JP2004311689A - Method and apparatus for substrate treatment - Google Patents

Method and apparatus for substrate treatment Download PDF

Info

Publication number
JP2004311689A
JP2004311689A JP2003102782A JP2003102782A JP2004311689A JP 2004311689 A JP2004311689 A JP 2004311689A JP 2003102782 A JP2003102782 A JP 2003102782A JP 2003102782 A JP2003102782 A JP 2003102782A JP 2004311689 A JP2004311689 A JP 2004311689A
Authority
JP
Japan
Prior art keywords
processing
gas
container
substrate
processing container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003102782A
Other languages
Japanese (ja)
Other versions
JP4074213B2 (en
Inventor
Junichi Kitagawa
淳一 北川
Shingo Furui
真悟 古井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2003102782A priority Critical patent/JP4074213B2/en
Publication of JP2004311689A publication Critical patent/JP2004311689A/en
Application granted granted Critical
Publication of JP4074213B2 publication Critical patent/JP4074213B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the amount of a treatment gas used and improve the uniformity of the treatment in film formation conducted under a reduced pressure. <P>SOLUTION: The prescribed amount of the treatment gas is stored in gas storages 23a and 23b in advance, and when a wafer W is treated, exhausting from a treatment container 2 is suspended and the treatment container 2 is filled with the prescribed amount of the treatment gas. Then, supply of the treatment gas is stopped, and with the treatment container 2 closed tightly, a film is formed on the wafer W by plasma using the treatment gas. Unlike the conventional treatment wherein a treatment is carried out with the treatment gas being kept flowing, a gas flow profile is never biased and a uniform treatment is available in a plane of the wafer. Moreover, a desired film can be formed with a minimum amount of the treatment gas. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は,基板の処理方法及び基板の処理装置に関する。
【0002】
【従来の技術】
例えば,半導体デバイスの製造プロセスにおいては,半導体ウェハ(以下,「ウェハ」という)の表面に,減圧下で,導電性の膜や絶縁膜を形成する成膜処理や,ウェハ上に形成された膜を食刻するエッチング処理などが行われている。
【0003】
例えば上記成膜処理は,密閉可能な処理容器を備えたプラズマ処理装置で行われている。成膜処理では,従来より減圧された処理容器内にウェハを収容した後,処理容器内に処理ガスを供給すると共に,処理容器内を排気し,処理容器内に処理ガスのガス流を形成していた。そして,ガス流を形成した状態で,処理容器内に処理ガスのプラズマを発生させて,当該プラズマによってウェハの表面に膜を堆積させて膜を形成していた(例えば,特許文献1参照。)。
【0004】
【特許文献1】
特開2001−156004号公報
【0005】
【発明が解決しようとする課題】
しかしながら,上記成膜処理によれば,常時処理容器内に処理ガスのガス流が形成されているので,処理容器の形状などに起因して,処理容器内には,処理ガスの偏った圧力分布や流速分布が形成される。この結果,ウェハの表面における膜の堆積は,ウェハ面内において均一に行われず,均一な成膜処理が行われていなかった。特に,近年ウェハが大口径化するに従い,ウェハ面内における処理の不均一性が顕著になっており,これを改善することが早急に望まれている。
【0006】
また,上記成膜処理では,処理容器内に導入された処理ガスの多くは,処理容器内から直ちに排気されるので,実際に成膜処理に寄与する処理ガスは,総導入量の一部に過ぎなかった。このように無駄に導入される処理ガスが多く,処理ガスの消費量が増大していた。
【0007】
上記成膜処理では,処理容器内に処理ガスを供給しながら処理容器内を所定の減圧度に維持する必要があるため,処理ガスの供給流量を厳密に制御する必要があった。このため,処理ガスの給気系には,複雑な流量制御機器が必要となり,プラズマ処理装置の全体の構造が複雑化,或いは大型化していた。
【0008】
さらに,上記成膜処理では,ウェハ上に常時新しい処理ガスが供給され続けるので,時間が経過するにつれてウェハ上の膜の膜厚が厚くなっていく。したがって,上記成膜処理では,ウェハ上に所望の厚みの膜を形成するために,処理ガスの供給時間を制御していた。しかしながら,実際には,ガス流の状態は不安定で,所定時間内にウェハに供給されるガス量が毎回少しずつ異なるので,ウェハ上に形成される膜の膜厚を厳格に制御することは難しかった。また,厳格な制御を行おうとすると,それによって処理ガスの給気系が複雑化していた。
【0009】
本発明は,かかる点に鑑みてなされたものであり,より単純化した装置により,必要最小限の処理ガスを用いて,より均一な成膜処理などの処理を行うことができるウェハなどの基板の処理方法及びその処理装置を提供することをその目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するため,本発明の基板の処理方法は,処理容器内に処理ガスを供給して,基板を処理する処理方法であって,所定圧力に減圧された処理容器内に基板を収容する工程と,その後,前記処理容器内に予め設定された所定量の処理ガスを充填する工程と,前記所定量の処理ガスを充填した状態で,前記処理容器内を密閉し,この状態で前記処理ガスによって基板の処理を行う工程と,処理が終わった後に,処理容器内を排気する工程と,を有することを特徴とする。なお,処理ガスには,基板と直接反応して基板を処理するもの,エネルギを得て変化した後に基板と直接反応して基板を処理するもの,例えばキャリアガスのように基板と直接反応せずに反応性のガスを運搬するものも含まれる。
【0011】
この発明によれば,処理容器内の処理ガスを用いた基板の処理が気流の無い状態で行われる。それ故,処理容器内に処理ガスの偏った分布ができず,基板面内に処理ガスが均等に供給されるので,基板面内において均一な処理が行われる。また,予め設定された必要十分のガス量で処理が行われるので,処理ガスの消費量を最小限に抑えることができる。また,予め定まっている量の処理ガスが処理容器内に供給されるので,例えばその量の処理ガスを貯留容器に貯留しておき,その貯留容器から適宜処理容器に処理ガスを移すことで,処理容器内に処理ガスを供給できる。したがって,従来のような複雑な流量制御機器が必要なく,基板処理の行われる装置の構成が単純化できる。さらに,処理容器内には,予め設定された適正な量の処理ガスが供給されるので,処理時間を厳密に制御しなくとも過度の処理が行われることがない。この点においても,複雑な時間制御機構が必要なく,装置の単純化が図られる。
【0012】
本発明の基板の処理方法は,前記所定量の処理ガスの充填によって処理容器内が予め設定された処理圧力になるように,前記処理ガスの充填前における前記処理容器内の前記所定圧力は設定されていてもよい。かかる場合,処理ガスの充填しても,基板の処理に適した所望の処理圧力で基板の処理を行うことができる。
【0013】
本発明の基板の処理方法において,前記処理容器内に,複数種類の処理ガスを充填する場合には,前記複数種類の処理ガスは混合容器において混合してから前記処理容器内に充填されるようにしてもよい。かかる場合,複数種類の処理ガスが均等に混合されてから,例えば処理ガスを用いた基板の処理を行うことができるので,基板面内において斑のない処理が行われる。
【0014】
また,本発明の基板の処理方法において,前記処理容器内に,複数種類の処理ガスを充填する場合には,前記複数種類の処理ガスを前記処理容器に充填した後に,当該処理ガスを処理容器内で混合する工程を有していてもよい。かかる場合も,複数種類の処理ガスが十分混合された後に,処理ガスによる基板処理を行うことができるので,基板の処理が適正に行われる。
【0015】
前記処理容器と前記処理容器内に収容された基板との間に温度差をつけるように,少なくとも処理容器又は基板のいずれか一方を加熱又は冷却するようにしてもよい。こうすることによって,処理容器内に僅かな対流が生じる。この対流によって,基板表面上の処理ガスが攪拌され,例えば基板表面上の反応前後のガスが入れ替えられて,処理ガスを用いた基板処理が好適に行われる。
【0016】
前記基板の処理方法における前記処理容器で行われる基板の処理は,前記処理容器内に充填された処理ガスのプラズマを発生させて基板を処理するプラズマ処理であってもよく,基板に膜を形成する成膜処理であってもよい。
【0017】
本発明の基板の処理装置は,密閉可能な処理容器内に処理ガスを供給して,処理容器内の基板を減圧状態で処理する処理装置であって,処理容器内に処理ガスを供給するためのガス給気機構と,処理容器内を減圧及び排気するための排気機構と,前記排気機構による排気を停止した状態で,前記ガス給気機構によって前記処理容器内に予め設定された所定量の処理ガスを供給し,その後ガス給気機構による給気を停止させて前記処理容器内を密閉するように,前記排気機構と前記ガス給気機構を制御する制御部と,を備えたことを特徴とする。
【0018】
この発明によれば,処理容器内に所定量の処理ガスが供給されて密閉されるので,処理容器内にガス流が無い状態で基板の処理を行うことができる。したがって,従来のように処理容器内に処理ガスの偏った分布ができず,基板の処理が基板面内において均一に行われる。処理ガスを垂れ流しにしないので,処理ガスの消費量を低減できる。予め用意した所定量の処理ガスを処理容器内に入れることができるので,流量制御機器が必要なく,装置を単純化できる。過不足のない適正な量の処理ガスが供給されるので,従来のように処理時間を厳密に制御しなくても,基板の所望の処理が実現できる。
【0019】
