JP2001219226A - High-strength steel tube for hydroforming - Google Patents

High-strength steel tube for hydroforming

Info

Publication number
JP2001219226A
JP2001219226A JP2000028142A JP2000028142A JP2001219226A JP 2001219226 A JP2001219226 A JP 2001219226A JP 2000028142 A JP2000028142 A JP 2000028142A JP 2000028142 A JP2000028142 A JP 2000028142A JP 2001219226 A JP2001219226 A JP 2001219226A
Authority
JP
Japan
Prior art keywords
tube
pipe
hydroforming
strength steel
fitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000028142A
Other languages
Japanese (ja)
Inventor
Osamu Sonobe
治 園部
Yuji Hashimoto
裕二 橋本
Akira Yorifuji
章 依藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000028142A priority Critical patent/JP2001219226A/en
Publication of JP2001219226A publication Critical patent/JP2001219226A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-strength steel tube for hydroforming which can obtain a hydroformed component with a desired portion thereof strengthened without any weakening by the reduction in the wall thickness caused by the hydroforming at a low cost. SOLUTION: The high-strength steel tube for hydroforming has a multiple tubular structure comprising, for example, a base tube 1 and an add-on tube 2 on a part of the overall length. The multiple tubular structure is preferably formed by at least one kind of shrink-fit, cold-fit, and press-fit. A tube constituting the multiple tubular structure is preferably laser-welded.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ハイドロフォーム
加工用高強度鋼管に関する。ハイドロフォーム(以下適
宜HFと記す)とは、鋼管に軸力と内圧をかけて一体成
形により中空閉じ断面構造部品を製造する技術である。
具体的には、鋼管を金型内に装着して管内に液体を装入
して管周方向に伸びを与え、所定の形状に拡管加工す
る。この技術は、主に自動車部品の製造に用いられてい
る。
[0001] The present invention relates to a high-strength steel pipe for hydroforming. Hydroforming (hereinafter, appropriately referred to as HF) is a technique for manufacturing a hollow closed-section structural component by integrally forming a steel pipe by applying axial force and internal pressure.
Specifically, a steel pipe is mounted in a mold, a liquid is charged into the pipe, the pipe is extended in the circumferential direction, and the pipe is expanded into a predetermined shape. This technology is mainly used for the production of automobile parts.

【0002】[0002]

【従来の技術】ハイドロフォーム加工用素材としては、
通常、低炭素鋼板を電縫溶接してなる電縫鋼管の単管が
供される。この通常の素材をハイドロフォーム加工して
製造した通常のHF部品は、エンジンクレードルのよう
な独立した部材には問題なく適用できる。しかし、フロ
ントサイドメンバやセンターピラー等のような構造部材
では、潰れることにより衝撃エネルギーを吸収する低強
度部分と、乗員の安全確保のためのスペースを保持する
潰れることのない高強度部分とが併存したものが要求さ
れ、通常のHF部品では、この要求を満たすことが困難
である。というのは、この要求を満たすには、部分的に
拡管率を大きくして加工硬化による強度上昇を図るとい
う方法が有効と考えられるが、拡管率を大きくした部分
の薄肉化が避けられず、剛性の面からとりうる拡管率に
おのずと上限があり、拡管後に十分な強度が得られない
からである。
2. Description of the Related Art Hydroform processing materials include:
Usually, a single tube of an ERW steel pipe formed by ERW welding a low carbon steel plate is provided. A normal HF component manufactured by hydroforming this normal material can be applied to an independent member such as an engine cradle without any problem. However, structural members such as front side members and center pillars have both a low-strength part that absorbs impact energy by collapsing and a high-strength part that does not collapse to maintain space for occupant safety. However, it is difficult for ordinary HF parts to satisfy this requirement. In order to satisfy this requirement, it is considered effective to partially increase the expansion rate and increase the strength by work hardening, but it is unavoidable to reduce the thickness of the part where the expansion rate is increased, This is because there is naturally an upper limit to the expansion ratio that can be taken in terms of rigidity, and sufficient strength cannot be obtained after expansion.

