JP2004311785A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2004311785A
JP2004311785A JP2003104488A JP2003104488A JP2004311785A JP 2004311785 A JP2004311785 A JP 2004311785A JP 2003104488 A JP2003104488 A JP 2003104488A JP 2003104488 A JP2003104488 A JP 2003104488A JP 2004311785 A JP2004311785 A JP 2004311785A
Authority
JP
Japan
Prior art keywords
semiconductor element
semiconductor device
thickness
semiconductor
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003104488A
Other languages
Japanese (ja)
Inventor
Hiroshi Suzushima
浩 鈴島
Noriyuki Fujimori
紀幸 藤森
Fukashi Yoshizawa
深 吉沢
Masaki Ogata
雅紀 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2003104488A priority Critical patent/JP2004311785A/en
Publication of JP2004311785A publication Critical patent/JP2004311785A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high density and multilayer structured semiconductor device by thinning the thickness of a laminated structure in arranging a wiring board or a semiconductor element in a laminated positional relation. <P>SOLUTION: The semiconductor device 1 is mainly composed of a wiring board 2 provided by a wiring layer 2a, a first semiconductor element 3, and a second semiconductor element 4. An opening 2b to which the second semiconductor element 4 is arranged and to be an adjusting part for a lamination thickness is formed at the predetermined position of the wiring board 2. It is set that the thickness of the wiring board 2 is A &mu;m, the thickness of the first semiconductor element 3 is B &mu;m, the thickness of the second semiconductor element 4 is, for instance thinner than that of the wiring board 2, C &mu;m, and the diameter of a projected electrode 5 is D &mu;m. The second semiconductor element 4 having a thickness of C &mu;m is arranged in the opening 2b formed in the wiring board 2 in the semiconductor device 1. This does not reflect the thickness of the second semiconductor element 4 to the thickness (X) of the lamination position of the semiconductor device 1. That is, X=(A+B+D) &mu;m. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、複数の半導体素子を配線基板に対して積層位置関係で実装した半導体装置に関する。
【0002】
【従来の技術】
近年、電子機器に使用される配線基板は、機器本体の小型化に伴い、半導体素子、各種電子部品の高密度実装化及び小型化が図られている。
【0003】
例えば、特許 第2841825号公報の混成集積回路には半導体素子の実装密度を高めるために、複数個の半導体素子が配線基板に搭載されてなる混成集積回路において、少なくとも1個の半導体素子がワイヤボンディング技術で配線基板の片面に搭載され、前記配線基板反対側の面に他の少なくとも1個の半導体素子がフリップチップ技術により搭載されている構造が示されている。
【0004】
【特許文献1】特許 第2841825号公報 (頁2、図1及び図2)
【0005】
【発明が解決しようとする課題】
しかしながら、前記特許 第2841825号公報の混成集積回路では、単位面積当たりの実装密度は向上するが、より高密度な積層を実現しようとした場合、配線基板自体の厚みや半導体素子の厚みが高密度化の障害になってしまう。
【0006】
本発明は上記事情に鑑みてなされたものであり、配線基板或いは半導体素子を積層位置関係で配置するとき、積層状態の厚さ寸法をより薄く構成して、高密度な積層構造の半導体装置を提供することを目的にしている。
【0007】
【課題を解決するための手段】
第1の発明による半導体装置は、配線層を設けた配線基板に対して、複数の半導体素子を積層位置関係に搭載した半導体装置であって、
積層位置関係で配置される半導体素子の1つ又は配線層を設けた配線基板の少なくとも一方に、実際の積層状態の厚さ寸法を、複数の半導体素子の厚み寸法と配線基板の厚み寸法とを合算した値よりも小さくさせる積層厚さ調整部を設けている。
この構成によれば、積層厚さ調整部を設けて、配線基板上に複数の半導体素子を積層配置させることにより、この積層配置状態で構成された半導体装置の厚さ寸法が、複数の半導体素子の厚み寸法と配線基板の厚み寸法とを合算した値より小さくなる。
【0008】
第2の発明による半導体装置は前記第1の発明による半導体装置において、前記積層厚さ調整部は、前記配線基板の所定位置に設けた開口部である。
この構成によれば、一半導体素子を前記配線基板の開口部を塞ぐようにこの配線基板の一面側に配置し、他半導体素子を前記開口部内に配置して、複数の半導体素子を配線基板に対して積層配置状態にすると、この積層配置状態で構成された半導体装置の厚さ寸法は、複数の半導体素子の厚み寸法と配線基板の厚み寸法とを合算した値よりも小さい。
【0009】
第3の発明による半導体装置は前記第1の発明による半導体装置において、前記積層厚さ調整部は、一半導体素子に形成した所定深さ寸法の凹部である。
この構成によれば、一半導体素子の凹部内に他の半導体素子を配置した状態で、これら複数の半導体素子を配線基板に積層配置状態にすると、この積層配置状態で構成された半導体装置の厚さ寸法は、複数の半導体素子の厚み寸法と配線基板の厚み寸法とを合算した値よりも小さい。
【0010】
第4の発明による半導体装置は、配線層を設けた半導体素子に対して、複数の半導体素子を積層位置関係に搭載した半導体装置であって、
積層位置関係で配置される半導体素子の1つに積層厚さ調整部となる凹部を形成している。
この構成によれば、一半導体素子の凹部内に他の半導体素子を配置した状態で、これら複数の半導体素子を配線層を設けた半導体素子上に積層配置状態にすると、この積層配置状態で構成された半導体装置の厚さ寸法は、複数の半導体素子の厚み寸法と配線基板の厚み寸法とを合算した値よりも小さくなる。
