JP2004315724A - Composition containing polylactic acid and molded article - Google Patents

Composition containing polylactic acid and molded article Download PDF

Info

Publication number
JP2004315724A
JP2004315724A JP2003113982A JP2003113982A JP2004315724A JP 2004315724 A JP2004315724 A JP 2004315724A JP 2003113982 A JP2003113982 A JP 2003113982A JP 2003113982 A JP2003113982 A JP 2003113982A JP 2004315724 A JP2004315724 A JP 2004315724A
Authority
JP
Japan
Prior art keywords
polylactic acid
shell powder
molded product
molded article
composition containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003113982A
Other languages
Japanese (ja)
Inventor
Takahisa Namiki
崇久 並木
Koji Nozaki
耕司 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003113982A priority Critical patent/JP2004315724A/en
Publication of JP2004315724A publication Critical patent/JP2004315724A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition giving a molded article having excellent mechanical properties while keeping biodegradability, moldable with a short cycle time and generating little toxic gas in incineration. <P>SOLUTION: Fired shell powder is used as a component of the composition containing polylactic acid. The composition containing polylactic acid preferably further contains a flame retardant. The invention further provides a molded article produced by melting, molding and cooling the composition containing polylactic acid. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は地球環境への負荷の少ないプラスチック組成物に関する。
【0002】
【従来の技術】
現在、地球環境への関心の高まりとともに、土壌中で微生物によって完全に分解され、消化される生分解性プラスチックが注目を集めている。
【0003】
このようなプラスチックを用いた成形物に関しては、既にいくつかの特許出願がなされている(たとえば、特許文献1〜3参照。)。これらの成形物は、特に、フィルムや包装材料として用いられており、LSIの搬送などに使用するLSIトレイやエンボステープには、既に生分解プラスチックの導入が行われている。
【0004】
さらに近年、電機製品やコンピュータなどに対しても導入が検討されている。既にパーソナルコンピュータの一部部品に生分解プラスチックが採用されており、近い将来、筐体を含め、更に多くの部品に適用されていくものと考えられる。
【0005】
生分解プラスチックの中では、ポリ乳酸が、その透明性、硬さ、成形性、生分解性などの点ですぐれており、多様な分野での応用が期待されている。
【0006】
このような優れた性質を有するポリ乳酸であるが、OA機器などに適用するには、曲げ弾性率などの弾力性が十分ではないと言う問題がある。また、生分解性という性質上、一般に使用されているABSなどのプラスチックに比較すると耐久性に乏しい。
【0007】
その他の問題点として、ポリ乳酸は結晶性樹脂であり、成形物に充分な強度をもたせるためには、たとえば金型温度を、結晶化温度(100〜110℃)付近に保持しつつ冷却成形する必要があるが、ポリ乳酸のガラス転移温度が60℃程度と低いため、そのまま金型から取り出そうとすると成形物が柔らかく、取り出しの際に変形してしまう問題がある。この場合、60℃以下に冷却するには、結晶化温度で長時間保持することが考えられるが、成形サイクル時間が長くなり、量産などを考えると好ましくない。
【0008】
また、ポリ乳酸は難燃性に乏しいので難燃剤を添加する必要がある場合が多いが、難燃剤の種類によっては燃焼時に有毒ガスを発生するものがある。
【0009】
なお、上記では、単にプラスチックと言ったが、より厳密に言えば、このプラスチックは、複数のプラスチックからなる場合や、プラスチック以外の成分との組成物である場合も含まれている。
【0010】
【特許文献1】
特開平3−290461号公報(特許請求の範囲)
【0011】
【特許文献2】
特開平4−146952号公報(特許請求の範囲)
【0012】
【特許文献3】
特開平4−325526号公報(特許請求の範囲)
【0013】
【発明が解決しようとする課題】
本発明は、上記問題点を解決し、生分解性を有しつつ、機械的物性に優れた成形物を与えることができる組成物を提供することを目的とする。また、このような特性を維持しつつ、成形サイクル時間を短くできる組成物を提供することを目的とする。さらに、難燃性を有しつつ、燃焼時に有毒ガスを発生し難い成物を提供することを目的とする。本発明のさらに他の目的および利点は、以下の説明から明らかになるであろう。
【0014】
【課題を解決するための手段】
本発明の一態様によれば、ポリ乳酸と焼成貝殻粉とを含有するポリ乳酸含有組成物が提供される。
【0015】
本発明の更に別の態様によれば、上記のポリ乳酸含有組成物を溶融し、賦形し、冷却してなる成形物や、ポリ乳酸を、少なくとも焼成貝殻粉とともに溶融ブレンドし、賦形し、冷却してなる成形物が提供される。
【0016】
これらの態様により、生分解性、機械的物性、成形サイクル時間、燃焼時の挙動において、上記課題を達成することが可能となる。