【0003】そのため、現状、自動車メーカや部品メー
カでは、フロントサイドメンバやセンターピラー等のよ
うな構造部材の素材として、複数の強度を持った部材を
つなぎ合わせたテーラードブランクやテーラードチュー
ブを採用している。しかし、テーラードブランク工法
(テーラードブランクを部品に加工する方法)では、2
種類以上の鋼板をつなぎ合わせた材料(すなわちテーラ
ードブランク)をプレス加工した後、閉断面構造にする
ために2部品以上を溶接する。そのため、材料に溶接代
としてのフランジ部分が必要で、HF加工に比べ材料の
無駄が生じる。また、プレス加工時にポンチの先端が当
たる平坦な部分では、変形量が小さくて加工硬化による
強度上昇が望みえない。なお、加工量をできるだけ大き
くして加工硬化を増大させると、部品全体にわたる歪の
不均一度が増大し、歪の大きい部分の肉厚減少が過大と
なり、かえって弱体化する懸念がある。
[0003] For this reason, at present, automobile manufacturers and component manufacturers adopt tailored blanks or tailored tubes in which members having a plurality of strengths are joined as structural members such as front side members and center pillars. I have. However, in the tailored blank method (method of processing a tailored blank into parts),
After press-working a material (ie, a tailored blank) obtained by joining two or more types of steel plates, two or more parts are welded to form a closed cross-sectional structure. For this reason, the material requires a flange portion as a welding margin, and waste of material occurs as compared with HF processing. Further, in a flat portion where the tip of the punch hits at the time of press working, the deformation amount is small and an increase in strength due to work hardening cannot be expected. If the work hardening is increased by increasing the amount of processing as much as possible, the degree of non-uniformity of strain throughout the part is increased, and the thickness of the portion where the strain is large is excessively reduced, which may result in weakening.

【0004】また、テーラードチューブ工法(テーラー
ドチューブを部品に加工する方法)では、複数の肉厚あ
るいは鋼種のチューブを突合せ溶接によってつないでテ
ーラードチューブとなし、これをHF加工して部品とす
る。ここでは、前記フランジ部分のような無駄は生じな
い。しかし、2種以上のチューブを突合せ溶接する部分
の精度が厳しいなどの理由から、製造コストが嵩む憂い
がある。
In the tailored tube method (method of processing a tailored tube into a part), a plurality of thick or steel tubes are connected to each other by butt welding to form a tailored tube, which is processed by HF to form a part. Here, waste like the flange portion does not occur. However, there is a concern that the manufacturing cost is increased because the accuracy of the part where two or more kinds of tubes are butt-welded is severe.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題に鑑み、HF加工にて肉厚減少による弱体化の
憂いなく所望の部位を高強度化したHF部品を得ること
ができ、しかも低コストで製造できるハイドロフォーム
加工用高強度鋼管を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, the present invention makes it possible to obtain an HF component in which a desired portion is strengthened without fear of weakening due to a decrease in wall thickness in HF processing. Moreover, an object of the present invention is to provide a high-strength steel pipe for hydroforming that can be manufactured at low cost.

【0006】[0006]

【課題を解決するための手段】本発明は、全長の一部に
多重管構造を有するハイドロフォーム加工用高強度鋼管
である。本発明において、全長の一部は、全長さ区間内
の一つまたは二つ以上の部分長さ区間を意味する。本発
明では、前記多重管構造が、焼き嵌め、冷やし嵌め、圧
入のいずれか1種または2種以上により形成されたもの
が好ましい。また、本発明では、前記多重管構造を構成
する管がレーザ溶接されたものが好ましい。
SUMMARY OF THE INVENTION The present invention is a high-strength steel pipe for hydroforming, which has a multiple pipe structure in a part of the entire length. In the present invention, a part of the total length means one or more partial length sections within the full length section. In the present invention, it is preferable that the multi-tube structure is formed by one or more of shrink fitting, cold fitting, and press fitting. In the present invention, it is preferable that the tubes constituting the multi-tube structure are laser-welded.

【0007】[0007]

【発明の実施の形態】パイプをHF加工して構造用部材
を製造する際には、プリベンド(パイプを曲げる)→プ
リプレス(曲げたパイプを金型に入るようにプレスす
る)→HF成形という工程がとられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS When manufacturing a structural member by subjecting a pipe to HF processing, a process of prebend (bending the pipe) → prepress (pressing the bent pipe so as to enter a mold) → HF molding. Is taken.

