JP2004314097A - Mold for continuous casting, and continuous casting method - Google Patents

Mold for continuous casting, and continuous casting method Download PDF

Info

Publication number
JP2004314097A
JP2004314097A JP2003108358A JP2003108358A JP2004314097A JP 2004314097 A JP2004314097 A JP 2004314097A JP 2003108358 A JP2003108358 A JP 2003108358A JP 2003108358 A JP2003108358 A JP 2003108358A JP 2004314097 A JP2004314097 A JP 2004314097A
Authority
JP
Japan
Prior art keywords
mold
movable
slab
continuous casting
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003108358A
Other languages
Japanese (ja)
Inventor
Hajime Amano
肇 天野
Mikine Kishi
幹根 岸
Soichiro Hisamura
総一郎 久村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2003108358A priority Critical patent/JP2004314097A/en
Publication of JP2004314097A publication Critical patent/JP2004314097A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To cast a slab in which tapers are imparted to four faces, and thereby, inner defects are reduced, and capable of improving product quality and yield. <P>SOLUTION: The mold 14 for continuous casting is provided with four movable molds 20, 22, 24 and 26 arranged in a mutually orthogonal relation. The four movable molds 20, 22, 24 and 26 are abutted on the inner faces of another movable molds 20, 22, 24 and 26 orthogonally crossed with the one side face thereof, so that a casting space S is closely defined. The respective movable molds 20, 22, 24 and 26 are moved forwards and downwards parallel to the confronted movable molds 20, 22, 24 and 26 by a first fluid-pressure cylinder 36. The respective movable molds 20, 22, 24 and 26 are energized by the first fluid-pressure cylinder 36 so as to always be abutted on the insides of the another movable molds 20, 22, 24 and 26 orthogonally crossed with the one side face thereof. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、鋳型内で冷却されて表面部のみが凝固した状態(シェルが形成された状態)の鋳片が下部から連続的に引抜かれる連続鋳造用鋳型および連続鋳造方法に関するものである。
【0002】
【従来の技術】
鉄鋼材料やアルミ等の非鉄材料の分野においては、上下に開口する鋳型(モールド)に溶鋼を鋳込み、該鋳型の下方に昇降可能に配設した昇降台のダミーヘッドに、鋳型内で冷却されて表面にシェルが形成された鋳片の下端を支持した状態で、該昇降台を所定速度で垂直に下降することで鋳型下部から鋳片を垂直に引抜いて、所定長さ寸法の鋳片を鋳造する連続鋳造装置が知られている。
【0003】
ここで、前記鋳片の内部に発生するセンターポロシティ、中心偏析およびV状偏析等の内部欠陥は、鋳片内部における溶鋼の凝固前面の角度(溶鋼の凝固界面の中心線に対する角度=V偏析角度)が影響していると考えられている。この場合に、従来の連続鋳造装置に用いられる鋳型は、連続鋳造中に内部寸法を変更しない固定式であり、鋳型下部から引抜かれる鋳片の形状が一定(ストレート)であったため、前記V偏析角度は小さく、このためにC,S,P等が濃化した溶鋼のサクションが助長されることで、前記の内部欠陥が多く発生し、製品品質が低下すると共に歩留りも低下する問題を内在していた。
【0004】
そこで、鋳型から引抜かれた鋳片に圧下装置により軽圧下や強圧下を加えて変形させることで、凝固末期に生ずる濃化溶鋼を抑制して内部欠陥を軽減させたり、あるいは電磁撹拌装置により鋳片内の溶鋼を電磁撹拌して偏析の分散化を図ることで、前記内部欠陥を軽減させる試みがなされている。
【0005】
しかし、鋳片を圧下する場合は、その圧下タイミングや圧下量が適正でないと内部割れを誘発したり、圧下による圧痕疵の残存を招くおそれがある。また変形抵抗が高く、熱間延性の低い鋼種(例えば工具鋼等)においては、極めて大きな圧下能力が必要となり、装置が重工化して設備コストが増大する問題がある。これに対し、電磁撹拌装置を用いる場合は、内部割れや表面疵の誘発はないが、凝固シェル厚みや鋳片断面サイズが拡大した場合は磁束密度の減衰が大きくなるため、圧下装置と同様に能力の高い装置が必要となって装置の重工化による設備コストの増大を招く。
【0006】
前記問題に対処するものとして、鋳型を構成する相対向する一対の可動型を、連続鋳造中に相互に離間移動することで、鋳型下部から引抜かれる鋳片の一対の面(2面)にテーパを付与するものが、本件出願人から提案されている(例えば、特許文献1)。この装置は、鋳片の2面にテーパを付与して前記V偏析角度を大きくすることで、センターポロシティ、中心偏析あるいはV状偏析等の内部欠陥の発生を抑制するようにしたものであり、前記圧下装置や電磁撹拌装置を用いる場合のように装置自体の重工化による設備コストの増大を招くことはない。
【0007】
【特許文献1】
特開2002−361374号公報
【0008】
【発明が解決しようとする課題】
前記特許文献1に開示の技術は、前記センターポロシティ、中心偏析あるいはV状偏析等の内部欠陥の発生を抑制することができ、それなりに高く評価し得るものである。しかし、製品品質の厳格化が要求される鋼種、例えば高合金鋼および工具鋼を含む特殊鋼の場合では、その要求に充分に応えるまでには至っていないのが現状である。
【0009】
そこで発明者は、前記問題の解決索を求めて種々模索したところ、鋳片の4面にテーパを付与することで、更に内部欠陥の発生を抑制し得ることを確認した。なお、前記特許文献1には、鋳片の4面にテーパを付与することが可能であることは開示されているが、該文献に開示されている鋳型を構成する相対向する一対の可動型を相互に離間移動するだけの技術では、該鋳片の4面にテーパを付与することはできず、実現不能であった。
【0010】
ここで、前記内部欠陥の発生は、鋳片の断面寸法にも依存しており、最も内部欠陥が発生し難い寸法(最適寸法)が、鋼種毎におおよそ判明している。そのため、前記鋳型は鋼種に応じた内部寸法に設定されたものが使用されており、鋼種変更に際して前記最適寸法が変わる場合には、鋳型自体を交換している。また、鋳型の交換は、製品の要求サイズによっても行なわれ、鋳造された鋳片が、その後に、分塊圧延、鍛造等により、型鋼、平角、棒鋼、線材、板材等の製品サイズに加工される。しかるに、近年のように多品種、小ロットが要求される現状では、鋳型の交換による休止時間が長くなり、鋳造能力の低下を招く問題が指摘される。従って、鋳型を交換することなく、各種製品要求サイズ相当の鋳片を鋳造することができれば、鋳造能力を向上し得ると共に、分塊圧延、鍛造の工程短縮、もしくは工程を省略することが可能となるが、そのような鋳型や鋳造方法が提案されていないのが実状である。
【0011】
【発明の目的】
この発明は、前述した従来の技術に内在している前記課題に鑑み、これを好適に解決するべく提案されたものであって、センターポロシティ、中心偏析あるいはV状偏析等の内部欠陥が少なく、製品品質および歩留りを向上し得る4面にテーパを付与した鋳片を鋳造することができ、併せて寸法変更に簡単に対応し得る連続鋳造用鋳型および連続鋳造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
前述した課題を解決し、所期の目的を好適に達成するため、本発明に係る連続鋳造用鋳型は、
上下に開口する四角形状に画成された鋳込空間に溶鋼が鋳込まれ、表面にシェルが形成された鋳片が下部から引抜かれる連続鋳造用鋳型であって、
前記鋳込空間は、相互に直交する関係で配置される4つの可動型の夫々が、一方の側面を直交する別の可動型の内面に当接して画成され、
前記各可動型は、相対向する可動型に対して作動手段により平行に進退移動可能に構成されると共に、
前記各可動型は、前記一方の側面を直交する別の可動型の内面に常に当接するよう付勢手段により付勢されるよう構成したことを特徴とする。
【0013】
前述した課題を解決し、所期の目的を好適に達成するため、本願の別の発明に係る連続鋳造方法は、
前記連続鋳造用鋳型を用い、該鋳型の下部から表面にシェルが形成された鋳片を引抜きつつ、相互に直交する関係で配置される前記4つの可動型の各対を相互に離間移動することで、前記鋳片の4面に、上部から下部に向かうにつれて対をなす対辺寸法が小さくなるテーパを付与することを特徴とする。
【0014】
前述した課題を解決し、所期の目的を好適に達成するため、本願の更に別の発明に係る連続鋳造方法は、
前記連続鋳造用鋳型を用い、相互に直交する関係で配置される前記4つの可動型の相対位置を、前記鋳込空間の開口寸法が所望する断面寸法となるよう位置決めした後、該鋳込空間に溶鋼を鋳込むと共に、表面にシェルが形成された鋳片を下部から引抜くことで、所望する各種断面寸法の鋳片を鋳造することを特徴とする。
【0015】
【発明の実施の形態】
次に、本発明に係る連続鋳造用鋳型および連続鋳造方法につき、好適な実施例を挙げて、添付図面を参照しながら以下説明する。
【0016】
図1に、実施例に係る連続鋳造用鋳型を示し、該連続鋳造用鋳型が実施される連続鋳造装置を図4に概略的に示す。この連続鋳造装置10は、鋳床12に配設されて、上下に開口する四角形状の鋳込空間Sを画成する連続鋳造用鋳型(以後単に鋳型とも称す)14を備え、該鋳型14の鋳込空間Sには、その上方に設けられた取鍋16およびタンディッシュ18を介して溶鋼が鋳込まれるよう構成される。
【0017】
前記鋳型14は、図1に示す如く、相互に直交する関係で配置される4つの可動型20,22,24,26を備え、これら4つの可動型20,22,24,26の夫々が、一方の側面を直交する別の可動型20,22,24,26の内面(鋳込空間S側)に当接することで、前記鋳込空間Sが隙間なく画成されるようになっている。4つの可動型20,22,24,26の内、鋳造される鋳片28の幅方向に相対向する第1の可動型20と第2の可動型22とは、平行な姿勢を保持したまま相互に近接・離間移動可能に構成され、また鋳片28の厚み方向に相対向する第3の可動型24と第4の可動型26とは、平行な姿勢を保持したまま相互に近接・離間移動可能に構成される。また4つの可動型20,22,24,26の夫々は、その内面に沿う方向(付勢方向)に移動可能になっている。
【0018】
前記4つの可動型20,22,24,26およびこれに付随する機構等の構成は同一であるので、第1の可動型20に関連する構成について主に説明し、その他の可動型22,24,26に関する同一部材には同じ符号を付して詳細説明は省略する。なお実施例では、図1において第1の可動型20を基準として時計回りに、第3の可動型24、第2の可動型22、第4の可動型26の順で配置してある。
【0019】
前記第1の可動型20の外面には、該可動型20の進退方向とは直交する付勢方向(第2の可動型22の内面に沿う方向)に移動可能なスライダ30が配設される。このスライダ30には、前記鋳床12に配設された作動手段としてのスクリュージャッキ32が連結され、該ジャッキ32の駆動モータ34を正逆回転することで、第1の可動型20は相対向する第2の可動型22に対して平行に進退移動するよう構成される。すなわち、第1の可動型20と第2の可動型22および第3の可動型24と第4の可動型26の夫々の対を相互に離間移動することで、前記鋳込空間Sの開口寸法を徐々に大きくし得るようになっている(図2参照)。
【0020】
また、前記第1の可動型20の外面には、付勢手段としての油圧等を用いる第1の流体圧シリンダ36が、そのピストンロッド36aを前記付勢方向に沿って伸縮する姿勢で配設され、該ロッド36aの先端部を、前記スライダ30に連結してある。そして、第1の流体圧シリンダ36を所定方向に付勢することで、スライダ30に対して第1の可動型20が付勢方向に移動し、前記一方の側面を別の可動型(第1の可動型20の場合は第4の可動型26)の内面に常に当接させ得るよう構成される。ちなみに、第2の可動型22の一側面は第3の可動型24の内面、第3の可動型24の一側面は第1の可動型20の内面、第4の可動型26の一側面は第2の可動型22の内面に夫々当接するよう設定される。すなわち、前記鋳込空間Sの開口寸法を大きくするべく第3の可動型24から第4の可動型26が離間移動すると、該第1の可動型20の一側面から第4の可動型26の内面が離間して隙間を生ずるが、実施例ではスライダ30に対して第1の可動型20を付勢方向に移動することで、前記一側面を第4の可動型26の内面に常に当接して隙間を生じさせないようにできる。なお、第1の流体圧シリンダ36に関しては、該シリンダ36をスライダ30に配設し、そのピストンロッド36aを第1の可動型20に連結する構成であってもよい。
【0021】
また、前記第1の流体圧シリンダ36による第1の可動型20の一側面を第4の可動型26の内面に当接する圧力は、第1の可動型20が第2の可動型22に対する近接・離間方向(進退方向)に移動する際に、一側面と内面との間に隙間を生じさせることなく、かつ第1の可動型20の移動の大きな抵抗とならない値に設定される。なお、各可動型20,22,24,26の少なくとも鋳込空間Sを画成する内側は、熱伝導が良好で耐熱性のある例えば銅を材質として構成されると共に、その表面は円滑な摺動が可能な平坦に形成されている。
【0022】
そして、後述するように鋳型14の下部から鋳片28を引抜きつつ、4つの可動型20,22,24,26の各対を相互に離間移動しつつ各可動型20,22,24,26の一側面を別の可動型20,22,24,26の内面に当接するよう付勢することで、前記鋳込空間Sは各コーナー部に隙間を生ずることなく開口寸法が徐々に大きくなり、該鋳型14から引抜かれた鋳片28の幅方向および厚み方向の両面(対向する二対の面)に、上部から下部に向かうにつれて両面の幅および厚み寸法(対辺寸法)が小さくなるテーパを付与し得るようになっている(図5参照)。なお、鋳片28に付与するテーパとしては、実操業上は、1m当たり4〜30mmの範囲で実施される。
【0023】
