲部100,101と、3つの平面部110,111,112とを有する。平面部112は接合用のフランジとして機能する。湾曲部101は、平面部112を平面部111に対して折り曲げ形成するときに通常生じうる比較的小さな湾曲部であってよい。第2部材1Bの軸直角方向断面は、2つの湾曲部102,103と、3つの平面部113,114,115とを有する。平面部115は接合用のフランジとして機能する。湾曲部103は、平面部115を平面部114に対して折り曲げ形成するときに通常生じうる比較的小さな湾曲部であってよい。第1部材1Aの平面部112が、溶接部131を介して、第2部材1Bの平面部113の長手方向端部に接合している。第1部材1Aの平面部110の長手方向端部が、溶接部132を介して、第2部材1Bの平面部115に接合している。湾曲部101,103は、車体部材1の内側に凸である。湾曲部100,101,102,103のうち、曲率半径が最大である湾曲部100を基準湾曲部10とする。基準湾曲部10の長手方向両端にそれぞれ連続する平面部110,111のうち長いほうの平面部110を基準平面部11とする。
<Second embodiment>
The vehicle body member 1 may be formed by joining a plurality of members molded into a predetermined shape into one by welding or the like. FIG. 7 shows an example of an axis-perpendicular cross-section of the vehicle body member 1 thus formed. This cross-section may be a closed cross-section. The vehicle body member 1 is formed in a tubular shape by joining a first member 1A and a second member 1B by welding. A cross section of the first member 1</b>A perpendicular to the axis has two curved portions 100 and 101 and three flat portions 110 , 111 and 112 . The flat portion 112 functions as a joining flange. The curved portion 101 may be a relatively small curved portion that normally occurs when the flat portion 112 is bent to form the flat portion 111 . A cross section of the second member 1B perpendicular to the axis has two curved portions 102 and 103 and three flat portions 113, 114 and 115. As shown in FIG. The flat portion 115 functions as a joining flange. Bend 103 may be a relatively small bend that would normally occur when flat portion 115 is bent to form flat portion 114 . The flat portion 112 of the first member 1A is joined to the longitudinal end portion of the flat portion 113 of the second member 1B via the welding portion 131 . A longitudinal end portion of the flat portion 110 of the first member 1A is joined to the flat portion 115 of the second member 1B via a weld portion 132 . The curved portions 101 and 103 are convex inside the vehicle body member 1 . Of the curved portions 100 , 101 , 102 and 103 , the curved portion 100 having the largest radius of curvature is defined as the reference curved portion 10 . The longer planar portion 110 of the planar portions 110 and 111 that are continuous with both ends in the longitudinal direction of the reference curved portion 10 is referred to as the reference planar portion 11 .

基準湾曲部10の曲率半径Rが上記式(1)を満足し、基準平面部11の長さb1が上記式(2)を満足するように設定すれば、第1の実施形態と同様の作用効果が得られる。例えば、曲率半径Rは15mm以上であってよく、長さb1は10mm以上であってよい。なお、基準平面部11としての平面部110の長さb1は、湾曲部100との接続部位から、溶接部132までの長さであり、溶接部132よりも先端側における自由端の長さは含まれない。 If the curvature radius R of the reference curved portion 10 satisfies the above formula (1) and the length b1 of the reference plane portion 11 satisfies the above formula (2), the same effects as in the first embodiment are obtained. effect is obtained. For example, the radius of curvature R may be 15 mm or more and the length b1 may be 10 mm or more. Note that the length b1 of the plane portion 110 as the reference plane portion 11 is the length from the connection portion with the bending portion 100 to the welded portion 132, and the length of the free end on the tip side of the welded portion 132 is Not included.