前記ガス給気機構は,前記処理ガスのガス供給源と,前記ガス供給源に連通し,前記ガス供給源から供給される前記所定量の処理ガスを貯留するガス貯留容器と,当該ガス貯留容器の処理ガスを前記処理容器に供給するためのガス供給管と,前記ガス供給管に設けられた給気バルブと,を備え,前記ガス供給機構は,前記給気バルブを開放することによって,前記ガス貯留容器に貯留された前記所定量の処理ガスが前記処理容器内に供給されるように構成されていてもよい。かかる場合,予め所定量の処理ガスをガス貯留容器に貯留しておき,基板の処理時に当該ガス貯留容器から処理容器内に処理ガスを供給できる。こうすることによって,処理容器内に所定量の処理ガスを充填し,処理ガスを充填した状態で基板の処理を行うことができる。
【0020】
本発明の基板の処理装置は,密閉可能な処理容器内に処理ガスを供給して,処理容器内の基板を減圧状態で処理する処理装置であって,前記処理ガスのガス供給源と,前記ガス供給源に連通し,前記ガス供給源から供給される予め設定された所定量の処理ガスを貯留するガス貯留容器と,当該ガス貯留容器の処理ガスを前記処理容器に供給するためのガス供給管と,を備え,前記ガス供給管には,給気バルブが設けられており,前記給気バルブを開放することによって,前記ガス貯留容器に貯留された前記所定量の処理ガスが前記処理容器内に充填されるように構成されていることを特徴とする。
【0021】
この発明によれば,ガス貯留容器に所定量の処理ガスを貯留し,その所定量の処理ガスを処理容器内に充填できる。したがって,処理容器内に処理ガスを供給するのに,従来のような流量制御機器が必要なく,装置の単純化が図られる。また,所定量の処理ガスが充填された処理容器内では,当該処理ガスを充填した状態で基板の処理を行うことができる。かかる場合,処理容器内に従来のようなガス流が無い状態で基板の処理が行われるので,処理ガスの偏った分布がなく,基板面内において均一な処理を行うことができる。また,所定量の処理ガスで基板の処理が行われるので,処理ガスを流し続けていた従来に比べて処理ガスの消費量を低減できる。さらに,処理容器内に適正量の処理ガスを供給することによって,所望の処理が実現される。
【0022】
前記基板の処理装置は,前記ガス供給源から前記ガス貯留容器に処理ガスを供給するためのガス配管と,当該ガス配管に設けられた配管バルブと,前記ガス貯留容器内の圧力を測定する圧力計と,前記圧力計の測定結果が出力され,当該測定結果に基づいて前記配管バルブの開閉を制御するバルブ制御部と,を備えていてもよい。かかる場合,圧力計の計測値を見ながらバルブを制御することによって,ガス貯留容器に所定量の処理ガスを貯留できる。
【0023】
前記処理ガスは複数種類あり,当該処理ガスの種類毎に前記ガス貯留容器が備えられており,前記各ガス貯留容器からの処理ガスが前記処理容器に供給される前に,それらの処理ガスを混合する混合容器を備えていてもよい。かかる場合,複数種類の処理ガスが均等に混合されてから処理容器に供給されるので,処理容器における処理ガスを用いた処理が適正に行われる。なお,前記基板の処理装置は,前記処理容器と当該処理容器内の基板との間に温度差をつけるための温度調整部材をさらに備えていてもよい。この場合,処理容器内に僅かな対流が生じさせ,処理容器内の処理ガスを攪拌することができる。この結果,例えば基板表面上において反応前後のガスが入れ替えられて,処理ガスを用いた基板処理が効率的に行われる。
【0024】
【発明の実施の形態】
以下,本発明の実施の形態について説明する。図1は,本発明の基板の処理方法が実施される基板の処理装置としてのプラズマ処理装置1の縦断面の様子を模式的に示している。
【0025】
プラズマ処理装置1は,例えばアルミニウム合金により形成されている。プラズマ処理装置1は,天井部に開口部を備えた略円筒状の処理容器2を備えている。この処理容器2は接地されている。処理容器2の底部には,例えばウェハWを載置するためのサセプタ3が設けられている。このサセプタ3は,処理容器2の外部に設けられた交流電源4からの給電によってサセプタ3内のヒータ5が発熱し,サセプタ3上のウェハWを所定の温度に加熱できる。
【0026】
処理容器2の底部には,処理容器2内を排気するための排気口7が,例えば二箇所に設けられている。排気口7には,ターボ分子ポンプなどの排気装置8に通じる排気管9が接続されている。排気管9には,排気を一時的に動停止させるための排気バルブ10が設けられている。この排気口7からの排気により,処理容器2内を所定の圧力に減圧できる。なお,本実施の形態においては,排気口7,排気装置8,排気管9,排気バルブ10により排気機構が構成されている。
【0027】
処理容器2の側壁の上部には,処理容器2内に処理ガスを供給するためのガス供給口20が設けられている。ガス供給口20は,図2に示すように処理容器2の外部に設置された,例えば2つのガス供給源21a,21bに連通している。本実施の形態においては,ガス供給源21aに酸素ガスが封入され,ガス供給源21bには不活性ガスとしてのアルゴンガスが封入されている。したがって,処理容器2には,2種類の処理ガスとしての酸素ガスとアルゴンガスが供給される。
【0028】
ガス供給源21aは,例えばガス配管22aを通じてガス貯留容器23aに接続されている。ガス配管22aには,配管バルブとしてのバルブ24aが設けられており,バルブ24aを開放することによってガス供給源21aの酸素ガスをガス貯留容器23aに供給できる。ガス供給源21bもガス供給源21aと同様に,ガス配管22bを通じてガス貯留容器23bに接続されており,ガス配管22bには,配管バルブとしてのバルブ24bが設けられている。
【0029】
各ガス貯留容器23a,23bには,例えば処理容器2のガス供給口20に通じるガス供給管25が接続されている。ガス供給管25は,各ガス貯留容器23a,23bから処理容器2に向かう途中で合流しており,各ガス貯留容器23a,23bから流出した種類の異なる処理ガスが途中で混合されて処理容器2内に導入されるようになっている。ガス供給管25の合流部の下流側には,給気バルブ26が設けられており,この給気バルブ26を開放することによってガス貯留容器23a,23bの処理ガスが処理容器2内に供給される。
【0030】
上記ガス貯留容器23a,23bは,密閉可能に構成された所定容積の貯留室を有している。ガス貯留容器23a,23bには,それぞれ貯留室内の圧力を計測する圧力計27a,27bが設けられている。圧力計27a,27bの測定結果は,例えばバルブ24a,24bの開閉を制御するバルブ制御部としての制御部28に出力できる。制御部28は,結果結果に基づいてバルブ24a,24bの開閉を制御して,各ガス貯留容器23a,23b内に所定圧の処理ガスを貯留できる。つまり,所定容積を有するガス貯留容器23a,23bに所定圧の処理ガスが貯留されるので,ガス貯留容器23a,23bには,所定量の処理ガスが貯留できる。なお,本実施の形態においては,ガス供給源21a,21b,ガス配管22a,22b,ガス貯留容器23a,23b,バルブ24a,24b,ガス供給管25,給気バルブ26によりガス給気機構が構成されている。
【0031】
例えば制御部28は,給気バルブ26や排気バルブ10の開閉も制御できる。したがって,制御部28によって処理容器2内への処理ガスの供給,処理容器2からの排気のON・OFFを制御できる。
【0032】
ところで,図1に示すように処理容器2の上部の開口部には,処理容器2内の気密性を確保するためのシール材30を介して,たとえば石英ガラスからなる誘電体窓31が設けられている。この誘電体窓31によって処理容器2が閉鎖され,処理容器2内に密閉可能な処理室Sが形成される。
【0033】
誘電体窓31の上方には,アンテナ部材32が設けられている。アンテナ部材32は,例えば最下面に位置するラジアルスロットアンテナ33と,その上部に位置する遅波板34と,遅波板34を覆って遅波板34を保護するとともにこれを冷却するアンテナカバー35によって構成されている。
【0034】
ラジアルスロットアンテナ33は,導電性を有する材質,例えば銅からなる薄い円板状に形成されている。ラジアルスロットアンテナ33には,おりなす角度が略直角の一対のスリットが,同心円状に整列して形成されている。
【0035】
遅波板34の中心には,導電性を有する材質,例えば金属からなる円錐形のバンプ36が配置されている。このバンプ36は,同軸導波管37と電気的に導通している。同軸導波管37は,マイクロ波供給装置38で発生させた,例えば2.45GHzのマイクロ波を,前記アンテナ部材32に伝搬させるように構成されている。
【0036】
プラズマ処理装置1は,以上のように構成されており,次にこのプラズマ処理装置1で実施される本発明のウェハWの処理方法を,ウェハW上にシリコン酸化膜(SiO膜)を形成する場合を例にとって説明する。図3は,当該ウェハ処理のプロセスの概略を示すフロー図である。
【0037】
先ず,ウェハWが処理容器2内に搬入される前に,排気バルブ10が開放された状態で排気装置8が作動し,処理容器2内が排気されて,処理容器2内が所定圧力,例えば約66Pa(0.5Torr)に減圧される(図3中の工程S)。この時の処理容器2内の圧力は,例えば後にウェハWが搬入され,その後所定量の処理ガスが供給された後に,処理容器2内が成膜のためのプラズマ処理に適した圧力になるように,逆算されて設定される。サセプタ3は,ヒータ5により例えば400℃に昇温される。
【0038】
また,処理容器2の外部では,給気バルブ26が閉じられた状態で,各ガス供給源21a,21bから各ガス貯留容器23a,23bに酸素ガスとアルゴンガスがそれぞれ供給される。この際,圧力計27a,27bにより,ガスの貯留量が制御され,ガス貯留容器23aに,所定量,例えばMmolの酸素ガスが供給され,ガス貯留容器23bにMmolのアルゴンガスが供給される。なお,これらの酸素ガスとアルゴンガスの物質量M,Mは,例えばウェハW上に形成されるべきシリコン酸化膜の膜厚から,ウェハW上のシリコン膜と反応すべき処理ガスの分子総数を逆算し,当該分子総数から求めることができる。また,ガス貯留容器23a,23bに前記物質量M,Mを貯留するための圧力は,気体の状態方程式により,ガス貯留容器23a,23b内の容積,温度,処理ガスの分子量などから算出できる。
【0039】
そして,ウェハWの搬入準備が整うと,例えば排気バルブ10が閉鎖され,処理容器2内の排気が停止された状態で,処理容器2内にウェハWが搬入される(図3中の工程S)。搬入されたウェハWは,サセプタ3上に載置され,400℃に加熱される。ウェハWがサセプタ3上に載置されると,給気バルブ26が開放され,ガス貯留容器23a,23bに貯留されている所定量の酸素ガスとアルゴンガスが処理容器2内に供給される。こうして,処理容器2内には,図4に示すように所定量の酸素ガスとアルゴンガスが充填される(図3中の工程S)。この酸素ガスとアルゴンガスとの充填により,処理容器2内の圧力が上昇し,処理容器2内は,次に行われるプラズマ処理に適した,例えば133Pa(1Torr)の圧力になる。
【0040】
ガス貯留容器23a,23b内の総ての酸素ガスとアルゴンガスが処理容器2内に充填されると,給気バルブ26が閉じられ,処理容器2内が密閉される(図3中の工程S)。
【0041】
その後,例えば酸素ガスとアルゴンガスが均等に混ざるまで,この状態が所定時間維持される。そして酸素ガスとアルゴンガスが均等に混ぜられると,マイクロ波供給装置38で発生されたマイクロ波がアンテナ部材32を通じて処理容器2内に伝搬される。このマイクロ波により,例えば処理容器2内の酸素ガスがプラズマ化される(図3中の工程S)。プラズマ化した酸素イオン(反応種)はウェハWの表面に供給され,ウェハW上のシリコン膜が酸化されて,ウェハW上にシリコン酸化膜が堆積される。
【0042】
そして,処理容器2内の総ての酸素ガスがプラズマ化され,ウェハW上に堆積されると,ウェハW上には,所望の膜厚のシリコン酸化膜が形成される。ウェハW上に所望のシリコン酸化膜が形成されると,例えば排気装置8が作動し,排気バルブ10が開放されて,処理容器2内が排気される(図3の工程S)。このとき,プラズマ処理装置1に隣接しウェハWが次に搬入される装置内の圧力に合わせて,処理容器2内は,例えば13.3Pa(0.1Torr)に減圧される。