前記第1の可動型20の下部には、図3に示す如く、鋳型14内で1次冷却されて表面に外殻(シェル)が形成された鋳片28の表面に対して近接・離間する方向に傾動可能な規制部材38が配設され、この規制部材38における鋳片28の表面に対向する面側に複数のロール40が自由回転可能に配設されている。また第1の可動型20の下端部における外面に第2の付勢手段としての油圧等を用いる第2の流体圧シリンダ42が配設され、そのピストンロッド42aを前記規制部材38に連繋しており、該ピストンロッド42aを延出する方向に第2の流体圧シリンダ42を付勢することで、規制部材38のロール40を鋳片28の表面に当接するよう構成される。すなわち、鋳型14の下部から引抜かれた直後の鋳片28の4面に対し、各可動型20,22,24,26に配設される規制部材38のロール40を夫々押圧することで、該鋳片28のバルジングを防止し得るようになっている。なお、前記第2の流体圧シリンダ42は、連続鋳造中には規制部材38を所定圧力で常に鋳片28に当接するべく付勢制御される。
【0024】
前記各可動型20,22,24,26は中空に形成され、その内部に外部供給源から冷却水が供給される水冷構造となっている。また、前記鋳型14には、図示しないオシレーション装置によって上下動が付与され、鋳型14の下部から引抜かれる鋳片28と該鋳型14との間の摩擦を軽減し、焼付きを防止するよう構成されている。
【0025】
前記鋳型14の下方には、図4に示す如く、上下方向に離間する複数のノズル44が、鋳片28を挟む幅方向の両側に対向的に配設されており、各ノズル44から鋳片28に向けて冷却水(水)を直接スプレーすることで、該鋳片28の凝固を促進させる2次冷却を行なうよう構成される。なお、ノズル44は、後述する昇降台48と干渉しない位置まで退避可能に構成され、幅方向に対向するノズル44,44間を昇降台48が昇降するのを許容するようにしてある。
【0026】
前記鋳型14の下方には、鋳片28の下端を支持するダミーヘッド46を備えた昇降台48が垂直昇降可能に配設されている。また、鋳片28を挟む両側に滑車50,50が回動可能に配設され、一端が適宜の固定部位に接続されたワイヤ52が両滑車50,50に巻掛けられると共に、その他端が可変速可能なウインチ54に接続される。そして、前記昇降台48は、両滑車50,50の間に臨むワイヤ52によって吊下げ支持され、該ワイヤ52およびウインチ54からなる昇降手段によって昇降台48が昇降移動されるようになっている。すなわち、ワイヤ52を巻上げる方向にウインチ54を回転駆動することで、該ワイヤ52を介して昇降台48が上昇し、逆にワイヤ52を繰出す方向にウインチ54を回転駆動することで、ワイヤ52を介して昇降台48が下降するよう構成される。
【0027】
【実施例の作用】
次に、前述した実施例に係る連続鋳造用鋳型の作用につき、連続鋳造方法との関係において、該鋳型14により引抜かれる鋳片28の4面にテーパを付与する場合で説明する。前記鋳型14における第1の可動型20と第2の可動型22および第3の可動型24と第4の可動型26の夫々の対を相互に近接して(図1参照)、前記鋳込空間Sの開口寸法を小さくすると共に、前記ウインチ54を所定方向に回転駆動して昇降台48を上昇し、前記ダミーヘッド46で鋳型14の下部を閉塞した状態で、前記取鍋16およびタンディッシュ18を介して溶鋼を鋳型14の鋳込空間Sに鋳込む。この鋳型14に鋳込まれた溶鋼は、該鋳型14による1次冷却により、その表面にシェルが形成される。またウインチ54を逆転駆動して昇降台48を所定の鋳造速度で垂直に下降することで、ダミーヘッド46により下端が支持された鋳片28は、鋳型14の下部から引抜かれる。
【0028】
前記鋳型14から引抜かれた直後の鋳片28は、前記可動型20,22,24,26に配設されている規制部材38のロール40で4方から押圧されることで、バルジングが発生するのは防止される。また、前記複数のノズル44,44から鋳片28に冷却水がスプレーされ、該鋳片28は2次冷却される。
【0029】
前記昇降台48の下降に同期して、前記鋳型14を構成する第1の可動型20と第2の可動型22および第3の可動型24と第4の可動型26の夫々の対は、対応する第1の流体圧シリンダ36の付勢下に相互に離間移動し、前記鋳込空間Sの開口寸法が徐々に大きくなる(図2参照)。このとき、前記各可動型20,22,24,26に配設されている各第1の流体圧シリンダ36が夫々付勢され、スライダ30に対して対応する可動型20,22,24,26が付勢方向に移動することで、その一側面が別の可動型20,22,24,26の内面に当接する。すなわち、各可動型20,22,24,26が進退方向に移動する際には、その一側面が別の可動型20,22,24,26の内面に常に当接する状態で移動し、鋳込空間Sの各コーナー部には隙間ができない。
【0030】
前述したように4つの可動型20,22,24,26を移動して鋳込空間Sの開口寸法を徐々に大きくする鋳型14の下部から引抜かれる鋳片28には、その幅方向および厚み方向の夫々の両側面に、その上部から下部に向かうにつれて幅寸法および厚み寸法が小さくなる所要のテーパが付与される(図5参照)。そして、4面にテーパが付与された鋳片28においては、その内部に、センターポロシティ、中心偏析およびV状偏析等の内部欠陥が発生するのは抑制され、高品質でかつ歩留りが向上したものとなっている。すなわち、実施例の鋳型14は、高合金鋼および工具鋼を含む特殊鋼等の厳格化が要求される鋼種の鋳造において特に有効である。なお、その他の鋼種においても、好適な品質改善がなされる。また実施例の鋳型14は、4つの可動型20,22,24,26を組合わせただけの簡単な構成であるから、設備コストが増大することはない。
【0031】
ここで、前述したように内部欠陥の発生は、鋳片28の断面寸法にも依存しているため、鋼種毎に鋼片28のBOTの寸法およびTOPの寸法を最適寸法にする必要がある。この場合に、実施例の鋳型14は4つ可動型20,22,24,26を任意の位置に移動させることができるから、鋳型自体を交換することなく最適寸法の鋳片28を鋳造することができる。またテーパに関しても、鋳造中における可動型20,22,24,26の移動量を可変制御することで、任意のテーパ角度を鋳片28に付与し得る。更に、鋳片28の断面に関しては、前記可動型20,22,24,26の位置関係を変更すれば、正方形に限らず長方形とすることが可能である。更にまた、鋳片28の幅方向に相対向する第1の可動型20と第2の可動型22との鋳造中における移動量と、厚み方向に相対向する第3の可動型24と第4の可動型26との鋳造中における移動量とを変えることで、鋳片28の幅方向で対向する面に付与するテーパの角度と、厚み方向で対向する面に付与するテーパの角とを異ならせることもできる。
【0032】
実施例の鋳型14は、前述したように4つ可動型20,22,24,26を任意の位置に移動して位置決めすることが可能であるから、前述したようなテーパを付与しないストレートの鋳片を鋳造する場合において、その鋼種変更により前記最適寸法が変わった場合、あるいは製品要求サイズが変更されたときには、4つの可動型20,22,24,26を移動して相対位置を変更し、前記鋳込空間Sの開口寸法が最適寸法あるいは要求サイズ等の所望する断面寸法となる位置に位置決めするだけで対応し得る。すなわち、従来のように最適寸法や製品要求サイズに合わせて設定した鋳型を交換することなく、1基の鋳型14により各種断面寸法の鋳片28を鋳造することができるから、休止時間を極めて短縮することができ、多品種、小ロットの要請にも鋳造能力を低下させることなく対応し得る。また鋳型14を交換することなく、各種製品要求サイズ相当の鋳片28を鋳造することができるので、後工程の分塊圧延、鍛造の工程短縮、もしくは工程を省略することが可能となる。更に、鋼種の最適寸法あるいる製品要求サイズ毎に異なる鋳型を用意する必要はないから、設備コストを低廉に抑えることができると共に保管・管理の簡略化が可能となる。
【0033】
【実験例】
前述したように、前記センターポロシティ、中心偏析およびV状偏析等の内部欠陥の発生は、鋳片内部における溶鋼の凝固前面の角度(溶鋼の凝固界面の中心線に対する角度=V偏析角度)が影響していると考えられている。そこで、鋼片にテーパを付与しない従来例1、2面にテーパを付与した従来例2および4面にテーパを付与した発明例の夫々に関し、鋼片TOPからの距離に対するV偏析角度を測定し、その結果を図6に示す。なお、鋳片に付与するテーパは4mm/mとした。
【0034】
前記結果から、従来例1の場合は、V偏析角度は小さく、このためにC,S,P等が濃化した溶鋼のサクションが助長されることで、前記の内部欠陥が多く発生した。これに対し、従来例2や発明例のように2面あるいは4面にテーパを付与した場合は、その凝固界面付近では上方の幅が広がるために前記V偏析角度は大きくなり、これによってC,S,P等が濃化した溶鋼のサクションが低減し、前記内部欠陥の発生が好適に抑制されることが確認された。
【0035】
次に、前記従来例1、従来例2および発明例に関し、鋼片内部の温度勾配を測定し、その結果を図7に示す。この結果から、鋳片の4面にテーパを付与した発明例の場合は、鋳片下端部(BOT)の断面積が減少することに伴い、上下方向の大きな温度勾配が形成され、上指向性凝固(積層凝固)が促進されて、側面凝固が回避される。これにより、中心方向のザク、V状偏析の連続化が抑制され、従来例2に比較して内部欠陥の更なる抑制が達成されることが確認された。
【0036】
【変更例】
鋳型における可動型を移動する作動手段としては、実施例のスクリュージャッキに限定されず、流体圧シリンダ等のアクチュエータを採用し得る。また、可動型の一側面を別の可動型の内面に当接する付勢手段や、規制部材を鋳片の表面に当接する第2の付勢手段に関しても、実施例の流体圧シリンダに限定されるものでなく、モータにより作動されるボールネジやスクリューネジあるいはラック−ピニオン等の各種の機構を採用することができる。実施例では規制部材にロールを配設し、該ロールを鋳片に当接するよう構成したが、鋳片の円滑な引抜きを行なうと共にその表面に疵を付けないものであれば、規制部材を直に当接するようにしてもよい。
【0037】
【発明の効果】
以上説明した如く、本発明に係る連続鋳造用鋳型および連続鋳造方法によれば、センターポロシティ、中心偏析またはV状偏析等の内部欠陥が少なく、高品質でかつ歩留りを向上し得る4面にテーパを付与した鋳片を鋳造することができる。また鋳込空間の開口寸法を、4つの可動型を移動することで任意に変更可能に構成したから、該鋳込空間の開口寸法を鋼種に応じた最適寸法に簡単に変更し得ると共に、鋼片に付与するテーパ角度も任意に設定可能である。なお、鋳片にテーパを付与することなくストレートの鋳片を鋳造する場合においては、前記最適寸法が変わった場合や、製品要求サイズが変更された際には鋳型自体を交換することなく短時間で対応でき、鋳造能力を向上し得ると共に、後工程の短縮あるいは省略が可能となる。更に、鋳型下部から引抜かれる鋳片の表面に規制部材を当接するよう構成することで、バルジングの発生を防止し得る。
【図面の簡単な説明】
【図1】本発明の好適な実施例に係る連続鋳造用鋳型を、鋳込空間を小さくした状態で横断して示す概略平面図である。
【図2】実施例に係る連続鋳造用鋳型を、鋳込空間を大きくした状態で横断して示す概略平面図である。
【図3】実施例に係る連続鋳造用鋳型の可動型および規制部材を示す要部正面図である。
【図4】実施例に係る連続鋳造用鋳型が実施される連続鋳造装置を示す概略構成図である。
【図5】実施例に係る連続鋳造用鋳型により鋳造された鋳片を示す概略斜視図である。
【図6】V偏析角度を測定した結果を示すグラフ図である。
【図7】鋳片の内部温度勾配を測定した結果を示すグラフ図である。
【符号の説明】
20 第1の可動型
22 第2の可動型
24 第3の可動型
26 第4の可動型
28 鋳片
32 スクリュージャッキ(作動手段)
36 第1の流体圧シリンダ(付勢手段)
38 規制部材
42 第2の流体圧シリンダ(第2の付勢手段)
S 鋳込空間
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting mold and a continuous casting method in which a slab in a state where only a surface portion is solidified by cooling in a mold (a state in which a shell is formed) is continuously drawn from a lower portion.
[0002]
[Prior art]
In the field of non-ferrous materials such as steel materials and aluminum, molten steel is cast into a vertically open mold (mold), and is cooled in the mold by a dummy head of an elevating table that can be moved up and down below the mold. With the lower end of the slab having a shell formed on the surface supported, the slab is vertically pulled down at a predetermined speed to pull out the slab vertically from the lower part of the mold to cast a slab of a predetermined length. Continuous casting devices are known.
[0003]
Here, internal defects such as center porosity, center segregation, and V-shaped segregation that occur inside the slab are defined as the angle of the solidification front surface of the molten steel in the slab (the angle with respect to the center line of the solidification interface of the molten steel = V segregation angle). ) Is believed to have affected the situation. In this case, the mold used in the conventional continuous casting apparatus is of a fixed type in which the internal dimensions are not changed during continuous casting, and the shape of a cast piece drawn from the lower part of the mold is constant (straight). Since the angle is small and the suction of molten steel in which C, S, P, etc. are concentrated is promoted, many internal defects described above are generated, and there is a problem that the product quality is reduced and the yield is reduced. I was
[0004]
