JPH04274849A - Continuous casting mold for steel - Google Patents

Continuous casting mold for steel

Info

Publication number
JPH04274849A
JPH04274849A JP5366691A JP5366691A JPH04274849A JP H04274849 A JPH04274849 A JP H04274849A JP 5366691 A JP5366691 A JP 5366691A JP 5366691 A JP5366691 A JP 5366691A JP H04274849 A JPH04274849 A JP H04274849A
Authority
JP
Japan
Prior art keywords
mold
casting mold
magnetic pole
electromagnet
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5366691A
Other languages
Japanese (ja)
Inventor
Koji Ishizawa
石沢 孝司
Ryuichi Kageyama
隆一 影山
Kazuo Nagahama
永浜 和男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5366691A priority Critical patent/JPH04274849A/en
Publication of JPH04274849A publication Critical patent/JPH04274849A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To secure the service life of a nozzle, to quicken the floating of an inclusion, foam, etc., and to improve the quality of cast billet by forming a static magnetic field zone in the lower part of an injection nozzle inserted into a casting mold, and moving an electromagnet in a height direction. CONSTITUTION:In about a center part in the vertical direction of a continuous casting mold 30, on the long side of the casting mold 30, the magnetic pole 10 of an electromagnet having width being roughly equal to this long side width is provided opposingly, and a static magnetic field zone 17 is generated in the casting mold 30. As for the magnetic pole 10, a clearance 10-1 is provided between the magnetic pole and the casting mold 30 so that it does not receive the vibration of the casting mold 30 at the time of casting. The electromagnet ascends/descends along the peripheral part of the casting mold 30, while maintaining its horizontal state by a mechanism consisting of a worm jack and a synchronizing shaft for supporting a yoke 5 by four points. In such a manner, even in the case a static magnetic field is applied, the service life of an injection nozzle 1 can be secured, and the increase of a refractory cost can be prevented.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、鋳型内の静磁場帯によ
り注入した溶鋼流に制動力を与え、鋳型内に持ち込まれ
た介在物,気泡等の浮上を促進し、鋳片の品質向上を図
り得る鋼の連続鋳造鋳型に関する。
[Industrial Application Field] The present invention applies a braking force to the injected molten steel flow using a static magnetic field in the mold, promoting the floating of inclusions, bubbles, etc. brought into the mold, and improving the quality of slabs. This invention relates to a steel continuous casting mold that can achieve the following.

【0002】0002

【従来の技術】連続鋳造で製造される鋳片の品質改善を
目的として、鋳型の全幅にわたり一様な静磁場を鋳型内
溶鋼に印加する技術は、例えば特開平2−284750
号公報,また特願平2−56608号にて提案されてい
るが、操業条件の変更に追随可能な印加磁場の位置変更
を行う技術に関しては、従来提案されたものはない。
[Prior Art] A technique for applying a uniform static magnetic field to molten steel in a mold over the entire width of the mold for the purpose of improving the quality of slabs produced by continuous casting is disclosed in, for example, Japanese Patent Laid-Open No. 2-284755.
Although it has been proposed in Japanese Patent Application No. 2-56608 and Japanese Patent Application No. 2-56608, no technology has been proposed so far for changing the position of the applied magnetic field in accordance with changes in operating conditions.

【0003】0003

【発明が解決しようとする課題】図9に従来の鋼の連続
鋳造の模式図を示す。
[Problems to be Solved by the Invention] FIG. 9 shows a schematic diagram of conventional continuous casting of steel.

【0004】注入ノズル1から鋳型30内に注入された
溶鋼流51は、鋳型側壁の銅板2に衝突し、上向き反転
流52と下向き反転流53とに分岐し、かつ下向き反転
流53は印加静磁場帯17を通過する際整流化され、均
一流54となる。印加静磁場帯17は注入ノズル1を通
して鋳型内溶鋼に持ち込まれる気泡,介在物等の浮上促
進のため下向き反転流53の浸透深さを抑えること、お
よび上向き反転流52によりメニスカス16付近のある
程度の流れを確保し、ディッケル発生を防止するといっ
た点から、メニスカス16,注入ノズル1に対しての最
適位置が存在する。
The molten steel flow 51 injected into the mold 30 from the injection nozzle 1 collides with the copper plate 2 on the side wall of the mold, and branches into an upward reverse flow 52 and a downward reverse flow 53, and the downward reverse flow 53 is When passing through the magnetic field zone 17, it is rectified and becomes a uniform flow 54. The applied static magnetic field band 17 is used to suppress the penetration depth of the downward reversal flow 53 in order to promote the floating of bubbles, inclusions, etc. brought into the molten steel in the mold through the injection nozzle 1, and to suppress the penetration depth of the downward reversal flow 53 to some extent near the meniscus 16 due to the upward reversal flow 52. There is an optimal position for the meniscus 16 and the injection nozzle 1 from the standpoint of ensuring flow and preventing deckle generation.