[変形例2-1]
図8は、図7に示す断面形状の変形例を示す。第1部材1Aの軸直角方向断面は、4つの湾曲部100,101,102,103と、5つの平面部110,111,112,114,115とを有する。平面部112,114は接合用のフランジとして機能する。湾曲部101,102は、平面部112,114をそれぞれ平面部111,115に対して折り曲げ形成するときに通常生じうる比較的小さな湾曲部であってよい。第2部材1Bは平板状であり、その軸直角方向断面は、1つの平面部113を有する。第1部材1Aの平面部112,114が、それぞれ溶接部131,132を介して、第2部材1Bの平面部113の長手方向端部に接合している。湾曲部101,102の曲率半径は互いに同じであり、湾曲部100の曲率半径は、湾曲部101の曲率半径より大きい。湾曲部100,103の曲率半径は互いに同じであるため、例えば湾曲部100を基準湾曲部10としてよい。基準湾曲部10の長手方向両端にそれぞれ連続する平面部110,111のうち長いほうの平面部110を基準平面部11とする。基準湾曲部10の曲率半径Rが式(1)を満足し、基準平面部11の長さb1が式(2)を満足するように設定すれば、図7に示す例と同様の作用効果が得られる。例えば、曲率半径Rは15mm以上であってよく、長さb1は10mm以上であってよい。
[Modification 2-1]
FIG. 8 shows a modification of the cross-sectional shape shown in FIG. A cross section of the first member 1A perpendicular to the axis has four curved portions 100, 101, 102, 103 and five flat portions 110, 111, 112, 114, 115. As shown in FIG. Flat portions 112 and 114 function as joining flanges. Bend portions 101 and 102 may be relatively small bends that would normally occur when flat portions 112 and 114 are bent to form flat portions 111 and 115, respectively. The second member 1B has a flat plate shape, and has one plane portion 113 in its cross section perpendicular to the axis. The flat portions 112 and 114 of the first member 1A are joined to the longitudinal ends of the flat portion 113 of the second member 1B via welding portions 131 and 132, respectively. The curvature radii of the curved portions 101 and 102 are the same, and the curvature radius of the curved portion 100 is larger than the curvature radius of the curved portion 101 . Since the curved portions 100 and 103 have the same radius of curvature, the curved portion 100 may be used as the reference curved portion 10, for example. The longer planar portion 110 of the planar portions 110 and 111 that are continuous with both ends in the longitudinal direction of the reference curved portion 10 is referred to as the reference planar portion 11 . If the curvature radius R of the reference curved portion 10 satisfies the formula (1) and the length b1 of the reference flat portion 11 satisfies the formula (2), the same effect as the example shown in FIG. 7 can be obtained. can get. For example, the radius of curvature R may be 15 mm or more and the length b1 may be 10 mm or more.

[変形例2-2]
図9は、図7に示す断面形状の変形例を示す。第1部材1Aの軸直角方向断面は、4つの湾曲部100,101,102,106と、5つの平面部110,111,112,117,118とを有する。平面部112,117は接合用のフランジとして機能する。湾曲部102,106は、平面部112,117をそれぞれ平面部111,118に対して折り曲げ形成するときに通常生じうる比較的小さな湾曲部であってよい。第2部材1Bの軸直角方向断面は、3つの湾曲部103,104,105と、4つの平面部113,114,115,116とを有する。平面部113,116は接合用のフランジとして機能する。湾曲部103,105は、平面部113,116をそれぞれ平面部114,115に対して折り曲げ形成するときに通常生じうる比較的小さな湾曲部であってよい。第1部材1Aの平面部112,117が、それぞれ溶接部131,132を介して、第2部材1Bの平面部113,116に接合している。湾曲部100~106のうち、曲率半径が最大である湾曲部100を基準湾曲部10とする。基準湾曲部10の長手方向両端にそれぞれ連続する平面部110,118のうち長いほうの平面部110を基準平面部11とする。基準湾曲部10の曲率半径Rが式(1)を満足し、基準平面部11の長さb1が式(2)を満足するように設定すれば、図7に示す例と同様の作用効果が得られる。例えば、曲率半径Rは15mm以上であってよく、長さb1は10mm以上であってよい。
[Modification 2-2]
FIG. 9 shows a modification of the cross-sectional shape shown in FIG. A cross section of the first member 1A perpendicular to the axis has four curved portions 100, 101, 102, and 106 and five flat portions 110, 111, 112, 117, and 118. As shown in FIG. The flat portions 112 and 117 function as joining flanges. Bend portions 102 and 106 may be relatively small bends that would normally occur when flat portions 112 and 117 are bent relative to flat portions 111 and 118, respectively. A cross section of the second member 1B perpendicular to the axis has three curved portions 103, 104, 105 and four flat portions 113, 114, 115, 116. As shown in FIG. The plane portions 113 and 116 function as joining flanges. Bend portions 103 and 105 may be relatively small bends that would normally occur when flat portions 113 and 116 are bent relative to flat portions 114 and 115, respectively. The flat portions 112 and 117 of the first member 1A are joined to the flat portions 113 and 116 of the second member 1B via welding portions 131 and 132, respectively. The curved portion 100 having the largest curvature radius among the curved portions 100 to 106 is defined as the reference curved portion 10 . The longer planar portion 110 of the planar portions 110 and 118 that are continuous with both ends in the longitudinal direction of the reference curved portion 10 is referred to as the reference planar portion 11 . If the curvature radius R of the reference curved portion 10 satisfies the formula (1) and the length b1 of the reference flat portion 11 satisfies the formula (2), the same effect as the example shown in FIG. 7 can be obtained. can get. For example, the radius of curvature R may be 15 mm or more and the length b1 may be 10 mm or more.