Therefore, the slab drawn from the mold is deformed by applying light or strong pressure reduction using a reduction device, thereby suppressing concentrated molten steel generated at the end of solidification and reducing internal defects, or casting with an electromagnetic stirring device. Attempts have been made to reduce the internal defects by dispersing segregation by electromagnetically stirring molten steel in a piece.
[0005]
However, when the slab is rolled down, if the rolling timing and amount are not proper, internal cracks may be induced or indentation flaws may remain due to the rolling down. Further, in the case of a steel type having a high deformation resistance and a low hot ductility (for example, tool steel), an extremely large rolling capacity is required, and there is a problem that the equipment becomes heavy and the equipment cost increases. On the other hand, when using an electromagnetic stirrer, there is no induction of internal cracks and surface flaws, but when the solidified shell thickness or slab cross-sectional size is increased, the attenuation of the magnetic flux density increases, so as with the rolling down device. A high-performance device is required, which leads to an increase in equipment cost due to heavy equipment.
[0006]
As a countermeasure for the above problem, a pair of opposing movable dies constituting a mold are moved away from each other during continuous casting, so that a pair of surfaces (two surfaces) of a slab to be pulled out from a lower portion of the mold are tapered. Has been proposed by the present applicant (for example, Patent Document 1). This apparatus is designed to suppress the occurrence of internal defects such as center porosity, center segregation or V-shaped segregation by increasing the V segregation angle by imparting a taper to two surfaces of the slab, Unlike the case of using the rolling-down device or the electromagnetic stirring device, the equipment cost does not increase due to the heavy work of the device itself.
[0007]
[Patent Document 1]
JP-A-2002-361374
[Problems to be solved by the invention]
The technique disclosed in Patent Document 1 can suppress the occurrence of internal defects such as the center porosity, center segregation, and V-shaped segregation, and can be highly evaluated as such. However, in the case of steel grades that require stricter product quality, for example, special steels including high alloy steels and tool steels, the current situation is that the demands have not been sufficiently met.
[0009]
Therefore, the inventor of the present invention sought various ways to solve the above-mentioned problem, and found that the generation of internal defects could be further suppressed by imparting a taper to the four surfaces of the slab. Although Patent Document 1 discloses that it is possible to impart a taper to four surfaces of a slab, a pair of opposing movable molds constituting a mold disclosed in the document is disclosed. However, it is not possible to impart a taper to the four surfaces of the slab by a technique of simply moving the slabs away from each other, which is not feasible.
[0010]
Here, the occurrence of the internal defect also depends on the cross-sectional dimension of the cast slab, and the dimension (optimum dimension) at which the internal defect is unlikely to occur is roughly known for each steel type. For this reason, the mold used is one whose internal dimensions are set in accordance with the type of steel. If the optimum dimensions change when the steel type is changed, the mold itself is replaced. In addition, the mold exchange is also performed according to the required size of the product, and the cast slab is then processed by slab rolling, forging, etc. to a product size such as a mold steel, a flat rectangle, a bar, a wire, a plate. You. However, in the current situation where many kinds and small lots are required as in recent years, a problem is pointed out that the downtime due to the replacement of the mold becomes long and the casting ability is reduced. Therefore, if it is possible to cast a slab equivalent to the required size of various products without changing the mold, it is possible to improve the casting ability and shorten the steps of slab rolling, forging, or omit the steps. As a matter of fact, such a mold and a casting method have not been proposed yet.
[0011]
[Object of the invention]
The present invention has been proposed in view of the above-described problems inherent in the conventional technology, and has been proposed to appropriately solve the problem.The center porosity, the center segregation or the internal defects such as the V-shaped segregation are few, It is an object of the present invention to provide a continuous casting mold and a continuous casting method that can cast a slab having a tapered surface on four sides that can improve product quality and yield, and that can easily respond to dimensional changes. .
[0012]
[Means for Solving the Problems]
In order to solve the above-described problems and appropriately achieve the intended purpose, the continuous casting mold according to the present invention is:
A continuous casting mold in which molten steel is cast into a casting space defined in a square shape that opens up and down, and a slab with a shell formed on the surface is drawn from a lower portion,
The casting space is defined in such a manner that each of the four movable dies arranged in a mutually orthogonal relationship is in contact with an inner surface of another movable die having one side orthogonal to the other,
Each of the movable molds is configured to be able to advance and retreat in parallel with an actuating means with respect to the opposing movable molds,
Each of the movable dies is configured to be urged by urging means so that the one side surface is always in contact with the inner surface of another movable dies that is orthogonal to the other side surface.
[0013]
In order to solve the above-described problems and appropriately achieve the intended purpose, a continuous casting method according to another invention of the present application is:
Using the continuous casting mold, while pulling out a slab having a shell formed on the surface from the lower part of the mold, moving each pair of the four movable dies arranged in a mutually orthogonal relation to each other. Then, the four surfaces of the slab are tapered such that the opposite side dimension becomes smaller as going from the upper part to the lower part.
[0014]
In order to solve the above-described problems and appropriately achieve the intended purpose, a continuous casting method according to still another invention of the present application is provided.
Using the continuous casting mold, after positioning the relative positions of the four movable dies arranged in a mutually orthogonal relationship so that the opening dimension of the casting space has a desired cross-sectional dimension, the casting space It is characterized by casting molten steel into a steel plate and pulling out a slab having a shell formed on a surface from a lower portion to cast slabs having various desired cross-sectional dimensions.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, a continuous casting mold and a continuous casting method according to the present invention will be described below with reference to the accompanying drawings by way of preferred embodiments.
