JP2004243352A - Continuous casting method - Google Patents

Continuous casting method Download PDF

Info

Publication number
JP2004243352A
JP2004243352A JP2003034300A JP2003034300A JP2004243352A JP 2004243352 A JP2004243352 A JP 2004243352A JP 2003034300 A JP2003034300 A JP 2003034300A JP 2003034300 A JP2003034300 A JP 2003034300A JP 2004243352 A JP2004243352 A JP 2004243352A
Authority
JP
Japan
Prior art keywords
slab
mold
cast
continuous casting
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003034300A
Other languages
Japanese (ja)
Inventor
Hajime Amano
肇 天野
Mikine Kishi
幹根 岸
Soichiro Hisamura
総一郎 久村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2003034300A priority Critical patent/JP2004243352A/en
Publication of JP2004243352A publication Critical patent/JP2004243352A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous casting method that can effectively suppress generation of internal flaws of a cast billet. <P>SOLUTION: In the continuous casting method, molten steel is cast in a bottomlessly-shaped mold 2 comprising a movable and/or a fixed mold, in which a cast billet 7 with only the surface solidified by cooling is pulled out downward from the bottom of the mold, and in which the cast billet is sprayed with water on the side in a secondary cooling zone 10. A tapered cast billet is made to be cast in which at least a pair of oppositely facing inner sides of the mold are separated little by little from each other during the casting, thereby making both sides gradually flared upward. In addition, a passing time of the cast billet through the secondary cooling zone is quickened by increasing the descending speed of the cast billet during the casting, namely, the casting speed, so that a temperature difference between the surface and the center of the cast billet is suppressed to 350°C or below. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、無底状の鋳型に溶鋼を鋳込み、冷却により表面部のみが凝固した状態の鋳片をその鋳型の底部より垂直に降下させる連続鋳造方法に関するものである。
【0002】
【従来の技術】
【特許文献1】
特開2000−288705号公報
【0003】
周知のように連続鋳造によって得られる鋼の鋳片の厚み中心部には不純物が凝縮し、ザク,ポロシティ等と呼ばれる内部欠陥が発生するおそれがあることから、その解消のために従来から、例えば特許文献1等に示されたように、圧下ロールにより鋳片を軽圧下,強圧下し、またはアンビルにより連続鍛圧する技術が知られている。
【0004】
【発明が解決しようとする課題】
しかしこの従来方法では、設備が大規模で高コストになり易いとともに、圧下量,圧下時期等の条件設定が常に適正でないと、圧痕疵または内部割れを誘発するおそれがあり、さらには、設備能力によっては材料強度の高い工具鋼等への適用が困難であるなどの問題があった。
【0005】
そこで、本発明は鋳片に圧下等を加えるまでもなく、内部欠陥の発生を抑制し得る連続鋳造方法を提供しようとするものである。
【0006】
【課題を解決するための手段】
そのために本発明に係る連続鋳造方法は、可動型と可動型又は固定型で構成される無底状の鋳型に溶鋼を鋳込み、冷却により表面部のみが凝固した状態の鋳片をその鋳型の底部より下方に引き抜くとともに2次冷却帯にて該鋳片の側面に水スプレーをする連続鋳造方法であって、鋳込中に鋳型の少なくとも一対の相対する内側面を少しずつ離間することにより両側面が上方に向かい漸次拡開するテーパー状の鋳片が鋳造されるようにし、かつ、鋳込中の鋳片の下降速度、即ち、鋳造速度を高速化することで該鋳片の表面と中心部との温度差が350℃以下に抑えられるように該鋳片が前記2次冷却帯を通過する時間を速めることを特徴とする。
また、本発明は上記連続鋳造方法において、鋳片のテーパー角度を1.0度〜1.8度の範囲内に設定したことを特徴とする。
また、本発明は上記連続鋳造方法において、鋳片が2次冷却帯を通過する時間が30分以下となるように鋳造速度を設定したことを特徴とする。
【0007】
【発明の実施の形態】
次に本発明の実施の形態を図面に従い説明する。図1は連続鋳造装置の要部の縦断面図で、1は構造用鋼,工具鋼等の溶鋼が容れられたタンディッシュ、2は無底状の鋳型、3は該タンディッシュの底部に設けられ該タンディッシュ内の溶鋼を該鋳型に鋳込む浸漬ノズルである。鋳型2は図2に水平断面図を示したように相対する一対の固定型4,4と可動型5,5からなり、この4個の型により囲まれた空間に溶鋼が鋳込まれる。6,6は該可動型5,5にロッドを接続した流体圧シリンダで、該流体圧シリンダ6,6が作動することにより該可動型5,5は水平方向に移動し、両型間が相互に接近・離間し得るように構成される。そして、鋳込まれた溶鋼は該鋳型2内にて一次冷却され、表面部のみが凝固して外郭(シェル)が形成された状態で、鋳片7が底部より垂直に降下する。
【0008】
8,8,…は該鋳型2の直下に設けられ、垂直に降下する鋳片7を周囲より支持することでバルジングを防止するガイドロールである。また、10は該鋳片7の周囲に相対するように複数本のノズル9,9,…が設けられ、該各ノズルから冷却水が該鋳片7に直接スプレーされるようにした2次冷却帯である。
【0009】
また、11は鋳片7の下端を支持する昇降台、12は該昇降台を水平に支持しているワイヤ、13は該ワイヤの一端に設けられた可変速なるウインチ、14,15は該ワイヤが巻き掛けられたプーリで、該ウインチの作動により昇降台11が垂直に昇降動し得るように構成される。このため、ウインチ13がワイヤ12を繰り出すことにより昇降台11は下降し、該昇降台に支持された鋳片7を所定速度で下降させることができる。従って、該ウインチ13のワイヤ繰り出し速度を制御することにより所望の下降速度、即ち、鋳造速度を設定することができる。
【0010】
しかして上記鋳込中は、図3に拡大にて示したように、上記流体圧シリンダ6,6を作動させ可動型5,5を相互に離間させることにより該鋳型の相対する内側面を少しずつ離間させ、両側面が上方に向かい漸次拡開するテーパー状の鋳片7が鋳造されるようにする。なお、該鋳片7のテーパー角度αが、0.5度〜3.0度の範囲内となるように、該可動型5,5の移動速度と該鋳片7の下降速度(以下、鋳造速度という)とを関連させる。
なお、なおこの実施形態では鋳型2は一対の可動型と一対の固定型で構成する説明をしたが、図9に示したように、二対の可動型5a〜5cで構成し、夫々が流体圧シリンダ6a〜6cの作動により可動するようにしてもよい。
【0011】
また、鋳片7の鋳造速度は、該鋳片が鋳型2より抽出されて上記2次冷却帯を通過するまで時間が30分以下となるように設定する。この速度は従来超低速(従来は0.1m/min以下)であった鋳造速度を大幅に高速化するものである。
また、図4に鋳片の凝固プロフィールを示したように、液相線と固相線との境界高さHと幅Dとの比(H/D)は、ザク発生の目安となるところから、図7に示したように、横軸に鋳片のテーパー角度、縦軸にこの比をグラフにして表すとテーパー角度が大きいほどザク発生のおそれが小さくできることが分かる。
【0012】
このように本発明では鋳造速度を高速化することで該鋳片の表面と中心部との温度差が350℃以下に抑えられるようにする。そして、鋳造速度を上げ鋳片の表面と中心部との温度差を少なくすることにより、鋳片中心部の熱歪最大値を下げることができる。図5のグラフは、鋼種をS48Cとし、鋳造速度を3つを例として、横軸に温度差、縦軸に熱歪最大値を表すものである。また、図6のグラフは、同じく横軸に2次冷却帯通過時間、縦軸に熱歪最大値を表すものである。このように鋳造速度を高速化することで鋳片の温度差,熱歪が抑えられる傾向にあり、ザク欠陥を起点とした熱歪による内部欠陥の進展を抑えることができる。殊に2次冷却帯通過時間は環境温度が常温のときで30分以下であることが望ましい。
【0013】
さらに、図8は横軸に鋳片の鋳造速度とテーパー角度の積、縦軸に鋳片の端面からの酸化長さ(内部欠陥の深さ)を表したものであり、これにより、テーパー角度および鋳造速度を上記のように夫々適切な値に設定することが内部欠陥の発生防止に有効であることが分かる。
【0014】
【発明の効果】
このように本発明に係る連続鋳造方法は、鋳込中に鋳型の相対する内側面を少しずつ離間することにより両側面が上方に向かい漸次拡開するテーパー状の鋳片が鋳造されるようにし、かつ、鋳込中の鋳片の下降速度、即ち、鋳造速度を高速化することで該鋳片の表面と中心部との温度差が350℃以下に抑えられるように該鋳片が前記2次冷却帯を通過する時間を速めることにより、内部欠陥の発生を軽減、乃至は防止できる有益な効果がある。
【図面の簡単な説明】
