JP2004314437A - Method for manufacturing ceramics molded product - Google Patents

Method for manufacturing ceramics molded product Download PDF

Info

Publication number
JP2004314437A
JP2004314437A JP2003111751A JP2003111751A JP2004314437A JP 2004314437 A JP2004314437 A JP 2004314437A JP 2003111751 A JP2003111751 A JP 2003111751A JP 2003111751 A JP2003111751 A JP 2003111751A JP 2004314437 A JP2004314437 A JP 2004314437A
Authority
JP
Japan
Prior art keywords
organic solvent
slurry
dispersion medium
mold
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003111751A
Other languages
Japanese (ja)
Inventor
Kazunori Ogasawara
一紀 小笠原
Ryoji Uchimura
良治 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Techno Research Corp
Original Assignee
Kawatetsu Techno Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawatetsu Techno Research Corp filed Critical Kawatetsu Techno Research Corp
Priority to JP2003111751A priority Critical patent/JP2004314437A/en
Publication of JP2004314437A publication Critical patent/JP2004314437A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Producing Shaped Articles From Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a ceramics molded product having general-purpose properties, capable of eliminating the adverse effect caused by the volatilization of an organic solvent corresponding to various highly concentrated slurries low in viscosity and capable of manufacturing the ceramics molded product homogenous as a whole, in manufacturing the ceramics molded product by a cast molding method using the organic solvent as a dispersing medium. <P>SOLUTION: In the method for manufacturing the ceramics molded product having a casting process for injecting a slurry, which is prepared by mixing a ceramics powder, a dispersant and a binder with the dispersing medium comprising the organic solvent, in a porous casting mold and a liquid absorbing process for absorbing the dispersing medium in the slurry injected in the casting mold by the casting mold, the vapor pressure of the organic solvent in the slurry is held to 3 kPa or below during the period over the casting process and the liquid absorbing process. Alternatively, the casting mold is placed in a hermetically sealed space filled with organic solvent vapor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、セラミックス成形体の製造方法に関し、詳しくは、セラミックス粉末の鋳込み成形法によりセラミックス成形体を製造するセラミックス成形体の製造方法に関する。
【0002】
【従来の技術】
セラミックス粉末の鋳込み成形法は、複雑な形状や最終製品に近い形状の成形体を得る方法として古くから行われている技術である。一般的には、セラミックス粉末を水に分散させてスラリーとし、これを吸水性の石膏,樹脂等の型に注入し、分散媒である水を型に吸収させて低水分の粉末凝集体を得ている。形状的には、プレス成形で作製しにくい3次元的に等方でない形状、押し出し成形やテープ成形で作製される断面形状が一定の長尺品でない形状、大型の形状等に適している。
【0003】
一方、形状的には鋳込み成形で作製するのが好ましいものであっても、セラミックス粉末が水と反応しやすい場合には、水を分散媒とする従来技術では対応できない。そこで、そのような粉末に対しては有機溶剤を分散媒とする鋳込み成形方法が各種提案されている。分散媒に有機溶剤を使用した場合、水分散媒とは異なる点は幾つかある。粉末を分散させるための分散剤、スラリーの分散媒が型に吸収された時に保形性を持たせる結合剤(バインダー) が、水分散媒の場合と有機溶剤分散媒の場合では大きく異なる。分散媒の極性、結合剤と分散媒の相溶性などから、各種の組合わせが提案されており、例えば、特許文献1(分散、解膠剤の種類を特定)、特許文献2(結合剤の種類を特定)、特許文献3(分散剤の種類を特定)、特許文献4(特定の分散媒を有機溶剤に添加)などがある。
【0004】
有機溶剤を鋳込み成形の分散媒として使用する場合に重要なのは、前記特許文献にも記載されているように、粉末の種類および分散媒の種類に応じて適切な分散剤を選択すること、多孔質鋳型に鋳込んだときに適切な吸液性を示す分散媒を選択することなどである。水を分散媒とする場合と比較して、有機溶剤を分散媒とする鋳込み成形技術は歴史が浅く、いまだ上記の選択は試行錯誤的に行われている段階である。
【0005】
【特許文献1】
特開平5−294707号公報
【特許文献2】
特開平7−82037号公報
【特許文献3】
特開平11−114403号公報