【0043】
処理容器2内が搬出先の領域と同じ圧力に減圧されると,ウェハWが処理容器2から搬出されて(図3中の工程S),プラズマ処理装置1による一連の成膜処理が終了する。なお,処理容器2内は,次に搬入されるウェハに備えて,上述したように約66Pa(0.5Torr)の圧力に減圧される。
【0044】
以上の実施の形態によれば,予め設定された所定量の酸素ガス及びアルゴンガスを処理容器2内に導入し,その後処理容器2内を密閉するようにしたので,成膜中に処理容器2内にガス流が形成されない。この結果,処理容器2内に処理ガスの偏った分布ができず,ウェハ面内において処理ガスが均等に供給されて,ウェハW上に斑のない均一な膜が形成できる。また,処理容器2内に導入された処理ガスが効率よく成膜に寄与するので,処理ガスを垂れ流しにしていた従来に比べて処理ガスの消費量を著しく低減することができる。さらに,ガス貯留容器23a,23bに所定量の処理ガスを一旦溜めておいて,そこから処理容器2に流入させるようにしたので,流量を制御する複雑な機器が必要なく,装置の単純化が図られる。さらに,処理容器2内に供給された処理ガスの大部分が成膜処理に関与することから,ガス貯留容器23a,23bに貯留する処理ガス量を変えることによって,ウェハW上に形成される膜の膜厚の制御を容易に行うことができる。
【0045】
処理ガス導入前の処理容器2内の圧力を,処理ガスの導入による圧力上昇を見越して設定したので,その後行われるプラズマ処理を所望の圧力下で行うことができる。また,2種類の処理ガスが処理容器2内に導入されてからプラズマ処理が行われるまでに,処理ガスである酸素ガスとアルゴンガスが均等に混合し,安定する時間を設けたので,処理容器2内の酸素ガスとアルゴンガスの分布も偏りがなくなり,ウェハWの処理をさらに均一に行うことができる。
【0046】
なお,以上の実施の形態では,酸素ガスとアルゴンガスを処理容器2内において均等に混合させていたが,図5に示すようにガス貯留容器23a,23bより下流であって,処理容器2の上流側に混合容器50を設け,その混合容器50において酸素ガスとアルゴンガスを混合してもよい。かかる場合,例えば混合容器50と処理容器2を連通するガス供給管51には,給気バルブ52が設けられる。また,混合容器50と各ガス貯留容器23a,23bに連通するガス供給管53には,バルブ54が設けられる。そして,先ずバルブ54が開放され,各ガス貯留容器23a,23bの所定量の処理ガスが混合容器50に供給されて,当該混合容器50にて酸素ガスとアルゴンガスが混合される。その後,給気バルブ52が開放され,酸素ガスとアルゴンガスの混合ガスが処理容器2内に供給される。この場合,混合容器50において2種類の処理ガスが十分混ぜられるので,処理容器2における成膜処理が適正に行われる。また,2種類の処理ガスが処理容器2に供給された時には,既に処理ガスが十分に混合されているので,例えば処理ガス供給後直ちに成膜処理を行うこともできる。
【0047】
以上の実施の形態で記載したウェハ処理において,処理容器2内に充填された処理ガスを攪拌するために,ウェハWと処理容器2との間に温度差を設けるようにしてもよい。かかる場合,例えば図6に示すように処理容器2の側壁内に,給電によって発熱又は吸熱する温度調整部材としてのペルチェ素子60を内蔵するようにしてもよい。そして,ウェハ処理の際には,密閉された処理容器2内に弱い対流が形成されるよう,処理容器2とウェハWとの温度差を可能な限り大きく取るようにする。本実施の形態では,処理容器2の温度を20℃,ウェハWの温度を400℃に調整した。こうすることによって,密閉された処理容器2内に弱い対流が形成され,この対流によって処理ガスのプラズマ(反応種)が攪拌される。この結果,例えば処理容器2内の処理ガスのプラズマが効率よくウェハWに供給され,成膜が短時間で行われる。ウェハWの処理が常温で行われる場合には,処理容器2とウェハWとの温度差が無くなるため,この方法はかかる場合に特に有効である。なお,前記温度調整部材は,ペルチェ素子に限られず,例えば冷却水等の冷媒を流す流路を処理容器2に内蔵するようにしてもよい。
【0048】
以上,本発明の実施の形態の一例について説明したが,本発明はこの例に限らず種々の態様を採りうるものである。例えば処理ガスは,生成される膜の種類に応じて適宜選択され,必ずしも2種類でなくてもよい。また,プラズマ処理による成膜処理以外にも,スパッタリング処理,単なる減圧CVD処理などにおいて,本発明を適用できる。また,成膜処理以外の処理,例えばエッチング処理などにも本発明は適用できる。また,本発明に適用される基板は,ウェハに限られず,LCD基板,フォトマスク用のガラス基板等の他の基板であってもよい。
【0049】
【発明の効果】
本発明によれば,基板面内における均一な処理が行われるので,基板の歩留まりが向上される。処理ガスの消費量が低減できるので,処理ガスにかかるコストを下げることができる。複雑な流量制御機器が必要ないので,より単純な装置を用いて減圧処理を行うことができる。
【図面の簡単な説明】
【図1】本実施の形態におけるプラズマ処理装置の処理容器部分の構成の概略を示す縦断面の説明図である。
【図2】図1のプラズマ処理装置の構成を模式的に示す説明図である。
【図3】本実施の形態にかかるウェハ処理のプロセスの概略を示すフロー図である。
【図4】処理ガスが充填されたプラズマ処理装置の様子を示す説明図である。
【図5】混合容器を備えたプラズマ処理装置の構成を模式的に示す説明図である。
【図6】処理容器にペルチェ素子を設けた場合のプラズマ処理装置の処理容器部分の構成を示す縦断面の説明図である。
【符号の説明】
1 プラズマ処理装置
2 処理容器
23a,23b ガス貯留容器
26 給気バルブ
W ウェハ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a substrate processing method and a substrate processing apparatus.
[0002]
[Prior art]
For example, in a semiconductor device manufacturing process, a film forming process for forming a conductive film or an insulating film on a surface of a semiconductor wafer (hereinafter, referred to as a “wafer”) under reduced pressure, or a film formed on a wafer. Etching processing for etching the surface is performed.
[0003]
For example, the film forming process is performed by a plasma processing apparatus provided with a process container that can be closed. In the film forming process, a wafer is accommodated in a processing vessel that has been depressurized conventionally, and then a processing gas is supplied into the processing vessel, the processing vessel is evacuated, and a gas flow of the processing gas is formed in the processing vessel. I was Then, in a state where the gas flow is formed, plasma of the processing gas is generated in the processing chamber, and a film is deposited on the surface of the wafer by the plasma to form a film (for example, see Patent Document 1). .
[0004]
[Patent Document 1]
JP 2001-156004 A
[0005]
[Problems to be solved by the invention]
However, according to the film forming process, since the gas flow of the processing gas is always formed in the processing container, the uneven pressure distribution of the processing gas is generated in the processing container due to the shape of the processing container. And a flow velocity distribution is formed. As a result, the deposition of the film on the surface of the wafer is not performed uniformly on the surface of the wafer, and a uniform film forming process is not performed. In particular, in recent years, as the diameter of a wafer has become larger, the non-uniformity of processing within the wafer surface has become remarkable, and it is urgently desired to improve this.
[0006]
In addition, in the above-described film forming process, most of the processing gas introduced into the processing container is immediately exhausted from the processing container. Therefore, the processing gas that actually contributes to the film forming process is a part of the total introduced amount. It was not too much. As described above, a large amount of the processing gas is introduced wastefully, and the consumption amount of the processing gas is increased.
[0007]
In the above-described film forming process, it is necessary to maintain the inside of the processing container at a predetermined degree of pressure while supplying the processing gas into the processing container, so that the supply flow rate of the processing gas needs to be strictly controlled. For this reason, a complicated flow control device is required in the processing gas supply system, and the overall structure of the plasma processing apparatus has become complicated or large.