[0016]
FIG. 1 shows a continuous casting mold according to an embodiment, and FIG. 4 schematically shows a continuous casting apparatus in which the continuous casting mold is implemented. The continuous casting apparatus 10 includes a continuous casting mold (hereinafter, also simply referred to as a mold) 14 that is provided on a casting bed 12 and that defines a rectangular casting space S that opens up and down. In the casting space S, molten steel is cast via a ladle 16 and a tundish 18 provided above the casting space S.
[0017]
As shown in FIG. 1, the mold 14 includes four movable dies 20, 22, 24, and 26 arranged in a mutually orthogonal relationship, and each of the four movable dies 20, 22, 24, and 26 includes: The casting space S is defined without any gap by abutting one side surface on the inner surface (the casting space S side) of another movable mold 20, 22, 24, 26 which is orthogonal. Of the four movable dies 20, 22, 24, 26, the first movable dies 20 and the second movable dies 22 facing each other in the width direction of the cast piece 28 to be cast are maintained in a parallel posture. The third movable mold 24 and the fourth movable mold 26, which are configured to be movable toward and away from each other, and are opposed to each other in the thickness direction of the slab 28, approach and separate from each other while maintaining a parallel posture. It is configured to be movable. Each of the four movable dies 20, 22, 24, 26 is movable in a direction (biasing direction) along its inner surface.
[0018]
Since the configurations of the four movable dies 20, 22, 24, and 26 and the associated mechanisms are the same, the configuration related to the first movable die 20 will be mainly described, and the other movable dies 22, 24 will be described. , 26 are denoted by the same reference numerals, and detailed description is omitted. In the embodiment, in FIG. 1, the third movable mold 24, the second movable mold 22, and the fourth movable mold 26 are arranged in the order clockwise with respect to the first movable mold 20.
[0019]
On the outer surface of the first movable die 20, a slider 30 that is movable in a biasing direction (direction along the inner surface of the second movable die 22) orthogonal to the moving direction of the movable die 20 is provided. . The slider 30 is connected to a screw jack 32 as operating means disposed on the casting bed 12, and by rotating a drive motor 34 of the jack 32 forward and backward, the first movable mold 20 is opposed to the first movable mold 20. To move back and forth in parallel with the second movable mold 22. That is, by moving each pair of the first movable mold 20 and the second movable mold 22 and the third movable mold 24 and the fourth movable mold 26 away from each other, the opening dimension of the casting space S is increased. Can be gradually increased (see FIG. 2).
[0020]
On the outer surface of the first movable mold 20, a first hydraulic cylinder 36 using a hydraulic pressure or the like as an urging means is provided in a posture in which a piston rod 36a extends and contracts in the urging direction. The distal end of the rod 36a is connected to the slider 30. When the first fluid pressure cylinder 36 is urged in a predetermined direction, the first movable mold 20 moves in the urging direction with respect to the slider 30, and the one side surface is moved to another movable mold (first In the case of the movable mold 20 of the fourth embodiment, the movable mold 20 is configured to be able to always contact the inner surface of the fourth movable mold 26). Incidentally, one side surface of the second movable die 22 is the inner surface of the third movable die 24, one side surface of the third movable die 24 is the inner surface of the first movable die 20, and one side surface of the fourth movable die 26 is The second movable mold 22 is set so as to come into contact with the inner surface thereof. That is, when the fourth movable die 26 moves away from the third movable die 24 so as to increase the opening dimension of the casting space S, the fourth movable die 26 is moved from one side surface of the first movable die 20. Although the inner surface is separated to form a gap, in the embodiment, the first side surface is always in contact with the inner surface of the fourth movable mold 26 by moving the first movable mold 20 in the biasing direction with respect to the slider 30. Gaps can be prevented. The first fluid pressure cylinder 36 may be configured such that the cylinder 36 is disposed on the slider 30 and the piston rod 36a is connected to the first movable die 20.
[0021]
The pressure at which one side surface of the first movable mold 20 is brought into contact with the inner surface of the fourth movable mold 26 by the first fluid pressure cylinder 36 is set so that the first movable mold 20 is close to the second movable mold 22. When moving in the separating direction (forward / backward direction), the value is set to a value that does not cause a gap between one side surface and the inner surface and does not cause a large resistance of the movement of the first movable mold 20. At least the inside of each of the movable dies 20, 22, 24, 26 that defines the casting space S is made of, for example, copper, which has good heat conduction and heat resistance, and has a smooth sliding surface. It is formed to be movable and flat.
[0022]
Then, as will be described later, while pulling the cast piece 28 from the lower part of the mold 14, each pair of the four movable dies 20, 22, 24, 26 is moved away from each other, and the movable dies 20, 22, 24, 26 By energizing one side surface so as to abut against the inner surfaces of the other movable dies 20, 22, 24, 26, the opening size of the casting space S gradually increases without gaps at the corners. A taper is applied to both sides (two opposing surfaces) in the width direction and the thickness direction of the slab 28 drawn from the mold 14 so that the width and the thickness dimension (the opposite side dimension) of both sides decrease from the upper part to the lower part. (See FIG. 5). The taper applied to the slab 28 is in the range of 4 to 30 mm per meter in actual operation.
[0023]
As shown in FIG. 3, the lower part of the first movable mold 20 approaches and separates from the surface of the slab 28, which is primarily cooled in the mold 14 and has an outer shell formed on the surface. A regulating member 38 that can be tilted in the direction is provided, and a plurality of rolls 40 are freely rotatably arranged on a surface of the regulating member 38 facing the surface of the slab 28. A second hydraulic cylinder 42 using hydraulic pressure or the like as a second urging means is disposed on an outer surface at a lower end portion of the first movable mold 20, and its piston rod 42 a is connected to the regulating member 38. The second fluid pressure cylinder 42 is urged in a direction in which the piston rod 42a extends, so that the roll 40 of the regulating member 38 is brought into contact with the surface of the cast piece 28. That is, the rolls 40 of the regulating members 38 disposed on the respective movable dies 20, 22, 24, 26 are pressed against the four surfaces of the slab 28 immediately after being pulled out from the lower part of the mold 14, whereby the slab 28 is pressed. The bulging of the slab 28 can be prevented. During the continuous casting, the second hydraulic cylinder 42 is controlled so that the regulating member 38 always contacts the slab 28 at a predetermined pressure.