【0005】他方実際の鋳造では、溶鋼の保温,酸化防
止等の理由から、粉末あるいは顆粒状のパウダーが湯面
上に投入されるため、メニスカス16の上にはそれらの
溶融および未溶融状態の混在したスラグ層55が存在す
る。
On the other hand, in actual casting, powder or granular powder is poured onto the surface of the molten metal for reasons such as keeping the molten steel warm and preventing oxidation. A mixed slag layer 55 exists.

【0006】このスラグ層55は注入ノズル1の材質と
反応し易いため、注入ノズル1とスラグ層55との接す
る部位は溶損が早く、ノズルの使用寿命を延ばすため、
図10に示すように、注入ノズル1とスラグ層55の位
置関係を鋳造中に変更することが一般的に行われている
[0006] Since this slag layer 55 easily reacts with the material of the injection nozzle 1, the portion where the injection nozzle 1 and the slag layer 55 are in contact with each other is quickly damaged by melting.
As shown in FIG. 10, it is common practice to change the positional relationship between the injection nozzle 1 and the slag layer 55 during casting.

【0007】しかしながらメニスカス16を注入ノズル
1に対して常に最適位置に保ちながら、かつ注入ノズル
1とスラグ層55の位置関係を鋳造中に変更するために
は、印加静磁場帯17を発生させる電磁石を操業中に適
時上下動させる必要があるが、この電磁石は、図示のよ
うに鋳型を囲繞するヨーク5,電磁石のコイル9,磁極
10等より構成され大型な装置となるために、操業中に
これを遠隔で制御して容易に上下動させる技術思想に関
しては、従来提案されたものはなかった。
However, in order to always maintain the meniscus 16 at an optimal position with respect to the injection nozzle 1 and to change the positional relationship between the injection nozzle 1 and the slag layer 55 during casting, an electromagnet that generates the applied static magnetic field band 17 is required. It is necessary to move up and down at appropriate times during operation, but this electromagnet is a large device consisting of a yoke 5 that surrounds the mold, an electromagnetic coil 9, a magnetic pole 10, etc. as shown in the figure. No technical idea has been proposed to remotely control this and easily move it up and down.

【0008】本発明は、上記課題を解決し、ノズルの寿
命確保とともに介在物,気泡等の浮上を促進し、鋳片の
品質向上を図り得る鋼の連続鋳造鋳型を提供する。
[0008] The present invention solves the above-mentioned problems and provides a continuous casting mold for steel that can ensure the life of the nozzle, promote the floating of inclusions, bubbles, etc., and improve the quality of the slab.

【0009】[0009]

【課題を解決するための手段】本発明は以下の構成を要
旨とする。
[Means for Solving the Problems] The gist of the present invention is as follows.

【0010】その1は、断面長方形の連続鋳造鋳型内に
挿入した注入ノズルの溶融金属噴出部より下方位置に、
鋳型長辺幅とほぼ等しい幅で静磁場帯を形成するように
磁極面を対向させた電磁石を設け、該電磁石を鋳型と切
離し、高さ方向に移動可能な構造としたことを特徴とす
る鋼の連続鋳造鋳型である。
[0010] Part 1 is a continuous casting mold with a rectangular cross section, at a position below the molten metal spouting part of the injection nozzle inserted into the continuous casting mold.
A steel characterized by having an electromagnet with magnetic pole faces facing each other so as to form a static magnetic field band with a width approximately equal to the width of the long side of the mold, and having a structure in which the electromagnet is separated from the mold and movable in the height direction. This is a continuous casting mold.

【0011】その2は、断面長方形の連続鋳造鋳型内に
挿入した注入ノズルの溶融金属噴出部より下方位置に、
鋳型長辺幅とほぼ等しい幅で静磁場帯を形成するように
磁極面を対向させた電磁石を設け、前記磁極の先端に高
さ方向に移動可能な可動磁極を設けたことを特徴とする
鋼の連続鋳造鋳型である。
[0011] Part 2 is a continuous casting mold with a rectangular cross section, at a position below the molten metal spouting part of the injection nozzle inserted into the continuous casting mold.
A steel characterized in that an electromagnet is provided with magnetic pole surfaces facing each other so as to form a static magnetic field zone with a width approximately equal to the width of the long side of the mold, and a movable magnetic pole movable in the height direction is provided at the tip of the magnetic pole. This is a continuous casting mold.