[0008]
Further, in the above-described film forming process, a new process gas is constantly supplied onto the wafer, so that the film thickness on the wafer increases with time. Therefore, in the film forming process, the supply time of the processing gas is controlled in order to form a film having a desired thickness on the wafer. However, in practice, the state of the gas flow is unstable, and the amount of gas supplied to the wafer within a predetermined time is slightly different each time. Therefore, it is difficult to strictly control the thickness of the film formed on the wafer. was difficult. In addition, if strict control is attempted, the supply system of the processing gas is complicated.
[0009]
The present invention has been made in view of such a point, and a substrate such as a wafer capable of performing a more uniform film forming process or the like with a simpler apparatus using a minimum necessary processing gas. It is an object of the present invention to provide a processing method and a processing apparatus therefor.
[0010]
[Means for Solving the Problems]
To achieve the above object, a substrate processing method according to the present invention is a processing method for processing a substrate by supplying a processing gas into a processing container, wherein the substrate is accommodated in a processing container reduced to a predetermined pressure. And then filling the processing container with a predetermined amount of processing gas set in advance, and sealing the inside of the processing container with the predetermined amount of processing gas filled. The method includes a step of processing the substrate with the processing gas, and a step of exhausting the inside of the processing container after the processing is completed. The processing gas may be one that directly reacts with the substrate to treat the substrate, or one that directly reacts with the substrate after obtaining and changing energy to treat the substrate, such as a carrier gas that does not directly react with the substrate. And those that carry reactive gases.
[0011]
According to the present invention, the processing of the substrate using the processing gas in the processing container is performed without airflow. Therefore, uneven distribution of the processing gas is not generated in the processing container, and the processing gas is uniformly supplied in the substrate surface, so that uniform processing is performed in the substrate surface. In addition, since the processing is performed with a necessary and sufficient gas amount set in advance, the consumption of the processing gas can be minimized. In addition, since a predetermined amount of the processing gas is supplied into the processing container, for example, by storing the processing gas of the amount in the storage container and transferring the processing gas from the storage container to the processing container as appropriate, A processing gas can be supplied into the processing container. Therefore, a complicated flow control device as in the related art is not required, and the configuration of the apparatus for performing the substrate processing can be simplified. Further, since an appropriate amount of processing gas set in advance is supplied into the processing container, excessive processing is not performed without strictly controlling the processing time. Also in this respect, a complicated time control mechanism is not required, and the apparatus can be simplified.
[0012]
In the method for processing a substrate according to the present invention, the predetermined pressure in the processing container before the filling of the processing gas is set so that the inside of the processing container becomes a preset processing pressure by filling the predetermined amount of the processing gas. It may be. In such a case, even if the processing gas is charged, the substrate can be processed at a desired processing pressure suitable for processing the substrate.
[0013]
In the substrate processing method of the present invention, when a plurality of types of processing gases are filled in the processing container, the plurality of types of processing gases are mixed in a mixing container and then filled in the processing container. It may be. In such a case, after a plurality of types of processing gases are evenly mixed, for example, processing of the substrate using the processing gas can be performed, so that processing without spots in the substrate surface is performed.
[0014]
In the method for processing a substrate according to the present invention, when the processing container is filled with a plurality of types of processing gases, the processing gas is charged into the processing container after the plurality of types of processing gases are charged into the processing container. May be included in the process. Also in such a case, the substrate processing can be performed with the processing gas after a plurality of types of processing gases are sufficiently mixed, so that the substrate processing is properly performed.