【0017】
上記のいずれの態様においても、焼成貝殻粉がホタテ貝殻粉であること、焼成貝殻粉の添加量が全組成物中の1〜30重量%であること、焼成貝殻粉の平均粒子直径が、0.1〜100μmの範囲にあること、さらに難燃剤を含むことが好ましい。
【0018】
成形物の形状としては、フィルム形状または三次元形状を有することが好ましく、用途としては、電機製品が好ましい。
【0019】
【発明の実施の形態】
以下に、本発明の実施の形態を実施例等を使用して説明する。なお、これらの実施例等および説明は本発明を例示するものであり、本発明の範囲を制限するものではない。本発明の趣旨に合致する限り他の実施の形態も本発明の範疇に属し得ることは言うまでもない。
【0020】
ポリ乳酸と焼成貝殻粉とを含有するポリ乳酸含有組成物を使用することで、生分解性を有しつつ、各種特性に優れた成形物を与えることができる。
【0021】
焼成貝殻粉はフィラーとしてポリ乳酸とともに使用すると、ポリ乳酸含有組成物、従ってその成形物の曲げ強度を強化し、熱変形温度を高くして高温剛性を改善する効果がある。これは成形物の機械的物性の向上につながるとともに、比較的高温でも成形物を取り出すことができることから、成形サイクルを短くできる。
【0022】
また焼成貝殻粉は生態系にとって無害であり、かつ微生物により分解されるため環境負荷とはならない。原料の貝殻としては、カキやアコヤガイなども有用であるが、中でも1050℃で焼成したホタテ貝殻粉は抗菌効果を有するため、ポリ乳酸の生分解による耐久性の低下を抑制することができる。
【0023】
さらに、ホタテ貝殻粉は各種のVOC(有害揮発性物質)を吸着してくれる性質があり、燃焼時における有毒ガスの発生も抑制できる。
【0024】
青森県では、むつ湾におけるホタテ貝養殖に伴い年間約5万トンものホタテの貝殻が廃棄され、処理が問題となっているが、これを資源として利用できるので、コスト削減とともに、廃棄物問題の解決にもつながる。
【0025】
焼成貝殻粉の添加量は、ポリ乳酸含有組成物全構成中の1〜30重量%であることが好ましい。これよりも少ないと効果がなく、また多すぎればかえって機械的強度が低下したり外観に問題が出たりする。
【0026】
焼成貝殻粉の平均粒子径(直径)は、0.1〜100μmの範囲であることが好ましい。これより小さいと凝集が発生するなどして取り扱いが困難となる。またこれより大きいと、機械的強度がかえって悪化する。この平均粒子径は、光散乱を利用した粒子径分布測定装置で測定することができる。
【0027】
このような焼成貝殻粉を得る具体的な方法としては、たとえば、ホタテ貝の貝殻を集め、1050℃の焼成炉で3〜24時間焼成し、冷却後、クラッシャ、粉砕器、篩分器等を使用して、所定の平均粒子径の焼成貝殻粉を得る方法を例示することができる。一般的な焼成条件としては、700〜2500℃の焼成温度と、1〜48時間の焼成時間とを挙げることができる。
【0028】
なお、焼成貝殻粉は不燃性であるが、ポリ乳酸と焼成貝殻粉とを含むポリ乳酸含有組成物は依然燃焼しやすいことから、難燃剤を加えることが好ましい場合が多い。
【0029】
このための難燃剤にはハロゲン系、リン系、シリコーン系、無機物系などがあり、いずれも使用可能である。これらの難燃剤は燃焼時に有毒ガスを発生する可能性があるが、焼成貝殻粉により有毒ガスが吸着され、発生が抑制される。
【0030】
上記のポリ乳酸含有組成物は、溶融し、賦形し、冷却して、フィルムや三次元形状の成形物とすることができる。通常の成形物の場合には、溶融、賦形、冷却はこの順序になるが、賦形は溶融と冷却との間だけには限られない。たとえば、フィルムの成膜後の延伸操作等があり得るからである。
【0031】
この溶融にはたとえば1軸、二軸等のエクストルーダを使用することができる。この場合、本発明に係るポリ乳酸含有組成物に更に他の成分をブレンドすることも可能である。なお、このようなブレンド物も、本発明の趣旨に反しない限り、依然、本発明に係るポリ乳酸含有組成物の範疇に属する。
【0032】
溶融、賦形、冷却による成形には、本発明の趣旨に反しない限り、どのような成形方法を含めてもよい。溶融押し出し成膜、押出成形、射出成形等を典型例としてあげることができる。
【0033】
なお、成形物と言う観点からすると、本発明に係る成形物は、本発明に係るポリ乳酸含有組成物を経由せず、ポリ乳酸を、少なくとも焼成貝殻粉とともに溶融ブレンドし、賦形し、冷却して得ることも可能である。
【0034】
このような場合にも、焼成貝殻粉がホタテ貝殻粉であること、焼成貝殻粉の添加量が全成形物中の1〜30重量%であること、焼成貝殻粉の平均粒子直径が、0.1〜100μmの範囲にあること、さらに難燃剤を含むことが好ましい。この場合にも、更に他の成分をブレンドすることが可能である。もちろん、ポリ乳酸含有組成物をブレンドすることも可能である。
【0035】
このようにすると、一旦ポリ乳酸含有組成物のペレット等を作製することなく、直接成形物を得ることができるため、エネルギーやコストの面で有利である場合が多い。成形物や、成形の際の不良品等を、再度ポリ乳酸含有組成物として使用することも可能である。
【0036】
なお、このような成形物も、更にまた、本発明に係るポリ乳酸含有組成物を原材料として成形した成形物も、組成物と言う観点からすると、依然、本発明に係るポリ乳酸含有組成物の範疇に属することは言うまでもない。
【0037】
本発明に係るポリ乳酸含有組成物には他の樹脂を共存させることができる。ポリ乳酸含有組成物としての生分解性を確保するためには、他の樹脂も生分解性樹脂であることが好ましい。なお、本発明で、生分解性樹脂であるとか、生分解性があると言うときの「生分解性」は、実情に応じて適宜定めることができる。たとえば、JIS規格が所定のレベル以上であることを、生分解性があると定めてもよいし、機械的特性を重視して、生分解性の要求レベルを低くすることもできる。
【0038】
本発明に係るポリ乳酸以外の生分解性樹脂としては、ポリカプロラクトン、ポリヒドロキシブチレート、ポリブチレンサクシネート、ポリブチレンアジペート/テレフタレート共重合体あるいはこれらを成分とする樹脂を挙げることができる。このような生分解性樹脂は、柔軟性に富むため、比較的堅くて脆いポリ乳酸系樹脂と混合することにより、生分解性を確保しつつ、組成物の柔軟性を向上でき、成形物の強度や耐衝撃性を改善できる。
【0039】
これらの樹脂の添加量は、その特性を制限するものでなければ特に限定はされないが、ポリ乳酸とポリ乳酸以外の生分解性樹脂との合計に対するポリ乳酸以外の生分解性樹脂の割合としては、好ましくは0〜70重量%である。
【0040】
なお、本発明には、ポリエステルやポリエーテルなどの可塑剤などを必要に応じて添加して使用することができる場合もある。生分解性の要求が高い場合は、植物・生物由来のものが推奨される。
【0041】