【0012】また上記鋼の連続鋳造鋳型において、可動
磁極の透磁率を、電磁石磁極よりも高い材料を使用した
ものである。
Furthermore, in the steel continuous casting mold described above, the movable magnetic pole is made of a material having a higher magnetic permeability than the electromagnet magnetic pole.

【0013】[0013]

【作用】本発明は、電磁石をジャッキ等にて支持してこ
れを同期駆動させ、電磁石を水平に維持しながら外部よ
り駆動制御して鋳型の周部を昇降させる。また磁極先端
の鋳型との間に高さ方向に移動可能とした可動磁極が挿
着し、この可動磁極を昇降させる。このようにして操業
中においても遠隔で制御して容易に静磁場帯を上下動さ
せ得る連続鋳造鋳型である。
[Operation] In the present invention, electromagnets are supported by jacks or the like and driven synchronously, and while the electromagnets are maintained horizontally, the peripheral portion of the mold is raised and lowered by controlling the drive from the outside. A movable magnetic pole that is movable in the height direction is inserted between the tip of the magnetic pole and the mold, and this movable magnetic pole is raised and lowered. In this way, the continuous casting mold is capable of easily moving the static magnetic field up and down by remote control even during operation.

【0014】[0014]

【実施例】先ず本発明の第1の実施例を図面に基づき説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a first embodiment of the present invention will be described with reference to the drawings.

【0015】図1は鋼の連続鋳造鋳型の要部を示す縦断
面図であり、下記図2のA−A部断面を示し、図2は連
続鋳造鋳型の全体構造を説明する斜視図である。
FIG. 1 is a longitudinal cross-sectional view showing the main parts of a continuous casting mold for steel, and a cross-sectional view taken along line A-A in FIG. 2 below, and FIG. 2 is a perspective view illustrating the overall structure of the continuous casting mold. .

【0016】鋳型構造は、溶鋼に接する銅板2によって
断面長方形に形成され、これら銅板2を鋳型フレーム3
および鋳型固定フレーム4により強固に固定されて鋳型
を形作っている。
The mold structure is formed by copper plates 2 that are in contact with the molten steel and have a rectangular cross section.
and is firmly fixed by a mold fixing frame 4 to form a mold.

【0017】鋳型30の上下方向のほぼ中央部には、鋳
型の長辺側にこの長辺幅とほぼ等しい幅を有する電磁石
の磁極10を対向して設けられ、鋳型内に静磁場帯17
を生じさせる。なお5は鋳型を囲繞するヨーク,9は電
磁石のコイルである。
At approximately the center in the vertical direction of the mold 30, magnetic poles 10 of an electromagnet having a width approximately equal to the long side width of the mold are provided facing each other, and a static magnetic field band 17 is provided in the mold.
cause Note that 5 is a yoke surrounding the mold, and 9 is an electromagnetic coil.

【0018】この電磁石の磁極10は、鋳造に際して鋳
型の振動による影響を受けず、また上下方向に移動可能
なように、鋳型30との間に隙間10−1が設けられて
いる。なお6は鋳型振動テーブルである。
A gap 10-1 is provided between the magnetic pole 10 of this electromagnet and the mold 30 so that it is not affected by the vibration of the mold during casting and is movable in the vertical direction. Note that 6 is a mold vibration table.

【0019】電磁石によって溶融金属中に形成される静
磁場帯17は、介在物や気泡の浮上効果,溶鋼プールの
分離効果の見地より、その磁束密度は3000〜500
0ガウス程度必要とされ、また電磁石を小型化するため
に上記隙間10−1は狭いほうが有利である。
The static magnetic field zone 17 formed in the molten metal by the electromagnet has a magnetic flux density of 3000 to 500 from the viewpoint of the floating effect of inclusions and bubbles and the separation effect of the molten steel pool.
Approximately 0 Gauss is required, and in order to downsize the electromagnet, it is advantageous for the gap 10-1 to be narrower.