[変形例2-3]
図10は、図7に示す断面形状の変形例を示す。第1部材1Aの軸直角方向断面は、4つの湾曲部100,101,106,107と、5つの平面部110,111,112,118,119とを有する。平面部112,118は接合用のフランジとして機能する。湾曲部101,106は、平面部112,118をそれぞれ平面部111,119に対して折り曲げ形成するときに通常生じうる比較的小さな湾曲部であってよい。第2部材1Bの軸直角方向断面は、4つの湾曲部102,103,104,105と、5つの平面部113,114,115,116,117とを有する。平面部113,117は接合用のフランジとして機能する。湾曲部102,105は、平面部113,117をそれぞれ平面部114,116に対して折り曲げ形成するときに通常生じうる比較的小さな湾曲部であってよい。第1部材1Aの平面部112,118が、それぞれ溶接部131,132を介して、第2部材1Bの平面部113,117に接合している。湾曲部100~107のうち、曲率半径が最大である湾曲部100を基準湾曲部10とする。基準湾曲部10の長手方向両端にそれぞれ連続する平面部110,111のうち長いほうの平面部110を基準平面部11とする。基準湾曲部10の曲率半径Rが式(1)を満足し、基準平面部11の長さb1が式(2)を満足するように設定すれば、図7に示す例と同様の作用効果が得られる。例えば、曲率半径Rは15mm以上であってよく、長さb1は10mm以上であってよい。
[Modification 2-3]
FIG. 10 shows a modification of the cross-sectional shape shown in FIG. A cross section of the first member 1A perpendicular to the axis has four curved portions 100, 101, 106, 107 and five flat portions 110, 111, 112, 118, 119. As shown in FIG. Flat portions 112 and 118 function as joining flanges. Bend portions 101 and 106 may be relatively small bends that would normally occur when flat portions 112 and 118 are bent to form flat portions 111 and 119, respectively. A cross section of the second member 1B perpendicular to the axis has four curved portions 102, 103, 104, 105 and five flat portions 113, 114, 115, 116, 117. As shown in FIG. The flat portions 113 and 117 function as joining flanges. Bend portions 102 and 105 may be relatively small bends that would normally occur when flat portions 113 and 117 are folded to form flat portions 114 and 116, respectively. The flat portions 112, 118 of the first member 1A are joined to the flat portions 113, 117 of the second member 1B via welding portions 131, 132, respectively. The curved portion 100 having the largest radius of curvature among the curved portions 100 to 107 is defined as the reference curved portion 10 . The longer planar portion 110 of the planar portions 110 and 111 that are continuous with both ends in the longitudinal direction of the reference curved portion 10 is referred to as the reference planar portion 11 . If the curvature radius R of the reference curved portion 10 satisfies the formula (1) and the length b1 of the reference flat portion 11 satisfies the formula (2), the same effect as the example shown in FIG. 7 can be obtained. can get. For example, the radius of curvature R may be 15 mm or more and the length b1 may be 10 mm or more.