【図1】本発明の実施形態を示した連続鋳造装置の要部の縦断面図。
【図2】図1の要部の水平断面図。
【図3】図1の要部の拡大図。
【図4】鋳片の凝固プロフィールを表した説明図。
【図5】鋳片の熱歪最大値を示すグラフ。
【図6】鋳片の熱歪最大値を示すグラフ。
【図7】鋳片のザク発生の目安を示すグラフ。
【図8】鋳片の端面からの酸化長を表すグラフ。
【図9】鋳型の他の実施形態を示した水平断面図。
【符号の説明】
2 鋳型
5 可動型
6 流体圧シリンダ
7 鋳片
8 ガイドロール
9 ノズル
10 2次冷却帯
11 昇降台
13 ウインチ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a continuous casting method in which molten steel is cast into a bottomless mold, and a slab whose surface is solidified only by cooling is vertically lowered from the bottom of the mold.
[0002]
[Prior art]
[Patent Document 1]
JP 2000-288705 A
As is well known, impurities are condensed in the center of the thickness of a steel slab obtained by continuous casting, and internal defects called zaku, porosity, etc. may occur. As disclosed in Patent Literature 1 and the like, a technique is known in which a slab is lightly or strongly reduced by a reduction roll or continuously forged by an anvil.
[0004]
[Problems to be solved by the invention]
However, in this conventional method, the equipment tends to be large-scale and high in cost, and if conditions such as the amount of reduction and the time of reduction are not always appropriate, there is a possibility that indentation flaws or internal cracks may be induced. In some cases, it is difficult to apply the method to tool steel having a high material strength.
[0005]
Accordingly, an object of the present invention is to provide a continuous casting method capable of suppressing the occurrence of internal defects without applying pressure reduction or the like to a slab.
[0006]
[Means for Solving the Problems]
Therefore, the continuous casting method according to the present invention is a method of casting molten steel in a bottomless mold composed of a movable mold and a movable mold or a fixed mold, and casting a slab in a state in which only the surface is solidified by cooling at the bottom of the mold. A continuous casting method in which water is sprayed on the side surface of the slab in a secondary cooling zone while being withdrawn downward, wherein at least a pair of opposed inner surfaces of the mold are gradually separated from each other during casting. Is upwardly tapered so that a tapered slab that gradually expands is cast, and the speed at which the slab descends during casting, that is, the casting speed is increased to increase the surface and center of the slab. The time required for the slab to pass through the secondary cooling zone is accelerated so that the temperature difference between the slab and the slab is kept at 350 ° C. or less.
Further, the present invention is characterized in that, in the continuous casting method, the taper angle of the slab is set in a range of 1.0 to 1.8 degrees.
Further, the present invention is characterized in that in the continuous casting method, the casting speed is set so that the time required for the slab to pass through the secondary cooling zone is 30 minutes or less.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of a main part of a continuous casting apparatus, 1 is a tundish containing molten steel such as structural steel and tool steel, 2 is a bottomless mold, and 3 is provided at the bottom of the tundish. And a immersion nozzle for casting molten steel in the tundish into the mold. As shown in the horizontal sectional view of FIG. 2, the mold 2 comprises a pair of fixed dies 4, 4 and movable dies 5, 5, which are opposed to each other. Molten steel is cast into a space surrounded by the four dies. Numerals 6 and 6 denote hydraulic cylinders having rods connected to the movable dies 5 and 5, and when the hydraulic cylinders 6 and 6 are operated, the movable dies 5 and 5 move in the horizontal direction, and the two dies are mutually connected. It is configured to be able to approach and separate from. Then, the cast molten steel is primarily cooled in the casting mold 2, and only the surface portion is solidified to form an outer shell, and the slab 7 descends vertically from the bottom.
[0008]
Reference numerals 8, 8, ... denote guide rolls provided immediately below the mold 2 to support the vertically falling slabs 7 from the surroundings to prevent bulging. The secondary cooling 10 is provided with a plurality of nozzles 9, 9,... Opposed to the periphery of the slab 7, and cooling water is directly sprayed from the nozzles onto the slab 7. It is a belt.
[0009]
Reference numeral 11 denotes a lifting platform that supports the lower end of the cast piece 7, 12 denotes a wire that horizontally supports the lifting platform, 13 denotes a variable-speed winch provided at one end of the wire, and 14 and 15 denote the wires. The lifting platform 11 is vertically movable by the operation of the winch. For this reason, the lift 11 is lowered by the winch 13 feeding out the wire 12, and the cast piece 7 supported by the lift can be lowered at a predetermined speed. Therefore, by controlling the wire feeding speed of the winch 13, a desired lowering speed, that is, a casting speed can be set.