【0020】電磁石の支持および昇降機構は、ヨーク5
を4点で支えるウォームジャッキ7aおよびこのウォー
ムジャッキ7aを連結し同期駆動させる同期軸7bによ
って構成され、このうちの1軸は駆動装置に連結してお
り、電磁石は水平を維持しながら外部より駆動制御して
鋳型30の周部を昇降する。
The electromagnet support and elevating mechanism is provided by the yoke 5.
It is composed of a worm jack 7a that supports the worm jack 7a at four points, and a synchronous shaft 7b that connects and drives the worm jack 7a synchronously.One of these shafts is connected to a drive device, and the electromagnet is driven from the outside while maintaining the horizontal position. The peripheral part of the mold 30 is raised and lowered in a controlled manner.

【0021】一方電磁石の鋳型にたいする位置は、注入
ノズルのメニスカス16からの浸漬深さを200mm,
電磁石の磁極高さ400mm程度を考慮すると、メニス
カス16と磁極中心の距離は400mmが電磁石の上限
に近い。また鋳型の実用上の長さ1200〜1300m
mと電磁石の磁極高さ400mm程度から、下限は70
0mm程度になる。従って電磁石の移動ストロークは、
上記範囲の中心である550mmの位置を基準として±
150mmが実用的である。
On the other hand, the position of the electromagnet relative to the mold is such that the immersion depth from the meniscus 16 of the injection nozzle is 200 mm,
Considering that the magnetic pole height of the electromagnet is about 400 mm, the distance between the meniscus 16 and the center of the magnetic pole is 400 mm, which is close to the upper limit of the electromagnet. In addition, the practical length of the mold is 1200 to 1300 m.
m and the magnetic pole height of the electromagnet is about 400 mm, the lower limit is 70
It will be about 0mm. Therefore, the movement stroke of the electromagnet is
± based on the center position of 550mm in the above range
150 mm is practical.

【0022】本実施例では、電磁石の支持および昇降機
構としてウォームジャッキを採用したが、このほかに油
圧駆動等の機構を採用してもよい。
In this embodiment, a worm jack is used as the electromagnet support and elevating mechanism, but other mechanisms such as hydraulic drive may also be used.

【0023】次に本発明の第2の実施例を図面に基づき
詳細に説明する。
Next, a second embodiment of the present invention will be described in detail with reference to the drawings.

【0024】図3は鋳型の中央部付近の要部を示す断面
図,図4は鋳型の両側付近の断面図,図5は鋳型の平面
図を示し、図3は図5のC−C,図4は同様にB−Bの
断面を示す図面である。また図6は図4のA−A部断面
図である。
FIG. 3 is a sectional view showing the main parts near the center of the mold, FIG. 4 is a sectional view near both sides of the mold, and FIG. 5 is a plan view of the mold. FIG. 4 is a drawing showing a cross section taken along line B-B. Further, FIG. 6 is a sectional view taken along the line AA in FIG. 4.

【0025】鋳型構造は、溶鋼に接する銅板2によって
断面長方形に形成され、これら銅板2を鋳型フレーム4
aおよびタイロッド4bにより強固に固定されて鋳型を
形作っている。
The mold structure is formed by copper plates 2 in contact with molten steel with a rectangular cross section, and these copper plates 2 are attached to a mold frame 4.
a and tie rods 4b to form a mold.

【0026】鋳型30の上下方向のほぼ中央部には、鋳
型の長辺側にこの長辺幅とほぼ等しい幅を有する電磁石
の磁極10を対向して設けられ、鋳型内に静磁場帯17
を生じさせる。なお5は鋳型を囲繞するヨーク,9は電
磁石のコイルである。
At approximately the center in the vertical direction of the mold 30, magnetic poles 10 of an electromagnet having a width approximately equal to the long side width of the mold are provided facing each other, and a static magnetic field band 17 is provided in the mold.
cause Note that 5 is a yoke surrounding the mold, and 9 is an electromagnetic coil.

【0027】この磁極10先端の鋳型30との間に高さ
方向に移動可能とした可動磁極10aが挿着されている
。この可動磁極10aはT溝20aにより鋳型両端部に
て支持され、且つこの溝に案内されて上下にしゅう動す
る。
A movable magnetic pole 10a that is movable in the height direction is inserted between the tip of the magnetic pole 10 and the mold 30. This movable magnetic pole 10a is supported by T-grooves 20a at both ends of the mold, and is guided by these grooves to slide up and down.