[変形例2-4]
図11は、図7に示す断面形状の変形例を示す。車体部材1の軸直角方向断面は、略ハット形状の閉断面である。第1部材1Aの軸直角方向断面は、8つの湾曲部100,101,102,103,104,105,106,107と、7つの平面部110,111,112,113,115,116,117とを有する。平面部113,115は接合用のフランジとして機能する。湾曲部104,105は、平面部113,115をそれぞれ平面部112,116に対して折り曲げ形成するときに通常生じうる比較的小さな湾曲部であってよい。湾曲部100と湾曲部107は、平面部を介さずに、互いに連続する。湾曲部101と湾曲部102は、平面部を介さずに、互いに連続する。湾曲部100,101,102,107および平面部110により、平面部111,117から車体部材1の内側に向かって突出する凹部12が形成されている。凹部12は、車体部材1の長手方向(軸方向)に沿って延びる溝状である。第2部材1Bは平板状であり、その軸直角方向断面は、1つの平面部114を有する。第1部材1Aの平面部113,115が、それぞれ溶接部131,132を介して、第2部材1Bの平面部113の長手方向端部に接合している。湾曲部100,101は、車体部材1の内側に凸である。湾曲部100,101の曲率半径は、他の湾曲部102~107の曲率半径より大きい。湾曲部100,101の曲率半径は互いに同じであるため、例えば湾曲部100を基準湾曲部10としてよい。基準湾曲部10の長手方向両端のうち一端のみに平面部が連続するため、この平面部110を基準平面部11とする。
[Modification 2-4]
FIG. 11 shows a modification of the cross-sectional shape shown in FIG. The cross section of the vehicle body member 1 in the direction perpendicular to the axis is a substantially hat-shaped closed cross section. The first member 1A has eight curved portions 100, 101, 102, 103, 104, 105, 106, and 107 and seven flat portions 110, 111, 112, 113, 115, 116, and 117. have The flat portions 113 and 115 function as joining flanges. Bend portions 104 and 105 may be relatively small bends that would normally occur when flat portions 113 and 115 are bent relative to flat portions 112 and 116, respectively. The curved portion 100 and the curved portion 107 are continuous with each other without passing through the plane portion. The curved portion 101 and the curved portion 102 are continuous with each other without passing through the plane portion. The curved portions 100 , 101 , 102 , 107 and the flat portion 110 form a concave portion 12 projecting inwardly of the vehicle body member 1 from the flat portions 111 , 117 . The recess 12 has a groove shape extending along the longitudinal direction (axial direction) of the vehicle body member 1 . The second member 1B has a flat plate shape, and has one plane portion 114 in its cross section perpendicular to the axis. The flat portions 113 and 115 of the first member 1A are joined to the longitudinal ends of the flat portion 113 of the second member 1B via welding portions 131 and 132, respectively. The curved portions 100 and 101 are convex inside the vehicle body member 1 . The radius of curvature of curved portions 100 and 101 is greater than the radius of curvature of the other curved portions 102-107. Since the curved portions 100 and 101 have the same radius of curvature, the curved portion 100 may be used as the reference curved portion 10, for example. Since the plane portion continues to only one of the longitudinal ends of the reference curved portion 10 , this plane portion 110 is referred to as the reference plane portion 11 .

基準湾曲部10の曲率半径Rが式(1)を満足し、基準平面部11の長さb1が式(2)を満足するように設定すれば、図7に示す例と同様の作用効果が得られる。例えば、曲率半径Rは15mm以上であってよく、長さb1は10mm以上であってよい。本変形例では、第1部材1Aの平面部が3つに分割されているため、軸直角方向断面における各平面部110,111,117の長さが短くなり、上記式(2)の右辺で規定される上限値以下となりやすくなる。これにより、各平面部で弾性座屈が抑制される。また、第1部材1Aが凹部12を有することにより、曲げモーメントに対する車体部材1の耐力が向上し、さらに衝撃吸収特性も向上する。 If the curvature radius R of the reference curved portion 10 satisfies the formula (1) and the length b1 of the reference flat portion 11 satisfies the formula (2), the same effect as the example shown in FIG. 7 can be obtained. can get. For example, the radius of curvature R may be 15 mm or more and the length b1 may be 10 mm or more. In this modified example, since the flat portion of the first member 1A is divided into three, the length of each flat portion 110, 111, 117 in the section perpendicular to the axis is shortened, and the right side of the above equation (2) is It tends to fall below the specified upper limit. Thereby, elastic buckling is suppressed in each flat portion. In addition, since the first member 1A has the concave portion 12, the resistance of the vehicle body member 1 against bending moment is improved, and the impact absorption characteristics are also improved.