[0010]
During the casting, as shown in an enlarged view in FIG. 3, the fluid pressure cylinders 6 and 6 are operated to separate the movable molds 5 and 5 from each other, thereby slightly facing the inner surfaces of the mold. The tapered slabs 7 are gradually separated from each other so as to be cast upwardly. The moving speed of the movable dies 5 and 5 and the lowering speed of the slab 7 (hereinafter referred to as the casting speed) are set such that the taper angle α of the slab 7 is in the range of 0.5 to 3.0 degrees. Speed).
In this embodiment, the mold 2 is described as being composed of a pair of movable dies and a pair of fixed dies. However, as shown in FIG. 9, the mold 2 is composed of two pairs of movable dies 5a to 5c, each of which is a fluid. It may be movable by the operation of the pressure cylinders 6a to 6c.
[0011]
The casting speed of the slab 7 is set so that the time required for the slab to be extracted from the mold 2 and pass through the secondary cooling zone is 30 minutes or less. This speed greatly increases the casting speed, which was conventionally extremely low (conventionally, 0.1 m / min or less).
Further, as shown in FIG. 4, the solidification profile of the slab, the ratio (H / D) of the boundary height H between the liquidus line and the solidus line to the width D (H / D) is a measure of the occurrence of backpacking. As shown in FIG. 7, when the horizontal axis represents the taper angle of the slab and the vertical axis represents this ratio in a graph, it can be seen that the greater the taper angle, the smaller the risk of occurrence of zags.
[0012]
As described above, in the present invention, by increasing the casting speed, the temperature difference between the surface and the central portion of the slab is suppressed to 350 ° C. or less. By increasing the casting speed and reducing the temperature difference between the surface of the slab and the central portion, the maximum value of the thermal strain at the central portion of the slab can be reduced. In the graph of FIG. 5, the steel type is S48C, the casting speed is three, and the horizontal axis represents the temperature difference, and the vertical axis represents the maximum value of the thermal strain. In the graph of FIG. 6, the horizontal axis also indicates the secondary cooling zone passage time, and the vertical axis indicates the maximum value of thermal strain. Increasing the casting speed in this manner tends to suppress the temperature difference and thermal distortion of the slab, and can suppress the development of internal defects due to thermal distortion starting from the Zaku defect. In particular, the passage time in the secondary cooling zone is desirably 30 minutes or less when the ambient temperature is room temperature.
[0013]
Further, FIG. 8 shows the product of the casting speed of the slab and the taper angle on the horizontal axis, and the oxidized length (depth of internal defect) from the end surface of the slab on the vertical axis. It can be seen that setting the casting speed to an appropriate value as described above is effective for preventing the occurrence of internal defects.
[0014]
【The invention's effect】
As described above, the continuous casting method according to the present invention allows the tapered slab to be cast by gradually separating the opposite inner surfaces of the mold during casting so that both sides face upward. In addition, the slab is lowered so that the temperature difference between the surface and the center of the slab can be suppressed to 350 ° C. or less by increasing the speed of lowering the slab during casting, ie, increasing the casting speed. By increasing the time required to pass through the next cooling zone, there is a beneficial effect that the occurrence of internal defects can be reduced or prevented.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a main part of a continuous casting apparatus showing an embodiment of the present invention.
FIG. 2 is a horizontal sectional view of a main part of FIG.
FIG. 3 is an enlarged view of a main part of FIG. 1;
FIG. 4 is an explanatory view showing a solidification profile of a slab.
FIG. 5 is a graph showing a maximum value of thermal strain of a slab.
FIG. 6 is a graph showing the maximum value of the thermal strain of a slab.
FIG. 7 is a graph showing a guideline for occurrence of a zigzag in a slab.
FIG. 8 is a graph showing an oxidation length from an end face of a slab.
FIG. 9 is a horizontal sectional view showing another embodiment of the mold.
[Explanation of symbols]
2 mold 5 movable mold 6 fluid pressure cylinder 7 slab 8 guide roll 9 nozzle 10 secondary cooling zone 11 lift 13 winch