また、強度向上が必要な場合は、ガラス繊維、炭素繊維等の充填剤を適宜用いてもよい。これらの充填剤は、ポリ乳酸でコーティングされていてもよいし、シランカップリング剤等で表面処理されていてもよい。
【0042】
添加剤としては、上記以外でもその目的によって含有させることができ、そのような組成が好ましい場合もある。たとえば、ポリ乳酸含有組成物の加水分解を抑制可能な物質として、ポリエステル樹脂の末端官能基であるカルボン酸、および水酸基との反応性を有する化合物、たとえばカルボジイミド化合物、イソシアネート化合物、オキサゾリン系化合物などが例示できる。また同様に、耐候性改良剤、酸化防止剤、熱安定剤、可塑剤、結晶核剤、滑剤、離型剤、着色剤、相溶化剤などを配合することも可能である。
【0043】
本発明に係る成形物は、OA用電機製品や電子製品等の電機製品の筐体や部品として有用である。
【0044】
【実施例】
次に本発明の実施例および比較例を詳述する。なお、各種測定は次のようにして行った。
【0045】
(1)曲げ弾性率
JIS K7171の方法によった。
【0046】
(2)荷重撓み温度
JIS K7191の方法により、0.46MPaの荷重で測定した。
【0047】
(3)生分解性試験
JIS K6953の方法によった。
【0048】
(4)燃焼試験
UL規格の方法によった。
【0049】
[実施例1]
ポリ乳酸含有組成物の原材料として以下のものを用いた。それぞれの原材料は、電気炉で、100℃、2時間、乾燥処理を行った。
【0050】
・ポリ乳酸
三井化学社製レイシアH−100Jを使用した。
【0051】
・ホタテ貝殻粉
朝田商会より入手したホタテ貝殻粉(マグナキャプス)を篩目が50μmの篩を通してから使用した。
【0052】
・リン系性難燃剤
クラリアント社製Exolit AP 750を使用した。
【0053】
ポリ乳酸60重量%、ホタテ貝殻粉20重量%、難燃剤20重量%の割合の混合物を射出成形機内で温度180℃に保持して溶融混練し、射出成形を行った。
【0054】
上記の試験に使用する板状成形物を得るための金属製金型を使用した。
【0055】
金型を100℃で1分間保持し、冷却を行った。型開きの際に成形物を変形することなく取り出すことができた。
【0056】
[比較例1]
ホタテ貝殻粉に代えて、タルク20重量%を使用した以外は、実施例1と同様にした。
【0057】
金型を100℃で1分間保持して取り出そうとしたが、型開きの際に成形物が変形した。これは、成形物が高温剛性に欠けるためである。しかしながら、より低温の金型を使用しても、この成形物は十分硬化しない。100℃で1分以上保持して結晶化させる必要がある。
【0058】
そこで、金型を100℃で1分間保持した後、水流冷却により5分間かけて50℃まで金型を冷却し、50℃で1分間保持した後に型開きして成形物を取り出した。これによって、正常な形状の成形物を得たが、取り出しまでに7分間を要し、生産性が悪くなると考えられる。
【0059】
実施例1の成形物と比較例1の成形物とを使用して各種試験を行った。
【0060】
その結果、曲げ弾性率は、比較例1の3.5GPaに対し、実施例1では4.8GPaに向上した。
【0061】
荷重撓み温度(0.46MPa)は比較例1の68℃に対し、実施例1では101℃であった。このことは実施例1により高温剛性の改善ができたことを意味する。
【0062】
生分解性試験では、59℃の好気性コンポスト中で、重量損失が50重量%になるまでの期間が、比較例1の約2週間に対し、実施例1では約8週間かかり、生分解性に適度にブレーキがかかり、耐久性が増したことがわかった。
【0063】
燃焼試験の結果、両者ともにUL94VでV−2レベルであった。しかし比較例1に比べて実施例1では発煙が少ないことが目視で確認できた。より安全性が高いと考えられる。
【0064】
[実施例2]
焼成カキ貝殻粉でも実施例1と同様の実験を行ったが、同様に比較例1よりも良好な結果が得られた。ただし、発煙の量は、比較例1よりも少ないが、焼成ホタテ貝殻粉よりは多かった。
【0065】
なお、上記に開示した内容から、下記の付記に示した発明が導き出せる。
【0066】
(付記1) ポリ乳酸と焼成貝殻粉とを含有するポリ乳酸含有組成物。
【0067】
(付記2) 前記焼成貝殻粉がホタテ貝殻粉である、付記1に記載の組成物。
【0068】
(付記3) 前記焼成貝殻粉の添加量が全組成物中の1〜30重量%である、付記1または2に記載のポリ乳酸含有組成物。
【0069】
(付記4) 前記焼成貝殻粉の平均粒子直径が、0.1〜100μmの範囲にある、付記1〜3のいずれかに記載のポリ乳酸含有組成物。
【0070】
(付記5) さらに難燃剤を含む、付記1〜4のいずれかに記載のポリ乳酸含有組成物。
【0071】
(付記6) 付記1〜5のいずれかに記載のポリ乳酸含有組成物を溶融し、賦形し、冷却してなる成形物。
【0072】
(付記7) ポリ乳酸を、少なくとも焼成貝殻粉とともに溶融ブレンドし、賦形し、冷却してなる成形物。
【0073】
(付記8) 前記焼成貝殻粉がホタテ貝殻粉である、付記7に記載の成形物。
【0074】
(付記9) 前記焼成貝殻粉の添加量が全成形物中の1〜30重量%である、付記7または8に記載の成形物。
【0075】
(付記10) 前記焼成貝殻粉の平均粒子直径が、0.1〜100μmの範囲にある、付記7〜9のいずれかに記載の成形物。
【0076】
(付記11) さらに難燃剤を含む、付記7〜10のいずれかに記載の成形物。
【0077】
(付記12) フィルム形状または三次元形状を有する、付記6〜11に記載の成形物。
【0078】
(付記13) 付記6〜12に記載の成形物を用いてなる電機製品。
【0079】
【発明の効果】
本発明により、生分解性を有しつつ、機械的物性に優れた成形物を与えることができる組成物を提供することができる。また、このような特性を維持しつつ、成形サイクル時間を短くできる組成物を提供することができる。さらに、難燃性を有しつつ、燃焼時に有毒ガスを発生し難い組成物を提供することができる。
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a plastic composition having a small impact on the global environment.
[0002]
[Prior art]
At present, with increasing interest in the global environment, biodegradable plastics that are completely degraded and digested by microorganisms in soil have attracted attention.
[0003]