[0024]
Each of the movable dies 20, 22, 24, and 26 is formed to be hollow, and has a water cooling structure in which cooling water is supplied from an external supply source. The mold 14 is vertically moved by an oscillation device (not shown) so as to reduce friction between the casting piece 28 drawn from the lower part of the mold 14 and the mold 14 and prevent seizure. Have been.
[0025]
As shown in FIG. 4, a plurality of nozzles 44 vertically spaced apart from each other are disposed below the mold 14 so as to face each other in the width direction with the slab 28 interposed therebetween. By spraying cooling water (water) directly toward the slab 28, secondary cooling for promoting solidification of the slab 28 is performed. The nozzle 44 is configured to be retractable to a position that does not interfere with a lifting table 48 described later, and allows the lifting table 48 to move up and down between the nozzles 44 facing each other in the width direction.
[0026]
Below the mold 14, an elevating table 48 provided with a dummy head 46 for supporting the lower end of the cast piece 28 is arranged vertically vertically. In addition, pulleys 50, 50 are rotatably disposed on both sides of the slab 28, and a wire 52 having one end connected to an appropriate fixing portion is wound around the pulleys 50, 50, and the other end is free. It is connected to a winch 54 that can be shifted. The elevator 48 is suspended and supported by a wire 52 facing between the pulleys 50, 50, and the elevator 48 made of the wire 52 and the winch 54 is moved up and down. That is, by rotating and driving the winch 54 in the direction in which the wire 52 is wound up, the lift 48 is raised via the wire 52, and conversely, by rotating and driving the winch 54 in the direction in which the wire 52 is fed out, the wire The elevating platform 48 is configured to move down via 52.
[0027]
Operation of the embodiment
Next, the operation of the continuous casting mold according to the above-described embodiment will be described in connection with the continuous casting method in a case where the four surfaces of the slab 28 drawn by the mold 14 are tapered. The respective pairs of the first movable mold 20 and the second movable mold 22 and the third movable mold 24 and the fourth movable mold 26 in the mold 14 are brought close to each other (see FIG. 1), and the casting is performed. While reducing the opening size of the space S, the winch 54 is driven to rotate in a predetermined direction to raise the elevating table 48, and the ladle 16 and the tundish are closed with the dummy head 46 closing the lower part of the mold 14. The molten steel is cast into the casting space S of the mold 14 via 18. A shell is formed on the surface of the molten steel cast into the mold 14 by primary cooling by the mold 14. In addition, the winch 54 is driven in reverse to vertically lower the elevating table 48 at a predetermined casting speed, whereby the cast piece 28 whose lower end is supported by the dummy head 46 is pulled out from the lower part of the mold 14.
[0028]
The slab 28 immediately after being pulled out from the mold 14 is pressed from four directions by the roll 40 of the regulating member 38 disposed on the movable dies 20, 22, 24, 26, thereby causing bulging. Is prevented. Further, cooling water is sprayed onto the slab 28 from the plurality of nozzles 44, 44, and the slab 28 is secondarily cooled.
[0029]
Each pair of the first movable mold 20 and the second movable mold 22 and the third movable mold 24 and the fourth movable mold 26 constituting the mold 14 is The first fluid pressure cylinders 36 move away from each other under the urging force, and the opening size of the casting space S gradually increases (see FIG. 2). At this time, each of the first fluid pressure cylinders 36 disposed on each of the movable dies 20, 22, 24, and 26 is urged to move the corresponding one of the movable dies 20, 22, 24, and 26 with respect to the slider 30. Is moved in the biasing direction, so that one side thereof abuts against the inner surfaces of the other movable dies 20, 22, 24, 26. That is, when each of the movable dies 20, 22, 24, and 26 moves in the forward and backward directions, one side surface of the movable dies 20, 22, 24, and 26 always moves in contact with the inner surface of the other movable dies 20, 22, 24, and 26. There is no gap at each corner of the space S.
[0030]
As described above, the slab 28 drawn from the lower part of the mold 14 that moves the four movable dies 20, 22, 24, 26 to gradually increase the opening size of the casting space S has a width direction and a thickness direction. Each of the two side surfaces is provided with a required taper whose width and thickness decrease from the upper part to the lower part (see FIG. 5). In the slab 28 having four surfaces tapered, the occurrence of internal defects such as center porosity, center segregation and V-shaped segregation is suppressed, and high quality and improved yield are obtained. It has become. That is, the mold 14 of the embodiment is particularly effective in casting of a steel type requiring strictness, such as special steel including high alloy steel and tool steel. It should be noted that other steel grades are also suitably improved in quality. Further, since the mold 14 of the embodiment has a simple configuration in which only four movable dies 20, 22, 24, 26 are combined, the equipment cost does not increase.
[0031]
Here, as described above, since the occurrence of internal defects also depends on the cross-sectional dimension of the slab 28, it is necessary to optimize the BOT dimension and the TOP dimension of the slab 28 for each steel type. In this case, the mold 14 of the embodiment can move the four movable dies 20, 22, 24, and 26 to an arbitrary position. Therefore, it is possible to cast the slab 28 of the optimum size without replacing the mold itself. Can be. Also, regarding the taper, an arbitrary taper angle can be given to the cast piece 28 by variably controlling the amount of movement of the movable molds 20, 22, 24, 26 during casting. Furthermore, regarding the cross section of the cast piece 28, if the positional relationship between the movable dies 20, 22, 24, and 26 is changed, the cross section can be made not only a square but also a rectangle. Furthermore, the amount of movement of the first movable mold 20 and the second movable mold 22 facing each other in the width direction of the slab 28 during casting, and the third movable mold 24 and the fourth movable mold 24 facing each other in the thickness direction. By changing the amount of movement during casting with the movable mold 26, the angle of the taper applied to the surface opposing the width direction of the slab 28 is different from the angle of the taper applied to the surface opposing the thickness direction. It can also be done.