[0015]
At least one of the processing container and the substrate may be heated or cooled so as to provide a temperature difference between the processing container and the substrate accommodated in the processing container. This causes a slight convection in the processing vessel. By this convection, the processing gas on the substrate surface is agitated, for example, the gas before and after the reaction on the substrate surface is replaced, and the substrate processing using the processing gas is suitably performed.
[0016]
The processing of the substrate performed in the processing container in the processing method of the substrate may be a plasma processing of processing the substrate by generating a plasma of a processing gas filled in the processing container, and forming a film on the substrate. It may be a film forming process.
[0017]
The substrate processing apparatus according to the present invention is a processing apparatus for supplying a processing gas into a sealable processing container and processing the substrate in the processing container under reduced pressure, and for supplying the processing gas into the processing container. A gas supply mechanism, an exhaust mechanism for depressurizing and exhausting the inside of the processing container, and a predetermined amount of gas set in the processing container by the gas supply mechanism in a state where the exhaust by the exhaust mechanism is stopped. A control unit that controls the gas exhaust mechanism and the gas exhaust mechanism so as to supply a processing gas and thereafter stop the air supply by the gas air supply mechanism to seal the inside of the processing container. And
[0018]
According to the present invention, a predetermined amount of the processing gas is supplied into the processing container and the processing container is sealed, so that the substrate can be processed without a gas flow in the processing container. Therefore, unlike the conventional case, uneven distribution of the processing gas is not generated in the processing container, and the processing of the substrate is performed uniformly in the substrate surface. Since the processing gas is not dripped, the consumption of the processing gas can be reduced. Since a predetermined amount of processing gas prepared in advance can be introduced into the processing container, a flow control device is not required, and the apparatus can be simplified. Since an appropriate amount of processing gas is supplied without excess or deficiency, desired processing of the substrate can be realized without strictly controlling the processing time as in the related art.
[0019]
The gas supply mechanism includes a gas supply source of the processing gas, a gas storage container that communicates with the gas supply source, and stores the predetermined amount of the processing gas supplied from the gas supply source, and a gas storage container. A gas supply pipe for supplying the processing gas to the processing container, and an air supply valve provided in the gas supply pipe, and the gas supply mechanism opens the air supply valve to open the air supply valve. The predetermined amount of the processing gas stored in the gas storage container may be configured to be supplied into the processing container. In this case, a predetermined amount of the processing gas is stored in the gas storage container in advance, and the processing gas can be supplied from the gas storage container into the processing container during the processing of the substrate. By doing so, a predetermined amount of the processing gas is filled in the processing container, and the processing of the substrate can be performed in a state where the processing gas is charged.
[0020]
The substrate processing apparatus of the present invention is a processing apparatus for supplying a processing gas into a hermetically sealable processing container and processing the substrate in the processing container under reduced pressure. A gas storage container that communicates with a gas supply source and stores a predetermined amount of processing gas supplied from the gas supply source, and a gas supply for supplying the processing gas from the gas storage container to the processing container. A gas supply pipe provided with an air supply valve, and by opening the air supply valve, the predetermined amount of the processing gas stored in the gas storage container is supplied to the processing container. It is characterized in that it is configured to be filled inside.
[0021]
According to the present invention, a predetermined amount of the processing gas can be stored in the gas storage container, and the predetermined amount of the processing gas can be filled in the processing container. Therefore, a conventional flow control device is not required to supply the processing gas into the processing container, and the apparatus can be simplified. Further, in a processing container filled with a predetermined amount of processing gas, the substrate can be processed in a state where the processing gas is charged. In such a case, since the processing of the substrate is performed in a state where there is no gas flow in the processing container as in the related art, there is no uneven distribution of the processing gas, and uniform processing can be performed in the substrate surface. Further, since the processing of the substrate is performed with a predetermined amount of the processing gas, the consumption of the processing gas can be reduced as compared with the conventional case where the processing gas is continuously supplied. Further, by supplying an appropriate amount of processing gas into the processing container, desired processing is realized.
[0022]
The substrate processing apparatus includes a gas pipe for supplying a processing gas from the gas supply source to the gas storage vessel, a pipe valve provided in the gas pipe, and a pressure for measuring a pressure in the gas storage vessel. And a valve control unit that outputs a measurement result of the pressure gauge and controls opening and closing of the piping valve based on the measurement result. In such a case, a predetermined amount of the processing gas can be stored in the gas storage container by controlling the valve while observing the measurement value of the pressure gauge.
[0023]
There are a plurality of types of the processing gas, and the gas storage container is provided for each type of the processing gas. Before the processing gas from each of the gas storage containers is supplied to the processing container, the processing gas is removed. A mixing container for mixing may be provided. In such a case, since a plurality of types of processing gases are uniformly mixed and then supplied to the processing container, the processing using the processing gas in the processing container is properly performed. The substrate processing apparatus may further include a temperature adjusting member for providing a temperature difference between the processing container and the substrate in the processing container. In this case, a slight convection occurs in the processing container, and the processing gas in the processing container can be stirred. As a result, for example, the gas before and after the reaction is exchanged on the substrate surface, and the substrate processing using the processing gas is efficiently performed.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described. FIG. 1 schematically shows a longitudinal section of a plasma processing apparatus 1 as a substrate processing apparatus on which a substrate processing method of the present invention is performed.
[0025]
The plasma processing apparatus 1 is made of, for example, an aluminum alloy. The plasma processing apparatus 1 includes a substantially cylindrical processing vessel 2 having an opening in a ceiling. This processing container 2 is grounded. At the bottom of the processing container 2, for example, a susceptor 3 for mounting a wafer W is provided. In the susceptor 3, the heater 5 in the susceptor 3 generates heat by power supply from an AC power supply 4 provided outside the processing container 2, and the wafer W on the susceptor 3 can be heated to a predetermined temperature.
[0026]
An exhaust port 7 for exhausting the inside of the processing container 2 is provided at, for example, two places at the bottom of the processing container 2. The exhaust port 7 is connected to an exhaust pipe 9 leading to an exhaust device 8 such as a turbo molecular pump. The exhaust pipe 9 is provided with an exhaust valve 10 for temporarily stopping the exhaust. The exhaust from the exhaust port 7 can reduce the pressure inside the processing container 2 to a predetermined pressure. In this embodiment, the exhaust port 7, the exhaust device 8, the exhaust pipe 9, and the exhaust valve 10 constitute an exhaust mechanism.
[0027]
A gas supply port 20 for supplying a processing gas into the processing container 2 is provided at an upper portion of a side wall of the processing container 2. The gas supply port 20 communicates with, for example, two gas supply sources 21a and 21b installed outside the processing container 2 as shown in FIG. In the present embodiment, the gas supply source 21a is filled with oxygen gas, and the gas supply source 21b is filled with argon gas as an inert gas. Accordingly, the processing vessel 2 is supplied with two types of processing gases, oxygen gas and argon gas.
[0028]
The gas supply source 21a is connected to a gas storage container 23a through, for example, a gas pipe 22a. The gas pipe 22a is provided with a valve 24a as a pipe valve. By opening the valve 24a, the oxygen gas from the gas supply source 21a can be supplied to the gas storage container 23a. Similarly to the gas supply source 21a, the gas supply source 21b is connected to the gas storage container 23b through the gas piping 22b, and the gas piping 22b is provided with a valve 24b as a piping valve.
[0029]
For example, a gas supply pipe 25 communicating with the gas supply port 20 of the processing container 2 is connected to each of the gas storage containers 23a and 23b. The gas supply pipe 25 joins on the way from the gas storage vessels 23a and 23b to the processing vessel 2, and different types of processing gases flowing out of the gas storage vessels 23a and 23b are mixed on the way and are processed. It is being introduced into. An air supply valve 26 is provided on the downstream side of the junction of the gas supply pipe 25, and the processing gas in the gas storage containers 23 a and 23 b is supplied into the processing container 2 by opening the air supply valve 26. You.