Several patent applications have already been filed for molded articles using such plastics (for example, see Patent Documents 1 to 3). These molded products are particularly used as films and packaging materials, and biodegradable plastics have already been introduced into LSI trays and embossed tapes used for transporting LSIs.
[0004]
In recent years, introduction to electric appliances and computers has been considered. Biodegradable plastic has already been used for some parts of personal computers, and it is expected that it will be applied to more parts including housings in the near future.
[0005]
Among biodegradable plastics, polylactic acid is excellent in transparency, hardness, moldability, biodegradability, and the like, and is expected to be applied in various fields.
[0006]
Although polylactic acid has such excellent properties, there is a problem that elasticity such as flexural modulus is not sufficient for application to OA equipment and the like. Also, due to its biodegradability properties, it has poor durability as compared with commonly used plastics such as ABS.
[0007]
As another problem, polylactic acid is a crystalline resin, and in order to impart sufficient strength to a molded product, for example, cooling molding is performed while maintaining a mold temperature near a crystallization temperature (100 to 110 ° C.). Although it is necessary, since the glass transition temperature of polylactic acid is as low as about 60 ° C., there is a problem that the molded product is soft and deformed at the time of taking out from the mold as it is. In this case, in order to cool to 60 ° C. or less, it is conceivable to maintain the crystallization temperature for a long time, but the molding cycle time becomes long, which is not preferable in view of mass production.
[0008]
In addition, since polylactic acid has poor flame retardancy, it is often necessary to add a flame retardant. However, depending on the type of flame retardant, a toxic gas is generated during combustion.
[0009]
In the above description, the term “plastic” is used. However, more strictly, the term “plastic” includes a case where the plastic is composed of a plurality of plastics and a case where it is a composition with components other than plastic.
[0010]
[Patent Document 1]
JP-A-3-290461 (Claims)
[0011]
[Patent Document 2]
Japanese Patent Application Laid-Open No. 4-16952 (Claims)
[0012]
[Patent Document 3]
JP-A-4-325526 (Claims)
[0013]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems and to provide a composition which has biodegradability and can provide a molded article having excellent mechanical properties. Another object of the present invention is to provide a composition capable of shortening the molding cycle time while maintaining such characteristics. It is another object of the present invention to provide a composition which has flame retardancy and hardly generates toxic gas during combustion. Still other objects and advantages of the present invention will become apparent from the following description.