[0032]
As described above, the mold 14 of the embodiment can move and move the four movable dies 20, 22, 24, and 26 to an arbitrary position. In the case of casting a piece, when the optimum dimensions are changed due to the change of the steel type, or when the required product size is changed, the four movable dies 20, 22, 24, 26 are moved to change the relative position, This can be dealt with simply by positioning the casting space S at a position where the opening dimension of the casting space S has a desired cross-sectional dimension such as an optimum dimension or a required size. That is, a single mold 14 can be used to cast slabs 28 of various cross-sectional dimensions without having to replace a mold set in accordance with the optimum dimensions and the required size of the product as in the prior art. It is possible to cope with requests for many kinds and small lots without lowering the casting ability. In addition, since it is possible to cast slabs 28 corresponding to the required sizes of various products without replacing the mold 14, it is possible to shorten the subsequent steps of slab rolling, forging, or omit the steps. Furthermore, since it is not necessary to prepare different molds for each required size of the steel type or the required product size, the equipment cost can be reduced and the storage and management can be simplified.
[0033]
[Experimental example]
As described above, the occurrence of internal defects such as the center porosity, center segregation and V-shaped segregation is affected by the angle of the solidification front surface of molten steel in the slab (the angle with respect to the center line of the solidification interface of molten steel = V segregation angle). Is believed to be. Therefore, the V segregation angle with respect to the distance from the slab TOP was measured for each of Conventional Examples 1 and 2 where the slab was not tapered and Conventional Examples 2 and 4 where the tapered surface was provided. The result is shown in FIG. The taper applied to the slab was 4 mm / m.
[0034]
From the above results, in the case of Conventional Example 1, the V segregation angle was small, and the suction of molten steel in which C, S, P and the like were concentrated was promoted, and thus the internal defects were generated in large numbers. On the other hand, when the taper is applied to two or four surfaces as in Conventional Example 2 or Invention Example, the V segregation angle increases because the upper width increases near the solidification interface. It was confirmed that the suction of molten steel in which S, P, etc. were concentrated was reduced, and the occurrence of the internal defects was suitably suppressed.
[0035]
Next, with respect to the conventional example 1, the conventional example 2, and the invention example, the temperature gradient inside the billet was measured, and the result is shown in FIG. From these results, in the case of the invention example in which the four surfaces of the slab are tapered, a large vertical temperature gradient is formed due to the decrease in the cross-sectional area of the bottom end (BOT) of the slab, and the upper directivity is increased. Solidification (laminated solidification) is promoted and side solidification is avoided. Thus, it was confirmed that the continuation of the Zaku and V-shaped segregation in the center direction was suppressed, and further suppression of internal defects was achieved as compared with Conventional Example 2.
[0036]
[Modification example]
The actuating means for moving the movable mold in the mold is not limited to the screw jack of the embodiment, but may be an actuator such as a fluid pressure cylinder. Further, the biasing means for abutting one side surface of the movable mold on the inner surface of another movable mold and the second biasing means for abutting the regulating member on the surface of the cast piece are also limited to the fluid pressure cylinder of the embodiment. Instead, various mechanisms such as a ball screw and a screw screw or a rack-pinion operated by a motor can be employed. In the embodiment, a roll is disposed on the regulating member, and the roll is configured to abut on the slab. However, if the slab is smoothly pulled out and the surface thereof is not damaged, the regulating member is directly connected to the slab. May be contacted.
[0037]
【The invention's effect】
As described above, according to the continuous casting mold and the continuous casting method according to the present invention, there are few internal defects such as center porosity, center segregation or V-shaped segregation, and high-quality and tapered four surfaces capable of improving the yield. Can be cast. In addition, since the opening size of the casting space is configured to be arbitrarily changeable by moving the four movable dies, the opening size of the casting space can be easily changed to an optimum size according to the type of steel. The taper angle given to the piece can also be set arbitrarily. In the case of casting a straight slab without imparting a taper to the slab, when the optimum dimensions are changed or when the required product size is changed, a short time without replacing the mold itself is required. And the casting ability can be improved, and the post-process can be shortened or omitted. Furthermore, bulging can be prevented from occurring by configuring the regulating member to contact the surface of the slab that is drawn from the lower part of the mold.
[Brief description of the drawings]
FIG. 1 is a schematic plan view showing a continuous casting mold according to a preferred embodiment of the present invention in a state where the casting space is reduced.
FIG. 2 is a schematic plan view showing a continuous casting mold according to an example in a state where a casting space is enlarged;
FIG. 3 is a main part front view showing a movable mold and a regulating member of the continuous casting mold according to the embodiment.
FIG. 4 is a schematic configuration diagram showing a continuous casting apparatus in which a continuous casting mold according to an embodiment is implemented.
FIG. 5 is a schematic perspective view showing a slab cast by a continuous casting mold according to an example.
FIG. 6 is a graph showing a result of measuring a V segregation angle.
FIG. 7 is a graph showing a result of measuring an internal temperature gradient of a slab.
[Explanation of symbols]
Reference Signs List 20 first movable die 22 second movable die 24 third movable die 26 fourth movable die 28 slab 32 screw jack (operating means)
36 first fluid pressure cylinder (biasing means)
38 regulating member 42 second fluid pressure cylinder (second urging means)
S casting space