【0011】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。
(第1実施形態)
図1ないし図3は本発明の第1実施形態に係り、図1は積層厚さ調整部として配線基板に開口部を形成した半導体装置を説明する図、図2は配線基板及び半導体素子に積層厚さ調整部を設けることなく積層配置したときの構成例を説明する図、図3は半導体装置の他の構成例を説明する図である。
【0012】
なお、図3(a)は貫通スルーホールによる電気的接続部とフリップチップ接続とを組み合わせた半導体装置を示す図、図3(b)はフリップチップ接続とワイヤボンディングによる接続とを組み合わせた半導体装置を示す図、図3(c)は配線領域を設けてのフリップチップ接続とワイヤボンディング接続とを組み合わせた半導体装置を示す図、図3(d)は配線領域を設けてのフリップチップ接続による半導体装置を示す図、図3(e)はワイヤボンディングによる接続とフリップチップ接続とを組み合わせた半導体装置を示す図、図3(f)はワイヤボンディングによる接続を行った半導体装置を示す図、図3(g)は光学部材を配置した半導体装置を示す図、図3(h)は3つの半導体素子を備え、ワイヤボンディングによる接続とフリップチップ接続とを組み合わせた半導体装置を示す図である。
【0013】
図1に示すように本実施形態の半導体装置1は、例えば面部に図示しない配線パターンによる配線層2aを片面又は両面に設けた配線基板2と、この配線基板2の配線層2aに対して電気的に接続される第1半導体素子3と、この第1半導体素子3に対して電気的に接続される第2半導体素子4とで主に構成されている。前記配線基板2の所定位置には前記第2半導体素子4が配置される積層厚さ調整部となる所定形状の開口部2bが形成されている。
【0014】
前記配線基板2に設けられている配線層2aと前記第1半導体素子3との電気的接続及び前記第1半導体素子3と第2半導体素子4との電気的接続は、例えば、金、半田で形成した突起電極5を介したフリップチップ接続によって行われている。そして、前記フリップチップ接続部の固着を接着剤9で行っている。
【0015】
なお、前記配線基板2の厚み寸法はAμm、前記第1半導体素子3の厚み寸法はBμm、前記第2半導体素子4の厚み寸法は例えば前記配線基板2の厚み寸法より薄いCμm、前記突起電極5の直径寸法はDμmに設定されている。
【0016】
上述のように構成した半導体装置1の厚み寸法(X)について説明する。
図2に示すように積層厚さ調整部となる開口部を設けていない厚み寸法がAμmの配線基板2Aの両面側に積層位置関係で前記第1半導体素子3及び前記第2半導体素子4を配置して半導体装置20を構成した場合、積層位置における厚み寸法(Y)はそれぞれの部材の厚み寸法を合算した値になる。なお、符号6はワイヤボンディングのための金属細線で形成されたワイヤである。
つまり、Y=(A+B+C+D)μmになる。
【0017】
これに対して、本実施形態の前記図1に示した半導体装置1では、厚み寸法がCμmに設定されている第2半導体素子4が配線基板2に形成されている開口部2b内に配置される。このため、この第2半導体素子4の厚み寸法が、半導体装置1の積層位置における厚み寸法(X)に反映されない。
【0018】
つまり、X=(A+B+D)μmになる。
【0019】
したがって、本実施形態の半導体装置1の積層位置における厚み寸法(X)は、前記半導体装置20の積層位置の厚み寸法(Y)に比べて薄く形成される。
【0020】
このように、配線基板に積層厚さ調整部として開口部を設け、その開口部内に積層位置関係で配置される半導体素子の1つを配置させたことにより、積層配置して構成された半導体装置の厚さ寸法を、複数の半導体素子と配線基板とを合算した値よりも小さくすることができる。このことによって、配線基板の構造を複雑にすることなく、積層構造の半導体装置を小型、薄型にして高密度実装を図れる。
【0021】
なお、本実施形態においては、配線基板2と第1半導体素子3との電気的接続及び第1半導体素子3と第2半導体素子4との電気的接続を、突起電極5を介したフリップチップ接続としているが、電気的な接続はフリップチップ接続に限定されるものではなく、以下に示す電気的な接続を行って半導体装置を構成するようにしてもよい。このことによって、積層構造の半導体装置を小型、薄型にして高密度実装を図れる。
【0022】
図3(a)に示す半導体装置1Aでは、第1半導体素子3に、素子表面から素子裏面に至る貫通スルーホール3aを設け、突起電極5を介して前記貫通スルーホール3aと前記配線層2aとを電気的に接続する一方、第1半導体素子3と第2半導体素子4とを突起電極5を介したフリップチップ接続によって電気的に接続している。そして、フリップチップ接続部の固着を接着剤9で行っている。
【0023】
図3(b)に示す半導体装置1Bでは、第1半導体素子3に貫通スルーホール3aを設け、突起電極5を介して前記貫通スルーホール3aと前記配線層2aとを電気的に接続する一方、第2半導体素子4と配線基板2との電気的接続を金属細線であるワイヤ6を介したワイヤボンディングで行っている。
【0024】
なお、本図に示す半導体装置1Bでは突起電極5を介して貫通スルーホール3aと配線層2aとを接続する際、超音波、熱圧着、半田などを用いて電気的、機械的な接続を行っている。また、第1半導体素子3と第2半導体素子4とを背中合わせの関係にして、絶縁性、又は導電性の接着剤9でダイボンドしている。そして、第2半導体素子4のダイボンド及び第1半導体素子3と配線基板2との接着剤9による固着を同時に行い、その後、第2半導体素子4をワイヤーボンディングによって配線基板2に電気的に接続している。
【0025】
図3(c)に示す半導体装置1Cでは、第1半導体素子3に素子表面から素子側面を通過して素子裏面に至る配線領域3bを設けている。そして、突起電極5を介して前記配線領域3bと前記配線層2aとをフリップチップ接続する一方、第2半導体素子4と配線基板2とを前記ワイヤ6を介したワイヤボンディングによって電気的な接続を行っている。
【0026】
なお、図3(d)の半導体装置1Dに示すように前記配線領域3bを第2半導体素子4の配置位置まで延長させて、前記配線領域3bと前記配線層2aとの電気的接続及び前記第1半導体素子3と第2半導体素子4との電気的接続を、共に突起電極5を介したフリップチップ接続で行うようにしてもよい。
【0027】
図3(e)に示す半導体装置1Eでは、第1半導体素子3を配線基板2の配線層2aにワイヤ6を介したワイヤボンディングによって電気的に接続する一方、第2半導体素子4と第1半導体素子3との電気的接続をフリップチップ接続で行っている。
【0028】
図3(f)に示す半導体装置1Fでは、第1半導体素子3と配線基板2の配線層2aとの電気的接続及び第2半導体素子4と配線基板2の配線層2aとの電気的接続をワイヤ6を介したワイヤボンディングによって行っている。
【0029】
なお、本図の半導体装置1Fでは、配線基板2に対して第1半導体素子3を絶縁性、又は導電性の接着剤9でダイボンドした後、第2半導体素子4を開口部2bに落とし込み、前記第1半導体素子3の裏面に第2半導体素子4を絶縁性、又は導電性の接着剤9でダイボンドする。そして、第1半導体素子3及び第2半導体素子4をそれぞれワイヤ6を介したワイヤボンディングによって電気的に接続している。
【0030】
図3(g)に示す半導体装置1Gでは、第1半導体素子3上、又は前記配線基板2の少なくとも一方に、光学部材7を配置している。このとき、前記第1半導体素子3を具体的に撮像素子にした場合、光学部材7はガラスリッド、レンズ、フィルター、プリズムなどの光学部品となる。そして、本実施形態においては、第2半導体素子4と配線基板2の配線層2aとの電気的接続をワイヤ6を介したワイヤボンディングで行っているため、このワイヤ6が光学部材7に接触することを防止するため、配線基板2に接触防止用の所定高さ寸法の段部2cが設けている。
【0031】
