JP2004312896A - Travel cart system - Google Patents

Travel cart system Download PDF

Info

Publication number
JP2004312896A
JP2004312896A JP2003104033A JP2003104033A JP2004312896A JP 2004312896 A JP2004312896 A JP 2004312896A JP 2003104033 A JP2003104033 A JP 2003104033A JP 2003104033 A JP2003104033 A JP 2003104033A JP 2004312896 A JP2004312896 A JP 2004312896A
Authority
JP
Japan
Prior art keywords
traveling
power supply
receiving unit
power receiving
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003104033A
Other languages
Japanese (ja)
Other versions
JP4003684B2 (en
Inventor
Motohiko Kuzutani
基彦 葛谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Machinery Ltd
Original Assignee
Murata Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Machinery Ltd filed Critical Murata Machinery Ltd
Priority to JP2003104033A priority Critical patent/JP4003684B2/en
Publication of JP2004312896A publication Critical patent/JP2004312896A/en
Application granted granted Critical
Publication of JP4003684B2 publication Critical patent/JP4003684B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To backup a travel cart with an adjacent travel cart when the travel cart is failed in traveling, and to restrain a power supply for a feeder in every travel area to that necessary for a single travel cart. <P>SOLUTION: A travel route of stacker cranes 6, 7 is divided into right and left travel areas, the stacker cranes 6, 7 are arranged at each area, the noncontact feeders 8, 9 and the power supply 10 are arranged, and the noncontact feeders 8, 9 are arranged in parallel with each other at a border of the travel areas. A main power-receiving unit 14 is connected to a drive part 12 for the stacker cranes 6, 7, and a sub power-receiving unit 16 is connected thereto via a switch 18. When either of the stacker cranes 6, 7 fails in traveling, the failing stacking crane can be backed up with the other stacking crane, thus making the power supply capacity of the single stacker crane suffice for capacities of the power supplies 10, 10 of the noncontact feeders 8, 9. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の利用分野】
この発明はスタッカークレーンや無人搬送車、有軌道台車などを用いた走行台車システムに関し、特に走行台車への給電に関する。
【0002】
【従来技術】
【特許文献1】特許3353221号公報
特許文献1は、走行台車の走行ルート間の乗り継ぎについて開示している。例えば走行ルートAに対して走行ルートBを増設する際に、補助的な走行ルートCも増設し、走行ルートCと走行ルートAとで給電線が平行になる区間を設けると共に、走行ルートCと走行ルートAとの間にも給電線が平行になる区間を設ける。各給電線には電源50〜52から電力を供給し、走行台車54〜56には一対の受電ユニットを設けて、走行ルートA,B,Cのいずれの給電線からでも受電できるようにする。
【0003】
このようにすると、走行台車54〜56は、走行ルートCを介して、走行ルートA,B間を乗り入れすることができる。走行台車54,55は共に電源50から受電できる位置にあり、走行台車55は電源52からも受電できる位置にある。走行台車55は、例えば電源50から50%、電源52から50%などのように、受電する電力を受電ユニット間で分配できれば良いが、2つの受電ユニットからどのような割合で受電するかは制御が難しい。このため電源50には走行台車54,55の2台分の電源容量が必要で、同様に走行台車55,56に給電する位置にある電源52も台車2台分の電源容量が必要である。これらのため結局は、電源50〜52のいずれも、台車2台分の電源容量が必要になる。このように、複数の給電線のいずれからでも受電できるようにすると、大がかりな電源設備が必要になる。
【0004】
【発明の課題】
この発明の基本的課題は、走行台車がダウンした場合に、隣接する走行エリアの走行台車でバックアップできるようにすると共に、各走行エリア毎の給電線の電源を走行台車1台分の電源容量にとどめる、ことができるようにすることにある(請求項1〜3)。
請求項2の発明での追加の課題は、塵芥の発生しないクリーンな給電を行うと共に、給電線間の干渉を防止することにある。
請求項3の発明での追加の課題は、サブ受電ユニットと負荷との接続/開放用のスイッチを、サブ受電ユニットのブレーカに兼用することにある。
【0005】
【発明の構成】
この発明は、1つの走行ルートを複数の走行エリアに分割し、各走行エリア毎に1台の走行台車を配置して走行エリア内を往復走行させる走行台車システムにおいて、各走行エリア毎の独立した給電線と電源とを設けて、走行エリア間の境界で隣接する走行エリアの給電線を部分的に平行に配置し、かつ走行台車には、自己の走行エリアの給電線用の主受電ユニットと、隣接する走行エリアの給電線用のサブ受電ユニットと負荷と、サブ受電ユニットを負荷と接続/開放するためのスイッチ、とを設けたことを特徴とする(請求項1)。このスイッチは、単に負荷とサブ受電ユニットとの接続を入り切りするようなスイッチだけでなく、負荷を主受電ユニットとサブ受電ユニットとのいずれかに接続する3点スイッチなどでも良い。
【0006】
好ましくは、前記各給電線に前記電源から高周波電流を通電して、前記各受電ユニットのピックアップコイルで非接触に受電すると共に、走行エリア間の境界で、前記隣接する走行エリアの給電線を互いに干渉しないように間隔を置いて平行に配置する(請求項2)。例えば走行ルートに沿ってレールを設ける場合、レールの両側に隣接する走行エリアの給電線を、左右一対に配置する。また走行エリア間の境界では、隣接する走行エリアの給電線を平行に例えば100mm以上の間隔で配置し、好ましくは200mm以上、特に好ましくは300mm以上の間隔で配置する。なおこの間隔は走行方向に直角な方向の間隔である。
【0007】
特に好ましくは、サブ受電ユニットに過電流の検出素子を設けて、過電流検出時に前記スイッチにより負荷とサブ受電ユニットとを切り離すようにする(請求項3)。
【0008】
【発明の作用と効果】
この発明では、サブ受電ユニットと負荷との接続を、常時はスイッチで開放しておく。このため走行台車が走行エリア間の境界まで進入しても、受電するユニットは主受電ユニットで、自己の走行エリアの電源から給電され、隣接する走行エリアの電源から受電することがない。このため1つの電源から受電する走行台車は1台となる。またいずれかの走行台車がダウンした場合、隣接する走行エリアの走行台車が、サブ受電ユニットと負荷とをスイッチで接続して進入し、サブ受電ユニットから受電して走行することにより、バックアップできる。この場合も、1つの電源から受電する走行台車は1台となる。これらのため、各電源は1台分の給電能力で良く、過剰な電源設備が不要になる。また走行台車がダウンすると、隣接エリアの走行台車でバックアップできる(請求項1)。
【0009】
請求項2の発明では、非接触給電を行うことにより、ブラシなどの摺動部材と給電線との接触による発塵を防止できる。そして非接触給電には高周波電流を用いるので、給電線を平行に配置すると、給電線間の干渉が問題になるが、給電線間の干渉を防止できるだけの間隔を置いて給電線を配置するので、干渉による給電効率の低下を防止できる。
【0010】
請求項3の発明では、温度センサやコイルなどによりサブ受電ユニットの過電流を検出し、過電流の検出時にサブ受電ユニットと負荷との接続を切る。このため、負荷とサブ受電ユニットとの接続/開放用のスイッチを、ブレーカに兼用できる。
【0011】
【実施例】