Claims (4)

上下に開口する四角形状に画成された鋳込空間(S)に溶鋼が鋳込まれ、表面にシェルが形成された鋳片(28)が下部から引抜かれる連続鋳造用鋳型であって、
前記鋳込空間(S)は、相互に直交する関係で配置される4つの可動型(20,22,24,26)の夫々が、一方の側面を直交する別の可動型(20,22,24,26)の内面に当接して画成され、
前記各可動型(20,22,24,26)は、相対向する可動型(20,22,24,26)に対して作動手段(32)により平行に進退移動可能に構成されると共に、
前記各可動型(20,22,24,26)は、前記一方の側面を直交する別の可動型(20,22,24,26)の内面に常に当接するよう付勢手段(36)により付勢されるよう構成したことを特徴とする連続鋳造用鋳型。
A continuous casting mold in which molten steel is cast into a casting space (S) defined in a square shape that opens up and down, and a slab (28) having a shell formed on the surface is drawn from a lower portion,
In the casting space (S), each of the four movable dies (20, 22, 24, 26) arranged in a mutually orthogonal relationship has another movable die (20, 22, 24, 26) is defined in contact with the inner surface of
Each of the movable dies (20, 22, 24, 26) is configured to be able to advance and retreat in parallel to the opposing movable dies (20, 22, 24, 26) by operating means (32),
Each of the movable molds (20, 22, 24, 26) is biased by a biasing means (36) so that the one side surface is always in contact with the inner surface of another movable mold (20, 22, 24, 26) orthogonal to the movable mold. A continuous casting mold characterized by being configured to be energized.
前記各可動型(20,22,24,26)の下部に、第2の付勢手段(42)により常に前記鋳片(28)の表面に当接するよう付勢される規制部材(38)が傾動可能に配設されている請求項1記載の連続鋳造用鋳型。A regulating member (38) urged by a second urging means (42) to always contact the surface of the slab (28) is provided below the movable dies (20, 22, 24, 26). 2. The continuous casting mold according to claim 1, wherein the casting mold is tiltably disposed. 請求項1または2記載の連続鋳造用鋳型を用い、該鋳型の下部から表面にシェルが形成された鋳片(28)を引抜きつつ、相互に直交する関係で配置される前記4つの可動型(20,22,24,26)の各対を相互に離間移動することで、前記鋳片(28)の4面に、上部から下部に向かうにつれて対をなす対辺寸法が小さくなるテーパを付与する
ことを特徴とする連続鋳造方法。
3. The four movable dies (4) which are arranged in a mutually orthogonal relationship while pulling a slab (28) having a shell formed on a surface thereof from a lower part of the mold using the continuous casting mold according to claim 1 or 2. 20, 22, 24, and 26), the four surfaces of the slab (28) are tapered so that the paired sides become smaller in size from the upper part to the lower part by moving away from each other. A continuous casting method characterized by the following.
請求項1または2記載の連続鋳造用鋳型を用い、相互に直交する関係で配置される前記4つの可動型(20,22,24,26)の相対位置を、前記鋳込空間(S)の開口寸法が所望する断面寸法となるよう位置決めした後、該鋳込空間(S)に溶鋼を鋳込むと共に、表面にシェルが形成された鋳片(28)を下部から引抜くことで、所望する各種断面寸法の鋳片(28)を鋳造する
ことを特徴とする連続鋳造方法。
The relative position of the four movable dies (20, 22, 24, 26) arranged in a mutually orthogonal relationship using the continuous casting mold according to claim 1 or 2 is set to the position of the casting space (S). After positioning so that the opening dimension has a desired cross-sectional dimension, molten steel is cast into the casting space (S), and a cast slab (28) having a shell formed on the surface is pulled out from a lower portion to obtain a desired shape. A continuous casting method characterized by casting slabs (28) having various cross-sectional dimensions.
JP2003108358A 2003-04-11 2003-04-11 Mold for continuous casting, and continuous casting method Pending JP2004314097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003108358A JP2004314097A (en) 2003-04-11 2003-04-11 Mold for continuous casting, and continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003108358A JP2004314097A (en) 2003-04-11 2003-04-11 Mold for continuous casting, and continuous casting method