図3(h)に示す半導体装置1Hでは、第1半導体素子3上に第3半導体素子8を配置し、段部2cを有する配線基板2に光学部材7を配置している。そして、第1半導体素子3と配線基板2の配線層2aとの電気的接続をフリップチップ接続で行い、第3半導体素子8と配線基板2の配線層2aとの電気的接続をワイヤ6を介したワイヤボンディングで行っている。
【0032】
なお、本図の半導体装置1Hでは半導体素子を3つ使用した3チップ構成であり、この3チップを配線基板表面からのスタック構造にしている。そして、前記配線基板2に第1半導体素子3をフリップチップ接続によって電気的に接続した後、この第1半導体素子3の裏面に第2半導体素子4を接着剤9でダイボンドする。このとき、第1半導体素子3のフリップチップ接続部の固着を前記接着剤9が兼用する。そして、前記第2半導体素子4と配線基板2とをワイヤ6を介したワイヤボンディングによって電気的に接続し、更に、第1半導体素子3の上面に第3半導体素子8をダイボンドによって積層配置した後、この第3半導体素子8を配線基板2にワイヤ6を介したワイヤボンディングによって電気的に接続する。
また、配線基板裏面からのスタック構造にして、3チップ構成をとるようにしてもよい。
【0033】
(第2実施形態)◎
図4ないし図7は本発明の第2実施形態にかかり、図4は積層厚さ調整部として半導体素子に凹部を設けた半導体装置を説明する図、図5は配線基板及び半導体素子に積層厚さ調整部を設けることなく積層配置したときの構成例を説明する図、図6は他の構成の半導体装置を説明する図、図7は別の構成の半導体装置を説明する図である。
なお、図4(a)は配線基板に積層厚さ調整部である開口部を設けた半導体装置を示す図、図4(b)は積層厚さ調整部の形成されていない配線基板に複数の半導体素子を積層位置関係で配置した半導体装置を示す図である。
図4(a)に示すように本実施形態の半導体装置10は、例えば表面に図示しない配線パターンによる配線層2a及び開口部2bを設けた厚み寸法がAμmの配線基板2と、この配線基板2の配線層2aにワイヤ6を介したワイヤボンディングによって電気的に接続される厚み寸法がEμmの第1半導体素子11と、前記配線基板2の配線層2aにワイヤ6を介してのワイヤボンディングによって電気的に接続される厚み寸法がFμmの第2半導体素子12とで主に構成されている。
【0034】
前記第1半導体素子11の所定位置には前記第2半導体素子12が接着剤9によってダイボンドされる積層厚さ調整部となる深さ寸法を所定寸法bμmに設定した凹部11aが例えばエッチングによって形成されている。
【0035】
上述のように構成した半導体装置10の厚み寸法について説明する。
まず、図5に示すように積層厚さ調整部となる開口部及び凹部を設けていない厚み寸法がAμmの配線基板2Aの両面側に積層位置関係で前記第1半導体素子11及び前記第2半導体素子12を配置して半導体装置20Aを構成した場合、積層位置における厚み寸法(YA)はそれぞれの部材の厚み寸法を合算した値になる。
【0036】
つまり、YA=(A+E+F)μmになる。
【0037】
これに対して、本実施形態の半導体装置10では、前記図4(a)で示したように、厚み寸法がFμmの第2半導体素子12が第1半導体素子11に形成されている深さ寸法がbμmの凹部11aの底面に固着されるとともに、この状態で開口部2b内に配置されている。
【0038】
したがって、前記第1半導体素子11の凹部11aに固着された状態の第2半導体素子12が開口部2bから突出することなく配置される。このことによって、第2半導体素子12の厚み寸法が半導体装置10の積層位置関係の厚み寸法(以下、XAと表す)に反映されない。
つまり、XA=(A+E)μmになる。
このことによって、本実施形態の半導体装置10の積層位置における厚み寸法(XA)は、半導体装置20Aの積層位置における厚み寸法(YA)に比べて薄く形成される。
【0039】
このように、積層位置関係で構成される半導体素子の1つに積層厚さ調整部として所定深さ寸法の凹部を設け、その凹部の底面に他方の半導体素子を固着配置させることによって、積層配置状態で構成される半導体装置の厚さ寸法を、複数の半導体素子と配線基板とを合算した値よりも小さくすることができる。
【0040】
なお、図4(b)に示すように配線基板2に開口部2bを設けない構成の場合であっても、第1半導体素子11に所定深さ寸法の凹部11aを形成して、この凹部11a内に第2半導体素子12を配置して半導体装置10Aを構成することによって、この半導体装置10Aの積層位置における厚み寸法(XB)に、前記第2半導体素子12の厚み寸法Fが反映されないので、この半導体装置10Aの積層位置における厚み寸法(XB)を、複数の半導体素子と配線基板等を合算した値よりも小さくすることができる。
【0041】
また、配線基板に複数の半導体素子を搭載して半導体装置を構成する代わりに、図6に示すように第3半導体素子13の少なくとも一面側に、例えばポリイミド樹脂等を用いた絶縁樹脂層からなる再配線層14を設けておく。そして、前記第2半導体素子12と第3半導体素子13とを突起電極5を介して電気的、機械的に接続するとともに、この第2半導体素子12を第1半導体素子11の凹部11a内に配置させた状態にして、この第1半導体素子11を前記第3半導体素子13に突起電極5を介して電気的、機械的に接続して半導体装置10Bを構成する。
このことによって、この半導体装置10Bの積層位置における厚み寸法を、複数の半導体素子と配線基板等を合算した値よりも小さくすることができる。
【0042】
なお、前記第1半導体素子11と前記第3半導体素子13とを、前記第2半導体素子12を第3半導体素子13に搭載後に、ウエハー同士で接続するようにしてもよい。
【0043】
また、前記第1実施形態及び第2実施形態において、例えば、図7に示すように第2半導体素子4、12に再配線層14を予め形成して、この第2半導体素子4、12に対してセラミックコンデンサ、抵抗、インダクタ、発振子等の周辺回路部品15を搭載して半導体装置10Cを構成するようにしてもよい。このことによって、半導体装置の小型化、薄型化、組立工数の削減、部品点数の削減を図ることができる。
【0044】
尚、本発明は、以上述べた実施形態のみに限定されるものではなく、発明の要旨を逸脱しない範囲で種々変形実施可能である。
【0045】
[付記]
以上詳述したような本発明の上記実施形態によれば、以下の如き構成を得ることができる。
【0046】
(1)配線層を設けた配線基板に対して、複数の半導体素子を積層位置関係に搭載した半導体装置において、
積層位置関係で配置される半導体素子の1つ又は配線層を設けた配線基板の少なくとも一方に、実際の積層状態の厚さ寸法を、複数の半導体素子の厚み寸法と配線基板の厚み寸法とを合算した値よりも小さくさせる積層厚さ調整部を設けた半導体装置。
【0047】
(2)前記積層厚さ調整部は前記配線基板の所定位置に設けた開口部である付記1に記載の半導体装置。
【0048】
(3)前記積層厚さ調整部は一半導体素子に形成した凹部である付記1に記載の半導体装置。
【0049】
(4)配線層を設けた半導体素子に対して、複数の半導体素子を積層位置関係に搭載した半導体装置において、
積層位置関係で配置される半導体素子の1つに積層厚さ調整部となる凹部を形成した半導体装置。
【0050】
(5)前記半導体素子と前記配線基板との電気的接続又は前記半導体同士の電気的接続をリップチップ接続で行う付記1ないし付記4のいずれかに記載の半導体装置。
【0051】
(6)前記半導体素子と前記配線基板との電気的接続をワイヤボンディング接続で行う付記1ないし付記4のいずれかに記載の半導体装置。
【0052】
(7)前記半導体素子に、半導体素子表面から半導体素子裏面に至る貫通スルーホールを設け、前記配線基板と半導体素子との電気的接続を突起電極を介して行う付記1ないし付記5のいずれかに記載の半導体装置。
【0053】
(8)前記半導体素子に、半導体素子表面から半導体素子側面を通過して半導体素子裏面に至る配線領域を設け、前記配線基板と半導体素子との電気的接続を突起電極を介して行う付記1ないし付記5のいずれかに記載の半導体装置。
【0054】
(9)前記半導体素子又は前記配線基板に、光学部品又は周辺回路部品を搭載した付記5ないし付記8のいずれかに記載の半導体装置。
【0055】
【発明の効果】