【0008】例えば自動車用フロントサイドメンバなど
は、車体先頭に近い部分では、衝突の際に潰れて衝撃エ
ネルギーを吸収する要請から、その部材の中では比較的
低強度となることが望ましく、一方、乗員室に近い部分
では、衝突しても乗員が潰されないだけの空間を確保す
る要請から、比較的高強度となることが望ましい。しか
しながら、従来のHF加工用素材である電縫鋼管の単管
では、HF成形の際に特定の部分の拡管率を稼ぐことで
その部分の材料強度をある程度高めることはできるが、
拡管率を稼ぐとその分薄肉化が起こり、構造部材として
の強度を確保することが困難となる。
[0008] For example, the front side member for an automobile is desirably relatively low in strength at the portion near the front of the vehicle body, because it is required to be crushed during a collision and absorb impact energy. In a portion close to the passenger compartment, it is desirable to have a relatively high strength in order to secure a space where the occupant is not crushed even in the event of a collision. However, in a single tube of an electric resistance welded steel pipe which is a conventional material for HF processing, the material strength of a specific portion can be increased to some extent by increasing the expansion ratio of a specific portion during HF forming.
When the expansion ratio is increased, the wall thickness is reduced accordingly, and it is difficult to secure the strength as a structural member.

【0009】これに対し、本発明では、全長の一部に多
重管構造を有するハイドロフォーム加工用鋼管としたの
で、この多重管構造をなす部分に対して拡管率を稼ぐこ
とで、薄肉化による剛性劣化を多重構造による強化で補
償でき、構造部材としての強度を確保することが容易と
なる。本発明のHF加工用高強度鋼管は、一管の全長の
一部に他管を嵌合・固定する方法で製造でき、かかる製
造方法は、異種(あるいは異厚)鋼管を突合せ溶接する
テーラードチューブ工法に比べて精度を粗くできるた
め、製造コストを低減できる。
On the other hand, in the present invention, since the steel pipe for hydroforming has a multi-tube structure in a part of the entire length, it is possible to reduce the wall thickness by increasing the pipe expansion rate with respect to the multi-tube structure. Deterioration in rigidity can be compensated for by strengthening with a multiple structure, and it is easy to secure strength as a structural member. The high-strength steel pipe for HF processing of the present invention can be manufactured by a method of fitting and fixing another pipe to a part of the entire length of one pipe. This manufacturing method is a tailored tube for butt-welding different (or different-thickness) steel pipes. Since the accuracy can be reduced as compared with the construction method, the manufacturing cost can be reduced.

【0010】以下、2重管を例にとって本発明をより具
体的に説明する。なお、2重管において、より長い方の
管をベースチューブ、より短い方の管をアドオンチュー
ブと称する。図1は、アドオンチューブ2を内管、ベー
スチューブ1を外管とした嵌合型(IA型という)の2
重管の一例を示す断面図であり、(a)は嵌合のまま、
(b)は(a)にさらにレーザ溶接を施したものであ
る。
Hereinafter, the present invention will be described more specifically by taking a double pipe as an example. In the double tube, the longer tube is called a base tube, and the shorter tube is called an add-on tube. FIG. 1 shows a fitting type (referred to as an IA type) 2 having an add-on tube 2 as an inner tube and a base tube 1 as an outer tube.
It is sectional drawing which shows an example of a heavy pipe, (a) is a fitting,
(B) is obtained by further performing laser welding on (a).

【0011】ここでの嵌合方法としては、必要に応じて
焼き嵌め、冷やし嵌め、圧入のいずれも好ましく用いう
る。また、これらを併用してもよい。また、任意の方法
で嵌合した内管と外管をレーザ溶接して2重管構造の位
置(内管、外管の相互位置)を固定することが、同様に
好ましい。溶接箇所は必要に応じて適宜選択すればよ
い。溶接法としては、レーザ溶接以外に種々のものがあ
るが、溶接の信頼性の観点からレーザ溶接が最適であ
る。
As the fitting method, any of shrink fitting, cold fitting, and press fitting can be preferably used as necessary. These may be used in combination. It is also preferable to fix the position of the double tube structure (the mutual position of the inner tube and the outer tube) by laser welding the inner tube and the outer tube fitted by any method. The welding location may be appropriately selected as needed. There are various welding methods other than laser welding, but laser welding is optimal from the viewpoint of welding reliability.