Publications (1)

Publication Number Publication Date
JP2004314097A true JP2004314097A (en) 2004-11-11

Family

ID=33469908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003108358A Pending JP2004314097A (en) 2003-04-11 2003-04-11 Mold for continuous casting, and continuous casting method

Country Status (1)

Country Link
JP (1) JP2004314097A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101503444B1 (en) 2012-12-12 2015-03-17 주식회사 포스코 Mold and continuous casting method using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101503444B1 (en) 2012-12-12 2015-03-17 주식회사 포스코 Mold and continuous casting method using it

Similar Documents

Publication Publication Date Title
US10464111B2 (en) Method of forming tailored cast blanks
JP2989737B2 (en) Continuous casting and continuous casting / rolling of steel
CN108025351B (en) Vertical casting equipment and vertical casting method using same
KR100817171B1 (en) Method and device for continuous casting and subsequent forming of a steel billet, especially a billet in the form of an ingot or a preliminary section
CN113426970B (en) Vertical semi-continuous production device and production process of large round billets with phi of 1000 mm-2000 mm
JP2004314097A (en) Mold for continuous casting, and continuous casting method
JP6343949B2 (en) Slab drawing apparatus and slab drawing method
JP5479237B2 (en) Slab cutting equipment and continuous casting equipment
JP3045052B2 (en) Roll segment device for continuous casting machine
JP4774632B2 (en) Slab, vertical die casting method and vertical die casting apparatus
JP4900761B2 (en) Vertical casting machine for aluminum
KR100707785B1 (en) Method and device for manufacturing continuous cast products
JP2973834B2 (en) Mold for continuous casting of thin slabs
KR101086630B1 (en) Operating method for twin-roll casting machine, and side weir supporting device
JPH0730200Y2 (en) Slab reduction device for continuous casting equipment
JPH07144255A (en) Vertical semicontinuous casting device for large cross section cast slab and carrying out method of cast slab
JP4613448B2 (en) Vertical casting method and apparatus
JPH0745093B2 (en) Magnetic force control device for molten steel flow in cast slab
KR100973906B1 (en) Apparatus for induction of plate
JPH01273655A (en) Method for continuously casting strip and continuous casting machine
JPS59212156A (en) Pinch roll for continuous casting device
JPH04274849A (en) Continuous casting mold for steel
JPS6281255A (en) Forging device for ingot strand
JP2004243352A (en) Continuous casting method
JPS60137558A (en) Electromagnetic stirrer for continuous casting machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060224

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060502

A131 Notification of reasons for refusal

Effective date: 20080603

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081111