[0014]
[Means for Solving the Problems]
According to one aspect of the present invention, there is provided a polylactic acid-containing composition containing polylactic acid and baked shell powder.
[0015]
According to still another aspect of the present invention, the above-mentioned polylactic acid-containing composition is melted, shaped, and cooled, and a molded product or polylactic acid is melt-blended with at least a calcined shell powder, and shaped. And a molded product obtained by cooling.
[0016]
According to these aspects, it is possible to achieve the above-mentioned problems in biodegradability, mechanical properties, molding cycle time, and behavior during combustion.
[0017]
In any of the above embodiments, the baked shell powder is scallop shell powder, the amount of the baked shell powder is 1 to 30% by weight of the total composition, and the average particle diameter of the baked shell powder is 0. It is preferred that the thickness be in the range of 0.1 to 100 μm and further contain a flame retardant.
[0018]
The shape of the molded product is preferably a film shape or a three-dimensional shape, and the application is preferably an electric product.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described using examples and the like. It should be noted that these examples and the like and the description illustrate the present invention, and do not limit the scope of the present invention. It goes without saying that other embodiments can also belong to the category of the present invention as long as they conform to the gist of the present invention.
[0020]
By using a polylactic acid-containing composition containing polylactic acid and baked shell powder, it is possible to give a molded article having excellent biodegradability and various properties.
[0021]
When calcined shell powder is used together with polylactic acid as a filler, it has the effect of enhancing the flexural strength of the polylactic acid-containing composition, and thus the molded product, increasing the heat deformation temperature and improving the high-temperature rigidity. This leads to an improvement in the mechanical properties of the molded product, and the molded product can be taken out even at a relatively high temperature, so that the molding cycle can be shortened.
[0022]
The fired shell powder is harmless to the ecosystem and is not degraded by microorganisms, so that it does not cause an environmental burden. Oysters, pearl oysters and the like are also useful as shells of the raw material. Among them, scallop shell powder baked at 1050 ° C. has an antibacterial effect, so that a decrease in durability due to biodegradation of polylactic acid can be suppressed.
[0023]
Furthermore, scallop shell powder has a property of adsorbing various VOCs (harmful volatile substances), and can suppress generation of toxic gas during combustion.
[0024]
In Aomori Prefecture, approximately 50,000 tons of scallop shells are discarded annually due to scallop cultivation in Mutsu Bay, and disposal is a problem. However, since this can be used as a resource, costs can be reduced and waste can be reduced. It also leads to a solution.
[0025]
The amount of the baked shell powder is preferably 1 to 30% by weight based on the total composition of the polylactic acid-containing composition. If the amount is less than this, there is no effect. If the amount is too large, the mechanical strength is reduced and the appearance is problematic.
[0026]
The average particle size (diameter) of the baked shell powder is preferably in the range of 0.1 to 100 μm. If it is smaller than this, it becomes difficult to handle due to aggregation or the like. If it is larger than this, the mechanical strength is rather deteriorated. This average particle size can be measured by a particle size distribution measuring device using light scattering.
[0027]
As a specific method of obtaining such a baked shell powder, for example, scallop shells are collected, baked in a sintering furnace at 1050 ° C. for 3 to 24 hours, cooled, and then crushed, crushed, sieved, etc. A method for obtaining a baked shell powder having a predetermined average particle size can be exemplified. General firing conditions include a firing temperature of 700 to 2500 ° C. and a firing time of 1 to 48 hours.
[0028]
In addition, although the baked shell powder is non-flammable, it is often preferable to add a flame retardant since the polylactic acid-containing composition containing polylactic acid and the baked shell powder is still easily burned.
[0029]
Flame retardants for this purpose include halogen-based, phosphorus-based, silicone-based, and inorganic-based flame retardants, all of which can be used. These flame retardants may generate toxic gas during combustion, but the toxic gas is adsorbed by the burnt shell powder and generation thereof is suppressed.
[0030]
The above-mentioned polylactic acid-containing composition can be melted, shaped, and cooled to form a film or a three-dimensionally shaped product. In the case of a normal molded product, melting, shaping, and cooling are performed in this order, but shaping is not limited to between melting and cooling. This is because, for example, there may be a stretching operation after the film formation.
[0031]
For this melting, for example, a single-shaft, twin-shaft or the like extruder can be used. In this case, it is possible to further blend other components with the polylactic acid-containing composition according to the present invention. In addition, such a blend still belongs to the category of the polylactic acid-containing composition according to the present invention unless it is contrary to the gist of the present invention.
[0032]
The molding by melting, shaping, and cooling may include any molding method without departing from the spirit of the present invention. Typical examples include melt extrusion film formation, extrusion molding, and injection molding.
[0033]
In addition, from the viewpoint of a molded product, the molded product according to the present invention does not pass through the polylactic acid-containing composition according to the present invention, and is prepared by melt-blending polylactic acid together with at least calcined shell powder, shaping, and cooling. It is also possible to obtain.
[0034]
Also in such a case, the baked shell powder is scallop shell powder, the amount of the baked shell powder is 1 to 30% by weight of the total molded product, and the average particle diameter of the baked shell powder is 0. It is preferable that the thickness be in the range of 1 to 100 μm and further contain a flame retardant. In this case, it is also possible to blend other components. Of course, it is also possible to blend a polylactic acid-containing composition.