【特許文献4】
特開平2−70007号公報
【0006】
【発明が解決しようとする課題】
従来の有機溶剤を分散媒とする鋳込み成形の技術開発は、主に分散剤、結合剤、場合によっては分散媒を種々工夫することによって良好な成形体を得ることに重点が置かれてきた。このような開発では、製造しようとするセラミックスの種類毎に、その原料粉末に最適な分散剤、結合剤、分散媒を選定しなければならず、汎用性のある技術とはいえない。これに対し、本発明者らは、多孔質鋳型への鋳込み技術に関して新たな方法を見出し、さまざまな分散剤、結合剤、分散媒の組合わせのいずれにおいても良好な成形体を製造可能とすることができた。
【0007】
有機溶剤を分散媒とする鋳込み成形において、まず第1に重要なのは低粘度で高濃度のスラリーを作製することであるのは言うまでもない。これは、水系の鋳込み成形でも同じであり、多孔質鋳型に分散媒を吸収させてスラリー中の液部分を減少させ、粉末凝集体を鋳型に固着させる鋳込み成形では必須の条件である。この意味から、本発明でも低粘度、高濃度のスラリーを得るために、成形しようとするセラミックス粉末に最適な分散媒、分散剤、結合剤を選択する必要がある。
【0008】
次いで、第2に重要なのは、水分散媒の場合にはほとんど問題にならないが、有機溶剤分散媒では鋳型への吸液段階で有機溶剤の蒸気圧が水と比べると大きいため、相分離が起きて吸液を阻害するという問題を有することである。吸液の阻害による着肉速度の低下は、成形に要する時間が長くなり、溶媒相中に結合剤などが偏在したり、相分離した溶媒が残存して成形体の不均質をもたらしたり、型と成形体が固着するなど、成形体の不具合および成形作業の不具合をもたらす。
【0009】
本発明の目的は、有機溶剤を分散媒とした鋳込み成形法によりセラミックス成形体を製造する際に、各種低粘度・高濃度のスラリーに応じて有機溶媒の揮発による悪影響を無くすことができ、全体が均質な成形体を製造しうる、汎用性のあるセラミック成形体の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、有機溶剤を分散媒として用いたセラミックスの鋳込み成形において生じる不具合とその原因について鋭意検討し、次のような知見を得た。
すなわち、前記低粘度・高濃度のスラリーをそのまま石膏鋳型等の多孔質鋳型に注入し、スラリー中の有機溶剤を鋳型に吸収させようとしても、有機溶剤の持つ常温で比較的高い蒸気圧のため、鋳型との境界面に蒸発による気体層が形成されて吸液が遅くなり、またその気体層が吸液後まで残留すると、成形体の鋳型との接触面が凹面状となる。また、内部のスラリー充填を確保するためにスラリーを長時間押し湯状態で保持すると、その間に押し湯部の分散媒が揮発し、スラリーが高濃度化して流動性が悪くなって中心部まで充填せず、中空の成形体となって良好な製品形状が得られない場合が多い。
【0011】
また、吸液した石膏内で分散媒が気化し、石膏外壁から飛散することによる結合剤等の濃化により鋳型材内にそれらが析出し、この析出層が鋳型材内への分散媒の吸液を阻害して、吸液を遅滞させ、また、これにより鋳型と着肉層とが付着する現象が生じて離型が困難になる。吸液した石膏内で分散媒が気化・飛散することによる吸液の停滞は実験により確認された。
【0012】
この実験では、図1に示すように、可塑剤および結合剤を溶解した有機溶剤1を非浸透性の容器2に入れ、有機溶剤1中に石膏(鋳型材)3を浸漬し、容器2内を大気に通じる開放空間とした場合(Case A)と容器2に蓋4をして容器2内を閉鎖空間とした場合(Case B)とで石膏3中への有機溶剤1の浸透厚みXの経時変化を調べた。その結果、同図に示すように、浸透厚みXは、開放空間の場合(Case A)では浸漬面から比較的短距離の位置で一定値に飽和したのに対し、閉鎖空間の場合(Case B)では一定値に飽和することなく直線的に増加した。この現象は次のように説明できる。すなわち、可塑剤や結合剤を溶解した有機溶剤(分散媒)が石膏(鋳型材)に吸収される吸液工程が、有機溶剤の蒸発しやすい開放空間で行われると、石膏に吸収された可塑剤や結合剤を含む有機溶剤中の易揮発成分が気化し、気化ガスが石膏表面から抜ける。このため石膏の吸液部の浸透方向先端部には揮発しにくい結合剤や可塑剤の濃化層が形成する。石膏(鋳型材)内にこのような濃化層が形成されると、これが抵抗となり、当該濃化層の先の未吸液部への分散媒の拡散が阻害され、分散媒を吸収する目的で設計された石膏(鋳型)の厚みが有効に吸収体として利用できず、吸液が非常に遅くなる。このため、成形体の固化が停滞する等の問題が生じる。なお、可塑剤とは、材料に柔軟性を与えたり、 加工をしやすくするために添加する物質で、成形体を焼成前に加工する場合、加工性を保持するために添加されるものである。
【0013】
これらの検討結果から、有機溶剤の揮発を制御することにより、健全な成形体が水分散媒を用いた場合とそれほど変わらない工程で作製可能なこと、すなわち、有機溶剤を分散媒として、適切な分散剤および結合剤を添加したセラミックス粉末のスラリーを鋳込み成形する際に、使用している有機溶剤分散媒の蒸散が抑制される状態で鋳込むことにより、溶媒相の相分離を抑制し、健全な成形体が水溶媒とそれほど変わらない工程で作製可能なことを見出し、有機溶剤分散媒の蒸散を有効に抑制する手段として、1つには有機溶剤蒸気圧を下げればよいこと、もう1つには有機溶剤蒸気圧と雰囲気蒸気圧との差を小さくすればよいことに想到した。
【0014】
すなわち、本発明は、(1)有機溶剤からなる分散媒にセラミックス粉末、分散剤および結合剤を混合してなるスラリーを多孔質の鋳型に注入する鋳込み工程と、前記鋳型に注入されたスラリー中の分散媒を同鋳型に吸収させる吸液工程とを有するセラミックス成形体の製造方法において、鋳込み工程から吸液工程にかけての間、前記スラリー中の有機溶剤の蒸気圧を3kPa以下に保持することを特徴とするセラミックス成形体の製造方法である。
【0015】
また、本発明は、(2)有機溶剤からなる分散媒にセラミックス粉末、分散剤および結合剤を混合してなるスラリーを多孔質の鋳型に注入する鋳込み工程と、前記鋳型に注入されたスラリー中の分散媒を同鋳型に吸収させる吸液工程とを有するセラミックス成形体の製造方法において、鋳込み工程から吸液工程にかけての間、前記鋳型を前記有機溶剤の蒸気を充満させた密閉空間内に置くことを特徴とするセラミックス成形体の製造方法である。
【0016】
【発明の実施の形態】
本発明の(1)では、スラリーに用いている有機溶剤(分散媒)の蒸気圧を3kPa(≡Pc)以下に制御する。蒸気圧をPc以下に制御するには、スラリーをこれが入っている鋳型ともども冷却する。冷却温度(:冷却到達温度=保持温度)の上限は、有機溶剤の蒸気圧がPcになる温度であり、この温度は化学便覧等で知ることができる。例えば分散媒にエチルアルコールを用いた場合、10℃である。また、イソプロピルアルコールでは約15℃、メチルエチルケトンでは約0℃である。また、2種以上の有機溶剤を分散媒に用いた場合は、共沸点組成の蒸気圧がPc以下となる温度に冷却・保持する。このように、分散媒にする有機溶剤の種類によりPc対応温度は異なる。
【0017】
これにより、例えばエチルアルコールを分散媒とした場合について図2に示すように、鋳型材(石膏)の浸透厚みを大幅に向上させることができ、前記のような不具合を生じることなくセラミックス成形体を製造することができる。