Claims (3)

可動型と可動型又は固定型で構成される無底状の鋳型に溶鋼を鋳込み、冷却により表面部のみが凝固した状態の鋳片をその鋳型の底部より下方に引き抜くとともに2次冷却帯にて該鋳片の側面に水スプレーをする連続鋳造方法であって、鋳込中に鋳型の少なくとも一対の相対する内側面を少しずつ離間することにより両側面が上方に向かい漸次拡開するテーパー状の鋳片が鋳造されるようにし、かつ、鋳込中の鋳片の下降速度、即ち、鋳造速度を高速化することで該鋳片の表面と中心部との温度差が350℃以下に抑えられるように該鋳片が前記2次冷却帯を通過する時間を速めることを特徴とした連続鋳造方法。Molten steel is cast into a bottomless mold composed of a movable mold and a movable mold or a fixed mold, and a slab whose surface is solidified only by cooling is drawn downward from the bottom of the mold and is cooled in a secondary cooling zone. A continuous casting method of spraying water on the side surface of the slab, wherein a tapered shape in which both side surfaces face upward by gradually separating at least a pair of opposed inner surfaces of the mold during casting. The temperature difference between the surface and the center of the slab is suppressed to 350 ° C. or less by making the slab cast and lowering the speed of the slab during casting, ie, increasing the casting speed. A continuous casting method characterized by accelerating the time required for the slab to pass through the secondary cooling zone. 鋳片のテーパー角度を0.5度〜3.0度の範囲内に設定した請求項1に記載の連続鋳造方法。2. The continuous casting method according to claim 1, wherein the taper angle of the slab is set within a range of 0.5 to 3.0 degrees. 鋳片が2次冷却帯を通過する時間が30分以下となるように鋳造速度を設定した請求項1または2に記載の連続鋳造方法。3. The continuous casting method according to claim 1, wherein the casting speed is set so that the time required for the slab to pass through the secondary cooling zone is 30 minutes or less.
JP2003034300A 2003-02-12 2003-02-12 Continuous casting method Pending JP2004243352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003034300A JP2004243352A (en) 2003-02-12 2003-02-12 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003034300A JP2004243352A (en) 2003-02-12 2003-02-12 Continuous casting method