以上説明したように本発明によれば、配線基板或いは半導体素子を積層位置関係で配置するとき、積層状態の厚さ寸法をより薄く構成して、高密度な積層構造の半導体装置を提供することができる。
【図面の簡単な説明】
【図1】図1ないし図3は本発明の第1実施形態に係り、図1は積層厚さ調整部として配線基板に開口部を形成した半導体装置を説明する図
【図2】配線基板及び半導体素子に積層厚さ調整部を設けることなく積層配置したときの構成例を説明する図
【図3】半導体装置の他の構成例を説明する図
【図4】図4ないし図7は本発明の第2実施形態にかかり、図4は積層厚さ調整部として半導体素子に凹部を設けた半導体装置を説明する図
【図5】配線基板及び半導体素子に積層厚さ調整部を設けることなく積層配置したときの構成例を説明する図
【図6】他の構成の半導体装置を説明する図
【図7】別の構成の半導体装置を説明する図
【符号の説明】
1…半導体装置
2…配線基板
2a…配線層
2b…開口部
3…第1半導体素子
4…第2半導体素子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor device in which a plurality of semiconductor elements are mounted on a wiring board in a stacked positional relationship.
[0002]
[Prior art]
2. Description of the Related Art In recent years, a wiring board used for an electronic device has been reduced in size and size of a semiconductor device and various electronic components with the miniaturization of the device body.
[0003]
For example, in the hybrid integrated circuit disclosed in Japanese Patent No. 2841825, in order to increase the mounting density of the semiconductor elements, in a hybrid integrated circuit in which a plurality of semiconductor elements are mounted on a wiring board, at least one semiconductor element is connected by wire bonding. A structure is shown in which the semiconductor device is mounted on one surface of a wiring board by technology and at least one other semiconductor element is mounted on the surface on the side opposite to the wiring substrate by flip chip technology.
[0004]
[Patent Document 1] Japanese Patent No. 2841825 (Page 2, FIGS. 1 and 2)
[0005]
[Problems to be solved by the invention]
However, in the hybrid integrated circuit disclosed in Japanese Patent No. 2841825, although the mounting density per unit area is improved, when realizing higher-density lamination, the thickness of the wiring board itself and the thickness of the semiconductor element are increased. It will be an obstacle to conversion.
[0006]
The present invention has been made in view of the above circumstances, and when arranging a wiring substrate or a semiconductor element in a stacking positional relationship, the thickness of the stacked state is configured to be thinner, and a semiconductor device having a high-density stacked structure is realized. It is intended to provide.
[0007]
[Means for Solving the Problems]
A semiconductor device according to a first aspect of the present invention is a semiconductor device in which a plurality of semiconductor elements are mounted in a stacked positional relationship on a wiring board provided with a wiring layer,
At least one of the semiconductor elements or the wiring board provided with the wiring layer arranged in the stacking positional relationship, the thickness of the actual stacked state, the thickness of the plurality of semiconductor elements and the thickness of the wiring board, A lamination thickness adjusting unit for making the lamination thickness smaller than the total value is provided.
According to this configuration, by providing the stacked thickness adjusting unit and arranging the plurality of semiconductor elements on the wiring board in a stacked manner, the thickness of the semiconductor device configured in this stacked state is reduced by the plurality of semiconductor elements. Is smaller than the sum of the thickness of the wiring board and the thickness of the wiring board.
[0008]
A semiconductor device according to a second aspect of the present invention is the semiconductor device according to the first aspect, wherein the lamination thickness adjusting section is an opening provided at a predetermined position of the wiring board.