ただし、スラリーは、溶解含有する結合剤により、例えば図3に示すように温度低下とともに粘性が増加する。なお、図3は、可塑剤および結合剤を溶解したエチルアルコールを分散媒とし、これにセラミックス粉末を分散させたスラリーについてB型粘度計にて測定した粘度のスラリー温度依存性を示すグラフである。−5℃を下回る温度域で粘度が急に上昇している。かかる粘度上昇等の液性変化により、図2にみられる−5℃未満の温度域での浸透厚み減少が生じるものと考えられる。
【0018】
スラリーを鋳型内空間に十分に充填するためには、粘性は低い方が望ましい。鋳型形状にもよるが、通常の場合、粘度1Pa・s以下とすればよく、また、複雑な形状の場合、粘度0.4Pa・s以下が好ましい。また、成形体は分散媒の鋳型への吸液による減少とともに固化するが、その過程で収縮が生じる。スラリーは移動してこの収縮による空隙を埋める必要がある。それゆえ、冷却温度は、蒸気圧がPc以下になる温度範囲内でスラリーの粘性も十分考慮して決定するのが望ましい。
【0019】
スラリーおよび鋳型を蒸気圧がPc以下となる温度に保持する時間は、多孔質の鋳型材による分散媒の吸液が終了するまで持続させるのが有効である。吸液の進行中は、前記した鋳型内面とスラリーとの境界での気体層形成による凹面欠陥や成形体内深部での欠陥が生成しやすいので、冷却温度での保持を継続する必要がある。吸液が終了した段階以降は常温に戻してやればよい。
【0020】
次に、本発明の(2)では、鋳込み工程から吸液工程にかけての間、用いている鋳型を前記有機溶剤の蒸気を充満させた密閉空間内に置く。これによっても、本発明(1)と同様に、スラリー中の有機溶剤の揮発を抑制することができる。
具体的には、鋳型を予め有機溶剤の蒸気を発生させた密閉容器内に置き、その鋳型にスラリーを注入して、その鋳型を吸液段階が終了するまで密閉容器内に保持する。スラリー中の有機溶剤と同じ有機溶剤の蒸気を充満させた密閉容器内の雰囲気は、当該有機溶剤の蒸気分圧が高いものとなり、それゆえ、鋳型内のスラリーからの有機溶剤の揮発が有効に抑制される。本発明(2)では、密閉容器内の温度は、常温(室温)程度にあればよく、本発明(1)での冷却の場合には必要とされる冷蔵庫等の冷却設備を必要としないから、比較的簡便に行える。吸液が終了した段階から密閉条件を緩和し、有機溶剤蒸気分圧を徐々に下げて、通常大気条件に近づければよい。
【0021】
密閉容器内で有機溶剤の高蒸気分圧雰囲気を得る方法としては、分散媒と同じ有機溶剤をビーカー等に入れて加熱しながら密閉容器内に設置する、あるいは布等のような表面積の大きい材料に前記有機溶剤を染み込ませたものを設置する、などの方法が好ましく用いうる。理想的には、密閉容器内が前記有機溶剤の飽和蒸気で満たされている状態が望ましいが、実際には、前記有機溶剤の蒸気分圧が飽和蒸気圧の1/3程度でもスラリーからの分散媒の揮発抑制には効果があるため、布等に有機溶剤を染み込ませたものを密閉容器内に設置するという比較的簡便な方法でも十分である。
【0022】
次に、本発明に用いる原料やスラリー調整、鋳型などについて述べておく。
〔セラミックス粉末〕
本発明で用いるセラミックス粉末は、種類を特に限定されない。しかし、水を分散媒として使用可能な鋳込み成形で製造可能な粉末には、わざわざ有機溶剤を分散媒に用いる意味はないから、一般的に水と反応しやすい粉末、例えば、酸化カルシウム、窒化アルミニウム、サイアロンなどの粉末を用いるのがよい。粉末の粒度にも特に制限はなく、酸化カルシウムの坩堝製造時などには最大粒径がミリメートルオーダーの粉末粒子を使用できるし、窒化アルミニウムのように平均粒径が1μm以下の粒子を使用してもよい。
〔有機溶剤(分散媒)と結合剤〕
セラミックス粉末スラリーの分散媒としては、各種の有機溶剤を用いうる。有機溶剤は、スラリーに用いる結合剤との関係で選択される場合が多いが、本発明では、いずれの結合剤と有機溶剤の組合せでも適用できる。具体的には、ポリビニルアルコール、ポリビニルブチラール、アクリル樹脂等の有機溶剤可溶型ポリマーからなる結合剤と各種アルコール、キシレン、トルエン、ヘキサン等の有機溶剤との組合わせや、ポリスチレン、ポリブタジエン、アクリル酸、メタクリル酸等の非水系エマルションからなる結合剤とアルコール、アルキルエステル等の有機溶剤との組合わせなど、各種の組合わせが可能である。しかし、どのような組合せでも全て可能というわけではなく、当然、高濃度、低粘性スラリーになり、結合剤がスラリー中に均一に分散される系を選択しなければならないのはいうまでもない。
【0023】
また、結合剤と分散媒はそれぞれ単独で用いられる必要もなく、複数種の結合剤と複数種の分散媒との混合物を用いることもでき、この場合でも、均一分散、高濃度、低粘度スラリーになるものであれば鋳込み成形に用いることができる。
〔分散剤〕
結合剤と分散媒とを均一に混合し、高濃度、低粘度のスラリーを得るには、各種の分散剤が必要なこともよく知られている。有機溶剤用の分散剤としては、ポリオキシレン付加物や、モノ、ジ、トリエタノールなどのアミンや、水の分散剤としてよく用いられる、ポリカルボン酸系(市販のセルナE503;中京油脂製)などの適用も可能である。本発明でも、分散剤を使用した均一・高濃度・低粘度スラリーを用いることが有効であるが、使用する分散剤に特に制限を設けるものではない。要は、均一・高濃度・低粘度スラリーが準備できればよい。
〔可塑剤〕
可塑剤は、 成形体を焼成前に加工しやすくするために添加する物質で、有機溶媒用の可塑剤としては、ベンヂルブチルフタレート、ジブチルフタレート等がよく知られている。成形体に要求される加工特性に合わせ、 種類および量を決めればよい。
〔スラリーの調製〕
上記のセラミックス粉末、結合剤、有機溶剤(分散媒) 、分散剤等は、通常の鋳込み成形用スラリーを調製するのと同様に調製される。すなわち、必要量の結合剤、分散剤を混合した有機溶剤中にセラミックス粉末を投入し、ボールミル等の混合装置を用いて所定時間混合したのち、脱泡処理を行って鋳込み成形用のスラリーを得る。
〔鋳型〕
本発明で使用する鋳型は、注入口以外は閉じた内部の全面で吸液するタイプに限定されず、一面が開放された片面吸液タイプの鋳型であってもよい。特に片面吸液タイプでは、開放面からの有機溶剤の揮発が著しいと、結合剤の凝集による内深部との物性の違いによって、開放面に亀裂が多量に発生し、正常な成形体は得られない。これに対し、冷却によって蒸気圧を下げ(本発明の(1))、あるいは周囲を蒸気の充満した密閉空間とする(本発明の(2))ことで、開放面からの蒸散を抑制し、鋳型内面からの吸液を主たる過程とならしめた本発明では、開放面での亀裂発生は起こらず、良好な成形体が得られる。
【0024】
本発明の製造方法により得られた成形体は、従来のものと比較して、分散媒の移動に伴う結合剤の移動が少ないため、成形体に残留する結合剤の分布が均一になる特長を有する。これは、次工程の脱脂、焼成において、ソリ、収縮の不均一を引き起こすことがなく、成形体として好ましいものである。
【0025】
【実施例】
〔1〕本発明(1)の実施例