図1〜図4に実施例を示す。これらの図において、2は自動倉庫で、4は走行レールであり、6,7は一対のスタッカークレーンで、図示しないラックとステーション間で物品の搬送作業を行う。8,9は非接触給電線で、例えば走行レール4の両側に、700mm程度の間隔Dを置いて配置してある。各非接触給電線8,9はループ状に敷設され、走行レール4の端部などに設けた電源10から、9kHz程度で540V,130Aなどの高周波電流を通電される。9kHzなどの高周波では、非接触給電線8,9のインダクタンス成分により、非接触給電線8,9から給電できる有効長さL1は、例えば60m程度に制限される。このため走行レール4の全長Lを例えば100m程度、各非接触給電線8,9の有効長さL1を例えば60m以下とし、走行レール4を図1の左右の2つの走行エリアに分割する。走行レール4の中央部(左右の走行エリアの境界)で、左右の非接触給電線8,9を走行レール4を挟んで部分的に平行に配置し、この区間の長さWを例えば10〜20m程度とする。
【0012】
スタッカークレーン6,7は左右の各走行エリアに1台ずつ配置し、走行モータや昇降モータ並びにこれらの制御系などからなる駆動部12に、主受電ユニット14とサブ受電ユニット16との一方から選択的に給電する。例えば図1の右側のスタッカークレーン6では、主受電ユニット14を常時駆動部12に接続し、サブ受電ユニット16をスイッチ18を介して駆動部12に接続する。また左側のスタッカークレーン7でも同様に、主受電ユニット14を常時駆動部12に接続し、サブ受電ユニット16をスイッチ18を介して駆動部12に接続する。
図1でのスイッチ18は概念的な表示で、実際のスイッチ構成は、図2を参照して後述する。20は、スタッカークレーン6,7を制御するための地上制御部である。
【0013】
図2に、スタッカークレーン6を例に受電ユニット14,16の構成を示す。
各受電ユニット14,16には、ダイオード・ブリッジなどからなる整流部22を設け、ピックアップコイル24を直列あるいは並列に配置して、非接触給電線8,9から電力を得ることができるようにする。例えばピックアップコイル24毎に設けたスイッチ26は、ピックアップコイル24を整流部22を介して駆動部12に接続する。なお30は平滑用のコンデンサで、ここでは受電ユニット14,16毎に設けたが、2つのユニット14,16に対して1つのコンデンサ30を設けても良い。
【0014】
スイッチ26は、例えば地上制御部20からの乗り入れ制御信号(反対側の走行エリアへの進入許可信号)によりオン/オフし、常時はオフである。またスイッチ26に対して、ピックアップコイル24の周辺に、図示しない温度センサや、ピックアップコイル24を流れる電流を検出するための図示しない電流センサなどを設けて、これらのセンサによりスイッチ26をオン/オフできるようにする。言い換えると、ピックアップコイル24の周辺の温度が所定温度以上に上昇した際や、ピックアップコイル24に上限以上の電流が流れた際に、スイッチ26が開くようにしておく。このようにすると、スイッチ26をピックアップコイル24のブレーカに兼用することができる。
【0015】
図1のスイッチ18は、単独のスイッチとして設けてもよいが、例えば図2のスイッチ26を、図1のスイッチ18として用いてもよい。スイッチ18やそれに対応する部品は、少なくともサブ受電ユニット16と駆動部12との接続を入り切りできればよい。例えば図2の上側の鎖線の範囲に示すように、駆動部12の接点Aを、主受電ユニット14の出力側の接点B、あるいはサブ受電ユニット16の出力側の接点Cのいずれかに接続する、3点スイッチ19などでもよい。
【0016】
スイッチ26(スイッチ18)は、サブ受電ユニット16にのみ設けてもよいが、そのようにするとスタッカークレーン6とスタッカークレーン7とで、サブ受電ユニット16と主受電ユニットの位置が反転することになる。そこでハードウェア的には、主受電ユニット14もサブ受電ユニット16も共通にし、主受電ユニット14側にもスイッチ26を設けておく。このスイッチは常時接続しており、温度センサで過熱を検出した際や、ピックアップコイル24に上限以上の電流が流れた際にオフして、主受電ユニット14を駆動部12から切り離すようにする。
【0017】
図3に、走行レール4の両側での非接触給電線8,9の配置を示す。スタッカークレーン6には、走行モータや、マスト32に沿って昇降する昇降台の昇降モータなどの、駆動部12を設け、走行車輪により走行レール4上を走行し、非接触給電線8,9の間隔Dは例えば700mm程度とし、好ましくは走行レール4の両側に配置して、十分な間隔をとれるようにする。この結果、非接触給電線8,9に高周波電流を流しても、互いの干渉を防止できる。なおスタッカークレーン7も、ハードウェア構成はスタッカークレーン6と同様で、スイッチ26により、スタッカークレーン6とスタッカークレーン7とで、主受電ユニット14とサブ受電ユニット16の配置を反転してある。
【0018】
図4に実施例の制御アルゴリズムを示す。スタッカークレーンが2台とも正常かどうかをチェックし、2台とも正常な場合、各スタッカークレーンはサブ受電ユニットのスイッチをオフしておく。この結果、図1のスタッカークレーン6は非接触給電線8のみから受電し、スタッカークレーン7は非接触給電線9のみから受電する。そしてスタッカークレーン6,7が走行エリアの境界部でいずれの給電線8,9からでも受電し得る位置まで進入しても、一方の給電線のみから受電し、1つの電源に2台分の負荷が加わることはない。
【0019】
一方のスタッカークレーンが何らかの異常によりダウン(故障)すると、故障したクレーンを走行レールの端部まで退避させる。次に正常な側のスタッカークレーンのスイッチをオンして、サブ受電ユニットを負荷に接続し、いずれの非接触給電線からでも受電できるようにして、1台のスタッカークレーンで走行レールの全域をカバーする。この結果、スタッカークレーンがダウンしても、他のスタッカークレーンでバックアップできると共に、1つの電源から受電するスタッカークレーンは常時1台に限定され、電源容量はスタッカークレーン1台分でよい。
【0020】
また図2に示したように、主受電ユニットとサブ受電ユニットとを物理的には同等のものとし、これらと負荷との間にいずれもスイッチ26を設けると、スタッカークレーン6とスタッカークレーン7との構成を共通にできる。さらに図2に示したように、スイッチ26に温度センサや過電流検出用のセンサなどを接続すると、スイッチをブレーカに兼用できる。
【0021】
図5に、変形例の走行台車システムを示す。40,41,42はそれぞれループ状の非接触給電線で、44は各走行台車1台分の高周波電源である。そして図5では走行ルートを3つの走行エリアに分割し、各走行エリアに1台ずつ走行台車45,46,47を配置し、自己の走行エリアを往復動して物品を搬送させる。走行台車45〜47は、有軌道台車でも無軌道で走行する無人搬送車等でも良い。
【0022】
走行台車45〜47には、主受電ユニットとサブ受電ユニットとを設け、例えば走行台車45,47は非接触給電線40,42と向き合った位置に主受電ユニットを設け、非接触給電線41と向き合った位置にサブ受電ユニットを設ける。
また走行台車46では、非接触給電線41と向き合った位置に主受電ユニットを設け、非接触給電線40,42と向き合った位置にサブ受電ユニットを設ける。
各走行台車45〜47では、走行モータや移載装置などの駆動部に、主受電ユニットを例えば常時接続し、サブ受電ユニットを図示しないスイッチを介して接続する。このスイッチは、図2に示したようなブレーカ兼用のスイッチが好ましい。
【0023】
走行台車45〜47や非接触給電線40〜42を、図5のように配置することにより、走行ルートを順次延伸することができ、また非接触給電線40,42と非接触給電線41とを、走行台車45〜47の車体底部の左右に例えば300〜500mm程度の間隔をおいて配置し、非接触給電線間の干渉を防止する。
【0024】
実施例では非接触給電を例にしたが、ブラシなどを介して接触給電するようにしても良い。実施例では、1つの走行ルートを複数の走行エリアに分割して、常時は走行エリア内のみで走行台車を走行させ、いずれかの走行台車がダウンすると隣接する走行エリアの走行台車でバックアップする。そして主受電ユニットとサブ受電ユニットとをスイッチで切り替えることにより、1つの電源から受電する走行台車を常時1台に制限し、電源容量を台車1台分で良くする。
【図面の簡単な説明】
【図1】実施例の走行台車システムのレイアウトを示す平面図
【図2】実施例でのスタッカークレーンの電源系を示すブロック図
【図3】実施例での走行レールと非接触給電線との配置を示す図
【図4】実施例での受電ユニットの切り替え方法を示すフローチャート
【図5】変形例の走行台車システムのレイアウトを示す平面図
【図6】従来例の走行台車システムのレイアウトを示す平面図
【符号の説明】
2 自動倉庫
4 走行レール
6,7 スタッカークレーン
8,9 非接触給電線
10 電源
12 駆動部
14 主受電ユニット
16 サブ受電ユニット
18 スイッチ
20 地上制御部
22 整流部
24 ピックアップコイル
26 スイッチ
30 コンデンサ
32 マスト
40〜42 非接触給電線
44 電源
45〜47 走行台車
[0001]
Field of application of the invention
The present invention relates to a traveling bogie system using a stacker crane, an automatic guided vehicle, a tracked bogie, and the like, and particularly to power supply to a traveling bogie.
[0002]
[Prior art]