According to this configuration, one semiconductor element is arranged on one surface side of the wiring board so as to cover the opening of the wiring board, and another semiconductor element is arranged in the opening, and a plurality of semiconductor elements are arranged on the wiring board. On the other hand, in a stacked arrangement state, the thickness dimension of the semiconductor device configured in this stacked arrangement state is smaller than the sum of the thickness dimensions of the plurality of semiconductor elements and the wiring board.
[0009]
The semiconductor device according to a third aspect of the present invention is the semiconductor device according to the first aspect, wherein the laminated thickness adjusting section is a recess having a predetermined depth dimension formed in one semiconductor element.
According to this configuration, when the plurality of semiconductor elements are stacked on the wiring substrate in a state where another semiconductor element is arranged in the recess of one semiconductor element, the thickness of the semiconductor device configured in this stacked arrangement is The height dimension is smaller than the sum of the thickness dimensions of the plurality of semiconductor elements and the wiring board.
[0010]
A semiconductor device according to a fourth aspect is a semiconductor device in which a plurality of semiconductor elements are mounted in a stacked positional relationship with respect to a semiconductor element provided with a wiring layer,
A concave portion serving as a laminated thickness adjusting section is formed in one of the semiconductor elements arranged in a laminated positional relationship.
According to this configuration, when the plurality of semiconductor elements are stacked on the semiconductor element provided with the wiring layer in a state in which another semiconductor element is arranged in the concave portion of one semiconductor element, the semiconductor device is configured in this stacked arrangement state. The thickness of the semiconductor device thus obtained is smaller than the sum of the thickness of the plurality of semiconductor elements and the thickness of the wiring board.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(1st Embodiment)
1 to 3 relate to a first embodiment of the present invention. FIG. 1 is a view for explaining a semiconductor device in which an opening is formed in a wiring board as a lamination thickness adjuster. FIG. FIG. 3 is a diagram illustrating an example of a configuration when the semiconductor device is stacked and arranged without providing a thickness adjusting unit. FIG. 3 is a diagram illustrating another example of a configuration of a semiconductor device.
[0012]
FIG. 3A is a diagram showing a semiconductor device in which an electrical connection portion through a through hole and flip-chip connection are combined, and FIG. 3B is a semiconductor device in which flip-chip connection and connection by wire bonding are combined. FIG. 3C is a diagram showing a semiconductor device in which a flip-chip connection provided with a wiring region is combined with a wire bonding connection. FIG. 3D is a semiconductor device provided with a wiring region provided by a flip-chip connection. FIG. 3E shows a semiconductor device in which connection by wire bonding and flip-chip connection are combined, and FIG. 3F shows a semiconductor device in which connection by wire bonding is performed. FIG. 3G shows a semiconductor device in which an optical member is arranged, and FIG. 3H shows three semiconductor elements provided for connection by wire bonding. It is a diagram showing a semiconductor device of a combination of a lip-chip connection.
[0013]
As shown in FIG. 1, a semiconductor device 1 of the present embodiment has a wiring board 2 having a wiring layer 2 a formed on one or both sides by a wiring pattern (not shown) on a surface portion, and a wiring layer 2 a of the wiring board 2. It is mainly constituted by a first semiconductor element 3 that is electrically connected and a second semiconductor element 4 that is electrically connected to the first semiconductor element 3. At a predetermined position of the wiring substrate 2, an opening 2b having a predetermined shape to be a lamination thickness adjusting portion in which the second semiconductor element 4 is arranged is formed.
[0014]
The electrical connection between the wiring layer 2a provided on the wiring board 2 and the first semiconductor element 3 and the electrical connection between the first semiconductor element 3 and the second semiconductor element 4 are made of, for example, gold or solder. This is achieved by flip-chip connection via the formed protruding electrodes 5. Then, the fixing of the flip chip connection portion is performed by the adhesive 9.
[0015]
The thickness of the wiring board 2 is A μm, the thickness of the first semiconductor element 3 is B μm, the thickness of the second semiconductor element 4 is, for example, C μm smaller than the thickness of the wiring board 2, Is set to D μm.
[0016]
The thickness dimension (X) of the semiconductor device 1 configured as described above will be described.
As shown in FIG. 2, the first semiconductor element 3 and the second semiconductor element 4 are arranged on both sides of a wiring board 2A having a thickness of A μm without an opening serving as a lamination thickness adjustment part in a lamination positional relationship. When the semiconductor device 20 is configured as described above, the thickness dimension (Y) at the lamination position is a value obtained by adding the thickness dimensions of the respective members. Reference numeral 6 denotes a wire formed of a thin metal wire for wire bonding.
That is, Y = (A + B + C + D) μm.
[0017]
On the other hand, in the semiconductor device 1 shown in FIG. 1 of the present embodiment, the second semiconductor element 4 whose thickness is set to C μm is arranged in the opening 2 b formed in the wiring board 2. You. Therefore, the thickness dimension of the second semiconductor element 4 is not reflected on the thickness dimension (X) at the stacking position of the semiconductor device 1.
[0018]
That is, X = (A + B + D) μm.
[0019]
Therefore, the thickness (X) of the semiconductor device 1 of the present embodiment at the stacking position is formed to be smaller than the thickness (Y) of the semiconductor device 20 at the stacking position.
[0020]
As described above, the opening is provided in the wiring board as the stack thickness adjusting section, and one of the semiconductor elements arranged in the stacking positional relationship is arranged in the opening, so that the semiconductor device is configured to be stacked and arranged. Can be made smaller than the total value of the plurality of semiconductor elements and the wiring board. This makes it possible to reduce the size and thickness of the semiconductor device having a laminated structure and achieve high-density mounting without complicating the structure of the wiring board.
[0021]
In the present embodiment, the electrical connection between the wiring board 2 and the first semiconductor element 3 and the electrical connection between the first semiconductor element 3 and the second semiconductor element 4 are made by flip-chip connection via the bump electrodes 5. However, the electrical connection is not limited to the flip-chip connection, and the following electrical connection may be performed to configure the semiconductor device. This makes it possible to reduce the size and thickness of the semiconductor device having a laminated structure and achieve high-density mounting.