平均粒径1μmのAlN(窒化アルミニウム)粉末95重量部、平均粒径1.2μmのY(イットリア)粉末5重量部を、エチルアルコール分散媒40重量部、市販のポリカルボン酸系分散剤(中京油脂製セルナE503)5重量部、市販のポリビニルブチラール系結合剤(中京油脂製セルナSE604)10重量部とともに樹脂製ボールミルに入れ、12時間混合してスラリーを調製した。スラリーは、その後真空脱泡混練機で1時間脱泡して鋳込み成形に供した。鋳型は100mmφ×20mmの円盤状成形体が得られる押し湯部付きの石膏鋳型を用いた。鋳込み成形は、表1に示す条件で行い、成形後の成型体の形状、中心部の内部欠陥(成形体の中心部を切断して観察した)を調査した。その結果、鋳込み温度(鋳込み開始〜吸液終了の間、鋳型をこの温度に保つ)を、エチルアルコールの蒸気圧がPc以下になる温度(10℃以下の温度)とした実施例1,2では、表1に示すように良好な成形体が得られた。
【0026】
【表1】

Figure 2004314437
【0027】
〔2〕本発明(2)の実施例
最大粒径2μmに粒度調整した酸化カルシウム(CaO)粉末100重量部、分散媒としてイソプロピルアルコール35重量部とメチルエチルケトン5重量部の混合液、分散剤としてポリカルボン酸系分散剤(中京油脂製セルナE503)5重量部、結合剤としてポリ酢酸ビニル5重量部を樹脂製ボールミルに入れ、8時間混合してスラリーを調製した。スラリーは、その後真空脱泡混練機で1時間脱泡して鋳込み成形に供した。鋳型は、上部直径200mm、下部直径100mm、高さ180mmの坩堝形状の石膏鋳型を用いた。鋳込みは排泥法(鋳込み後所定時間放置したのち排泥(未吸着のスラリーを排出)しそのまま保持する)で行った。実施例3,4では、分散媒と同じ混合比の溶液(前記スラリーからCaOを除いた組成に調製した溶液)を入れたビーカーに布を浸し、室温の密閉容器内に鋳型とともに設置した。この鋳型内にスラリーを注入し、密閉状態で表2に示す時間保持した後排泥し、そのまま同密閉容器内に保持した。比較例3,4では、鋳型を大気雰囲気中に置き室温で鋳込んだ後、表2に示す時間保持した後排泥してそのまま保持した。得られた成形体の肉厚、外観を調査した結果、表2に示すように、有機溶剤蒸気を充満させた密閉容器内で鋳込み成形を行った実施例3,4では良好な成形体が得られた。
【0028】
【表2】
Figure 2004314437
【0029】
【発明の効果】
本発明によれば、有機溶剤を分散媒とした鋳込み成形法によりセラミックス成形体を製造する際に、各種低粘度・高濃度のスラリーに応じて有機溶媒の揮発による悪影響を無くすことができ、全体が均質な成形体を製造することが可能になるという優れた効果を奏する。
【図面の簡単な説明】
【図1】石膏(鋳型材)への分散媒浸透実験とその結果の1例を示す説明図である。
【図2】図1のCase Aにおいて有機溶剤にエチルアルコールを用い冷却温度を種々変えた実験により得られた浸透厚みと冷却温度の関係を示すグラフである。
【図3】粘度のスラリー温度依存性の1例を示すグラフである。
【符号の説明】
1 有機溶剤
2 容器
3 石膏(鋳型材)
4 蓋[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a ceramic molded body, and more particularly, to a method for manufacturing a ceramic molded body for manufacturing a ceramic molded body by a casting method of ceramic powder.
[0002]
[Prior art]
The casting method of ceramic powder is a technique that has been used for a long time as a method of obtaining a molded body having a complicated shape or a shape close to a final product. Generally, a ceramic powder is dispersed in water to form a slurry, which is poured into a mold of water-absorbing gypsum or resin, and water as a dispersion medium is absorbed by the mold to obtain a low-moisture powder aggregate. ing. The shape is suitable for a three-dimensional non-isotropic shape which is difficult to produce by press molding, a non-long product having a constant cross-sectional shape produced by extrusion molding or tape molding, and a large shape.
[0003]
On the other hand, even if the shape is preferably produced by cast molding, if the ceramic powder easily reacts with water, the conventional technique using water as a dispersion medium cannot cope. Therefore, various casting methods using an organic solvent as a dispersion medium have been proposed for such powders. When an organic solvent is used as the dispersion medium, there are some differences from the aqueous dispersion medium. The dispersant for dispersing the powder and the binder that gives shape retention when the dispersion medium of the slurry is absorbed into the mold are greatly different between the aqueous dispersion medium and the organic solvent dispersion medium. Various combinations have been proposed based on the polarity of the dispersion medium, the compatibility between the binder and the dispersion medium, and for example, Patent Literature 1 (specifying the type of the dispersant and deflocculant) and Patent Literature 2 (Specifying the type of the binder) Patent Document 3 (specifying the type of dispersant), Patent Document 4 (adding a specific dispersion medium to an organic solvent), and the like.