【0012】なお、IA型で、嵌合後レーザ溶接しない
場合には、内管と外管の隙間3に注意を払う必要があ
る。管内に液体を挿入して内圧をかけるHF成形(液圧
型HF)の場合、隙間3の密閉が悪いとHF成形開始時
に加圧液が隙間に浸入して隙間内にも液圧が作用してし
まい、内管が拡管せず外管のみが拡管し、所望の効果が
得られなくなる。これを防ぐには、嵌合圧力がHF成形
開始時の液圧よりも大きくなるように嵌合仕様を設計す
ればよい。
In the case of the IA type, when laser welding is not performed after fitting, it is necessary to pay attention to the gap 3 between the inner pipe and the outer pipe. In the case of HF molding (hydraulic type HF) in which a liquid is inserted into a pipe and an internal pressure is applied, if the gap 3 is not well-sealed, the pressurized liquid enters the gap at the start of HF molding and hydraulic pressure acts on the gap. As a result, the inner pipe does not expand and only the outer pipe expands, and the desired effect cannot be obtained. To prevent this, the fitting specification may be designed so that the fitting pressure is higher than the liquid pressure at the start of HF molding.

【0013】ただし、IA型であっても、レーザ溶接を
用いる場合は、図1(b)に示すように、アドオンチュ
ーブ2の両端をベースチューブ1に全周溶接して隙間3
を溶接線4で封鎖することで、加圧液の浸入を防止でき
るため、かかる全周溶接を行う場合には、嵌合圧力はH
F成形開始時の液圧に関係なく決定してよい。図2は、
アドオンチューブ2を外管、ベースチューブ1を内管と
した嵌合型(OA型という)の部分的2重管の一例を示
す断面図である。
However, in the case of using IA type, when laser welding is used, as shown in FIG. 1B, both ends of the add-on tube 2 are welded all around the base tube 1 to form a gap 3.
Can be prevented by infiltration of the pressurized liquid by sealing the welding line 4 with the welding line 4.
The determination may be made irrespective of the fluid pressure at the start of F-forming. FIG.
It is sectional drawing which shows an example of the fitting type | mold (referred to as OA type) partial double pipe which made the add-on tube 2 an outer tube, and made the base tube 1 an inner tube.

【0014】ここでの嵌合方法としては、必要に応じて
焼き嵌め、冷やし嵌め、圧入のいずれも好ましく用いう
る。また、これらを併用してもよい。任意の方法で嵌合
した内管と外管をレーザ溶接して2重管構造の位置を固
定することが、同様に好ましい。溶接箇所は必要に応じ
て適宜選択すればよい。なお、OA型では、その構造
上、加圧液が外管に接しない(隙間3に浸入しない)か
ら、隙間3の密閉状態に特段の注意を払う必要はない。
As the fitting method, any of shrink fitting, cold fitting, and press fitting can be preferably used as necessary. These may be used in combination. It is likewise preferable to fix the position of the double pipe structure by laser welding the inner pipe and the outer pipe fitted by any method. The welding location may be appropriately selected as needed. In the OA type, the pressurized liquid does not come into contact with the outer tube (does not enter the gap 3) due to its structure, so that it is not necessary to pay special attention to the sealed state of the gap 3.

【0015】また、多重管部は単管部よりも高い内圧を
かけないと拡管しないので、例えば図3(a)に示すよ
うな、HF用金型5の高拡管率加工室6内に多重管部20
と単管部10とが入る装着形態(不適合例)では、内圧を
かけた時に単管部の高拡管率加工室内部分10Aが優先的
に拡管してそこがバーストし、HF成形不良となる公算
が高い。よって、本発明に係る多重管構造を形成するに
あたっては、図3(b)に示すような、HF用金型5の
高拡管率加工室6内に多重管部20のみが入る装着形態
(適合例)となるように位置合わせを行うことが重要で
ある。
Further, since the multiple pipe section does not expand unless a higher internal pressure is applied than the single pipe section, the multiple pipe section is multiplexed into the high expansion ratio processing chamber 6 of the HF mold 5 as shown in FIG. Pipe section 20
When the internal pressure is applied, the pipe section 10A with the high expansion ratio of the single pipe section expands preferentially and bursts there when the internal pressure is applied, which is likely to cause HF molding failure. Is high. Therefore, when forming the multi-tube structure according to the present invention, as shown in FIG. 3B, a mounting mode in which only the multi-tube portion 20 enters the high expansion ratio processing chamber 6 of the HF mold 5 (applicable). It is important to perform the alignment so that the example is obtained.