[0022]
In the semiconductor device 1A shown in FIG. 3A, the first semiconductor element 3 is provided with a through-hole 3a extending from the front surface to the back surface of the element, and the through-hole 3a and the wiring layer 2a are formed via the bump electrode 5. Are electrically connected, and the first semiconductor element 3 and the second semiconductor element 4 are electrically connected by flip-chip connection via the protruding electrodes 5. Then, the bonding of the flip chip connection portion is performed by the adhesive 9.
[0023]
In the semiconductor device 1B shown in FIG. 3B, a through hole 3a is provided in the first semiconductor element 3, and the through hole 3a is electrically connected to the wiring layer 2a via the protruding electrode 5. The electrical connection between the second semiconductor element 4 and the wiring board 2 is performed by wire bonding via a wire 6 which is a thin metal wire.
[0024]
In the semiconductor device 1B shown in this figure, when connecting the through-hole 3a and the wiring layer 2a via the protruding electrode 5, electrical and mechanical connection is performed using ultrasonic waves, thermocompression bonding, soldering or the like. ing. Further, the first semiconductor element 3 and the second semiconductor element 4 are die-bonded with an insulating or conductive adhesive 9 in a back-to-back relationship. Then, the die bonding of the second semiconductor element 4 and the fixing of the first semiconductor element 3 and the wiring board 2 with the adhesive 9 are performed simultaneously, and thereafter, the second semiconductor element 4 is electrically connected to the wiring board 2 by wire bonding. ing.
[0025]
In the semiconductor device 1C shown in FIG. 3C, a wiring region 3b is provided in the first semiconductor element 3 from the element surface to the element side surface to the element back surface. Then, while the wiring region 3b and the wiring layer 2a are flip-chip connected via the protruding electrodes 5, the second semiconductor element 4 and the wiring substrate 2 are electrically connected by wire bonding via the wires 6. Is going.
[0026]
In addition, as shown in the semiconductor device 1D of FIG. 3D, the wiring region 3b is extended to the position where the second semiconductor element 4 is arranged, and the electrical connection between the wiring region 3b and the wiring layer 2a and the connection between the wiring region 3b and the wiring layer 2a are performed. The electrical connection between the first semiconductor element 3 and the second semiconductor element 4 may be both performed by flip-chip connection via the bump electrodes 5.
[0027]
In the semiconductor device 1E shown in FIG. 3E, the first semiconductor element 3 is electrically connected to the wiring layer 2a of the wiring board 2 by wire bonding via the wires 6, while the second semiconductor element 4 is connected to the first semiconductor element. The electrical connection with the element 3 is made by flip-chip connection.
[0028]
In the semiconductor device 1F shown in FIG. 3F, the electrical connection between the first semiconductor element 3 and the wiring layer 2a of the wiring board 2 and the electrical connection between the second semiconductor element 4 and the wiring layer 2a of the wiring board 2 are made. This is performed by wire bonding via the wire 6.
[0029]
In the semiconductor device 1F of this figure, the first semiconductor element 3 is die-bonded to the wiring board 2 with an insulating or conductive adhesive 9, and then the second semiconductor element 4 is dropped into the opening 2b. The second semiconductor element 4 is die-bonded to the back surface of the first semiconductor element 3 with an insulating or conductive adhesive 9. The first semiconductor element 3 and the second semiconductor element 4 are electrically connected to each other by wire bonding via wires 6.
[0030]
In the semiconductor device 1G shown in FIG. 3G, the optical member 7 is arranged on the first semiconductor element 3 or on at least one of the wiring board 2. At this time, when the first semiconductor element 3 is specifically an imaging element, the optical member 7 is an optical component such as a glass lid, a lens, a filter, and a prism. In the present embodiment, since the electrical connection between the second semiconductor element 4 and the wiring layer 2a of the wiring board 2 is performed by wire bonding via the wire 6, the wire 6 comes into contact with the optical member 7. In order to prevent this, the wiring board 2 is provided with a step 2c having a predetermined height for preventing contact.
[0031]
In the semiconductor device 1H shown in FIG. 3H, the third semiconductor element 8 is arranged on the first semiconductor element 3, and the optical member 7 is arranged on the wiring board 2 having the step 2c. Then, the first semiconductor element 3 is electrically connected to the wiring layer 2a of the wiring board 2 by flip-chip connection, and the third semiconductor element 8 is electrically connected to the wiring layer 2a of the wiring board 2 via the wire 6. Wire bonding.
[0032]
It should be noted that the semiconductor device 1H of this drawing has a three-chip configuration using three semiconductor elements, and the three chips are formed in a stack structure from the surface of the wiring board. After the first semiconductor element 3 is electrically connected to the wiring board 2 by flip-chip connection, the second semiconductor element 4 is die-bonded to the back surface of the first semiconductor element 3 with an adhesive 9. At this time, the adhesive 9 also serves to fix the flip chip connection portion of the first semiconductor element 3. Then, the second semiconductor element 4 and the wiring board 2 are electrically connected by wire bonding via the wires 6, and the third semiconductor element 8 is stacked on the upper surface of the first semiconductor element 3 by die bonding. The third semiconductor element 8 is electrically connected to the wiring board 2 by wire bonding via the wires 6.
Further, a three-chip configuration may be adopted by forming a stack structure from the back surface of the wiring board.
[0033]
(2nd Embodiment) ◎
4 to 7 relate to a second embodiment of the present invention. FIG. 4 is a view for explaining a semiconductor device in which a concave portion is provided in a semiconductor element as a laminated thickness adjusting portion. FIG. FIG. 6 is a diagram illustrating an example of a configuration in which components are stacked and arranged without providing an adjustment unit, FIG. 6 is a diagram illustrating a semiconductor device having another configuration, and FIG. 7 is a diagram illustrating a semiconductor device having another configuration.
FIG. 4A is a diagram illustrating a semiconductor device in which an opening serving as a laminated thickness adjusting unit is provided in a wiring substrate, and FIG. 4B is a diagram illustrating a semiconductor device in which a laminated thickness adjusting unit is not formed. FIG. 4 is a diagram illustrating a semiconductor device in which semiconductor elements are arranged in a stacked positional relationship.
As shown in FIG. 4A, a semiconductor device 10 of the present embodiment includes a wiring board 2 having a thickness of A μm provided with a wiring layer 2a and an opening 2b by a wiring pattern (not shown) on the surface, for example. The first semiconductor element 11 having a thickness of E μm electrically connected to the wiring layer 2a of the wiring board 2 via the wire 6 and electrically connected to the wiring layer 2a of the wiring board 2 by the wire bonding via the wire 6. And a second semiconductor element 12 having a thickness of F μm.