【0028】可動磁極10aにはそれぞれ両端部の2か
所にラック8aが取り付けられ、ピニオンギヤ8bおよ
び同期軸8cを介して駆動軸8dに連結しており、一対
の可動磁極10aは水平を維持しながら外部より駆動制
御して磁極10と鋳型30との間を昇降する。
A rack 8a is attached to each of the movable magnetic poles 10a at two locations on both ends thereof, and is connected to a drive shaft 8d via a pinion gear 8b and a synchronous shaft 8c, so that the pair of movable magnetic poles 10a are maintained horizontally. While moving up and down between the magnetic pole 10 and the mold 30, the drive is controlled from the outside.

【0029】図7は可動磁極10aが磁極10のほぼ中
心位置にある場合の、水平方向から見た溶鋼内に生ずる
磁力線分布21を示す。また図8にそれぞれの場合の縦
方向の磁束密度分布を示す。
FIG. 7 shows the distribution of magnetic lines of force 21 occurring in molten steel when the movable magnetic pole 10a is located approximately at the center of the magnetic pole 10 when viewed from the horizontal direction. Further, FIG. 8 shows the longitudinal magnetic flux density distribution in each case.

【0030】図8において、可動磁極10aがほぼ中心
位置10a−1にある場合の磁束密度分布は分布曲線2
2−1のようにほぼ中心位置で最大となる。つぎに可動
磁極10aを上方の10a−2に移動させた場合の磁束
密度分布は、分布曲線22−2のように可動磁極10a
の移動に伴って上方に移動し、また可動磁極10aを下
方の10a−3に移動させた場合の磁束密度分布は、分
布曲線22−3のように下方に移動する。
In FIG. 8, the magnetic flux density distribution when the movable magnetic pole 10a is located approximately at the center position 10a-1 is represented by the distribution curve 2.
It reaches its maximum at approximately the center position as shown in 2-1. Next, when the movable magnetic pole 10a is moved upward to 10a-2, the magnetic flux density distribution of the movable magnetic pole 10a is as shown by a distribution curve 22-2.
The magnetic flux density distribution when the movable magnetic pole 10a is moved downward to 10a-3 moves downward as shown by a distribution curve 22-3.

【0031】このように電磁石本体を固定させたままで
、可動磁極10aを上下に移動させることにより磁束密
度分布の最大値を移動させる、即ち電磁石本体を上下動
させることと同様の効果を生ずるものである。
As described above, by moving the movable magnetic pole 10a up and down while keeping the electromagnet body fixed, the maximum value of the magnetic flux density distribution can be moved, that is, the same effect as that of moving the electromagnet body up and down can be produced. be.

【0032】この場合可動磁極10aと磁極10とを透
磁率の同じ材料を使用すれば、可動磁極10aと磁極1
0とが重畳する面積が減少するために、発生する磁束密
度分布の分布曲線22−2,22−3は22−1に対し
て最大値の低下,可動磁極10aの移動量との位置ずれ
等を伴う。そこで本発明では、可動磁極10aの透磁率
を磁極10より大な材料を使用してこの欠点を補うもの
である。
In this case, if materials with the same magnetic permeability are used for the movable magnetic pole 10a and the magnetic pole 10, the movable magnetic pole 10a and the magnetic pole 1
Because the area where the magnetic flux density distribution 22-2 and 22-3 overlap decreases, the maximum value of the magnetic flux density distribution curves 22-2 and 22-3 decreases compared to 22-1, and there is a positional deviation from the amount of movement of the movable magnetic pole 10a. accompanied by. Therefore, in the present invention, this drawback is compensated for by using a material for the movable magnetic pole 10a whose magnetic permeability is higher than that of the magnetic pole 10.

【0033】例えば高透磁率材料として、Hiperc
o、Permendurとアームコ鉄との組合せ等があ
る。
For example, as a high magnetic permeability material, Hyperc
o, a combination of Permendur and Armco iron, etc.

【0034】このようにして、可動磁極10aを上方に
移動させることにより磁束密度分布の位置を変え、また
可動磁極10aを下方に移動させることにより、容易に
静磁場帯17を上下動させることができる。
In this way, by moving the movable magnetic pole 10a upward, the position of the magnetic flux density distribution can be changed, and by moving the movable magnetic pole 10a downward, the static magnetic field band 17 can be easily moved up and down. can.