【0016】なお、3重以上の多重管構造については、
2重管構造に準じて形成することができる。
In the case of a triple or multiple tube structure,
It can be formed according to a double tube structure.

【0017】[0017]

【実施例】(実施例1〜8)降伏強さ350 MPa を有する
STKM13A相当の鋼板を管状に曲げ成形し、継目(曲
げ弧端)を電縫溶接して、肉厚、外径を種々違えたチュ
ーブを製作し、これらチューブの全長の一部に表1に示
す方法で多重管構造を形成して、IA型またはOA型の
2重管およびベースチューブの内側と外側にアドオンチ
ューブを嵌合した3重管を製作し、本発明の実施例とし
た。ここで、多重管構造の形成範囲は、チューブの長手
方向中心から一端に亘る範囲とした。
EXAMPLES (Examples 1 to 8) A steel plate equivalent to STKM13A having a yield strength of 350 MPa was formed into a tube by bending, and the seam (bent end) was subjected to electric resistance welding to vary the wall thickness and outer diameter. A multi-tube structure is formed on a part of the entire length of the tube by the method shown in Table 1, and an add-on tube is fitted inside and outside the IA type or OA type double tube and the base tube. A triple tube was manufactured as an example of the present invention. Here, the formation range of the multi-tube structure was a range from the longitudinal center of the tube to one end.

【0018】[0018]

【表1】 [Table 1]

【0019】これらの2重管および3重管(加工用素
材)をプリプレスしてコーナ曲げ半径:3mm、断面:60
mm四方の矩形状、長さ:300mm の加工室を有する金型
(HF用金型)内の加工室内に装入し、管端を固定して
内部に液圧をかけるHF成形を施して、図4に示す寸法
の角柱管とした。ここで、単管部10と多重管部20の肉厚
は、単管部10では周方向平均で1.6mm 、多重管部20では
内管外管合計の周方向平均で2.6mm を目標とし、試行錯
誤によりこの目標に合わせた。
These double pipes and triple pipes (materials for processing) are prepressed, and a corner bending radius: 3 mm and a cross section: 60
It is placed in a processing chamber in a mold (HF mold) having a processing chamber with a square shape of mm square and a length of 300 mm, and is subjected to HF molding in which a pipe end is fixed and liquid pressure is applied inside. It was a prismatic tube having the dimensions shown in FIG. Here, the wall thickness of the single pipe section 10 and the multiple pipe section 20 is targeted to be 1.6 mm in the circumferential average in the single pipe section 10 and 2.6 mm in the circumferential average of the total inner pipe and outer pipe in the multiple pipe section 20. We met this goal by trial and error.

【0020】(比較例1)実施例で用いたのと同じ帯鋼
から、薄肉部にする1.6mm 厚の板と厚肉部にする2.6mm
厚の板とを選び、表1に示す方法でテーラードブランク
となし、比較例1とした。このテーラードブランク(加
工用素材)をプレスしさらに溶接して、コーナ曲げ半
径:3mm、断面:60mm四方の矩形状、長さ:300mm (薄
肉部長さ150mm 、厚肉部長さ150mm )、フランジ幅:10
mmになる角柱管を製作した。これは、いわゆるテーラー
ドブランク工法の例である。
(Comparative Example 1) From the same steel strip used in the example, a 1.6 mm thick plate for a thin portion and 2.6 mm for a thick portion
A thick plate was selected, and a tailored blank was prepared by the method shown in Table 1 to obtain Comparative Example 1. This tailored blank (material for processing) is pressed and further welded, and the corner bending radius: 3 mm, cross section: rectangular shape of 60 mm square, length: 300 mm (thin part length 150 mm, thick part length 150 mm), flange width: Ten
mm prism tube was manufactured. This is an example of the so-called tailored blank method.

【0021】(比較例2)実施例で用いたのと同じチュ
ーブから、薄肉部にする管と厚肉部にする管とを選び、
表1に示す方法でテーラードチューブとなし、比較例2
とした。このテーラードチューブ(加工用素材)に対し
実施例と同様のプリプレス→HF成形を施して、図4と
同じ寸法の角柱管となした。この角柱管の薄肉部、厚肉
部は、図4の単管部10、多重管部20にそれぞれ対応す
る。なお、各部の厚み(薄肉部1.6mm、厚肉部2.6mm )
は、実施例同様、試行錯誤により目標値に合わせた。
(Comparative Example 2) From the same tubes used in the examples, a tube to be thinned and a tube to be thickened were selected.
Comparative Example 2 without tailored tube by the method shown in Table 1.
And This tailored tube (material for processing) was subjected to the same pre-pressing and HF forming as in the example to obtain a prismatic tube having the same dimensions as in FIG. The thin and thick portions of the prismatic tube correspond to the single tube portion 10 and the multiple tube portion 20 in FIG. 4, respectively. In addition, thickness of each part (thick part 1.6mm, thick part 2.6mm)
Was adjusted to the target value by trial and error as in the example.