[Patent Document 1] Japanese Patent No. 33353221 Patent Document 1 discloses a connection between traveling routes of a traveling vehicle. For example, when the traveling route B is added to the traveling route A, the auxiliary traveling route C is also extended, and a section where the power supply line is parallel between the traveling route C and the traveling route A is provided. A section where the power supply line is parallel to the traveling route A is also provided. Electric power is supplied to the power supply lines from the power supplies 50 to 52, and the traveling vehicles 54 to 56 are provided with a pair of power receiving units so that power can be received from any of the power supply lines of the traveling routes A, B, and C.
[0003]
In this way, the traveling vehicles 54 to 56 can travel between the traveling routes A and B via the traveling route C. The traveling vehicles 54 and 55 are both at positions where power can be received from the power supply 50, and the traveling vehicle 55 is at a position where power can also be received from the power supply 52. The traveling vehicle 55 only needs to be able to distribute the power to be received between the power receiving units, for example, 50% from the power source 50, 50% from the power source 52, etc., but controls at what ratio the power is received from the two power receiving units. Is difficult. For this reason, the power supply 50 needs the power supply capacity of two traveling vehicles 54 and 55, and the power supply 52 at the position for supplying power to the traveling vehicles 55 and 56 also needs the power supply capacity of two vehicles. For these reasons, eventually, each of the power supplies 50 to 52 needs a power supply capacity for two trucks. As described above, if power can be received from any of the plurality of power supply lines, a large-scale power supply facility is required.
[0004]
[Problems of the Invention]
A basic object of the present invention is to make it possible to back up a traveling vehicle in an adjacent traveling area when the traveling vehicle goes down, and to reduce the power supply of the power supply line for each traveling area to the power supply capacity of one traveling vehicle. (Claims 1 to 3).
An additional object of the present invention is to perform clean power supply without generating dust and to prevent interference between power supply lines.
Another object of the present invention is to use a switch for connecting / disconnecting the sub power receiving unit and the load as a breaker of the sub power receiving unit.
[0005]
Configuration of the Invention
The present invention divides one traveling route into a plurality of traveling areas, arranges one traveling vehicle in each traveling area, and travels back and forth in the traveling area. A power supply line and a power supply are provided, and a power supply line of a traveling area adjacent to a boundary between the traveling areas is partially arranged in parallel, and the traveling vehicle has a main power receiving unit for a power supply line of its own traveling area. And a load for connecting / disconnecting the sub power receiving unit to / from the load, and a sub power receiving unit for a power supply line in an adjacent traveling area. This switch is not limited to a switch that simply switches the connection between the load and the sub power receiving unit, and may be a three-point switch that connects the load to either the main power receiving unit or the sub power receiving unit.
[0006]
Preferably, a high-frequency current is supplied from the power supply to each of the power supply lines, and power is received in a non-contact manner by a pickup coil of each of the power receiving units. They are arranged in parallel at intervals so as not to interfere with each other (claim 2). For example, when rails are provided along a traveling route, power supply lines of a traveling area adjacent to both sides of the rail are arranged in a pair on the left and right. At the boundary between the traveling areas, the power supply lines of the adjacent traveling areas are arranged in parallel at an interval of, for example, 100 mm or more, preferably 200 mm or more, particularly preferably 300 mm or more. This interval is an interval in a direction perpendicular to the traveling direction.
[0007]
Particularly preferably, an overcurrent detecting element is provided in the sub power receiving unit, and the switch and the sub power receiving unit are separated by the switch when the overcurrent is detected (claim 3).
[0008]
Function and Effect of the Invention