[0004]
What is important when an organic solvent is used as a dispersion medium for casting is to select an appropriate dispersant according to the type of powder and the type of dispersion medium, as described in the patent document, For example, selecting a dispersion medium exhibiting appropriate liquid absorption when cast into a mold. Compared with the case where water is used as a dispersion medium, the casting technique using an organic solvent as a dispersion medium has a short history, and the above selection is still being performed by trial and error.
[0005]
[Patent Document 1]
JP-A-5-294707 [Patent Document 2]
Japanese Patent Application Laid-Open No. 7-82037 [Patent Document 3]
JP-A-11-114403 [Patent Document 4]
Japanese Patent Application Laid-Open No. Hei 2-70007
[Problems to be solved by the invention]
Conventional technology development of cast molding using an organic solvent as a dispersion medium has mainly focused on obtaining a good molded product by variously devising a dispersant, a binder, and in some cases, a dispersion medium. In such a development, it is necessary to select a dispersant, a binder, and a dispersion medium that are optimal for the raw material powder for each type of ceramic to be manufactured, and it cannot be said that the technique is versatile. On the other hand, the present inventors have found a new method for the technique of pouring into a porous mold, and can produce a good molded body in any combination of various dispersants, binders, and dispersion media. I was able to.
[0007]
It is needless to say that the first important factor in the cast molding using an organic solvent as a dispersion medium is to produce a slurry having a low viscosity and a high concentration. This is the same in water-based casting, which is an essential condition in casting in which the porous medium absorbs the dispersion medium to reduce the liquid portion in the slurry, and the powder aggregates are fixed to the casting mold. In this sense, in the present invention, in order to obtain a slurry having a low viscosity and a high concentration, it is necessary to select a dispersion medium, a dispersant, and a binder that are optimal for the ceramic powder to be molded.
[0008]
Secondly, the second important point is that, in the case of an aqueous dispersion medium, there is almost no problem. However, in the organic solvent dispersion medium, the vapor pressure of the organic solvent is higher than that of water during the liquid absorption step into the mold, so that phase separation occurs. And has a problem of inhibiting liquid absorption. The decrease in the deposition rate due to the inhibition of liquid absorption increases the time required for molding, the binder and the like are unevenly distributed in the solvent phase, the phase-separated solvent remains, and the molded article becomes heterogeneous, This causes problems such as sticking of the molded body and the molded body, and the molding work.
[0009]
An object of the present invention is to eliminate adverse effects due to volatilization of an organic solvent according to various low-viscosity, high-concentration slurries when a ceramic molded body is manufactured by a casting method using an organic solvent as a dispersion medium. It is an object of the present invention to provide a method for producing a versatile ceramic molded body capable of producing a homogeneous molded body.
[0010]
[Means for Solving the Problems]
The present inventors have intensively studied the problems and their causes in the casting of ceramics using an organic solvent as a dispersion medium and obtained the following knowledge.
That is, the low-viscosity, high-concentration slurry is directly injected into a porous mold such as a gypsum mold, and even if an attempt is made to absorb the organic solvent in the slurry into the mold, the organic solvent has a relatively high vapor pressure at room temperature. When a gas layer is formed by evaporation at the boundary surface with the mold, the liquid absorption becomes slow, and when the gas layer remains until after the liquid absorption, the contact surface of the molded body with the mold becomes concave. Also, if the slurry is kept in a hot water state for a long time to ensure the filling of the slurry inside, the dispersion medium in the hot water part evaporates during that time, the slurry becomes highly concentrated and the fluidity deteriorates, and the center is filled to the center. However, in many cases, a good molded product cannot be obtained as a hollow molded product.
[0011]
Further, the dispersion medium is vaporized in the absorbed gypsum, and is dispersed in the mold material due to the concentration of the binder and the like caused by scattering from the outer wall of the gypsum, and the deposited layer absorbs the dispersion medium into the mold material. It inhibits the liquid, delays the liquid absorption, and causes a phenomenon in which the mold and the inking layer adhere to each other, making it difficult to release the mold. The stagnation of the liquid absorption due to the vaporization and scattering of the dispersion medium in the absorbed gypsum was confirmed by experiments.
[0012]
In this experiment, as shown in FIG. 1, an organic solvent 1 in which a plasticizer and a binder were dissolved was put in a non-permeable container 2, and a gypsum (mold material) 3 was immersed in the organic solvent 1, Is the open space leading to the atmosphere (Case A) and the case where the container 2 is covered with the lid 4 and the inside of the container 2 is a closed space (Case B). Changes over time were examined. As a result, as shown in the figure, in the case of the open space (Case A), the permeation thickness X was saturated at a constant value at a relatively short distance from the immersion surface, whereas in the case of the closed space (Case B). ) Increased linearly without saturating to a constant value. This phenomenon can be explained as follows. That is, when the liquid absorbing process in which the organic solvent (dispersion medium) in which the plasticizer or the binder is dissolved is absorbed by the gypsum (mold material) is performed in an open space where the organic solvent is easily evaporated, the plastic absorbed by the gypsum The volatile components in the organic solvent containing the agent and the binder are vaporized, and the vaporized gas escapes from the gypsum surface. For this reason, a concentrated layer of a binder or a plasticizer that hardly volatilizes is formed at the tip of the gypsum in the direction of penetration of the liquid absorbing portion. When such a thickened layer is formed in the gypsum (mold material), this becomes a resistance, and the diffusion of the dispersion medium into the unabsorbed portion ahead of the thickened layer is inhibited, and the purpose of absorbing the dispersion medium is as follows. The thickness of the gypsum (mold) designed in the above cannot be effectively used as an absorber, and the liquid absorption becomes very slow. For this reason, problems such as stagnation of solidification of the molded body occur. Note that a plasticizer is a substance added to impart flexibility to a material or to facilitate processing, and is added to maintain processability when a molded body is processed before firing. .