【0022】実施例1〜8、比較例1〜2を素材として
上記要領で製作した角柱管(自動車構造用部材相当の部
品)について、図5に示す部位A〜Fにおける歪(真
歪)を測定した。その結果を表2に示す。
With respect to the prismatic tubes (parts equivalent to structural members for automobiles) manufactured from the examples 1 to 8 and the comparative examples 1 and 2 as described above, the strains (true strains) at the portions A to F shown in FIG. It was measured. Table 2 shows the results.

【0023】[0023]

【表2】 [Table 2]

【0024】表2より、実施例1〜8の真歪は、比較例
1よりも大きく、比較例2に匹敵する。すなわち、本発
明に係る多重管構造を有する鋼管を素材とするHF部品
では、テーラードチューブを素材とするHF部品と同程
度の加工硬化強度が得られる。両者は、テーラードブラ
ンク工法による部品(非HF部品)よりも高強度であ
る。
From Table 2, the true strains of Examples 1 to 8 are larger than Comparative Example 1 and are comparable to Comparative Example 2. That is, in the HF part made of a steel pipe having a multiple pipe structure according to the present invention, the same work hardening strength as that of the HF part made of a tailored tube can be obtained. Both have higher strength than the parts (non-HF parts) by the tailored blank method.

【0025】また、これら部品の長さ方向の一端(図5
のX部の端)に10kgの錘を50km/hで正面衝突(衝突方向
は部品長軸方向に平行)させ、該一端が150mm 変位した
時点で錘を停止させるようにストッパを設定して、衝突
開始から錘停止までの間の荷重を連続測定して荷重−変
位曲線を求め、これを基に荷重を変位で積分することに
より吸収エネルギーEs を算出した。その結果を表2に
示す。なお、部品単位重量あたりの吸収エネルギーes
も併示した。
Further, one end in the longitudinal direction of these parts (FIG. 5)
A 10kg weight is subjected to a frontal collision at 50km / h (the collision direction is parallel to the long axis direction of the parts) at the end of the X section of the above), and a stopper is set so as to stop the weight when the one end is displaced 150mm. load a load of between collisions start to weight stopped continuously measured - calculated displacement curves were calculated absorption energy E s by integrating the load displacement based on this. Table 2 shows the results. Note that the absorbed energy per unit weight e s
Are also shown.

【0026】表2より、実施例1〜8(多重管構造を有
する鋼管)では比較例2(テーラードチューブ)に比肩
し、比較例1(テーラードブランク)よりも大きい吸収
エネルギーEs および部品単位重量あたりの吸収エネル
ギーes が得られる。なお、比較例1ではフランジ部を
要した分だけ実施例1〜8および比較例2よりも部品重
量が大きい(比較例1の5.3/4.2=1.26kgに対し、例えば
実施例3,実施例5,比較例2では5.7/4.9=1.16kgであ
る)。
[0026] From Table 2, Examples 1-8 were comparable to Comparative Example (multiple pipe steel having a structure) 2 (tailored tubes), Comparative Example 1 absorbed energy E s and parts unit weight larger than (tailored blanks) Energy s per unit is obtained. Note that in Comparative Example 1, the parts weight is larger than in Examples 1 to 8 and Comparative Example 2 by the amount of the need for the flange portion (5.3 / 4.2 = 1.26 kg of Comparative Example 1, for example, Examples 3 and 5). 5.7 / 4.9 = 1.16 kg in Comparative Example 2).

【0027】また、実施例1〜8と比較例2とで素材製
作工数を比較したところ、実施例1〜8の多重管構造形
成に要した工数は、比較例2のテーラードチューブ製作
工数の約70%であり、本発明がテーラードチューブより
も製造コスト面で格段に有利であることが確認された。
Further, when the man-hours for manufacturing the materials in Examples 1 to 8 and Comparative Example 2 were compared, the man-hours required for forming the multi-tube structure in Examples 1 to 8 were approximately the same as the man-hours for manufacturing the tailored tube in Comparative Example 2. It was 70%, which confirmed that the present invention was significantly more advantageous in terms of manufacturing cost than the tailored tube.