[車体部材の適用例]
以上、本発明の好適な実施の形態について詳細に説明した。ここから、図12を参照して実施形態に係る車体部材1の適用例について説明する。図12は、車体部材1が適用される一例としての自動車骨格2を示す図である。車体部材1は、キャビン骨格または衝撃吸収骨格として自動車骨格2を構成し得る。
[Examples of application of car body members]
The preferred embodiments of the present invention have been described in detail above. From here, an application example of the vehicle body member 1 according to the embodiment will be described with reference to FIG. 12 . FIG. 12 is a diagram showing an automobile frame 2 as an example to which the vehicle body member 1 is applied. The vehicle body member 1 can constitute the automobile skeleton 2 as a cabin skeleton or an impact-absorbing skeleton.

キャビン骨格としての車体部材1の適用例は、ルーフセンタリンフォース201、ルーフサイドレール203、Bピラー207、サイドシル209、トンネル211、Aピラーロア213、Aピラーアッパー215、キックリーンフォース227、フロアクロスメンバ229、アンダーリーンフォース231、フロントヘッダ233等が挙げられる。また、衝撃吸収骨格としての車体部材1の適用例は、リアサイドメンバー205、エプロンアッパメンバ217、バンパリーンフォース219、クラッシュボックス221、フロントサイドメンバー223等が挙げられる。上記の他、自動車のドアの内部に設けられた補強材としてのドアインパクトビーム等に車体部材1を適用してもよい。要は、軸方向に圧縮力が作用しうる部位であれば、本実施形態の車体部材1を適用可能である。 Application examples of the vehicle body member 1 as a cabin frame include a roof centering force 201, a roof side rail 203, a B pillar 207, a side sill 209, a tunnel 211, an A pillar lower 213, an A pillar upper 215, a kick reinforcement 227, and a floor cross member. 229, under reinforcement 231, front header 233, and the like. Further, application examples of the vehicle body member 1 as a shock absorbing skeleton include the rear side member 205, the apron upper member 217, the bumper reinforcement 219, the crash box 221, the front side member 223, and the like. In addition to the above, the vehicle body member 1 may be applied to a door impact beam or the like as a reinforcing member provided inside the door of an automobile. In short, the vehicle body member 1 of the present embodiment can be applied to any part where a compressive force can act in the axial direction.

このように車体部材1がキャビン骨格または衝撃吸収骨格として使用される場合、車体部材1は高い軸方向圧縮耐力を有するので、衝突時の変形を低減できる。また、変形能も向上して、骨格内部を保護することができる。 When the vehicle body member 1 is used as a cabin frame or a shock absorbing frame in this way, the vehicle body member 1 has a high axial compressive strength, so that deformation at the time of collision can be reduced. In addition, deformability is improved, and the inside of the skeleton can be protected.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention belongs can conceive of various modifications or modifications within the scope of the technical idea described in the claims. It is understood that these also naturally belong to the technical scope of the present invention.

例えば、湾曲部は、車体部材の軸直角方向断面に少なくとも1つあればよく、湾曲部が1つであってもよい。また、平面部は、車体部材の軸直角方向断面に少なくとも1つあればよく、平面部が1つであってもよい。車体部材の軸直角方向断面は、閉断面でなくてもよく、開断面であってもよい。例えば、図8~11に示す変形例において、第2部材1Bが省略され、第1部材1Aのみが車体部材として用いられてもよい。これらの場合も、軸直角方向断面において基準平面部の長手方向両端が単純支持されているとみなせるため、上記式(1)または式(2)を満足する場合に上記作用効果が得られる。 For example, there may be at least one curved portion in the cross section of the vehicle body member in the direction perpendicular to the axis, and the number of curved portions may be one. In addition, it suffices that there is at least one plane portion in the cross-section in the direction perpendicular to the axis of the vehicle body member, and the number of plane portions may be one. The cross section of the vehicle body member in the direction perpendicular to the axis may not be a closed cross section, and may be an open cross section. For example, in the modifications shown in FIGS. 8 to 11, the second member 1B may be omitted and only the first member 1A may be used as the vehicle body member. In these cases as well, the longitudinal ends of the reference flat portion can be regarded as being simply supported in the cross section in the direction perpendicular to the axis.