【0035】一方可動磁極10aの鋳型にたいする位置
は、注入ノズルのメニスカス16からの浸漬深さを20
0mm,可動磁極10aの磁極高さ400mm程度を考
慮すると、メニスカス16と磁極中心の距離は400m
mが可動磁極10aの上限に近い。また鋳型の実用上の
長さ1200〜1300mmと可動磁極10aの磁極高
さ400mm程度から、下限は700mm程度になる。 従って可動磁極10aの移動ストロークhは、上記範囲
の中心である550mmの位置を基準として±150m
mが実用的である。
On the other hand, the position of the movable magnetic pole 10a with respect to the mold is such that the immersion depth from the meniscus 16 of the injection nozzle is 20
0mm, and considering that the magnetic pole height of the movable magnetic pole 10a is about 400mm, the distance between the meniscus 16 and the magnetic pole center is 400m.
m is close to the upper limit of the movable magnetic pole 10a. Further, since the practical length of the mold is 1200 to 1300 mm and the height of the movable magnetic pole 10a is about 400 mm, the lower limit is about 700 mm. Therefore, the moving stroke h of the movable magnetic pole 10a is ±150 m based on the 550 mm position which is the center of the above range.
m is practical.

【0036】以上のように、電磁石をジャッキ等にて支
持してこれを同期駆動させ、電磁石を水平に維持しなが
ら外部より駆動制御して鋳型の周部を昇降させ、また磁
極先端の鋳型との間に高さ方向に移動可能とした可動磁
極が挿着し、この可動磁極を昇降させることにより、容
易に静磁場帯を上下に移動させることができ、注入ノズ
ルを通して鋳型内溶鋼に持ち込まれる気泡,介在物等の
浮上促進のための最適位置に静磁場帯を生じさせること
ができ、またこの最適位置に保ちながらかつ注入ノズル
とスラグ層の位置関係を鋳造中に適宜変更してノズルの
溶損を抑制し、ノズルの使用寿命を延ばすことができる
。このようにして操業中においても遠隔で制御して容易
に静磁場帯を上下動させ得る連続鋳造鋳型である。
As described above, the electromagnet is supported by a jack or the like and driven synchronously, and while the electromagnet is maintained horizontally, the drive is controlled from the outside to raise and lower the peripheral part of the mold, and the mold and the mold at the tip of the magnetic pole are moved up and down. A movable magnetic pole that can be moved in the height direction is inserted between the two, and by raising and lowering this movable magnetic pole, the static magnetic field band can be easily moved up and down, and it is brought into the molten steel in the mold through the injection nozzle. A static magnetic field can be generated at the optimal position to promote the floating of bubbles, inclusions, etc., and while maintaining this optimal position, the positional relationship between the injection nozzle and the slag layer can be changed as appropriate during casting. Melting damage can be suppressed and the service life of the nozzle can be extended. In this way, the continuous casting mold is capable of easily moving the static magnetic field up and down by remote control even during operation.

【0037】[0037]

【発明の効果】以上のように構成される本発明は、下記
の如き効果を奏する。
[Effects of the Invention] The present invention constructed as described above has the following effects.

【0038】静磁場を印加した場合でも注入ノズル寿命
は従来並に確保可能であり、耐火物コストの増加を防止
できる。
[0038] Even when a static magnetic field is applied, the life of the injection nozzle can be maintained at the same level as before, and an increase in the cost of refractories can be prevented.

【0039】メニスカス,注入ノズルに対して常に静磁
場帯を最適位置に制御可能であり、気泡,介在物の浮上
に対しての静磁場の効果を最大限に享受できる。
The static magnetic field band can always be controlled to the optimum position for the meniscus and the injection nozzle, and the effect of the static magnetic field on floating of bubbles and inclusions can be maximized.

【0040】鋳造速度の変動,すなわちノズル吐出流の
流速の変化に対しても、静磁場帯位置,磁場強度の最適
化が可能であり、安定的に良質の鋳片品質が得られる。
Even with variations in casting speed, ie, variations in the flow velocity of the nozzle discharge flow, it is possible to optimize the static magnetic field band position and magnetic field strength, and stable slab quality can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1の実施例の連続鋳造鋳型の要部を
示す縦断面図である。
FIG. 1 is a longitudinal cross-sectional view showing essential parts of a continuous casting mold according to a first embodiment of the present invention.

【図2】鋼の連続鋳造鋳型の全体構造を説明する一部断
面とした斜視図である。
FIG. 2 is a partially cross-sectional perspective view illustrating the overall structure of a steel continuous casting mold.

【図3】本発明の第2の実施例の鋼の連続鋳造鋳型の中
央部付近の要部(図5C−C断面位置)を示す縦断面図
である。
FIG. 3 is a longitudinal cross-sectional view showing a main part (cross-sectional position taken along line C-C in FIG. 5) near the center of a steel continuous casting mold according to a second embodiment of the present invention.