In the present invention, the connection between the sub power receiving unit and the load is normally opened by a switch. For this reason, even if the traveling vehicle enters the boundary between the traveling areas, the power receiving unit is the main power receiving unit, which is supplied with power from the power supply of its own traveling area and does not receive power from the power supply of the adjacent traveling area. For this reason, one traveling vehicle receives power from one power source. When one of the traveling vehicles goes down, the traveling vehicle in the adjacent traveling area enters by connecting the sub-power receiving unit and the load with a switch, and can travel by receiving power from the sub-power receiving unit and traveling. Also in this case, one traveling vehicle receives power from one power source. For this reason, each power supply only needs to have a power supply capacity of one unit, and an excessive power supply facility is not required. Further, when the traveling vehicle goes down, it can be backed up by the traveling vehicle in the adjacent area (claim 1).
[0009]
According to the second aspect of the present invention, by performing non-contact power supply, dust generation due to contact between the power supply line and a sliding member such as a brush can be prevented. Since high-frequency current is used for non-contact power supply, if the power supply lines are arranged in parallel, interference between the power supply lines becomes a problem, but since the power supply lines are arranged with sufficient spacing to prevent interference between the power supply lines. In addition, it is possible to prevent a decrease in power supply efficiency due to interference.
[0010]
According to the third aspect of the present invention, the overcurrent of the sub power receiving unit is detected by a temperature sensor, a coil, or the like, and the connection between the sub power receiving unit and the load is cut off when the overcurrent is detected. Therefore, the switch for connecting / disconnecting the load and the sub power receiving unit can be used also as the breaker.
[0011]
【Example】
1 to 4 show an embodiment. In these figures, 2 is an automatic warehouse, 4 is a running rail, and 6 and 7 are a pair of stacker cranes for carrying goods between a rack (not shown) and a station. Reference numerals 8 and 9 denote non-contact power supply lines, for example, arranged on both sides of the traveling rail 4 with an interval D of about 700 mm. Each of the non-contact power supply lines 8 and 9 is laid in a loop, and a high-frequency current such as 540 V and 130 A is supplied at about 9 kHz from a power supply 10 provided at an end of the traveling rail 4 or the like. At a high frequency such as 9 kHz, the effective length L1 that can be fed from the contactless power supply lines 8 and 9 is limited to, for example, about 60 m due to the inductance components of the contactless power supply lines 8 and 9. For this reason, the total length L of the traveling rail 4 is, for example, about 100 m, the effective length L1 of each of the non-contact power supply lines 8, 9 is, for example, 60 m or less, and the traveling rail 4 is divided into two traveling areas on the left and right in FIG. At the center of the running rail 4 (boundary of the left and right running areas), the left and right non-contact power feeding lines 8 and 9 are partially arranged in parallel with the running rail 4 interposed therebetween. It is about 20 m.
[0012]
The stacker cranes 6 and 7 are arranged one by one in each of the left and right traveling areas, and a driving unit 12 including a traveling motor, a lifting / lowering motor, and a control system for these units is selected from a main power receiving unit 14 and a sub power receiving unit 16. Power supply. For example, in the stacker crane 6 on the right side in FIG. 1, the main power receiving unit 14 is constantly connected to the driving unit 12, and the sub power receiving unit 16 is connected to the driving unit 12 via the switch 18. Similarly, in the left stacker crane 7, the main power receiving unit 14 is always connected to the driving unit 12, and the sub power receiving unit 16 is connected to the driving unit 12 via the switch 18.
The switch 18 in FIG. 1 is a conceptual display, and the actual switch configuration will be described later with reference to FIG. Reference numeral 20 denotes a ground control unit for controlling the stacker cranes 6 and 7.
[0013]
FIG. 2 shows the configuration of the power receiving units 14 and 16 using the stacker crane 6 as an example.