[0035]
In this case, a molded product can be directly obtained without producing pellets or the like of the polylactic acid-containing composition, which is often advantageous in terms of energy and cost. It is also possible to use a molded product, a defective product at the time of molding, or the like again as a polylactic acid-containing composition.
[0036]
In addition, such a molded product, furthermore, a molded product formed using the polylactic acid-containing composition according to the present invention as a raw material, from the viewpoint of the composition, is still a polylactic acid-containing composition according to the present invention. It goes without saying that it belongs to the category.
[0037]
Other resins can coexist in the polylactic acid-containing composition according to the present invention. In order to ensure the biodegradability of the polylactic acid-containing composition, it is preferable that the other resin is also a biodegradable resin. In the present invention, "biodegradability" when it is referred to as "biodegradable resin" or "biodegradable" can be appropriately determined according to the actual situation. For example, if the JIS standard is equal to or higher than a predetermined level, biodegradability may be determined, or the required level of biodegradability may be reduced by placing importance on mechanical properties.
[0038]
Examples of the biodegradable resin other than the polylactic acid according to the present invention include polycaprolactone, polyhydroxybutyrate, polybutylene succinate, polybutylene adipate / terephthalate copolymer, and resins containing these as components. Since such a biodegradable resin is rich in flexibility, by mixing with a relatively hard and brittle polylactic acid-based resin, it is possible to improve the flexibility of the composition while ensuring biodegradability, and to improve the molded article. Strength and impact resistance can be improved.
[0039]
The amount of addition of these resins is not particularly limited as long as the characteristics are not limited, but as a ratio of the biodegradable resin other than polylactic acid to the total of polylactic acid and the biodegradable resin other than polylactic acid. , Preferably 0 to 70% by weight.
[0040]
In the present invention, a plasticizer such as polyester or polyether may be added and used as needed. If the biodegradability requirement is high, those derived from plants and organisms are recommended.
[0041]
When the strength needs to be improved, a filler such as glass fiber or carbon fiber may be appropriately used. These fillers may be coated with polylactic acid, or may be surface-treated with a silane coupling agent or the like.
[0042]
In addition to the additives described above, other additives can be contained according to the purpose, and such a composition may be preferable in some cases. For example, as a substance capable of suppressing hydrolysis of the polylactic acid-containing composition, a carboxylic acid that is a terminal functional group of a polyester resin, and a compound having reactivity with a hydroxyl group, such as a carbodiimide compound, an isocyanate compound, and an oxazoline-based compound. Can be illustrated. Similarly, a weather resistance improver, an antioxidant, a heat stabilizer, a plasticizer, a crystal nucleating agent, a lubricant, a release agent, a colorant, a compatibilizer, and the like can be blended.
[0043]
The molded product according to the present invention is useful as a housing or a part of an electric appliance such as an OA electric appliance or an electronic product.
[0044]
【Example】
Next, examples and comparative examples of the present invention will be described in detail. In addition, various measurements were performed as follows.
[0045]
(1) Flexural modulus According to the method of JIS K7171.
[0046]
(2) Load deflection temperature Measured under a load of 0.46 MPa according to the method of JIS K7191.
[0047]
(3) Biodegradability test According to the method of JIS K6953.
[0048]
(4) Combustion test According to the method of UL standard.
[0049]
[Example 1]
The following were used as raw materials of the polylactic acid-containing composition. Each raw material was dried in an electric furnace at 100 ° C. for 2 hours.
[0050]
-Polylactic acid Laissia H-100J manufactured by Mitsui Chemicals, Inc. was used.
[0051]
Scallop shell powder Scallop shell powder (magnacaps) obtained from Asada Shokai was used after passing through a sieve having a sieve of 50 μm.
[0052]
-Phosphorus-based flame retardant Exolit AP 750 manufactured by Clariant was used.
[0053]
A mixture of 60% by weight of polylactic acid, 20% by weight of scallop shell powder and 20% by weight of flame retardant was melt-kneaded while maintaining the temperature at 180 ° C. in an injection molding machine, and injection molding was performed.
[0054]
A metal mold for obtaining a plate-like molded product used in the above test was used.
[0055]
The mold was kept at 100 ° C. for 1 minute and cooled. The molded product could be taken out without deformation when opening the mold.
[0056]
[Comparative Example 1]
Example 1 was repeated except that talc 20% by weight was used instead of the scallop shell powder.
[0057]
The mold was held at 100 ° C. for 1 minute and tried to be removed, but the molded product was deformed when the mold was opened. This is because the molded article lacks high-temperature rigidity. However, even if a lower temperature mold is used, the molded product is not sufficiently cured. It is necessary to crystallize by holding at 100 ° C. for 1 minute or more.
[0058]
Then, after holding the mold at 100 ° C. for 1 minute, the mold was cooled to 50 ° C. over 5 minutes by water cooling, held at 50 ° C. for 1 minute, opened, and the molded product was taken out. As a result, a molded product having a normal shape was obtained, but it took 7 minutes to remove the molded product, and it is considered that productivity was deteriorated.
[0059]
Various tests were performed using the molded product of Example 1 and the molded product of Comparative Example 1.
[0060]
As a result, the flexural modulus increased from 3.5 GPa in Comparative Example 1 to 4.8 GPa in Example 1.