【0028】[0028]

【発明の効果】かくして本発明によれば、テーラードチ
ューブを素材とした場合に匹敵する衝撃吸収性能を有す
るHF部品を得ることができ、しかも本発明のHF加工
用高強度鋼管はテーラードチューブよりも安価に製造で
きるので、自動車用構造部材に資するHF加工用素材を
より経済的に供給できるようになるという、産業上の寄
与大なる格段の効果を奏する。
As described above, according to the present invention, it is possible to obtain an HF part having a shock absorbing performance comparable to that of using a tailored tube as a material. Since it can be manufactured at a low cost, the material for HF processing that contributes to the structural members for automobiles can be supplied more economically, which has a remarkable effect on industrial contribution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のIA型2重管の一例を示す断面図であ
る。
FIG. 1 is a sectional view showing an example of an IA type double tube of the present invention.

【図2】本発明のOA型2重管の一例を示す断面図であ
る。
FIG. 2 is a cross-sectional view showing an example of the OA type double pipe of the present invention.

【図3】部分的2重管のHF用金型への装着形態の不適
合例(a)と適合例(b)を示す断面図である。
FIGS. 3A and 3B are cross-sectional views showing a non-conforming example (a) and a conforming example (b) of a mounting mode of a partially double pipe to an HF mold.

【図4】実施例を素材としたHF部品の寸法図である。FIG. 4 is a dimensional view of an HF component made of the embodiment.

【図5】角柱管の歪測定部位を示す説明図である。FIG. 5 is an explanatory view showing a strain measurement site of a prismatic tube.

【符号の説明】[Explanation of symbols]

1 ベースチューブ 2 アドオンチューブ 3 隙間 4 溶接線 5 HF用金型 6 高拡管率加工室 10 単管部 10A 単管部の高拡管率加工室内部分 20 多重管部 DESCRIPTION OF SYMBOLS 1 Base tube 2 Add-on tube 3 Gap 4 Welding line 5 HF mold 6 High expansion rate processing chamber 10 Single pipe section 10A Single pipe section high expansion rate processing chamber section 20 Multiple pipe section

───────────────────────────────────────────────────── フロントページの続き (72)発明者 依藤 章 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 Fターム(参考) 3H111 AA01 BA03 CB03 CB30 DA26 DB19 EA12 EA16 4E068 AA02 BG00 DA15 DB01  ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Akira Ito 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba F-term in the Technical Research Institute, Kawasaki Steel Corporation (reference) 3H111 AA01 BA03 CB03 CB30 DA26 DB19 EA12 EA16 4E068 AA02 BG00 DA15 DB01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 全長の一部に多重管構造を有するハイド
ロフォーム加工用高強度鋼管。
1. A high-strength steel pipe for hydroforming having a multiple pipe structure in a part of the entire length.
【請求項2】 前記多重管構造が、焼き嵌め、冷やし嵌
め、圧入のいずれか1種または2種以上により形成され
た請求項1記載のハイドロフォーム加工用高強度鋼管。
2. The high-strength steel pipe for hydroforming according to claim 1, wherein the multiple pipe structure is formed by one or more of shrink fitting, cold fitting and press fitting.
【請求項3】 前記多重管構造を構成する管が、レーザ
溶接された請求項1または2に記載のハイドロフォーム
加工用高強度鋼管。
3. The high-strength steel pipe for hydroforming according to claim 1, wherein the pipe constituting the multi-pipe structure is laser-welded.
JP2000028142A 2000-02-04 2000-02-04 High-strength steel tube for hydroforming Pending JP2001219226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000028142A JP2001219226A (en) 2000-02-04 2000-02-04 High-strength steel tube for hydroforming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000028142A JP2001219226A (en) 2000-02-04 2000-02-04 High-strength steel tube for hydroforming

Publications (1)

Publication Number Publication Date
JP2001219226A true JP2001219226A (en) 2001-08-14

Family

ID=18553597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000028142A Pending JP2001219226A (en) 2000-02-04 2000-02-04 High-strength steel tube for hydroforming

Country Status (1)