Each of the power receiving units 14 and 16 is provided with a rectifying unit 22 composed of a diode bridge or the like, and a pickup coil 24 is arranged in series or in parallel so that power can be obtained from the non-contact power supply lines 8 and 9. . For example, a switch 26 provided for each pickup coil 24 connects the pickup coil 24 to the drive unit 12 via the rectification unit 22. Note that reference numeral 30 denotes a smoothing capacitor, which is provided for each of the power receiving units 14 and 16 here, but one capacitor 30 may be provided for two units 14 and 16.
[0014]
The switch 26 is turned on / off by, for example, an entry control signal from the ground control unit 20 (an entry permission signal to the opposite traveling area), and is always off. A temperature sensor (not shown) and a current sensor (not shown) for detecting a current flowing through the pickup coil 24 are provided around the pickup coil 24 for the switch 26, and the switch 26 is turned on / off by these sensors. It can be so. In other words, the switch 26 is opened when the temperature around the pickup coil 24 rises to a predetermined temperature or higher or when a current equal to or more than the upper limit flows through the pickup coil 24. By doing so, the switch 26 can be used also as a breaker for the pickup coil 24.
[0015]
The switch 18 in FIG. 1 may be provided as a single switch, but for example, the switch 26 in FIG. 2 may be used as the switch 18 in FIG. The switch 18 and components corresponding thereto need only be able to switch at least the connection between the sub power receiving unit 16 and the drive unit 12. For example, as shown in the range of the upper dashed line in FIG. 2, the contact A of the drive unit 12 is connected to either the output contact B of the main power receiving unit 14 or the output contact C of the sub power receiving unit 16. Or a three-point switch 19 or the like.
[0016]
The switch 26 (switch 18) may be provided only in the sub power receiving unit 16, but in this case, the positions of the sub power receiving unit 16 and the main power receiving unit are reversed between the stacker crane 6 and the stacker crane 7. . Therefore, in terms of hardware, the main power receiving unit 14 and the sub power receiving unit 16 are commonly used, and a switch 26 is provided on the main power receiving unit 14 side. This switch is always connected, and is turned off when overheating is detected by the temperature sensor or when a current equal to or more than the upper limit flows to the pickup coil 24, so that the main power receiving unit 14 is disconnected from the drive unit 12.
[0017]
FIG. 3 shows the arrangement of the non-contact power supply lines 8 and 9 on both sides of the traveling rail 4. The stacker crane 6 is provided with a driving unit 12 such as a traveling motor or a lifting / lowering motor of a lifting platform that moves up and down along a mast 32. The driving unit 12 travels on the traveling rail 4 by traveling wheels, and the non-contact power supply lines 8 and 9 are connected. The interval D is, for example, about 700 mm, and is preferably arranged on both sides of the running rail 4 so that a sufficient interval can be taken. As a result, even if a high-frequency current flows through the non-contact power supply lines 8 and 9, mutual interference can be prevented. The hardware configuration of the stacker crane 7 is the same as that of the stacker crane 6, and the arrangement of the main power receiving unit 14 and the sub power receiving unit 16 is reversed between the stacker crane 6 and the stacker crane 7 by the switch 26.
[0018]
FIG. 4 shows a control algorithm of the embodiment. It is checked whether both stacker cranes are normal. If both stacker cranes are normal, each stacker crane switches off the sub power receiving unit. As a result, the stacker crane 6 of FIG. 1 receives power only from the non-contact power supply line 8, and the stacker crane 7 receives power only from the non-contact power supply line 9. Even if the stacker cranes 6 and 7 enter a position where power can be received from any of the power supply lines 8 and 9 at the boundary of the traveling area, power is received from only one of the power supply lines and the load of two vehicles is supplied to one power supply. Will not be added.
[0019]