[0013]
From these examination results, by controlling the volatilization of the organic solvent, a sound molded body can be produced in a process that is not much different from the case where an aqueous dispersion medium is used, that is, an appropriate organic solvent is used as a dispersion medium. When casting a slurry of ceramic powder to which a dispersant and a binder have been added, by casting in a state where evaporation of the organic solvent dispersion medium used is suppressed, phase separation of the solvent phase is suppressed, and sound Found that a compact can be produced in a process that is not much different from that of an aqueous solvent, and as a means to effectively suppress the evaporation of the organic solvent dispersion medium, one is to lower the vapor pressure of the organic solvent. It was conceived that the difference between the vapor pressure of the organic solvent and the vapor pressure of the atmosphere should be reduced.
[0014]
That is, the present invention provides (1) a casting step of injecting a slurry obtained by mixing a ceramic powder, a dispersant and a binder into a dispersion medium comprising an organic solvent into a porous mold; And a liquid absorbing step of absorbing the dispersion medium in the same mold, wherein the vapor pressure of the organic solvent in the slurry is maintained at 3 kPa or less during the period from the casting step to the liquid absorbing step. This is a method for producing a ceramic molded body characterized by the following.
[0015]
The present invention also provides (2) a casting step of injecting a slurry obtained by mixing a ceramic powder, a dispersant, and a binder into a dispersion medium comprising an organic solvent into a porous mold; And a liquid absorbing step of absorbing the dispersion medium into the mold, wherein the mold is placed in a closed space filled with the vapor of the organic solvent during the period from the casting step to the liquid absorbing step. A method for producing a ceramic molded body, characterized in that:
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
In (1) of the present invention, the vapor pressure of the organic solvent (dispersion medium) used in the slurry is controlled to 3 kPa (≡Pc) or less. To control the vapor pressure below Pc, the slurry is cooled together with the mold containing it. The upper limit of the cooling temperature (: reached cooling temperature = holding temperature) is the temperature at which the vapor pressure of the organic solvent becomes Pc, and this temperature can be known from a chemical handbook or the like. For example, when ethyl alcohol is used as the dispersion medium, the temperature is 10 ° C. The temperature is about 15 ° C. for isopropyl alcohol and about 0 ° C. for methyl ethyl ketone. When two or more kinds of organic solvents are used as the dispersion medium, they are cooled and maintained at a temperature at which the vapor pressure of the azeotropic composition is equal to or lower than Pc. As described above, the temperature corresponding to Pc differs depending on the type of the organic solvent used as the dispersion medium.
[0017]
Thereby, as shown in FIG. 2, for example, when ethyl alcohol is used as the dispersion medium, the penetration thickness of the mold material (gypsum) can be greatly improved, and the ceramic molded body can be formed without the above-mentioned problems. Can be manufactured.
However, the viscosity of the slurry increases as the temperature decreases, for example, as shown in FIG. 3, due to the binder contained and dissolved. FIG. 3 is a graph showing the slurry temperature dependency of the viscosity measured by a B-type viscometer for a slurry in which ceramic powder is dispersed in ethyl alcohol in which a plasticizer and a binder are dissolved as a dispersion medium. . The viscosity suddenly increases in a temperature range below -5 ° C. It is considered that such a change in liquid properties such as an increase in viscosity causes a decrease in permeation thickness in a temperature range of less than −5 ° C., as shown in FIG.
[0018]
In order to sufficiently fill the slurry with the slurry, the viscosity is preferably low. Although it depends on the shape of the mold, the viscosity may be 1 Pa · s or less in a normal case, and the viscosity is preferably 0.4 Pa · s or less in a complicated shape. Further, the compact is solidified as the dispersion medium is reduced by absorbing the liquid into the mold, but shrinks in the process. The slurry must move to fill the voids due to this shrinkage. Therefore, it is desirable that the cooling temperature is determined in consideration of the viscosity of the slurry within a temperature range in which the vapor pressure is equal to or lower than Pc.
[0019]
It is effective to keep the slurry and the mold at a temperature at which the vapor pressure is equal to or lower than Pc until the liquid absorption of the dispersion medium by the porous mold material is completed. During the progress of the liquid absorption, concave defects due to the formation of a gas layer at the boundary between the inner surface of the mold and the slurry and defects at a deep portion in the molded body are likely to be generated, so that it is necessary to maintain the cooling temperature. After the end of the liquid absorption, the temperature may be returned to normal temperature.
[0020]
Next, in (2) of the present invention, the used mold is placed in a closed space filled with the vapor of the organic solvent during the period from the casting step to the liquid absorbing step. This can also suppress volatilization of the organic solvent in the slurry, as in the present invention (1).
Specifically, the mold is placed in a sealed container in which vapor of an organic solvent has been generated in advance, the slurry is poured into the mold, and the mold is held in the sealed container until the liquid absorption step is completed. The atmosphere in the closed vessel filled with the same organic solvent vapor as the organic solvent in the slurry has a high vapor partial pressure of the organic solvent, and therefore, the volatilization of the organic solvent from the slurry in the mold is effectively performed. Be suppressed. In the present invention (2), the temperature in the closed container may be about room temperature (room temperature), and the cooling in the present invention (1) does not require cooling equipment such as a refrigerator. Can be performed relatively easily. The sealing conditions may be relaxed from the stage when the liquid absorption has been completed, and the partial pressure of the organic solvent vapor may be gradually reduced to approach the normal atmospheric condition.
[0021]
As a method for obtaining a high vapor partial pressure atmosphere of an organic solvent in a closed container, the same organic solvent as the dispersion medium is placed in a beaker or the like while heating and placed in a closed container, or a material having a large surface area such as cloth. And a method in which the organic solvent is impregnated with the organic solvent. Ideally, it is desirable that the inside of the closed vessel is filled with the saturated vapor of the organic solvent. However, in practice, even if the vapor partial pressure of the organic solvent is about 1/3 of the saturated vapor pressure, the dispersion from the slurry is not sufficient. Since it is effective in suppressing the volatilization of the medium, a relatively simple method of placing a cloth or the like impregnated with an organic solvent in a closed container is sufficient.
[0022]
Next, raw materials, slurry preparation, molds, and the like used in the present invention will be described.
[Ceramics powder]
The type of the ceramic powder used in the present invention is not particularly limited. However, powders that can be produced by casting that can use water as a dispersion medium do not have the purpose of using an organic solvent as a dispersion medium, so powders that generally react easily with water, such as calcium oxide and aluminum nitride And a powder such as Sialon. There is no particular limitation on the particle size of the powder. For example, when manufacturing a calcium oxide crucible, powder particles having a maximum particle size of millimeter order can be used, and particles having an average particle size of 1 μm or less, such as aluminum nitride, can be used. Is also good.