【図4】鋳型の両側付近(図5B−B断面位置)の縦断
面図である。
FIG. 4 is a longitudinal cross-sectional view of the vicinity of both sides of the mold (cross-sectional position taken along line B-B in FIG. 5).

【図5】連続鋳造鋳型の全体平面図である。FIG. 5 is an overall plan view of a continuous casting mold.

【図6】図4のA−A位置における水平断面図である。FIG. 6 is a horizontal sectional view taken along line AA in FIG. 4;

【図7】可動磁極が磁極のほぼ中心位置にある場合の溶
鋼内に生ずる磁力線分布を示す図面である。
FIG. 7 is a drawing showing the distribution of magnetic lines of force occurring in molten steel when the movable magnetic pole is located approximately at the center of the magnetic pole.

【図8】可動磁極を移動させた場合の縦方向の磁束密度
分布の移動の状態を説明する図面である。
FIG. 8 is a diagram illustrating the state of movement of the vertical magnetic flux density distribution when the movable magnetic pole is moved.

【図9】従来の連続鋳造鋳型における溶鋼の流れを説明
する断面図である。
FIG. 9 is a cross-sectional view illustrating the flow of molten steel in a conventional continuous casting mold.

【図10】図9における他の態様の溶鋼の流れを説明す
る断面図である。
10 is a sectional view illustrating the flow of molten steel in another embodiment in FIG. 9. FIG.

【符号の説明】[Explanation of symbols]

1    注入ノズル 2    銅板 3a  鋳型フレーム 3b  鋳型固定フレーム 4a  鋳型フレーム 4b  タイロッド 5    ヨーク 6    鋳型振動テーブル 7a  ウォームジャッキ 7b  同期軸 8a  ラック 8b  ピニオン 8c  同期軸 8d  駆動軸 9    コイル 10  電磁石磁極 10a    可動磁極 10−1  隙間 16  メニスカス 17  静磁場帯 20a    T溝 21  磁力線分布 22−1,22−2,22−3  磁力の分布曲線30
  鋳型 51  溶鋼流 52  上向き反転流 53  下向き反転流 54  均一流 55  スラグ層
1 Injection nozzle 2 Copper plate 3a Mold frame 3b Mold fixed frame 4a Mold frame 4b Tie rod 5 Yoke 6 Mold vibration table 7a Worm jack 7b Synchronous shaft 8a Rack 8b Pinion 8c Synchronous shaft 8d Drive shaft 9 Coil 10 Electromagnetic pole 10a Movable magnetic pole 10-1 Gap 16 Meniscus 17 Static magnetic field zone 20a T-slot 21 Magnetic force line distribution 22-1, 22-2, 22-3 Magnetic force distribution curve 30
Mold 51 Molten steel flow 52 Upward reverse flow 53 Downward reverse flow 54 Uniform flow 55 Slag layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  断面長方形の連続鋳造鋳型内に挿入し
た注入ノズルの溶融金属噴出部より下方位置に、鋳型長
辺幅とほぼ等しい幅で静磁場帯を形成するように磁極面
を対向させた電磁石を設け、該電磁石を鋳型と切離し、
高さ方向に移動可能な構造としたことを特徴とする鋼の
連続鋳造鋳型。
[Claim 1] At a position below the molten metal spouting part of an injection nozzle inserted into a continuous casting mold with a rectangular cross section, magnetic pole surfaces are arranged to face each other so as to form a static magnetic field band with a width approximately equal to the width of the long side of the mold. Provide an electromagnet, separate the electromagnet from the mold,
A steel continuous casting mold characterized by having a structure that is movable in the height direction.
【請求項2】  断面長方形の連続鋳造鋳型内に挿入し
た注入ノズルの溶融金属噴出部より下方位置に、鋳型長
辺幅とほぼ等しい幅で静磁場帯を形成するように磁極面
を対向させた電磁石を設け、前記磁極の先端に高さ方向
に移動可能な可動磁極を設けたことを特徴とする鋼の連
続鋳造鋳型。
[Claim 2] At a position below the molten metal spouting part of an injection nozzle inserted into a continuous casting mold having a rectangular cross section, magnetic pole surfaces are arranged to face each other so as to form a static magnetic field band with a width approximately equal to the width of the long side of the mold. 1. A steel continuous casting mold, characterized in that an electromagnet is provided, and a movable magnetic pole movable in the height direction is provided at the tip of the magnetic pole.
【請求項3】  可動磁極の透磁率を、電磁石磁極より
も高い材料を使用した請求項2記載の鋼の連続鋳造鋳型
3. The steel continuous casting mold according to claim 2, wherein the movable magnetic pole is made of a material having a higher magnetic permeability than the electromagnetic pole.
JP5366691A 1991-02-27 1991-02-27 Continuous casting mold for steel Withdrawn JPH04274849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5366691A JPH04274849A (en) 1991-02-27 1991-02-27 Continuous casting mold for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5366691A JPH04274849A (en) 1991-02-27 1991-02-27 Continuous casting mold for steel