1 車体部材
10 基準湾曲部
11 基準平面部
L1 第1直線
L2 第2直線
1 vehicle body member 10 reference curved portion 11 reference plane portion L1 first straight line L2 second straight line

Claims (4)

トンネル、キックリーンフォース、フロアクロスメンバ、アンダーリーンフォースのいずれかの車体部材であり、
板厚が1.6mm以下である鋼板により形成され、
軸直角方向断面の形状が、
外側または内側に凸の少なくとも1つの湾曲部と、少なくとも1つの平面部とを有し、
曲率半径が最大である1つの前記湾曲部を基準湾曲部とし、
前記基準湾曲部の長手方向両端のうち、一端のみに前記平面部が連続する場合は当該平面部、両端に前記平面部が連続する場合は当該平面部のうち長いほうの前記平面部を、それぞれ基準平面部とし、
前記基準湾曲部の長手方向両端のうち前記基準平面部が連続しないほうの端から前記基準湾曲部の接線方向に延びる直線を第1直線とし、
前記基準平面部の延長線を第2直線とし、
前記第1直線と前記第2直線の交点と、前記基準平面部の長手方向両端のうち前記基準湾曲部に連続しないほうの端と、の間の長さをb0とし、
前記基準平面部の長さをb1とし、
前記基準湾曲部の曲率半径をRとするとき、
以下の式(1)および式(2)を満足
前記鋼板の引張強度が1180MPa以上であり、
前記Rが15mm以上である、
トンネル、キックリーンフォース、フロアクロスメンバ、アンダーリーンフォースのいずれかの車体部材。
ただし、前記基準平面部を形成する部分の鋼板の、板厚をt、ヤング率をE、ポアソン比をν、降伏応力をσとする。
Figure 0007288183000007
Figure 0007288183000008
Tunnel, kick reinforcement, floor cross member, or under reinforcement body member,
formed of a steel plate having a thickness of 1.6 mm or less,
The shape of the cross section perpendicular to the axis is
having at least one outwardly or inwardly convex curved portion and at least one planar portion;
one curved portion having the largest radius of curvature as a reference curved portion;
If the plane portion is continuous with only one end of the longitudinal direction ends of the reference curved portion, the plane portion is continuous, and if the plane portion is continuous with both ends, the longer plane portion is selected. as the reference plane,
a straight line extending in a tangential direction of the reference curved portion from one end of the reference curved portion in the longitudinal direction at which the reference flat portion is not continuous is defined as a first straight line;
An extension line of the reference plane portion is defined as a second straight line,
Let b0 be the length between the intersection point of the first straight line and the second straight line and the end of the reference flat portion that is not continuous with the reference curved portion among the longitudinal ends of the reference flat portion;
The length of the reference plane portion is b1,
When the radius of curvature of the reference curved portion is R,
satisfying the following formulas (1) and (2),
The steel plate has a tensile strength of 1180 MPa or more,
The R is 15 mm or more,
A body member that is either a tunnel, kick reinforce, floor cross member or under reinforce .
However, the plate thickness of the steel plate forming the reference flat portion is t, Young's modulus is E, Poisson's ratio is ν, and yield stress is σy .
Figure 0007288183000007
Figure 0007288183000008
前記b1が10mm以上である、請求項に記載の車体部材。 The vehicle body member according to claim 1 , wherein said b1 is 10 mm or more. 前記基準湾曲部を間に挟んで前記第1直線と前記第2直線がなす角度が80°以上、150°以下である、請求項1または2に記載の車体部材。 3. The vehicle body member according to claim 1, wherein an angle formed by said first straight line and said second straight line with said reference curved portion interposed therebetween is 80[deg.] or more and 150[deg.] or less . 前記軸直角方向断面が、閉断面である、請求項1~のいずれか1項に記載の車体部材。 A vehicle body member according to any one of claims 1 to 3 , wherein said transverse section is a closed section.
JP2019053191A 2019-03-20 2019-03-20 body parts Active JP7288183B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019053191A JP7288183B2 (en) 2019-03-20 2019-03-20 body parts
JP2023043604A JP2023075317A (en) 2019-03-20 2023-03-17 Vehicle body member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019053191A JP7288183B2 (en) 2019-03-20 2019-03-20 body parts