Publications (1)

Publication Number Publication Date
JP2004243352A true JP2004243352A (en) 2004-09-02

Family

ID=33020035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003034300A Pending JP2004243352A (en) 2003-02-12 2003-02-12 Continuous casting method

Country Status (1)

Country Link
JP (1) JP2004243352A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175536A1 (en) 2012-05-24 2013-11-28 新日鐵住金株式会社 Continuous casting method for slab

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175536A1 (en) 2012-05-24 2013-11-28 新日鐵住金株式会社 Continuous casting method for slab

Similar Documents

Publication Publication Date Title
JP2989737B2 (en) Continuous casting and continuous casting / rolling of steel
JP2012066303A (en) Continuous casting method and continuous casting apparatus of steel
US4493363A (en) Method at continuous casting of steels and metal alloys with segregation tendency and apparatus for carrying out the method
JP6343949B2 (en) Slab drawing apparatus and slab drawing method
JP2004243352A (en) Continuous casting method
JPH03155441A (en) Vertical continuous casting method and apparatus thereof
JPH07144255A (en) Vertical semicontinuous casting device for large cross section cast slab and carrying out method of cast slab
JP2000317582A (en) Method for continuously casting beam blank
JP2983152B2 (en) Continuous casting method and continuous casting equipment
JP4774632B2 (en) Slab, vertical die casting method and vertical die casting apparatus
KR101565517B1 (en) Casting apparatus
JPH03198964A (en) Method and apparatus for executing rolling reduction to strand in continuous casting
JPS60162560A (en) Continuous casting method of steel
JPS6142460A (en) Continuous casting method
JP3394730B2 (en) Continuous casting method of steel slab
JPS6333163A (en) Production for large size ingot
RU2397041C2 (en) Method for production of rolled iron from uninterruptedly-casted stocks
JPH01258801A (en) Method for forging round shaped continuous cast billet
RU2345862C1 (en) Method of ingot continuous casting
JPS63180351A (en) Cast slab casting method
JPS61229441A (en) Continuous casting method for preventing cavity in central part
ABDULLAYEV et al. Effect of linear final electromagnetic stirrer operational parameters on continuous cast high carbon steel billet quality
JPH091292A (en) Method for continuously casting thin cast slab
KR101056315B1 (en) How to improve the surface quality of cast steel
JPS6033852A (en) Casting mold for ingot making

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051227

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081007