Publications (1)

Publication Number Publication Date
JPH04274849A true JPH04274849A (en) 1992-09-30

Family

ID=12949175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5366691A Withdrawn JPH04274849A (en) 1991-02-27 1991-02-27 Continuous casting mold for steel

Country Status (1)

Country Link
JP (1) JPH04274849A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100607A (en) * 1993-10-04 1995-04-18 Nippon Steel Corp Method for continuously casting steel
JP2008073717A (en) * 2006-09-20 2008-04-03 Sumitomo Metal Ind Ltd Casting mold for continuous casting, and continuous casting method using the same
JP2011177753A (en) * 2010-03-01 2011-09-15 Nippon Steel Engineering Co Ltd Mold for continuous casting
JP2017213600A (en) * 2016-05-31 2017-12-07 国立大学法人九州工業大学 Removal device and removal method of bubble and/or inclusion
DE102022209148A1 (en) 2022-09-02 2024-03-07 Sms Group Gmbh Continuous casting device and method for continuously casting a metal strand using a continuous casting mold

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100607A (en) * 1993-10-04 1995-04-18 Nippon Steel Corp Method for continuously casting steel
JP2008073717A (en) * 2006-09-20 2008-04-03 Sumitomo Metal Ind Ltd Casting mold for continuous casting, and continuous casting method using the same
JP2011177753A (en) * 2010-03-01 2011-09-15 Nippon Steel Engineering Co Ltd Mold for continuous casting
JP2017213600A (en) * 2016-05-31 2017-12-07 国立大学法人九州工業大学 Removal device and removal method of bubble and/or inclusion
JP2021137875A (en) * 2016-05-31 2021-09-16 国立大学法人九州工業大学 Removal device of bubbles or inclusions or both
DE102022209148A1 (en) 2022-09-02 2024-03-07 Sms Group Gmbh Continuous casting device and method for continuously casting a metal strand using a continuous casting mold
WO2024046708A1 (en) 2022-09-02 2024-03-07 Sms Group Gmbh Continuous-casting apparatus and method for the continuous casting of a metal strand using a continuous-casting mould

Similar Documents

Publication Publication Date Title
KR101143827B1 (en) Adjusting the mode of electromagnetic stirring over the height of a continuous casting mould
RU2247003C2 (en) Method for continuous vertical casting of metals with use of electromagnetic fields and casting plant for performing the method
JPH04274849A (en) Continuous casting mold for steel
US3414043A (en) Method for the continuous transferring of liquid metals or alloys into solid state with desired cross section without using a mould
JP2651754B2 (en) Continuous casting mold of multilayer slab
JPH0819842A (en) Method and device for continuous casting
KR100775091B1 (en) Mold for continuous casting machine
US4562879A (en) Electromagnetically stirring the melt in a continuous-casting mold
KR850001153B1 (en) Process for continuous casting
JPH07144255A (en) Vertical semicontinuous casting device for large cross section cast slab and carrying out method of cast slab
JP3116742B2 (en) Continuous casting apparatus and continuous casting method
JPH04274844A (en) Continuous casting mold for multilayer cast billet
GB1598764A (en) Method and apparatus for continuous casting of steel
JPS6410305B2 (en)
JPH052419B2 (en)
JPH06297092A (en) Continuous width variable casting apparatus for composite metallic material
JPS61140355A (en) Electromagnetic stirrer for controlling molten steel flow in casting mold
JPH04224058A (en) Induction heating tundish
JP3149821B2 (en) Continuous casting method
JP2969579B2 (en) Steel continuous casting method
JPS611448A (en) Production of clad steel ingot
US20120199308A1 (en) Stirrer
JPS59189047A (en) Casting mold for continuous casting machine for thin walled billet which permits change in width of billet during casting
JPS61212457A (en) Vertical type continuous casting installation for slab having large section
JPH0484648A (en) Method and apparatus for casting hollow cast billet using mold with core in two way directional drawing type horizontal continuous casting

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514