[Organic solvent (dispersion medium) and binder]
Various organic solvents can be used as a dispersion medium for the ceramic powder slurry. The organic solvent is often selected in relation to the binder used in the slurry, but in the present invention, any combination of the binder and the organic solvent can be applied. Specifically, a combination of a binder composed of an organic solvent-soluble polymer such as polyvinyl alcohol, polyvinyl butyral, and an acrylic resin with an organic solvent such as various alcohols, xylene, toluene, and hexane; and polystyrene, polybutadiene, and acrylic acid. Various combinations are possible, such as a combination of a binder composed of a non-aqueous emulsion such as methacrylic acid and an organic solvent such as an alcohol or an alkyl ester. However, not all combinations are possible, and it goes without saying that a high concentration, low viscosity slurry must be selected and a system in which the binder is uniformly dispersed in the slurry must be selected.
[0023]
Further, the binder and the dispersion medium need not be used alone, and a mixture of a plurality of kinds of binders and a plurality of kinds of dispersion media can be used. Can be used for casting.
(Dispersant)
It is well known that various dispersants are required to uniformly mix a binder and a dispersion medium to obtain a slurry having a high concentration and a low viscosity. Examples of dispersants for organic solvents include polyoxylen adducts, amines such as mono-, di- and triethanol, and polycarboxylic acids (commercially available Selna E503; manufactured by Chukyo Yushi), which are often used as dispersants for water. Can also be applied. In the present invention, it is effective to use a uniform, high-concentration, low-viscosity slurry using a dispersant, but there is no particular limitation on the dispersant used. The point is that a uniform, high-concentration, low-viscosity slurry can be prepared.
(Plasticizer)
A plasticizer is a substance added to facilitate processing of a molded body before firing, and benzyl butyl phthalate, dibutyl phthalate, and the like are well known as plasticizers for an organic solvent. The type and amount may be determined according to the processing characteristics required for the compact.
(Preparation of slurry)
The ceramic powder, the binder, the organic solvent (dispersion medium), the dispersant, and the like are prepared in the same manner as in preparing a usual slurry for casting. That is, a required amount of a binder, a ceramic powder is put into an organic solvent mixed with a dispersant, mixed for a predetermined time using a mixing device such as a ball mill, and then subjected to defoaming treatment to obtain a slurry for casting. .
〔template〕
The mold used in the present invention is not limited to the type in which liquid is absorbed over the entire closed interior except for the injection port, and may be a single-sided liquid absorption type mold having one open side. In particular, in the single-sided liquid absorption type, if the organic solvent volatilizes significantly from the open side, a large amount of cracks will be generated on the open side due to the difference in physical properties from the inner part due to the aggregation of the binder, and a normal molded body can be obtained. Absent. On the other hand, by lowering the vapor pressure by cooling ((1) of the present invention) or by making the surrounding space a closed space filled with steam ((2) of the present invention), transpiration from the open surface is suppressed, In the present invention, in which liquid absorption from the inner surface of the mold is regarded as a main process, cracks do not occur on the open surface, and a good molded body can be obtained.
[0024]
The molded body obtained by the production method of the present invention has a feature that the distribution of the binder remaining in the molded body is uniform because the movement of the binder due to the movement of the dispersion medium is smaller than that of the conventional one. Have. This is preferable as a molded article without causing warpage and non-uniform shrinkage in the degreasing and firing in the next step.
[0025]
【Example】
[1] Example of the present invention (1) 95 parts by weight of AlN (aluminum nitride) powder having an average particle diameter of 1 μm and 5 parts by weight of Y 2 O 3 (yttria) powder having an average particle diameter of 1.2 μm were mixed with an ethyl alcohol dispersion medium. In a resin ball mill together with 40 parts by weight, 5 parts by weight of a commercially available polycarboxylic acid-based dispersant (Celna E503 manufactured by Chukyo Yushi) and 10 parts by weight of a commercially available polyvinyl butyral-based binder (Celna SE604 manufactured by Chukyo Yushi), and mixed for 12 hours. Thus, a slurry was prepared. The slurry was then defoamed with a vacuum defoaming kneader for one hour and subjected to casting. As the mold, a plaster mold with a feeder part capable of obtaining a disk-shaped molded body of 100 mmφ × 20 mm was used. The cast molding was performed under the conditions shown in Table 1, and the shape of the molded body after molding and internal defects at the center (observed by cutting the center of the molded body) were examined. As a result, in Examples 1 and 2, the casting temperature (the mold is kept at this temperature during the period from the start of casting to the end of liquid absorption) is set to a temperature at which the vapor pressure of ethyl alcohol becomes equal to or lower than Pc (a temperature of 10 ° C. or lower). As shown in Table 1, good molded products were obtained.
[0026]
[Table 1]
Figure 2004314437
[0027]
[2] Example of the present invention (2) 100 parts by weight of calcium oxide (CaO) powder whose particle diameter has been adjusted to a maximum particle size of 2 μm, a mixed solution of 35 parts by weight of isopropyl alcohol and 5 parts by weight of methyl ethyl ketone as a dispersion medium, and poly as a dispersant 5 parts by weight of a carboxylic acid dispersant (Celna E503, manufactured by Chukyo Yushi) and 5 parts by weight of polyvinyl acetate as a binder were placed in a resin ball mill and mixed for 8 hours to prepare a slurry. The slurry was then defoamed with a vacuum defoaming kneader for one hour and subjected to casting. The mold used was a plaster mold in the form of a crucible having an upper diameter of 200 mm, a lower diameter of 100 mm, and a height of 180 mm. The pouring was performed by a mud discharging method (leaving the mud (discharging unadsorbed slurry after leaving it for a predetermined time after pouring) and holding it as it is). In Examples 3 and 4, a cloth was immersed in a beaker containing a solution having the same mixing ratio as the dispersion medium (a solution prepared by removing CaO from the slurry), and placed together with a mold in a closed container at room temperature. The slurry was poured into the mold, kept in a sealed state for the time shown in Table 2, then drained, and kept as it was in the closed container. In Comparative Examples 3 and 4, the mold was placed in an air atmosphere and cast at room temperature, and after holding for the time shown in Table 2, the sludge was discharged and held as it was. As a result of examining the thickness and appearance of the obtained molded body, as shown in Table 2, good molded bodies were obtained in Examples 3 and 4 in which casting was performed in a closed container filled with organic solvent vapor. Was done.