[0034]
At a predetermined position of the first semiconductor element 11, a concave portion 11a having a depth dimension of a predetermined dimension b μm serving as a lamination thickness adjusting section to which the second semiconductor element 12 is die-bonded by the adhesive 9 is formed by, for example, etching. ing.
[0035]
The thickness dimension of the semiconductor device 10 configured as described above will be described.
First, as shown in FIG. 5, the first semiconductor element 11 and the second semiconductor are arranged on both sides of a wiring board 2A having a thickness of A μm without an opening and a recess serving as a lamination thickness adjusting section in a lamination positional relationship. When the semiconductor device 20A is configured by disposing the elements 12, the thickness dimension (YA) at the lamination position is a value obtained by adding the thickness dimensions of the respective members.
[0036]
That is, YA = (A + E + F) μm.
[0037]
On the other hand, in the semiconductor device 10 of the present embodiment, as shown in FIG. 4A, the depth dimension in which the second semiconductor element 12 having the thickness dimension of F μm is formed in the first semiconductor element 11. Are fixed to the bottom surface of the recess 11a of b μm, and are disposed in the opening 2b in this state.
[0038]
Therefore, the second semiconductor element 12 fixed to the recess 11a of the first semiconductor element 11 is arranged without protruding from the opening 2b. As a result, the thickness dimension of the second semiconductor element 12 is not reflected on the thickness dimension (hereinafter, referred to as XA) of the stacked positional relationship of the semiconductor device 10.
That is, XA = (A + E) μm.
Thus, the thickness (XA) at the stacking position of the semiconductor device 10 of the present embodiment is formed smaller than the thickness (YA) at the stacking position of the semiconductor device 20A.
[0039]
As described above, a concave portion having a predetermined depth is provided as a laminated thickness adjusting portion in one of the semiconductor elements configured in the laminated positional relationship, and the other semiconductor element is fixedly disposed on the bottom surface of the concave portion, thereby achieving a laminated arrangement. The thickness dimension of the semiconductor device configured in the state can be made smaller than the total value of the plurality of semiconductor elements and the wiring board.
[0040]
Note that, even in the case where the opening 2b is not provided in the wiring board 2 as shown in FIG. 4B, a recess 11a having a predetermined depth is formed in the first semiconductor element 11, and the recess 11a is formed. When the semiconductor device 10A is configured by disposing the second semiconductor element 12 therein, the thickness F of the second semiconductor element 12 is not reflected in the thickness (XB) at the lamination position of the semiconductor device 10A. The thickness dimension (XB) of the semiconductor device 10A at the lamination position can be made smaller than the value obtained by adding the plurality of semiconductor elements and the wiring board and the like.
[0041]
Further, instead of mounting a plurality of semiconductor elements on a wiring board to form a semiconductor device, as shown in FIG. 6, at least one surface side of the third semiconductor element 13 is formed of an insulating resin layer using, for example, a polyimide resin or the like. The rewiring layer 14 is provided. Then, the second semiconductor element 12 and the third semiconductor element 13 are electrically and mechanically connected via the protruding electrodes 5, and the second semiconductor element 12 is disposed in the recess 11 a of the first semiconductor element 11. In this state, the first semiconductor element 11 is electrically and mechanically connected to the third semiconductor element 13 via the protruding electrode 5 to form a semiconductor device 10B.
Thus, the thickness dimension of the semiconductor device 10B at the lamination position can be made smaller than the total value of the plurality of semiconductor elements and the wiring board and the like.
[0042]
Note that the first semiconductor element 11 and the third semiconductor element 13 may be connected to each other after the second semiconductor element 12 is mounted on the third semiconductor element 13.
[0043]
In the first and second embodiments, for example, a redistribution layer 14 is formed in advance on the second semiconductor elements 4 and 12 as shown in FIG. The semiconductor device 10C may be configured by mounting the peripheral circuit components 15 such as a ceramic capacitor, a resistor, an inductor, and an oscillator. This makes it possible to reduce the size and thickness of the semiconductor device, reduce the number of assembly steps, and reduce the number of parts.
[0044]
It should be noted that the present invention is not limited to only the above-described embodiments, and various modifications can be made without departing from the spirit of the invention.
[0045]
[Appendix]
According to the above-described embodiment of the present invention as described in detail above, the following configuration can be obtained.
[0046]
(1) In a semiconductor device in which a plurality of semiconductor elements are mounted in a stacked positional relationship with respect to a wiring board provided with a wiring layer,
At least one of the semiconductor elements or the wiring board provided with the wiring layer arranged in the stacking positional relationship, the thickness of the actual stacked state, the thickness of the plurality of semiconductor elements and the thickness of the wiring board, A semiconductor device provided with a lamination thickness adjustment unit that makes the sum smaller than the sum.
[0047]
(2) The semiconductor device according to Supplementary Note 1, wherein the stacked thickness adjusting unit is an opening provided at a predetermined position of the wiring board.
[0048]
(3) The semiconductor device according to Supplementary Note 1, wherein the lamination thickness adjusting section is a recess formed in one semiconductor element.
[0049]
(4) In a semiconductor device in which a plurality of semiconductor elements are mounted in a stacked positional relationship with respect to a semiconductor element provided with a wiring layer,
A semiconductor device in which a concave portion serving as a laminated thickness adjusting portion is formed in one of semiconductor elements arranged in a laminated positional relationship.
[0050]
(5) The semiconductor device according to any one of supplementary notes 1 to 4, wherein the electrical connection between the semiconductor element and the wiring board or the electrical connection between the semiconductors is performed by a lip-chip connection.
[0051]
(6) The semiconductor device according to any one of supplementary notes 1 to 4, wherein electrical connection between the semiconductor element and the wiring board is performed by wire bonding connection.
[0052]
(7) The semiconductor device according to any one of supplementary notes 1 to 5, wherein a through-hole is provided in the semiconductor element from the front surface of the semiconductor element to the back surface of the semiconductor element, and electrical connection between the wiring substrate and the semiconductor element is performed via a protruding electrode. 13. The semiconductor device according to claim 1.
[0053]
(8) The semiconductor element is provided with a wiring region extending from the front surface of the semiconductor element to the back surface of the semiconductor element through the side surface of the semiconductor element, and electrically connecting the wiring substrate to the semiconductor element via the protruding electrode. 6. The semiconductor device according to any of supplementary notes 5.