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023043604A Division JP2023075317A (en) 2019-03-20 2023-03-17 Vehicle body member

Publications (2)

Publication Number Publication Date
JP2020152257A JP2020152257A (en) 2020-09-24
JP7288183B2 true JP7288183B2 (en) 2023-06-07

Family

ID=72557465

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019053191A Active JP7288183B2 (en) 2019-03-20 2019-03-20 body parts
JP2023043604A Pending JP2023075317A (en) 2019-03-20 2023-03-17 Vehicle body member

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023043604A Pending JP2023075317A (en) 2019-03-20 2023-03-17 Vehicle body member

Country Status (1)

Country Link
JP (2) JP7288183B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166988A1 (en) * 2020-02-18 2021-08-26 日本製鉄株式会社 Vehicle body structural member and method for designing vehicle body structural member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002248941A (en) 2001-02-26 2002-09-03 Nippon Steel Corp Structure member for automobile
JP2004315858A (en) 2003-04-14 2004-11-11 Nippon Steel Corp Steel member with excellent impact characteristic
JP2012236525A (en) 2011-05-12 2012-12-06 Mazda Motor Corp Vehicular frame structure
WO2016060255A1 (en) 2014-10-17 2016-04-21 新日鐵住金株式会社 Impact absorption member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002248941A (en) 2001-02-26 2002-09-03 Nippon Steel Corp Structure member for automobile
JP2004315858A (en) 2003-04-14 2004-11-11 Nippon Steel Corp Steel member with excellent impact characteristic
JP2012236525A (en) 2011-05-12 2012-12-06 Mazda Motor Corp Vehicular frame structure
WO2016060255A1 (en) 2014-10-17 2016-04-21 新日鐵住金株式会社 Impact absorption member

Also Published As

Publication number Publication date
JP2023075317A (en) 2023-05-30
JP2020152257A (en) 2020-09-24

Similar Documents

Publication Publication Date Title
US9216767B2 (en) Front axle mounting with crash grooves
WO2011122492A1 (en) Vehicle component
JP7103438B2 (en) Car door
RU2686287C1 (en) Design of the rear area of the vehicle
JP2023075317A (en) Vehicle body member
CN111433056A (en) Structural member
JP5686586B2 (en) Reinforcement structure in automobile body frame
US11267517B2 (en) Member and vehicle frame
JP6973517B2 (en) Structural members for vehicles
WO2020149296A1 (en) Automobile door
JP6566173B1 (en) Front pillar outer
JP6565291B2 (en) Shock absorbing member, vehicle body and shock absorbing method
JP7243913B2 (en) Car body structural member and method for designing car body structural member
KR101967109B1 (en) Integrated Type Impact Bar for a Vehicle Door
JP7385121B2 (en) Design method for vehicle body structural components
JP6183475B2 (en) Automobile frame parts and front pillar lowers including the same
WO2021010395A1 (en) Front pillar outer
US20230415820A1 (en) Front side member for vehicle
WO2021010389A1 (en) Front pillar outer
JP7323823B2 (en) Reinforcement structure for automotive exterior panels
JP6838432B2 (en) Impact resistant parts of automobiles
WO2023090112A1 (en) Body lower structure and side sill structure for automotive vehicle
WO2023189029A1 (en) Vehicle body structure, and method for designing vehicle body structure
KR102257663B1 (en) Automobile shock absorbing member and side member
JP2023131794A (en) Structural member

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190419

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230508

R151 Written notification of patent or utility model registration

Ref document number: 7288183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151