[0061]
The deflection temperature under load (0.46 MPa) was 101 ° C. in Example 1 compared to 68 ° C. in Comparative Example 1. This means that the high-temperature rigidity was improved by Example 1.
[0062]
In the biodegradability test, in the aerobic compost at 59 ° C., it took about 8 weeks in Example 1 to reduce the weight loss to 50% by weight, compared to about 2 weeks in Comparative Example 1. It was found that the brakes were moderately applied and the durability increased.
[0063]
As a result of the combustion test, both were UL94V at the V-2 level. However, it was visually confirmed that smoke emission was smaller in Example 1 than in Comparative Example 1. It is considered more secure.
[0064]
[Example 2]
The same experiment as in Example 1 was performed with the baked oyster shell powder, but similarly better results were obtained than in Comparative Example 1. However, although the amount of smoke was smaller than that of Comparative Example 1, it was larger than that of the baked scallop shell powder.
[0065]
From the contents disclosed above, the inventions shown in the following supplementary notes can be derived.
[0066]
(Supplementary Note 1) A polylactic acid-containing composition containing polylactic acid and baked shell powder.
[0067]
(Supplementary Note 2) The composition according to Supplementary Note 1, wherein the baked shell powder is scallop shell powder.
[0068]
(Supplementary Note 3) The polylactic acid-containing composition according to Supplementary Note 1 or 2, wherein the amount of the calcined shell powder is 1 to 30% by weight of the total composition.
[0069]
(Supplementary Note 4) The polylactic acid-containing composition according to any one of Supplementary Notes 1 to 3, wherein an average particle diameter of the baked shell powder is in a range of 0.1 to 100 µm.
[0070]
(Supplementary Note 5) The polylactic acid-containing composition according to any one of Supplementary Notes 1 to 4, further comprising a flame retardant.
[0071]
(Supplementary Note 6) A molded product obtained by melting, shaping, and cooling the polylactic acid-containing composition according to any one of Supplementary Notes 1 to 5.
[0072]
(Supplementary Note 7) A molded product obtained by melt-blending polylactic acid together with at least calcined shell powder, shaping, and cooling.
[0073]
(Supplementary Note 8) The molded product according to supplementary note 7, wherein the baked shell powder is scallop shell powder.
[0074]
(Supplementary Note 9) The molded article according to Supplementary Note 7 or 8, wherein an amount of the calcined shell powder is 1 to 30% by weight of the whole molded article.
[0075]
(Supplementary Note 10) The molded product according to any one of Supplementary Notes 7 to 9, wherein an average particle diameter of the baked shell powder is in a range of 0.1 to 100 µm.
[0076]
(Supplementary Note 11) The molded article according to any one of Supplementary Notes 7 to 10, further comprising a flame retardant.
[0077]
(Supplementary Note 12) The molded product according to Supplementary Notes 6 to 11, which has a film shape or a three-dimensional shape.
[0078]
(Supplementary Note 13) An electric product using the molded product according to Supplementary Notes 6 to 12.
[0079]
【The invention's effect】
According to the present invention, it is possible to provide a composition capable of providing a molded article having excellent mechanical properties while having biodegradability. Further, it is possible to provide a composition capable of shortening the molding cycle time while maintaining such characteristics. Further, it is possible to provide a composition having flame retardancy and hardly generating toxic gas during combustion.

Claims (5)

ポリ乳酸と焼成貝殻粉とを含有するポリ乳酸含有組成物。A polylactic acid-containing composition containing polylactic acid and baked shell powder. さらに難燃剤を含む、請求項1に記載のポリ乳酸含有組成物。The polylactic acid-containing composition according to claim 1, further comprising a flame retardant. 請求項1または2に記載のポリ乳酸含有組成物を溶融し、賦形し、冷却してなる成形物。A molded product obtained by melting, shaping, and cooling the polylactic acid-containing composition according to claim 1 or 2. ポリ乳酸を、少なくとも焼成貝殻粉とともに溶融ブレンドし、賦形し、冷却してなる成形物。A molded product obtained by melt-blending polylactic acid together with at least baked shell powder, shaping, and cooling. さらに難燃剤を含む、請求項4に記載の成形物。The molded article according to claim 4, further comprising a flame retardant.