[0030]
Each of the gas storage containers 23a and 23b has a storage chamber of a predetermined volume that can be sealed. The gas storage containers 23a and 23b are provided with pressure gauges 27a and 27b for measuring the pressure in the storage chamber, respectively. The measurement results of the pressure gauges 27a and 27b can be output to, for example, a control unit 28 as a valve control unit that controls opening and closing of the valves 24a and 24b. The controller 28 controls the opening and closing of the valves 24a and 24b based on the result, and can store the processing gas of a predetermined pressure in each of the gas storage containers 23a and 23b. That is, since the processing gas of a predetermined pressure is stored in the gas storage containers 23a and 23b having a predetermined volume, a predetermined amount of the processing gas can be stored in the gas storage containers 23a and 23b. In the present embodiment, a gas supply mechanism is constituted by the gas supply sources 21a and 21b, the gas pipes 22a and 22b, the gas storage containers 23a and 23b, the valves 24a and 24b, the gas supply pipe 25, and the supply valve 26. Have been.
[0031]
For example, the control unit 28 can also control the opening and closing of the air supply valve 26 and the exhaust valve 10. Therefore, the supply of the processing gas into the processing container 2 and the ON / OFF of the exhaust from the processing container 2 can be controlled by the control unit 28.
[0032]
By the way, as shown in FIG. 1, a dielectric window 31 made of, for example, quartz glass is provided at the upper opening of the processing container 2 via a sealing material 30 for ensuring airtightness in the processing container 2. ing. The processing container 2 is closed by the dielectric window 31, and a hermetically sealable processing chamber S is formed in the processing container 2.
[0033]
An antenna member 32 is provided above the dielectric window 31. The antenna member 32 includes, for example, a radial slot antenna 33 located at the lowermost surface, a slow wave plate 34 located above the antenna, an antenna cover 35 that covers the slow wave plate 34, protects the slow wave plate 34, and cools the same. It is constituted by.
[0034]
The radial slot antenna 33 is formed in a thin disk shape made of a conductive material, for example, copper. The radial slot antenna 33 is formed with a pair of slits that are formed at a substantially right angle so as to be concentrically arranged.
[0035]
At the center of the slow wave plate 34, a conical bump 36 made of a conductive material, for example, a metal is disposed. The bump 36 is electrically connected to the coaxial waveguide 37. The coaxial waveguide 37 is configured to propagate, for example, a microwave of 2.45 GHz generated by the microwave supply device 38 to the antenna member 32.
[0036]
The plasma processing apparatus 1 is configured as described above. Next, the processing method of the wafer W of the present invention performed by the plasma processing apparatus 1 will be described below. 2 The case of forming a film will be described as an example. FIG. 3 is a flowchart showing an outline of the wafer processing.
[0037]
First, before the wafer W is loaded into the processing container 2, the exhaust device 8 is operated with the exhaust valve 10 opened, and the inside of the processing container 2 is evacuated. The pressure is reduced to about 66 Pa (0.5 Torr) (step S in FIG. 3). 1 ). At this time, the pressure in the processing container 2 is adjusted so that, for example, after the wafer W is loaded later and a predetermined amount of processing gas is supplied, the pressure in the processing container 2 becomes suitable for plasma processing for film formation. , Is set back. The susceptor 3 is heated to, for example, 400 ° C. by the heater 5.
[0038]
Outside the processing container 2, oxygen gas and argon gas are supplied from the gas supply sources 21a and 21b to the gas storage containers 23a and 23b, respectively, with the air supply valve 26 closed. At this time, the gas storage amount is controlled by the pressure gauges 27a and 27b, and a predetermined amount, for example, M 1 mol of oxygen gas is supplied to the gas storage container 23b. 2 mol of argon gas is supplied. In addition, the material amounts M of these oxygen gas and argon gas 1 , M 2 Can be calculated from the total number of molecules of the processing gas to be reacted with the silicon film on the wafer W from the thickness of the silicon oxide film to be formed on the wafer W, for example. In addition, the material amount M is stored in the gas storage containers 23a and 23b. 1 , M 2 Can be calculated from the volumes and temperatures in the gas storage containers 23a and 23b, the molecular weight of the processing gas, and the like, using the equation of state of the gas.
[0039]
When the preparation for carrying in the wafer W is completed, the wafer W is carried into the processing vessel 2 with, for example, the exhaust valve 10 closed and the exhaust in the processing vessel 2 stopped (Step S in FIG. 3). 2 ). The loaded wafer W is placed on the susceptor 3 and heated to 400 ° C. When the wafer W is placed on the susceptor 3, the air supply valve 26 is opened, and a predetermined amount of oxygen gas and argon gas stored in the gas storage containers 23a and 23b are supplied into the processing container 2. Thus, the processing vessel 2 is filled with a predetermined amount of oxygen gas and argon gas as shown in FIG. 4 (step S in FIG. 3). 3 ). Due to the filling of the oxygen gas and the argon gas, the pressure in the processing container 2 increases, and the pressure in the processing container 2 becomes, for example, 133 Pa (1 Torr) suitable for the next plasma processing.
[0040]
When all the oxygen gas and the argon gas in the gas storage containers 23a and 23b are filled in the processing container 2, the air supply valve 26 is closed and the processing container 2 is closed (step S in FIG. 3). 4 ).
[0041]
Thereafter, this state is maintained for a predetermined time until, for example, the oxygen gas and the argon gas are evenly mixed. When the oxygen gas and the argon gas are evenly mixed, the microwave generated by the microwave supply device 38 is propagated into the processing container 2 through the antenna member 32. The microwave converts the oxygen gas in the processing chamber 2 into plasma (step S in FIG. 3). 5 ). The oxygen ions (reactive species) that have been turned into plasma are supplied to the surface of the wafer W, the silicon film on the wafer W is oxidized, and a silicon oxide film is deposited on the wafer W.
[0042]
When all the oxygen gas in the processing chamber 2 is turned into plasma and deposited on the wafer W, a silicon oxide film having a desired film thickness is formed on the wafer W. When a desired silicon oxide film is formed on the wafer W, for example, the exhaust device 8 is operated, the exhaust valve 10 is opened, and the inside of the processing chamber 2 is exhausted (Step S in FIG. 3). 6 ). At this time, the pressure in the processing chamber 2 is reduced to, for example, 13.3 Pa (0.1 Torr) in accordance with the pressure in the apparatus adjacent to the plasma processing apparatus 1 and into which the wafer W is next loaded.
[0043]
When the pressure inside the processing container 2 is reduced to the same pressure as the unloading destination area, the wafer W is unloaded from the processing container 2 (step S in FIG. 3). 7 ), A series of film forming processing by the plasma processing apparatus 1 ends. The pressure in the processing chamber 2 is reduced to a pressure of about 66 Pa (0.5 Torr) as described above in preparation for a wafer to be loaded next.
[0044]
According to the above embodiment, a predetermined amount of oxygen gas and argon gas are introduced into the processing vessel 2 and then the processing vessel 2 is sealed. No gas flow is formed inside. As a result, an uneven distribution of the processing gas cannot be formed in the processing container 2, and the processing gas is uniformly supplied within the wafer surface, so that a uniform film without unevenness can be formed on the wafer W. In addition, since the processing gas introduced into the processing container 2 efficiently contributes to film formation, the consumption of the processing gas can be significantly reduced as compared with the conventional case where the processing gas is dripped. Further, since a predetermined amount of the processing gas is temporarily stored in the gas storage containers 23a and 23b and then flows into the processing container 2, complicated equipment for controlling the flow rate is not required, and the apparatus can be simplified. It is planned. Further, since most of the processing gas supplied into the processing container 2 is involved in the film forming process, the film formed on the wafer W is changed by changing the amount of the processing gas stored in the gas storage containers 23a and 23b. Can easily be controlled.
[0045]
Since the pressure in the processing vessel 2 before the introduction of the processing gas is set in anticipation of the pressure increase due to the introduction of the processing gas, the plasma processing performed thereafter can be performed at a desired pressure. Further, since the oxygen gas and the argon gas, which are the processing gases, are evenly mixed and stabilized after the two types of processing gases are introduced into the processing chamber 2 and before the plasma processing is performed. The distribution of the oxygen gas and the argon gas in 2 is not biased, and the processing of the wafer W can be performed more uniformly.