If one stacker crane goes down (fails) due to some abnormality, the failed crane is retracted to the end of the traveling rail. Next, turn on the switch of the stacker crane on the normal side, connect the sub power receiving unit to the load, and receive power from any non-contact power supply line, and cover the entire traveling rail with one stacker crane I do. As a result, even if the stacker crane goes down, it can be backed up by another stacker crane, and the number of stacker cranes that receive power from one power supply is always limited to one, and the power supply capacity is sufficient for one stacker crane.
[0020]
Also, as shown in FIG. 2, when the main power receiving unit and the sub power receiving unit are physically equivalent, and a switch 26 is provided between them and the load, the stacker crane 6 and the stacker crane 7 Can be commonly used. Further, as shown in FIG. 2, when a temperature sensor, an overcurrent detection sensor, or the like is connected to the switch 26, the switch can also be used as a breaker.
[0021]
FIG. 5 shows a traveling bogie system according to a modification. Reference numerals 40, 41, and 42 denote loop-shaped non-contact power supply lines, respectively, and reference numeral 44 denotes a high-frequency power supply for one traveling vehicle. In FIG. 5, the traveling route is divided into three traveling areas, and one traveling vehicle 45, 46, 47 is arranged in each traveling area, and the article is transported by reciprocating in its own traveling area. Each of the traveling vehicles 45 to 47 may be a tracked vehicle or an unmanned guided vehicle traveling on a trackless route.
[0022]
The traveling vehicles 45 to 47 are provided with a main power receiving unit and a sub power receiving unit. For example, the traveling vehicles 45 and 47 are provided with main power receiving units at positions facing the non-contact power feeding lines 40 and 42, respectively. A sub power receiving unit is provided at the facing position.
In the traveling vehicle 46, a main power receiving unit is provided at a position facing the non-contact power supply line 41, and a sub power receiving unit is provided at a position facing the non-contact power supply lines 40 and 42.
In each of the traveling vehicles 45 to 47, for example, a main power receiving unit is always connected to a driving unit such as a traveling motor or a transfer device, and a sub power receiving unit is connected via a switch (not shown). This switch is preferably a switch also serving as a breaker as shown in FIG.
[0023]
By arranging the traveling carts 45 to 47 and the non-contact power supply lines 40 to 42 as shown in FIG. 5, the traveling route can be sequentially extended, and the non-contact power supply lines 40 and 42 and the non-contact power supply line 41 Are arranged at an interval of, for example, about 300 to 500 mm on the left and right sides of the vehicle body of the traveling vehicles 45 to 47 to prevent interference between the non-contact power supply lines.
[0024]
In the embodiment, non-contact power supply is described as an example, but contact power may be supplied via a brush or the like. In the embodiment, one traveling route is divided into a plurality of traveling areas, and the traveling vehicle travels only in the traveling area at all times. When any traveling vehicle goes down, the traveling vehicle in the adjacent traveling area backs up. By switching between the main power receiving unit and the sub power receiving unit with a switch, the number of traveling vehicles receiving power from one power supply is always limited to one, and the power supply capacity can be improved by one vehicle.
[Brief description of the drawings]
FIG. 1 is a plan view showing a layout of a traveling bogie system according to an embodiment. FIG. 2 is a block diagram showing a power supply system of a stacker crane according to an embodiment. FIG. FIG. 4 is a flow chart showing a method of switching power receiving units in the embodiment. FIG. 5 is a plan view showing a layout of a traveling vehicle system according to a modification. FIG. 6 is a diagram showing a layout of a traveling vehicle system according to a conventional example. Plan view [Explanation of reference numerals]
2 Automatic warehouse 4 Running rail 6,7 Stacker crane 8,9 Non-contact power supply line 10 Power supply 12 Drive unit 14 Main power receiving unit 16 Sub power receiving unit 18 Switch 20 Ground control unit 22 Rectifying unit 24 Pickup coil 26 Switch 30 Capacitor 32 Mast 40 ~ 42 Non-contact power supply line 44 Power supply 45 ~ 47