Country Link
JP (1) JP2001219226A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002094472A1 (en) * 2001-05-22 2002-11-28 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Hydroform process, and hydroform product formed by the process
DE10304071A1 (en) * 2003-01-31 2004-09-02 Gather Industrie Gmbh Combination of two tubes, one of which fits inside other, for use as hollow shaft or in magnetically-coupled gear pumps, is held together by laser spot-welding
JP2006264469A (en) * 2005-03-23 2006-10-05 Showa Denko Kk Steering support beam and manufacturing method thereof
CN104879577A (en) * 2015-06-11 2015-09-02 马鞍山市圣火科技有限公司 Manufacturing method of composite tube
CN105171339A (en) * 2015-06-11 2015-12-23 马鞍山市圣火科技有限公司 Method for manufacturing inner wall composite pipe through hydraulic expansion
JP2018075612A (en) * 2016-11-10 2018-05-17 トヨタ自動車株式会社 Bending member and manufacturing method thereof
WO2022220283A1 (en) 2021-04-14 2022-10-20 日本製鉄株式会社 Impact-absorbing structure for automobile

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002094472A1 (en) * 2001-05-22 2002-11-28 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Hydroform process, and hydroform product formed by the process
US7051768B2 (en) 2001-05-22 2006-05-30 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Hydroform process and hydroform product
DE10304071A1 (en) * 2003-01-31 2004-09-02 Gather Industrie Gmbh Combination of two tubes, one of which fits inside other, for use as hollow shaft or in magnetically-coupled gear pumps, is held together by laser spot-welding
DE10304071B4 (en) * 2003-01-31 2005-06-23 Gather Industrie Gmbh A method of attaching a magnetic mount to a gear driving shaft of a magnetically coupled gear pump
JP2006264469A (en) * 2005-03-23 2006-10-05 Showa Denko Kk Steering support beam and manufacturing method thereof
JP4664103B2 (en) * 2005-03-23 2011-04-06 昭和電工株式会社 Steering support beam and manufacturing method thereof
CN104879577A (en) * 2015-06-11 2015-09-02 马鞍山市圣火科技有限公司 Manufacturing method of composite tube
CN105171339A (en) * 2015-06-11 2015-12-23 马鞍山市圣火科技有限公司 Method for manufacturing inner wall composite pipe through hydraulic expansion
JP2018075612A (en) * 2016-11-10 2018-05-17 トヨタ自動車株式会社 Bending member and manufacturing method thereof
WO2022220283A1 (en) 2021-04-14 2022-10-20 日本製鉄株式会社 Impact-absorbing structure for automobile

Similar Documents

Publication Publication Date Title
US7695052B2 (en) Front rail having controlled thickness for energy absorption
EP1363826B1 (en) Hybrid space frame for motor vehicle
EP1923273B1 (en) Impact absorption member for vehicle
KR101537202B1 (en) Vehicle body
JP4993142B2 (en) One-piece tubular member with integral weld flange and associated method for manufacturing the same
US9033398B2 (en) Multi-thickness tube for hydroformed members
US8210583B2 (en) Energy absorber device and method of forming same
US20060096099A1 (en) Automotive crush tip and method of manufacturing
US9694413B2 (en) Method of producing tailored tubes
JP4983373B2 (en) Shock absorbing member and manufacturing method thereof
CN107243535B (en) Method for producing a closed hollow profile for a vehicle axle
JP2001219226A (en) High-strength steel tube for hydroforming
US6941786B1 (en) Component specific tube blanks for hydroforming body structure components
JP5235007B2 (en) Crash box
JP4873401B2 (en) Sheet hydroform product, sheet hydroform molding method, and sheet hydroform molding apparatus using the same
WO2006042032A2 (en) Automotive crush tip and method of manufacturing
KR102547461B1 (en) Collision energy absorbing parts for automobiles
JP2004051065A (en) Vehicle body structural member and collision-proof reinforcing member
JP4078516B2 (en) Collision energy absorbing member and automobile side member using the same
JP2023509623A (en) Expanded tube for automobile crash box and manufacturing method thereof
JP2005067527A (en) Bumper device for automobile
KR100338562B1 (en) Method for making automotive bumper beam
KR20080030606A (en) Energy absorption apparatus and method for producing an integral energy absorption apparatus
JP7364225B2 (en) Instrument panel reinforcement member
KR102512336B1 (en) Method of manufacturing a torsion beam for a vehicle suspension and torsion beam for a vehicle suspension