[0046]
In the above-described embodiment, the oxygen gas and the argon gas are uniformly mixed in the processing container 2. However, as shown in FIG. A mixing vessel 50 may be provided on the upstream side, and oxygen gas and argon gas may be mixed in the mixing vessel 50. In such a case, for example, an air supply valve 52 is provided in the gas supply pipe 51 that connects the mixing container 50 and the processing container 2. A valve 54 is provided in the gas supply pipe 53 communicating with the mixing container 50 and each of the gas storage containers 23a and 23b. Then, first, the valve 54 is opened, a predetermined amount of the processing gas in each of the gas storage containers 23a and 23b is supplied to the mixing container 50, and the oxygen gas and the argon gas are mixed in the mixing container 50. Thereafter, the air supply valve 52 is opened, and a mixed gas of oxygen gas and argon gas is supplied into the processing container 2. In this case, the two types of processing gases are sufficiently mixed in the mixing container 50, so that the film forming process in the processing container 2 is properly performed. Further, when two types of processing gases are supplied to the processing container 2, the processing gases are already sufficiently mixed, so that, for example, a film forming process can be performed immediately after the processing gas is supplied.
[0047]
In the wafer processing described in the above embodiment, a temperature difference may be provided between the wafer W and the processing container 2 in order to agitate the processing gas filled in the processing container 2. In such a case, for example, as shown in FIG. 6, a Peltier element 60 as a temperature adjusting member that generates or absorbs heat by supplying power may be built in the side wall of the processing container 2. During the wafer processing, the temperature difference between the processing container 2 and the wafer W is made as large as possible so that a weak convection is formed in the sealed processing container 2. In the present embodiment, the temperature of the processing container 2 is adjusted to 20 ° C., and the temperature of the wafer W is adjusted to 400 ° C. In this way, a weak convection is formed in the sealed processing vessel 2, and the convection agitates the plasma (reactive species) of the processing gas. As a result, for example, the plasma of the processing gas in the processing container 2 is efficiently supplied to the wafer W, and the film is formed in a short time. When the processing of the wafer W is performed at room temperature, the temperature difference between the processing container 2 and the wafer W disappears, and this method is particularly effective in such a case. The temperature adjustment member is not limited to the Peltier element, and a flow path for flowing a coolant such as cooling water may be incorporated in the processing container 2.
[0048]
As described above, an example of the embodiment of the present invention has been described. However, the present invention is not limited to this example, and can take various aspects. For example, the processing gas is appropriately selected according to the type of the film to be generated, and may not necessarily be two types. The present invention can be applied to a sputtering process, a simple low-pressure CVD process, and the like, in addition to the film forming process by the plasma process. The present invention is also applicable to processes other than the film forming process, for example, an etching process. The substrate applied to the present invention is not limited to a wafer, and may be another substrate such as an LCD substrate or a glass substrate for a photomask.
[0049]
【The invention's effect】
According to the present invention, the uniform processing in the substrate surface is performed, so that the substrate yield is improved. Since the consumption of the processing gas can be reduced, the cost of the processing gas can be reduced. Since a complicated flow control device is not required, the decompression process can be performed using a simpler device.
[Brief description of the drawings]
FIG. 1 is an explanatory longitudinal sectional view schematically showing a configuration of a processing container portion of a plasma processing apparatus according to the present embodiment.
FIG. 2 is an explanatory view schematically showing a configuration of the plasma processing apparatus of FIG.
FIG. 3 is a flowchart showing an outline of a wafer processing process according to the embodiment;
FIG. 4 is an explanatory diagram showing a state of a plasma processing apparatus filled with a processing gas.
FIG. 5 is an explanatory view schematically showing a configuration of a plasma processing apparatus provided with a mixing container.
FIG. 6 is an explanatory view of a longitudinal section showing a configuration of a processing container portion of the plasma processing apparatus when a Peltier element is provided in the processing container.
[Explanation of symbols]
1 Plasma processing equipment
2 Processing container
23a, 23b Gas storage container
26 Air supply valve
W wafer

Claims (13)

処理容器内に処理ガスを供給して,基板を処理する処理方法であって,
所定圧力に減圧された処理容器内に基板を収容する工程と,
その後,前記処理容器内に予め設定された所定量の処理ガスを充填する工程と,
前記所定量の処理ガスを充填した状態で前記処理容器内を密閉し,この状態で前記処理ガスによって基板の処理を行う工程と,
処理が終わった後に,処理容器内を排気する工程と,を有することを特徴とする,基板の処理方法。
A processing method for processing a substrate by supplying a processing gas into a processing container,
Accommodating a substrate in a processing vessel depressurized to a predetermined pressure;
Thereafter, a step of filling the processing container with a predetermined amount of processing gas set in advance;
A step of sealing the inside of the processing container with the predetermined amount of the processing gas filled therein, and processing the substrate with the processing gas in this state;
Exhausting the inside of the processing container after the processing is completed.
前記所定量の処理ガスの充填によって処理容器内が予め設定された処理圧力になるように,前記処理ガスの充填前における前記処理容器内の前記所定圧力は設定されていることを特徴とする,請求項1に記載の基板の処理方法,The predetermined pressure in the processing container before filling with the processing gas is set so that the inside of the processing container becomes a preset processing pressure by filling the predetermined amount of the processing gas. A method for processing a substrate according to claim 1, 前記処理容器内に,複数種類の処理ガスを充填する場合には,
前記複数種類の処理ガスは混合容器において混合されてから前記処理容器内に充填されることを特徴とする,請求項1又は2のいずれかに記載の基板の処理方法。
When filling the processing container with a plurality of types of processing gases,
3. The substrate processing method according to claim 1, wherein the plurality of types of processing gases are mixed in a mixing container and then charged into the processing container.
前記処理容器内に,複数種類の処理ガスを充填する場合には,
前記複数種類の処理ガスを前記処理容器に充填した後に,当該処理ガスを処理容器内で混合する工程を有することを特徴とする,請求項1又は2のいずれかに記載の基板の処理方法。
When filling the processing container with a plurality of types of processing gases,
3. The substrate processing method according to claim 1, further comprising: after filling the plurality of types of processing gases into the processing container, mixing the processing gas in the processing container.
前記処理容器と前記処理容器内に収容された基板との間に温度差をつけるように,少なくとも前記処理容器又は基板のいずれか一方を加熱又は冷却することを特徴とする,請求項1,2,3又は4のいずれかに記載の基板の処理方法。3. The method according to claim 1, wherein at least one of the processing container and the substrate is heated or cooled so as to provide a temperature difference between the processing container and the substrate accommodated in the processing container. 5. The method for processing a substrate according to any one of claims 3, 3 and 4. 前記処理容器で行われる基板の処理は,前記処理容器内に充填された処理ガスのプラズマを発生させて基板を処理するプラズマ処理であることを特徴とする,請求項1,2,3,4又は5のいずれかに記載の基板の処理方法。5. The method according to claim 1, wherein the processing of the substrate performed in the processing container is a plasma processing of generating a plasma of a processing gas filled in the processing container and processing the substrate. Or the method for processing a substrate according to any one of the above items 5. 前記処理容器で行われる基板の処理は,基板に膜を形成する成膜処理であることを特徴とする,請求項1,2,3,4,5又は6のいずれかに記載の基板の処理方法。7. The substrate processing according to claim 1, wherein the substrate processing performed in the processing container is a film forming process for forming a film on the substrate. Method. 密閉可能な処理容器内に処理ガスを供給して,処理容器内の基板を減圧状態で処理する処理装置であって,
処理容器内に処理ガスを供給するためのガス給気機構と,
処理容器内を減圧及び排気するための排気機構と,
前記排気機構による排気を停止した状態で,前記ガス給気機構によって前記処理容器内に予め設定された所定量の処理ガスを供給し,その後ガス給気機構による給気を停止させて前記処理容器内を密閉するように,前記排気機構と前記ガス給気機構を制御する制御部と,を備えたことを特徴とする,基板の処理装置。
A processing apparatus for supplying a processing gas into a hermetically sealable processing container and processing a substrate in the processing container under reduced pressure.
A gas supply mechanism for supplying a processing gas into the processing container;
An exhaust mechanism for depressurizing and exhausting the inside of the processing vessel;
In a state in which the exhaust by the exhaust mechanism is stopped, a predetermined amount of processing gas is supplied into the processing container by the gas supply mechanism, and then the supply of gas by the gas supply mechanism is stopped. A substrate processing apparatus, comprising: a control unit that controls the exhaust mechanism and the gas supply mechanism so as to seal the inside.