[0028]
[Table 2]
Figure 2004314437
[0029]
【The invention's effect】
According to the present invention, when producing a ceramic molded body by a casting method using an organic solvent as a dispersion medium, it is possible to eliminate the adverse effects of volatilization of the organic solvent according to various low-viscosity, high-concentration slurries, Has an excellent effect that a homogeneous molded body can be manufactured.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an example of a dispersion medium permeation experiment into gypsum (mold material) and the results thereof.
FIG. 2 is a graph showing the relationship between the permeation thickness and the cooling temperature obtained by experiments in Case A of FIG. 1 in which ethyl alcohol was used as an organic solvent and the cooling temperature was variously changed.
FIG. 3 is a graph showing an example of slurry temperature dependence of viscosity.
[Explanation of symbols]
1 Organic solvent 2 Container 3 Gypsum (mold material)
4 Lid

Claims (2)

有機溶剤からなる分散媒にセラミックス粉末、分散剤および結合剤を混合してなるスラリーを多孔質の鋳型に注入する鋳込み工程と、前記鋳型に注入されたスラリー中の分散媒を同鋳型に吸収させる吸液工程とを有するセラミックス成形体の製造方法において、鋳込み工程から吸液工程にかけての間、前記スラリー中の有機溶剤の蒸気圧を3kPa以下に保持することを特徴とするセラミックス成形体の製造方法。A casting step of injecting a slurry formed by mixing a ceramic powder, a dispersant and a binder into a dispersion medium of an organic solvent into a porous mold, and allowing the dispersion medium in the slurry injected into the mold to be absorbed by the same mold A method of manufacturing a ceramic molded body having a liquid absorbing step, wherein a vapor pressure of an organic solvent in the slurry is maintained at 3 kPa or less during a period from a casting step to a liquid absorbing step. . 有機溶剤からなる分散媒にセラミックス粉末、分散剤および結合剤を混合してなるスラリーを多孔質の鋳型に注入する鋳込み工程と、前記鋳型に注入されたスラリー中の分散媒を同鋳型に吸収させる吸液工程とを有するセラミックス成形体の製造方法において、鋳込み工程から吸液工程にかけての間、前記鋳型を前記有機溶剤の蒸気を充満させた密閉空間内に置くことを特徴とするセラミックス成形体の製造方法。A casting step of injecting a slurry formed by mixing a ceramic powder, a dispersant and a binder into a dispersion medium of an organic solvent into a porous mold, and allowing the dispersion medium in the slurry injected into the mold to be absorbed by the same mold In the method for producing a ceramic molded body having a liquid absorbing step, between the casting step and the liquid absorbing step, the ceramic molded body characterized in that the mold is placed in a closed space filled with the vapor of the organic solvent. Production method.
JP2003111751A 2003-04-16 2003-04-16 Method for manufacturing ceramics molded product Pending JP2004314437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003111751A JP2004314437A (en) 2003-04-16 2003-04-16 Method for manufacturing ceramics molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003111751A JP2004314437A (en) 2003-04-16 2003-04-16 Method for manufacturing ceramics molded product

Publications (1)

Publication Number Publication Date
JP2004314437A true JP2004314437A (en) 2004-11-11

Family

ID=33472210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003111751A Pending JP2004314437A (en) 2003-04-16 2003-04-16 Method for manufacturing ceramics molded product

Country Status (1)

Country Link
JP (1) JP2004314437A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012061405A (en) * 2010-09-15 2012-03-29 Fuji Electric Co Ltd Roll mill
CN115124355A (en) * 2022-07-21 2022-09-30 新乡市固元陶瓷科技有限公司 Method for burning large-size ceramic spheres in buried mode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012061405A (en) * 2010-09-15 2012-03-29 Fuji Electric Co Ltd Roll mill
CN115124355A (en) * 2022-07-21 2022-09-30 新乡市固元陶瓷科技有限公司 Method for burning large-size ceramic spheres in buried mode
CN115124355B (en) * 2022-07-21 2023-09-01 新乡市固元陶瓷科技有限公司 Method for burying and burning large-size ceramic spheres

Similar Documents

Publication Publication Date Title
CN108863394B (en) Method for preparing porous ceramic by combining gel casting with freeze drying
CN106588074B (en) Method for preparing gradient porous ceramic by slip casting combined with vacuum foaming process
JP2604592B2 (en) Molding method of metal, ceramic powder, etc. and composition therefor
CN106588073B (en) Preparation process of novel laminated porous ceramic
JP4726403B2 (en) Method for producing three-dimensional structure and method for producing ceramic sintered body
JP3124274B1 (en) Method for producing porous ceramic body having composite pore structure
KR20140011508A (en) Particle-stabilized ceramic foams coated on ceramic materials and the method for manufacturing the same
JP2007145665A (en) METHOD FOR PRODUCING POROUS SiC SINTERED COMPACT
JP2004314437A (en) Method for manufacturing ceramics molded product
Kim et al. Pore structure evolution during solvent extraction and wicking
US20100320629A1 (en) Ceramic molded product and manufacturing method thereof
JPH04231365A (en) Injection molding composition containing bondable particles for sintering
US5132072A (en) Molding method of ceramic body
WO2017091046A1 (en) Powder metallurgy binder composition
JPH02147202A (en) Molding method of nonplastic material
JPS61101447A (en) Manufacture of ceramic formed body
JP3463885B2 (en) Ceramic porous body and method of manufacturing the same
JP3656899B2 (en) High density barium zirconate sintered body and production method
CN115724631B (en) Preparation method of multifunctional porous castable
JP2003071555A (en) MANUFACTURING METHOD FOR Si-SiC COMPOSITE MATERIAL
KR100867981B1 (en) Method of producing ceramic body by sedimentation
JP2005008482A (en) Yttrium oxide sintered compact and its producing method
JPH0564803A (en) Manufacture of inorganic material powder compact
JP2022144734A (en) Slurry casting molding evaluation method and evaluation device
CN116332652A (en) 3D printing forming and curing method