Claims (3)

1つの走行ルートを複数の走行エリアに分割し、各走行エリア毎に1台の走行台車を配置して走行エリア内を往復走行させるシステムにおいて、各走行エリア毎の独立した給電線と電源とを設けて、走行エリア間の境界で隣接する走行エリアの給電線を部分的に平行に配置し、かつ走行台車には、自己の走行エリアの給電線用の主受電ユニットと、隣接する走行エリアの給電線用のサブ受電ユニットと、負荷と、サブ受電ユニットを負荷と接続/開放するためのスイッチ、とを設けたことを特徴とする、走行台車システム。In a system in which one traveling route is divided into a plurality of traveling areas, one traveling vehicle is arranged in each traveling area and the traveling route reciprocates in the traveling area, an independent power supply line and a power supply are provided for each traveling area. Provided, the power supply line of the adjacent traveling area at the boundary between the traveling areas is partially arranged in parallel, and the traveling vehicle has a main power receiving unit for the power supply line of its own traveling area, A traveling trolley system, comprising: a sub power receiving unit for a power supply line; a load; and a switch for connecting / disconnecting the sub power receiving unit to / from the load. 前記各給電線に前記電源から高周波電流を通電して、前記各受電ユニットのピックアップコイルで非接触に受電すると共に、走行エリア間の境界で、前記隣接する走行エリアの給電線を互いに干渉しないように間隔を置いて平行に配置したことを特徴とする、請求項1の走行台車システム。A high-frequency current is supplied from the power supply to each of the power supply lines, and power is received in a non-contact manner by the pickup coil of each of the power receiving units. At a boundary between the traveling areas, the power supply lines in the adjacent traveling areas do not interfere with each other. The traveling bogie system according to claim 1, wherein the traveling bogie system is arranged in parallel with a distance between the traveling bogies. サブ受電ユニットに過電流の検出素子を設けて、過電流検出時に前記スイッチにより負荷とサブ受電ユニットとを切り離すようにしたことを特徴とする、請求項1または2の走行台車システム。3. The traveling bogie system according to claim 1, wherein an overcurrent detection element is provided in the sub power receiving unit, and the switch and the sub power receiving unit are separated by the switch when the overcurrent is detected.
JP2003104033A 2003-04-08 2003-04-08 Traveling cart system Expired - Fee Related JP4003684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003104033A JP4003684B2 (en) 2003-04-08 2003-04-08 Traveling cart system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003104033A JP4003684B2 (en) 2003-04-08 2003-04-08 Traveling cart system