[0054]
(9) The semiconductor device according to any one of supplementary notes 5 to 8, wherein an optical component or a peripheral circuit component is mounted on the semiconductor element or the wiring board.
[0055]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a semiconductor device having a high-density stacked structure by arranging a thinner layer in a stacked state when arranging wiring substrates or semiconductor elements in a stacked positional relationship. Can be.
[Brief description of the drawings]
FIGS. 1 to 3 relate to a first embodiment of the present invention, and FIG. 1 is a view for explaining a semiconductor device in which an opening is formed in a wiring board as a laminated thickness adjusting section. FIG. 3 is a diagram illustrating a configuration example when a semiconductor element is stacked without providing a stack thickness adjustment unit. FIG. 3 is a diagram illustrating another configuration example of a semiconductor device. FIG. FIG. 4 is a diagram illustrating a semiconductor device in which a recess is formed in a semiconductor element as a lamination thickness adjusting unit. FIG. 5 is a diagram illustrating a lamination without providing a lamination thickness adjusting unit in a wiring board and a semiconductor element. FIG. 6 illustrates a configuration example when arranged. FIG. 6 illustrates a semiconductor device having another configuration. FIG. 7 illustrates a semiconductor device having another configuration.
DESCRIPTION OF SYMBOLS 1 ... Semiconductor device 2 ... Wiring board 2a ... Wiring layer 2b ... Opening 3 ... 1st semiconductor element 4 ... 2nd semiconductor element

Claims (4)

配線層を設けた配線基板に対して、複数の半導体素子を積層位置関係に搭載した半導体装置において、
積層位置関係で配置される半導体素子の1つ又は配線層を設けた配線基板の少なくとも一方に、実際の積層状態の厚さ寸法を、複数の半導体素子の厚み寸法と配線基板の厚み寸法とを合算した値よりも小さくさせる積層厚さ調整部を設けたことを特徴とする半導体装置。
In a semiconductor device in which a plurality of semiconductor elements are mounted in a stacked positional relationship with respect to a wiring board provided with a wiring layer,
At least one of the semiconductor elements or the wiring board provided with the wiring layer arranged in the stacking positional relationship, the thickness of the actual stacked state, the thickness of the plurality of semiconductor elements and the thickness of the wiring board, A semiconductor device provided with a lamination thickness adjusting section for making the lamination thickness smaller than the sum.
前記積層厚さ調整部は、前記配線基板の所定位置に設けた開口部であることを特徴とする請求項1に記載の半導体装置。2. The semiconductor device according to claim 1, wherein the lamination thickness adjustment unit is an opening provided at a predetermined position on the wiring board. 3. 前記積層厚さ調整部は、一半導体素子に形成した所定深さ寸法の凹部であることを特徴とする請求項1に記載の半導体装置。2. The semiconductor device according to claim 1, wherein the stacked thickness adjusting section is a recess having a predetermined depth dimension formed in one semiconductor element. 3. 配線層を設けた半導体素子に対して、複数の半導体素子を積層位置関係に搭載した半導体装置において、
積層位置関係で配置される半導体素子の1つに積層厚さ調整部となる凹部を形成したことを特徴とする半導体装置。
In a semiconductor device in which a plurality of semiconductor elements are mounted in a stacked positional relationship with respect to a semiconductor element provided with a wiring layer,
A semiconductor device, wherein a concave portion serving as a laminated thickness adjusting portion is formed in one of semiconductor elements arranged in a laminated positional relationship.
JP2003104488A 2003-04-08 2003-04-08 Semiconductor device Pending JP2004311785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003104488A JP2004311785A (en) 2003-04-08 2003-04-08 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003104488A JP2004311785A (en) 2003-04-08 2003-04-08 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2004311785A true JP2004311785A (en) 2004-11-04

Family

ID=33467300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003104488A Pending JP2004311785A (en) 2003-04-08 2003-04-08 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2004311785A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103680A (en) * 2005-10-05 2007-04-19 Matsushita Electric Ind Co Ltd Semiconductor device
JP2009229349A (en) * 2008-03-25 2009-10-08 Oki Semiconductor Co Ltd Acceleration sensor package

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103680A (en) * 2005-10-05 2007-04-19 Matsushita Electric Ind Co Ltd Semiconductor device
JP4716836B2 (en) * 2005-10-05 2011-07-06 パナソニック株式会社 Semiconductor device
JP2009229349A (en) * 2008-03-25 2009-10-08 Oki Semiconductor Co Ltd Acceleration sensor package

Similar Documents

Publication Publication Date Title
KR100298162B1 (en) Resin-encapsulated semiconductor device
US7626211B2 (en) LED reflecting plate and LED device
JP3879351B2 (en) Manufacturing method of semiconductor chip
WO2011102561A1 (en) Multilayer printed circuit board and manufacturing method therefor
US7800224B2 (en) Power device package
JP2001217337A (en) Semiconductor device and manufacturing method therefor
JP2001118877A (en) Semiconductor device and manufacturing method therefor
JPH07169796A (en) Semiconductor device and its manufacture
JP2005150748A (en) Semiconductor chip package having decoupling capacitor and method for manufacturing same
KR100606295B1 (en) Circuit module
JP2002198463A (en) Chip size package and its manufacturing method
JP5173758B2 (en) Manufacturing method of semiconductor package
JP2004158595A (en) Circuit device, circuit module, and method for manufacturing circuit device
JP2002217354A (en) Semiconductor device
JP2002299462A (en) Semiconductor device
CN114695144A (en) Board-level system-in-package method and package structure
JP3320932B2 (en) Chip package mount, circuit board on which chip package is mounted, and method of forming circuit board
JP2008103725A (en) Flexible film, semiconductor package using the flexible film and method for manufacturing the semiconductor package
JP2004311785A (en) Semiconductor device
WO2017038264A1 (en) Module and method for manufacturing same
JP2004063804A (en) Semiconductor device, stacked type semiconductor device and manufacturing method thereof
CN114823372A (en) Board-level system-in-package method and package structure
JP2003110945A (en) Camera module
JP2004228142A (en) Semiconductor element and multi-chip package
JP4166097B2 (en) Hybrid integrated circuit device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A977 Report on retrieval

Effective date: 20071211

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20071218

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080415

Free format text: JAPANESE INTERMEDIATE CODE: A02