JP2003113982A 2003-04-18 2003-04-18 Composition containing polylactic acid and molded article Pending JP2004315724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003113982A JP2004315724A (en) 2003-04-18 2003-04-18 Composition containing polylactic acid and molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003113982A JP2004315724A (en) 2003-04-18 2003-04-18 Composition containing polylactic acid and molded article

Publications (1)

Publication Number Publication Date
JP2004315724A true JP2004315724A (en) 2004-11-11

Family

ID=33473712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003113982A Pending JP2004315724A (en) 2003-04-18 2003-04-18 Composition containing polylactic acid and molded article

Country Status (1)

Country Link
JP (1) JP2004315724A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005008783A (en) * 2003-06-20 2005-01-13 Taiho Ind Co Ltd Film in which seashell powder is mixed and bag material and method for producing those
JP2008101096A (en) * 2006-10-18 2008-05-01 Aichi Prefecture Polylactic acid-based resin composition, and molded product thereof and method for producing the molded product
WO2011040073A1 (en) * 2009-09-30 2011-04-07 ソニー株式会社 Resin composition and expansion-molded article
JP2013237764A (en) * 2012-05-14 2013-11-28 Utsunomiya Univ Multifunctional biodegradable composite material
WO2016017671A1 (en) * 2014-07-29 2016-02-04 田中 陽一 Resin molded article having calcined scallop shell powder incorporated therein, and method for producing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172486A (en) * 1999-12-20 2001-06-26 Kiyoshi Murakami Thermoplastic recycled blended plastic building material
JP2001226492A (en) * 2000-02-16 2001-08-21 Mitsubishi Pencil Co Ltd Resin molded product
JP2002018832A (en) * 2000-07-11 2002-01-22 Eco World Create:Kk Method for manufacturing product containing shell waste material
JP2002220227A (en) * 2001-01-16 2002-08-09 Idemitsu Technofine Co Ltd Fine powdered shell, method for manufacturing fine powdered shell, synthetic resin composition containing fine powdered shell, building materials, and feed for livestock
JP2002255714A (en) * 2001-02-27 2002-09-11 Koowa:Kk Bacterium inhibitor comprising calcination product of scallop shell powder
WO2002090440A1 (en) * 2001-05-08 2002-11-14 Mitsubishi Rayon Co., Ltd. Modifier for thermoplastic resin and thermoplastic resin composition containing the same
JP2002339263A (en) * 2001-05-08 2002-11-27 Cedarwood:Kk Wall paper or decorative paper and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172486A (en) * 1999-12-20 2001-06-26 Kiyoshi Murakami Thermoplastic recycled blended plastic building material
JP2001226492A (en) * 2000-02-16 2001-08-21 Mitsubishi Pencil Co Ltd Resin molded product
JP2002018832A (en) * 2000-07-11 2002-01-22 Eco World Create:Kk Method for manufacturing product containing shell waste material
JP2002220227A (en) * 2001-01-16 2002-08-09 Idemitsu Technofine Co Ltd Fine powdered shell, method for manufacturing fine powdered shell, synthetic resin composition containing fine powdered shell, building materials, and feed for livestock
JP2002255714A (en) * 2001-02-27 2002-09-11 Koowa:Kk Bacterium inhibitor comprising calcination product of scallop shell powder
WO2002090440A1 (en) * 2001-05-08 2002-11-14 Mitsubishi Rayon Co., Ltd. Modifier for thermoplastic resin and thermoplastic resin composition containing the same
JP2002339263A (en) * 2001-05-08 2002-11-27 Cedarwood:Kk Wall paper or decorative paper and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005008783A (en) * 2003-06-20 2005-01-13 Taiho Ind Co Ltd Film in which seashell powder is mixed and bag material and method for producing those
JP2008101096A (en) * 2006-10-18 2008-05-01 Aichi Prefecture Polylactic acid-based resin composition, and molded product thereof and method for producing the molded product
WO2011040073A1 (en) * 2009-09-30 2011-04-07 ソニー株式会社 Resin composition and expansion-molded article
JP2013237764A (en) * 2012-05-14 2013-11-28 Utsunomiya Univ Multifunctional biodegradable composite material
WO2016017671A1 (en) * 2014-07-29 2016-02-04 田中 陽一 Resin molded article having calcined scallop shell powder incorporated therein, and method for producing same
JPWO2016017671A1 (en) * 2014-07-29 2017-08-03 田中 陽一 Scallop baked powder-containing resin molded product and method for producing the same

Similar Documents

Publication Publication Date Title
JP5747503B2 (en) Polylactic acid resin composition and polylactic acid resin molded article
CN101977992B (en) Flame retardant poly(lactic acid)-based resin composition and moulded material using the same
JP6143124B2 (en) Polysiloxane-modified polylactic acid resin composition and method for producing the same
JPWO2011122080A1 (en) Flame retardant polylactic acid-based resin composition, molded product thereof, and production method thereof
JP5479747B2 (en) Polylactic acid resin composition
JP2004307528A (en) Injection molded product
KR101604043B1 (en) Polylactic acid resin composite
JP2010144084A (en) Flame-retardant resin composition, and molding molded from same
JP2021121683A (en) Polyester-based resin composition and molding, and method for producing polyester-based resin composition
JP5796577B2 (en) Polylactic acid resin composition and molded body thereof
JPWO2008044471A1 (en) Thermoplastic resin composition
JP2004315724A (en) Composition containing polylactic acid and molded article
JP5273646B2 (en) Flame retardant polylactic acid resin composition and molded article obtained by molding the same
JP4374256B2 (en) Injection molded body
US9725593B2 (en) Polylactic acid resin composition
JP2009270089A (en) Polylactic acid resin composition
JP2008101084A (en) Flame-retardant and impact-resistant polylactic acid resin composition and molded article produced by molding the same
JP4209217B2 (en) Polylactic acid resin composition
KR102635763B1 (en) Flame retardant polypropylene resin composition
JP2006124446A (en) Production method of polylactic acid film presenting satin-like appearance
JP2006008731A (en) Injection molded product
WO2012049896A1 (en) Polylactic resin composition and polylactic resin molded body
JP2010202889A (en) Injection-molded product
JP2008101083A (en) Flame-retardant polylactic acid resin composition and molded article produced by molding the same
JP5261006B2 (en) Polylactic acid resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100803