Publications (2)

Publication Number Publication Date
JP2004312896A true JP2004312896A (en) 2004-11-04
JP4003684B2 JP4003684B2 (en) 2007-11-07

Family

ID=33466980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003104033A Expired - Fee Related JP4003684B2 (en) 2003-04-08 2003-04-08 Traveling cart system

Country Status (1)

Country Link
JP (1) JP4003684B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021175305A (en) * 2020-04-28 2021-11-01 株式会社ダイフク Article conveyance facility

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021175305A (en) * 2020-04-28 2021-11-01 株式会社ダイフク Article conveyance facility
JP7371569B2 (en) 2020-04-28 2023-10-31 株式会社ダイフク Goods conveyance equipment

Also Published As

Publication number Publication date
JP4003684B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
JP4840478B2 (en) Power supply equipment
US6252386B1 (en) Non-contact power supply system and apparatus and carrying equipment using the system
JP3601454B2 (en) Automatic guided vehicle system
JP6776889B2 (en) Transport trolley
JPH10126319A (en) Feeder superimposing communication system for mobile body
JPH0965502A (en) Induction type power feeding-collecting equipment
JP2007500494A (en) Contactless energy supply for moving loads
CN101980945A (en) Crane feed system and method
JP2004203178A (en) Power supply plant, and method for connecting constant current power supply unit in power supply plant
KR20190054688A (en) Carriage system
JP3491178B2 (en) Contactless power supply system
JP3391149B2 (en) Contactless power supply equipment for mobile objects
JP3491179B2 (en) Non-contact power receiving device
JP2004312896A (en) Travel cart system
JPH08308150A (en) Noncontact power distribution system
TW202206306A (en) Article transport facility
JP2006180691A (en) Power feeding apparatus and carrier system
JPH118903A (en) Non-contact power supply facility for moving body
CN112537609B (en) Article conveying equipment
JP3906950B2 (en) Contactless power supply device for transport cart
US20230302927A1 (en) Dynamic wireless power transfer system controlling multiple transmitter coils
WO2023153000A1 (en) Non-contact power supply system and transport system
JP3639949B2 (en) Contactless power supply system
JP5605950B2 (en) container yard
JP2002165301A (en) Noncontacting feeding system for moving body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Effective date: 20070111

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Effective date: 20070813

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100831

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110831

LAPS Cancellation because of no payment of annual fees