前記ガス給気機構は,
前記処理ガスのガス供給源と,
前記ガス供給源に連通し,前記ガス供給源から供給される前記所定量の処理ガスを貯留するガス貯留容器と,
当該ガス貯留容器の処理ガスを前記処理容器に供給するためのガス供給管と,
前記ガス供給管に設けられた給気バルブと,を備え,
前記ガス供給機構は,前記給気バルブを開放することによって,前記ガス貯留容器に貯留された前記所定量の処理ガスが前記処理容器内に供給されるように構成されていることを特徴とする,請求項8に記載の基板の処理装置。
The gas supply mechanism comprises:
A gas supply source for the processing gas;
A gas storage container communicating with the gas supply source and storing the predetermined amount of the processing gas supplied from the gas supply source;
A gas supply pipe for supplying the processing gas from the gas storage container to the processing container;
An air supply valve provided on the gas supply pipe;
The gas supply mechanism is configured so that the predetermined amount of the processing gas stored in the gas storage container is supplied into the processing container by opening the air supply valve. An apparatus for processing a substrate according to claim 8.
密閉可能な処理容器内に処理ガスを供給して,処理容器内の基板を減圧状態で処理する処理装置であって,
前記処理ガスのガス供給源と,
前記ガス供給源に連通し,前記ガス供給源から供給される予め設定された所定量の処理ガスを貯留するガス貯留容器と,
当該ガス貯留容器の処理ガスを前記処理容器に供給するためのガス供給管と,を備え,
前記ガス供給管には,給気バルブが設けられており,
前記給気バルブを開放することによって,前記ガス貯留容器に貯留された前記所定量の処理ガスが前記処理容器内に充填されるように構成されていることを特徴とする,基板の処理装置。
A processing apparatus for supplying a processing gas into a hermetically sealable processing container and processing a substrate in the processing container under reduced pressure.
A gas supply source for the processing gas;
A gas storage container that communicates with the gas supply source and stores a predetermined amount of processing gas supplied from the gas supply source;
A gas supply pipe for supplying the processing gas from the gas storage container to the processing container.
The gas supply pipe is provided with an air supply valve,
The substrate processing apparatus according to claim 1, wherein the predetermined amount of the processing gas stored in the gas storage container is filled in the processing container by opening the air supply valve.
前記ガス供給源から前記ガス貯留容器に処理ガスを供給するためのガス配管と,
当該ガス配管に設けられた配管バルブと,
前記ガス貯留容器内の圧力を測定する圧力計と,
前記圧力計の測定結果が出力され,当該測定結果に基づいて前記配管バルブの開閉を制御するバルブ制御部と,を備えたことを特徴とする,請求項9又は10のいずれかに記載の基板の処理装置。
A gas pipe for supplying a processing gas from the gas supply source to the gas storage container,
A pipe valve provided in the gas pipe;
A pressure gauge for measuring a pressure in the gas storage container,
The substrate according to claim 9, further comprising: a valve control unit that outputs a measurement result of the pressure gauge and controls opening and closing of the piping valve based on the measurement result. Processing equipment.
前記処理ガスは複数種類あり,当該処理ガスの種類毎に前記ガス貯留容器が備えられており,
前記各ガス貯留容器からの処理ガスが前記処理容器に供給される前に,それらの処理ガスを混合する混合容器を備えたことを特徴とする,請求項9,10又は11のいずれかに記載の基板の処理装置。
There are a plurality of types of the processing gas, and the gas storage container is provided for each type of the processing gas,
12. The apparatus according to claim 9, further comprising a mixing vessel for mixing the processing gases before the processing gases from the respective gas storage vessels are supplied to the processing vessels. Substrate processing equipment.
前記処理容器と当該処理容器内の基板との間に温度差をつけるための温度調整部材をさらに備えたことを特徴とする,請求項8,9,10,11又は12のいずれかに記載の基板の処理装置。13. The apparatus according to claim 8, further comprising a temperature adjusting member for providing a temperature difference between the processing container and a substrate in the processing container. Substrate processing equipment.
JP2003102782A 2003-04-07 2003-04-07 Substrate processing method and substrate processing apparatus Expired - Fee Related JP4074213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003102782A JP4074213B2 (en) 2003-04-07 2003-04-07 Substrate processing method and substrate processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003102782A JP4074213B2 (en) 2003-04-07 2003-04-07 Substrate processing method and substrate processing apparatus

Publications (2)

Publication Number Publication Date
JP2004311689A true JP2004311689A (en) 2004-11-04
JP4074213B2 JP4074213B2 (en) 2008-04-09

Family

ID=33466114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003102782A Expired - Fee Related JP4074213B2 (en) 2003-04-07 2003-04-07 Substrate processing method and substrate processing apparatus

Country Status (1)

Country Link
JP (1) JP4074213B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237532A (en) * 2005-02-28 2006-09-07 Hitachi Kokusai Electric Inc Substrate processing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294018A (en) * 1989-05-09 1990-12-05 Hitachi Ltd Film formation device
JPH03273606A (en) * 1990-02-17 1991-12-04 Fuji Electric Co Ltd Semiconductor manufacturing system
JPH08225394A (en) * 1995-10-30 1996-09-03 Nachi Fujikoshi Corp Method for carrying out vapor phase synthesis of diamond
JP2001319959A (en) * 2001-03-30 2001-11-16 Tokyo Electron Ltd Reduced pressure and normal pressure treater
JP2004006801A (en) * 2002-04-11 2004-01-08 Hitachi Kokusai Electric Inc Vertical semiconductor manufacturing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294018A (en) * 1989-05-09 1990-12-05 Hitachi Ltd Film formation device
JPH03273606A (en) * 1990-02-17 1991-12-04 Fuji Electric Co Ltd Semiconductor manufacturing system
JPH08225394A (en) * 1995-10-30 1996-09-03 Nachi Fujikoshi Corp Method for carrying out vapor phase synthesis of diamond
JP2001319959A (en) * 2001-03-30 2001-11-16 Tokyo Electron Ltd Reduced pressure and normal pressure treater
JP2004006801A (en) * 2002-04-11 2004-01-08 Hitachi Kokusai Electric Inc Vertical semiconductor manufacturing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237532A (en) * 2005-02-28 2006-09-07 Hitachi Kokusai Electric Inc Substrate processing apparatus
JP4566787B2 (en) * 2005-02-28 2010-10-20 株式会社日立国際電気 Substrate processing apparatus and semiconductor device manufacturing method

Also Published As

Publication number Publication date
JP4074213B2 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
TWI383448B (en) Method and apparatus for forming silicon-containing insulating film
US6753506B2 (en) System and method of fast ambient switching for rapid thermal processing
TWI355029B (en) Method and apparatus for forming silicon oxide fil
US8697578B2 (en) Film formation apparatus and method for using same
US20160273101A1 (en) Raw material gas supply apparatus and film forming apparatus
US8080477B2 (en) Film formation apparatus and method for using same
US8394200B2 (en) Vertical plasma processing apparatus for semiconductor process
US20080081104A1 (en) Film formation method and apparatus for forming silicon oxide film
TWI641067B (en) Substrate processing device and plasma generating mechanism
WO2007099957A1 (en) Plasma treatment apparatus, and substrate heating mechanism to be used in the apparatus
US20130022760A1 (en) Plasma nitriding method
WO2018167846A1 (en) Substrate processing device, method for manufacturing semiconductor device, and program
US20090114156A1 (en) Film formation apparatus for semiconductor process
JP2014082463A (en) Substrate processing device, lid and semiconductor device manufacturing method
KR20150077318A (en) Substrate processing apparatus and method of manufacturing semiconductor device
JP5860392B2 (en) Plasma nitriding method and plasma nitriding apparatus
JP2007266595A (en) Plasma treatment apparatus and substrate heating mechanism used therefor
JP6022785B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
JP4782316B2 (en) Processing method and plasma apparatus
JP2004311689A (en) Method and apparatus for substrate treatment
WO2018150537A1 (en) Substrate treatment device, method for manufacturing semiconductor device, and program
KR20140057575A (en) Heat treatment device
JP6561148B2 (en) Substrate processing apparatus, joint portion, and semiconductor device manufacturing method
TWI827101B (en) Plasma treatment device
JP2005259902A (en) Substrate processor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees