JP2004311510A - Device and method for microwave plasma treatment - Google Patents

Device and method for microwave plasma treatment Download PDF

Info

Publication number
JP2004311510A
JP2004311510A JP2003099309A JP2003099309A JP2004311510A JP 2004311510 A JP2004311510 A JP 2004311510A JP 2003099309 A JP2003099309 A JP 2003099309A JP 2003099309 A JP2003099309 A JP 2003099309A JP 2004311510 A JP2004311510 A JP 2004311510A
Authority
JP
Japan
Prior art keywords
plasma processing
microwave
dielectric window
substrate
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003099309A
Other languages
Japanese (ja)
Other versions
JP4261236B2 (en
Inventor
Masatsugu Nakagawa
雅嗣 中川
Kazuhiro Watanabe
一弘 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2003099309A priority Critical patent/JP4261236B2/en
Publication of JP2004311510A publication Critical patent/JP2004311510A/en
Application granted granted Critical
Publication of JP4261236B2 publication Critical patent/JP4261236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device and method for microwave plasma treatment by which the uniformity of plasma can be secured on the surface of a substrate by preventing the occurrence of a standing wave near the surface of a dielectric window without performing any complicated processing on the dielectric window. <P>SOLUTION: The dielectric window for transmitting microwave is constituted so that the surface of the window facing the substrate may be positioned at the same position as that of the internal wall surface of the ceiling section of a plasma treatment vessel or in a state where the surface is protruded to the substrate side than the position of the internal wall surface of the ceiling section. In addition, the distance between the outer peripheral section of the dielectric window and the side wall surface of the plasma treatment vessel is adjusted to at least the 1/4 of the wavelength of an introduced microwave or longer. Consequently, the uniformity of the plasma can be secured on the surface of the substrate even when no complicated processing is performed on the dielectric window. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロ波プラズマ処理装置およびこの装置を用いた処理方法に関する。
【0002】
【従来の技術】
近年、LSIなどの半導体デバイスの微細化にともない、半導体デバイスの製造工程においてプラズマ処理装置が多用されている。この半導体デバイスの特性の安定や歩留まりなどは、ウェハ面内における上記プラズマ処理の均一性が大きく寄与する。このプラズマ処理の均一性は、プラズマをウェハ表面で均一に分布させることによって確保される。そこで、たとえばプラズマ処理装置のプラズマ生成部と基板との距離を遠ざけることによってプラズマを拡散させてウェハ表面では均一にするなどの工夫が考えられる。
【0003】
プラズマ処理装置のうち、最近では、比較的圧力の低い高真空状態でも安定してプラズマを励起することができるマイクロ波プラズマ処理装置が注目されている。
【0004】
このマイクロ波プラズマ処理装置を用いたプラズマ処理について、具体的にシリコン表面を直接酸化および窒化し、高品質の絶縁膜を形成する場合を例として説明する。
【0005】
マイクロ波プラズマ処理装置を用いる場合、金属製のプラズマ処理容器内で上記絶縁膜を形成する。このプラズマ処理容器の天井部には開口部が形成され、マイクロ波を装置内に導入するために、石英などからできているマイクロ波透過用誘電体窓がこの開口部に気密に設けられている。
【0006】
上記絶縁膜の形成に際し、この誘電体窓の基板側の表面と基板との距離がおよそ80mm以下であれば、当該プラズマ処理に使用されるガス種や圧力に応じ、生成されるプラズマが均一になるように、マイクロ波の照射強度をアンテナで調整することがある。
【0007】
一方、プラズマが中央部分で高密度であったり、あるいはリング状の高密度部分が形成されるなど均一性が悪い場合であっても、誘電体窓の表面と基板との間の距離を80mm以上離すことによってプラズマが拡散され、基板表面では均一性が確保される。
【0008】
ところで、マイクロ波プラズマ処理装置でプラズマを励起した場合、誘電体窓の表面と発生したプラズマとの間で表面波と呼ばれるマイクロ波の波が形成される。この表面波は誘電体窓一面に広がり、基板上方ではプラズマが形成される。
【0009】
通常、プラズマ処理容器の天井部の内壁面の位置は、上記誘電体窓の表面の位置よりも基板側に突起しているため、この誘電体窓の周囲は、上記天井部に形成された開口部の断面によって包囲されている。従って上記表面波がこの開口部断面からなる包囲面に反射すると、表面波とこの反射波が互いに干渉して誘電体窓の表面近傍で定在波が形成される。
【0010】
この定在波が、マイクロ波プラズマ処理における基板表面上のプラズマの均一性を阻害する原因になっている。すなわち、誘電体窓の中央部のプラズマ密度が誘電体窓の周辺部よりも高密度になるという問題が生じていた。
【0011】
そこで、従来、誘電体窓の外周部および誘電体窓が設置されている装置壁面の形状を凸凹にして反射波を打ち消し、定在波が生じないようにしていた(例えば、特許文献1参照。)。
【0012】
【特許文献1】
特開平2002−190449号(特許請求の範囲)
【0013】
【発明が解決しようとする課題】
しかしながら、ある特定のガス種および圧力におけるプラズマ処理に対応させて、アンテナでマイクロ波の照射強度を調整した後、異なるガス種もしくは圧力でプラズマ処理を行うと、プラズマの均一性が悪くなるという不都合があった。
【0014】
従って、複数の異なるガス種もしくは圧力でそれぞれプラズマ処理を行う場合は、マイクロ波の照射強度をその都度調整しなければならないため、一度の調整でガス種もしくは圧力が異なる複数のプラズマ処理はできず、作業効率が低下するという問題があった。
【0015】
一方、誘電体窓の表面と基板との間の距離を離すと、基板表面での均一性は確保できるが、同時に基板表面でのプラズマ密度が下がり、反応活性種の基板への到達量が減少し、プラズマ処理に時間がかかるという問題が生じていた。
【0016】
さらに、基板表面のプラズマの均一性を阻害する原因の定在波を生じさせないようにするために、誘電体窓の外周部および誘電体窓が設置されているプラズマ処理容器の側壁面の形状を凸凹にすれば、上記不都合は解消されるが、凸凹の形状にする加工技術は複雑であり、実質的に加工が困難であるという問題があった。
【0017】
本発明は、上記問題点に鑑み、上記誘電体窓に複雑な加工を施さなくても、誘電体窓の表面付近で定在波を生じさせないようにし、基板表面のプラズマの均一性を確保できるマイクロ波プラズマ処理装置および処理方法を提供することを課題とする。
【0018】
【課題を解決するための手段】
上記課題を解決するため、本発明にかかるマイクロ波プラズマ処理装置は、天井部が開口されたプラズマ処理容器と、この天井部に気密に設けられたマイクロ波透過用誘電体窓とを少なくとも備え、上記誘電体窓に対向してプラズマ処理容器内に基板が設置できるように構成されているマイクロ波プラズマ処理装置において、基板に対向した上記誘電体窓の表面が、プラズマ処理容器の天井部内壁面の位置と同じ位置かもしくはこの天井部内壁面の位置よりも基板側に突出して位置するように構成されていることを特徴とする。
【0019】
この構成によれば、誘電体窓の外周部には、プラズマ処理容器の天井部に形成された開口部の断面からなる包囲面がないため、表面波が反射せず、定在波の形成を抑制することができる。
【0020】
従って、誘電体窓表面と基板との距離に関係なく、また、ガス種や圧力などの条件を変化させても、基板表面で均一なプラズマ分布を得ることができる。
【0021】
基板に対向した上記誘電体窓の表面が、プラズマ処理容器の天井部内壁面より基板側に位置する場合、この天井部内壁面から誘電体窓の表面までの距離は少なくとも5mmであることが望ましい。
【0022】
基板に対向した上記誘電体窓の表面の外側縁部に、リング状の突出部を設けた場合は、この突出部に囲まれた内側の表面が、プラズマ処理容器の天井部内壁面の位置と同じ位置かもしくはこの天井部内壁面の位置よりも基板側に突出して位置するように構成すればよい。
【0023】
なお、上記誘電体窓の外周部とプラズマ処理容器の側壁面との間の距離は、導入するマイクロ波の波長の4分の1以上離れていることが好ましい。これは、誘電体窓の外周部とプラズマ処理容器の側壁面との間でプラズマを形成させるスペースを与えることによって、マイクロ波が誘電体窓の中央部方向に反射し、定在波を形成することを抑えるためである。
【0024】
従って、例えば、導入するマイクロ波の周波数が2.45GHzの場合に、上記誘電体窓の外周部とプラズマ処理容器の側壁面との距離は30mm以上とすればよい。
【0025】
また、上記誘電体窓の径は、基板の径の2倍以上であることが好ましい。さらに誘電体窓の外周部に上記突出部を設けたものである場合は、この突出部に囲まれた内側の表面と基板との距離を半径とし、基板両端部を中心とするそれぞれの円内にこの突出部が含まれないように誘電体窓の径を定めればよい。この突出部の有無で好ましい誘電体窓の径の長さが異なるのは、突出部によって基板端部の膜厚に影響を与えないようにするためである。
【0026】
また、上記課題を解決するため、本発明にかかるマイクロ波プラズマ処理方法は、ガス供給手段によってプラズマを励起するための原料ガスをプラズマ処理容器に供給し、マイクロ波発生手段により発振、増幅せしめたマイクロ波をアンテナ手段に導入して照射させ、この照射されたマイクロ波をマイクロ波透過用誘電体窓を介して真空雰囲気の上記プラズマ処理容器に導入し、このマイクロ波のつくる電磁界によってプラズマ処理容器内にプラズマを生成し、上記マイクロ波透過用誘電体窓に対向して設けられた基板をマイクロ波プラズマ処理する処理方法において、上記いずれかに記載のマイクロ波プラズマ装置を用いてプラズマ処理を行うことを特徴とする。
【0027】
【発明の実施の形態】
以下、本発明の実施の形態にかかるマイクロ波プラズマ処理装置を図1、図2および図3を参照して説明する。
【0028】
図1は、本発明の一実施形態として、半導体基板用のマイクロ波プラズマ処理装置の構成を表した断面図である。図3および図4は、従来の一般的な半導体基板用のマイクロ波プラズマ処理装置を表した断面図である。
【0029】
図1において、1は、プラズマ処理を行う金属製のプラズマ処理容器である。プラズマ処理容器1の天井部101の上部には、マイクロ波の照射強度を調整する同軸導波変換器及びアンテナ2が設けられている。同軸導波変換器及びアンテナ2と、天井部101の開口部に気密に設けられた誘電体窓4との間には、マイクロ波を照射するスロット3が設けられている。なお、上記誘電体窓4の原材料は、石英などである。この誘電体窓4は、スロット3を介して照射されたマイクロ波を透過し、プラズマ処理容器1内にマイクロ波を導入する。
【0030】
このマイクロ波(2.45GHz)は、マグネトロン5で発振し、導波管8を介して上記同軸導波変換器及びアンテナ2に導入される。
【0031】
プラズマ処理容器1の内部には、上記誘導体窓4と対向する位置に、プラズマ処理基板12を保持する電極13があり、この電極13に高周波電源14から必要に応じて高周波を印加する。なお、この高周波のインピーダンス調整は整合器15によって行う。
【0032】
次に、本実施形態におけるマイクロ波プラズマ処理装置の動作を説明する。プラズマ処理容器1の側面から、ガス供給手段9によってプラズマを励起させるためのガスを供給し、排気システム10によってプラズマ処理容器1内を減圧にし、プラズマ処理容器1のプロセス圧力を圧力調整弁11によって調整し、原料および反応副生成ガスを排気する。マグネトロン5で発振、増幅されたマイクロ波は、4Eチューナ7を通して同軸導波変換器及びアンテナ2に導入され、スロット3から照射される。このとき反射波は、4Eチューナ7によってマイクロ波処理容器1側へ戻されるが、調整しきれない反射波についてはアイソレータ6で吸収されてマグネトロン5へ戻ることを防いでいる。スロット3から照射されたマイクロ波は、誘電体窓4を介して真空雰囲気のプラズマ処理容器1の内部へ導入され、このマイクロ波のつくる電磁界によってプラズマ処理容器1内にプラズマPを形成する。このプラズマPにより、エッチングや成膜プロセスなどを行うことができる。なお、SWPは、誘導体窓4の表面とプラズマPとの間に生じるマイクロ波の表面波を模式的に表したものである。
【0033】
上記マイクロ波プラズマ処理装置を用いて酸化処理を行う場合は、例えばアルゴンやクリプトンなどの希ガスと酸素を混合してトータル0.17Pa・m/sec(100sccm)以上を導入し、1〜133Paの圧力範囲において処理する。一方、窒化処理を行う場合は、例えばアルゴンやクリプトンなどのなどの希ガスとアンモニア、窒素および水素を混合し、トータル0.17Pa・m/sec(100sccm)以上を導入し、1〜133Paの圧力範囲において処理する。
【0034】
図1において、基板12に対向する側の誘電体窓4の表面の位置は、マイクロ波処理容器1の天井部101の内壁面の位置よりも基板12側に突出している。従って、表面波SWPは、プラズマ処理容器1の側壁の金属面に照射されることも、金属面から反射されることもなく、誘電体窓4の外周部で腹と節を形成する。なお、上記天井部101の内壁面の位置よりも、誘電体窓4の表面を基板12側に突出して位置するようにする場合には、誘電体窓4の表面から上記天井部101の内壁面までの距離は5mm程度が好ましい。
【0035】
なお、誘電体窓4の径は、基板12の径の2倍以上であることが好ましいが、図1のように誘電体窓4の外周部に突出部を設けたものである場合は、図2で示すとおり、この突出部に囲まれた内側の表面と基板12との距離を半径rとし、基板12の両端部を中心とするそれぞれの円c内にこの突出部が含まれないように誘電体窓4の径を定めればよい。この突出部の有無で好ましい誘電体窓4の径の長さが異なるのは、突出部によって基板4の端部の膜厚に影響を与えないようにするためである。たとえば、図1において突出部に囲まれた内側の表面と基板12との距離が60mm程度であり、基板4が200mmの場合、誘電体窓4の突出部に囲まれた内側の径はおよそ280mmとなる。
【0036】
このとき圧力によっては、基板12側からみると誘電体窓4の外周部とプラズマ処理容器1の側壁面との間に波状のプラズマを形成することがあるが、これは基板12の表面のプラズマ処理には影響せず、逆に上記外周部で電力を消費するため基板12上の誘電体窓4の表面のプラズマPは均一になる。この場合、誘電体窓4の外周部とプラズマ処理容器1の側壁面との間の距離は、導入するマイクロ波の波長の4分の1以上離せばよい。たとえば、本実施の形態では、導入するマイクロ波は、2.45GHzであるから、波長122mmにたいして約30mm以上の距離を離せばよいことになる。
【0037】
本実施の形態では、マイクロ波をマイクロ波処理容器1内に導入する手段として、マイクロ波を同軸に変換した後、スロット3を介して照射する同軸導波変換器及びアンテナ2を使用しているが、アンテナ手段としては、他に導波管8にスリットをいれたものなどを特に使用することができ特に限定されるものではない。
【0038】
比較のために示す図3および図4のマイクロ波プラズマ処理装置も基本的構成は図1と同じであり、図中の符号については図1と同じ符号は同じ構成を示す。なお、図3の装置と図4の装置の違いは、図4では誘電体窓4の表面の外側縁部にリング状の突出部を設けているのに対し、図3でこの突出部が設けられていない点である。図3および図4はいずれの場合も、誘電体窓4の表面の位置が、天井部101の内壁面の位置よりも基板12側から遠い位置にあるため、誘電体窓4の周囲には、この天井部101に形成された開口部断面からなる金属製の包囲面が形成されている。SWP’およびSWP’’は、模式的に表した表面波であるが、いずれも上記金属製の包囲面で短絡されるため、中央部分に強い定在波を生成する。その結果、プラズマ密度も誘電体窓4の中央や誘電体窓4の中央を取り囲むリング状の部分で高くなり、均一性を損なうことになる。
【0039】
【実施例】
以下、本発明にかかるマイクロ波プラズマ処理装置を用いて行うプラズマ処理の実施例について従来のマイクロ波プラズマ処理装置の場合と比較して説明する。
【0040】
図1と図3のマイクロ波プラズマ処理装置を用いて0.5%希フッ酸により、自然酸化膜を除去した基板12をそれぞれプラズマ酸化処理およびプラズマ窒化処理した。
【0041】
プラズマ酸化は、Kr/Oガスを用い、圧力を80Pa、処理時間を10分として行った。一方、プラズマ窒化はAr/NHガスを用い、圧力を8Pa、処理時間を7分として行った。図1と図3の装置において、誘電体窓4の表面と基板12との距離を調整してどちらも60mmとした。
【0042】
プラズマ処理後、基板上の任意の位置における酸化物膜および窒化物膜の膜厚分布を分光分散エリプソメータで測定し、結果を比較した。酸化処理の結果を図5に窒化処理の結果を図6にそれぞれ示す。
【0043】
本発明に係るマイクロ波プラズマ処理装置を用いてプラズマ処理した場合は、いずれも膜厚分布は良い均一性を示している。すなわち、それぞれの膜厚は、酸化処理した場合は、およそ71Å〜72Å付近で一定であり(図5)、窒化処理した場合は、およそ46Å〜50Å付近で一定である(図6)。なお、図示しないが、上記と異なる条件の酸化処理および窒化処理においても同様の分布傾向であった。
【0044】
一方、図3のマイクロ波プラズマ処理装置を用いてプラズマ処理した場合は、いずれも基板中央部の膜厚が厚くなっていることがわかる。すなわち、それぞれの膜厚は、酸化処理した場合は、基板周辺部ではおよそ80Åであるが、基板中央部ではおよそ103Åであり(図5)、窒化処理した場合は、基板周辺部ではおよそ33Åであるが、基板中央部ではおよそ59Åである(図6)。これは、図3のSWP’で示したように、天井部101に形成された開口部断面からなる上記金属製の包囲面で反射したマイクロ波が定在波を形成し、誘電体窓4の基板中央部のプラズマ密度が上がってしまったためと考えられる。
【0045】
さらに、圧力が比較的高い80Paの場合、図1のマイクロ波プラズマ処理装置の誘電体窓4の外周部とプラズマ処理容器1の側壁面との間に波状のプラズマが形成された。これは、誘電体窓4の外周部とプラズマ処理容器1の側壁面との間の距離を、導入するマイクロ波の波長の4分の1以上離したために、図3の従来のマイクロ波プラズマ処理装置では、マイクロ波が誘電体窓4の中央部に反射してくるのに対し、図1の装置の場合には、誘電体窓4の外周部とプラズマ処理容器1の側壁面との間でプラズマを形成し、マイクロ波が誘電体窓4の中央部に反射するのを防いでいるためと考えられる。
【0046】
【発明の効果】
以上の説明から明らかなように、本発明は、マイクロ波を利用したプラズマ処理において、基板に対向した誘電体窓の表面をプラズマ処理容器の天井部内壁面の位置と同じ位置かもしくはこの天井部内壁面よりも基板側に位置するように構成し、さらに誘電体窓の外周部と、プラズマ処理容器の側壁面との間の距離をマイクロ波の波長の4分の1以上離すことによって、これまでプラズマの均一性を低下させる原因であった定在波を抑制できるようになった。従って、誘電体窓の表面と基板との距離が近い場合でもプラズマ処理の均一性を確保できるようになり、また、ガス種や圧力を変化させても、その都度装置の構成を調整せずにプラズマの均一性の高い処理を行うことが可能となった。
【図面の簡単な説明】
【図1】本発明にかかるマイクロ波プラズマ処理装置の断面図。
【図2】突出部を設けた場合の誘電体窓の径の決定の仕方を示す断面図
【図3】従来のマイクロ波プラズマ処理装置の断面図。
【図4】従来のマイクロ波プラズマ処理装置の断面図(誘電体窓の表面の外側縁部にリング状の突出部を設けたもの)。
【図5】図1と図3の装置を使用してシリコン基板をプラズマ酸化処理した場合の膜厚分布を示す図
【図6】図1と図3の装置を使用してシリコン基板をプラズマ窒化処理した場合の膜厚分布を示す図
【符号の説明】
1 プラズマ処理容器
2 同軸導波変換器およびアンテナ
3 スロット
4 誘電体窓
5 マグネトロン
6 アイソレータ
7 4Eチューナ
8 導波管
9 ガス供給手段
10 排気ポンプ
11 圧力調整弁
12 基板
13 電極
14 高周波電源
15 整合器
P プラズマ
SWP表面波
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a microwave plasma processing apparatus and a processing method using the apparatus.
[0002]
[Prior art]
2. Description of the Related Art In recent years, with the miniaturization of semiconductor devices such as LSIs, plasma processing apparatuses have been frequently used in semiconductor device manufacturing processes. The uniformity of the plasma processing in the wafer surface greatly contributes to the stability of the characteristics and the yield of the semiconductor device. This plasma processing uniformity is ensured by uniformly distributing the plasma on the wafer surface. Therefore, for example, it is conceivable that the plasma is diffused by increasing the distance between the plasma generation unit of the plasma processing apparatus and the substrate to make the plasma uniform on the wafer surface.
[0003]
Among plasma processing apparatuses, recently, a microwave plasma processing apparatus that can stably excite plasma even in a high vacuum state having a relatively low pressure has been attracting attention.
[0004]
The plasma processing using this microwave plasma processing apparatus will be specifically described as an example in which a silicon surface is directly oxidized and nitrided to form a high-quality insulating film.
[0005]
When a microwave plasma processing apparatus is used, the insulating film is formed in a metal plasma processing container. An opening is formed in the ceiling of the plasma processing vessel, and a microwave transmitting dielectric window made of quartz or the like is provided in the opening in an airtight manner to introduce microwaves into the apparatus. .
[0006]
In the formation of the insulating film, if the distance between the substrate side surface of the dielectric window and the substrate is about 80 mm or less, the generated plasma is uniform according to the gas type and pressure used in the plasma processing. In some cases, the irradiation intensity of the microwave may be adjusted by an antenna.
[0007]
On the other hand, even when the plasma has a high density in the central portion or a poor uniformity such as formation of a ring-shaped high density portion, the distance between the surface of the dielectric window and the substrate is 80 mm or more. When separated, the plasma is diffused and uniformity is ensured on the substrate surface.
[0008]
By the way, when plasma is excited by the microwave plasma processing apparatus, a microwave wave called a surface wave is formed between the surface of the dielectric window and the generated plasma. This surface wave spreads over the entire surface of the dielectric window, and plasma is formed above the substrate.
[0009]
Usually, since the position of the inner wall surface of the ceiling of the plasma processing vessel projects more toward the substrate than the position of the surface of the dielectric window, the periphery of the dielectric window is formed by an opening formed in the ceiling. Section is surrounded by the section. Therefore, when the surface wave is reflected on the surrounding surface having the cross section of the opening, the surface wave and the reflected wave interfere with each other to form a standing wave near the surface of the dielectric window.
[0010]
This standing wave causes the uniformity of plasma on the substrate surface in the microwave plasma processing to be impaired. That is, there has been a problem that the plasma density at the center of the dielectric window is higher than that at the periphery of the dielectric window.
[0011]
Therefore, conventionally, the outer peripheral portion of the dielectric window and the shape of the device wall on which the dielectric window is installed are made uneven to cancel the reflected wave so that a standing wave is not generated (for example, see Patent Document 1). ).
[0012]
[Patent Document 1]
JP-A-2002-190449 (Claims)
[0013]
[Problems to be solved by the invention]
However, if the microwave irradiation intensity is adjusted by the antenna in accordance with the plasma processing at a specific gas type and pressure, and then the plasma processing is performed at a different gas type or pressure, the uniformity of the plasma is deteriorated. was there.
[0014]
Therefore, when performing plasma processing with a plurality of different gas types or pressures, the microwave irradiation intensity must be adjusted each time, so that a single adjustment cannot perform a plurality of plasma processings with different gas types or pressures. However, there is a problem that the working efficiency is reduced.
[0015]
On the other hand, if the distance between the surface of the dielectric window and the substrate is increased, uniformity on the substrate surface can be ensured, but at the same time, the plasma density on the substrate surface decreases and the amount of reactive species reaching the substrate decreases. However, there has been a problem that it takes time for the plasma processing.
[0016]
Furthermore, in order to prevent the generation of standing waves that hinder the uniformity of plasma on the substrate surface, the outer peripheral portion of the dielectric window and the shape of the side wall surface of the plasma processing vessel in which the dielectric window is installed are modified. Although the above-mentioned inconvenience can be solved by forming the unevenness, the processing technique for forming the unevenness is complicated, and there is a problem that the processing is substantially difficult.
[0017]
The present invention has been made in view of the above-described problems, and does not generate a standing wave near the surface of the dielectric window even without performing complicated processing on the dielectric window, thereby ensuring uniformity of plasma on the substrate surface. It is an object to provide a microwave plasma processing apparatus and a processing method.
[0018]
[Means for Solving the Problems]
In order to solve the above problems, the microwave plasma processing apparatus according to the present invention includes at least a plasma processing container having an open ceiling, and a microwave transmitting dielectric window provided airtightly on the ceiling, In a microwave plasma processing apparatus configured so that a substrate can be set in a plasma processing container facing the dielectric window, the surface of the dielectric window facing the substrate has an inner wall surface of a ceiling portion of the plasma processing container. It is configured to be located at the same position as the position or protruding toward the substrate side from the position of the inner wall surface of the ceiling.
[0019]
According to this configuration, since the outer peripheral portion of the dielectric window has no surrounding surface formed by a cross section of the opening formed in the ceiling portion of the plasma processing container, the surface wave is not reflected, and the standing wave is not formed. Can be suppressed.
[0020]
Therefore, a uniform plasma distribution can be obtained on the substrate surface regardless of the distance between the surface of the dielectric window and the substrate and even when the conditions such as the gas type and the pressure are changed.
[0021]
When the surface of the dielectric window facing the substrate is located closer to the substrate than the inner wall surface of the ceiling of the plasma processing vessel, the distance from the inner wall surface of the ceiling to the surface of the dielectric window is preferably at least 5 mm.
[0022]
When a ring-shaped protrusion is provided on the outer edge of the surface of the dielectric window facing the substrate, the inner surface surrounded by the protrusion is the same as the position of the ceiling inner wall surface of the plasma processing container. It may be configured so as to protrude toward the substrate side from the position or the position of the ceiling inner wall surface.
[0023]
It is preferable that the distance between the outer peripheral portion of the dielectric window and the side wall surface of the plasma processing container is at least 4 of the wavelength of the microwave to be introduced. This provides a space for forming plasma between the outer peripheral portion of the dielectric window and the side wall surface of the plasma processing vessel, so that microwaves are reflected toward the central portion of the dielectric window to form a standing wave. It is to suppress that.
[0024]
Therefore, for example, when the frequency of the microwave to be introduced is 2.45 GHz, the distance between the outer peripheral portion of the dielectric window and the side wall surface of the plasma processing container may be 30 mm or more.
[0025]
Preferably, the diameter of the dielectric window is at least twice the diameter of the substrate. Further, in the case where the above-mentioned protrusion is provided on the outer peripheral portion of the dielectric window, the distance between the inner surface surrounded by the protrusion and the substrate is defined as a radius, and each circle centered on both ends of the substrate. The diameter of the dielectric window may be determined so as not to include the protrusion. The reason why the diameter of the preferable dielectric window differs depending on the presence or absence of the protrusion is to prevent the protrusion from affecting the film thickness of the substrate end.
[0026]
Further, in order to solve the above problem, in the microwave plasma processing method according to the present invention, a raw material gas for exciting plasma is supplied to a plasma processing container by a gas supply unit, and is oscillated and amplified by a microwave generation unit. Microwaves are introduced into the antenna means and irradiated, and the irradiated microwaves are introduced into the above-mentioned plasma processing vessel in a vacuum atmosphere through a microwave transmitting dielectric window, and plasma processing is performed by an electromagnetic field created by the microwaves. In a processing method for generating plasma in a container and performing microwave plasma processing on a substrate provided to face the dielectric window for microwave transmission, the plasma processing may be performed using the microwave plasma apparatus according to any of the above. It is characterized by performing.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a microwave plasma processing apparatus according to an embodiment of the present invention will be described with reference to FIGS. 1, 2, and 3. FIG.
[0028]
FIG. 1 is a cross-sectional view illustrating a configuration of a microwave plasma processing apparatus for a semiconductor substrate as one embodiment of the present invention. 3 and 4 are cross-sectional views illustrating a conventional general microwave plasma processing apparatus for a semiconductor substrate.
[0029]
In FIG. 1, reference numeral 1 denotes a metal plasma processing container for performing plasma processing. Above the ceiling 101 of the plasma processing vessel 1, a coaxial waveguide converter for adjusting the irradiation intensity of the microwave and the antenna 2 are provided. A slot 3 for irradiating microwaves is provided between the coaxial waveguide converter and antenna 2 and a dielectric window 4 provided airtightly in the opening of the ceiling 101. The raw material of the dielectric window 4 is quartz or the like. The dielectric window 4 transmits the microwave irradiated through the slot 3 and introduces the microwave into the plasma processing container 1.
[0030]
The microwave (2.45 GHz) is oscillated by the magnetron 5 and is introduced into the coaxial waveguide converter and the antenna 2 via the waveguide 8.
[0031]
Inside the plasma processing container 1, an electrode 13 for holding the plasma processing substrate 12 is provided at a position facing the dielectric window 4, and a high frequency power is applied to this electrode 13 from a high frequency power supply 14 as needed. The high-frequency impedance adjustment is performed by the matching unit 15.
[0032]
Next, the operation of the microwave plasma processing apparatus according to the present embodiment will be described. A gas for exciting plasma is supplied from the side of the plasma processing container 1 by gas supply means 9, the inside of the plasma processing container 1 is depressurized by the exhaust system 10, and the process pressure of the plasma processing container 1 is reduced by the pressure regulating valve 11. After the adjustment, the raw material and the reaction by-product gas are exhausted. The microwave oscillated and amplified by the magnetron 5 is introduced into the coaxial waveguide converter and the antenna 2 through the 4E tuner 7 and irradiated from the slot 3. At this time, the reflected wave is returned to the microwave processing vessel 1 by the 4E tuner 7, but the reflected wave that cannot be adjusted is absorbed by the isolator 6 to prevent the reflected wave from returning to the magnetron 5. The microwave radiated from the slot 3 is introduced into the plasma processing vessel 1 in a vacuum atmosphere through the dielectric window 4, and forms a plasma P in the plasma processing vessel 1 by an electromagnetic field generated by the microwave. With the plasma P, etching, a film formation process, and the like can be performed. Note that SWP schematically represents a surface wave of a microwave generated between the surface of the dielectric window 4 and the plasma P.
[0033]
In the case of performing the oxidation treatment using the microwave plasma treatment apparatus, for example, a rare gas such as argon or krypton is mixed with oxygen to introduce a total of 0.17 Pa · m 3 / sec (100 sccm) or more, and 1 to 133 Pa Process in the pressure range of On the other hand, in the case of performing the nitriding treatment, for example, a rare gas such as argon or krypton is mixed with ammonia, nitrogen, and hydrogen, and a total of 0.17 Pa · m 3 / sec (100 sccm) or more is introduced, and a pressure of 1 to 133 Pa is applied. Process in pressure range.
[0034]
In FIG. 1, the position of the surface of the dielectric window 4 on the side facing the substrate 12 protrudes toward the substrate 12 from the position of the inner wall surface of the ceiling 101 of the microwave processing container 1. Therefore, the surface wave SWP does not irradiate the metal surface of the side wall of the plasma processing chamber 1 nor is reflected from the metal surface, and forms antinodes and nodes at the outer peripheral portion of the dielectric window 4. When the surface of the dielectric window 4 is positioned so as to protrude toward the substrate 12 from the position of the inner wall surface of the ceiling 101, the inner wall surface of the ceiling 101 is Is preferably about 5 mm.
[0035]
The diameter of the dielectric window 4 is preferably at least twice as large as the diameter of the substrate 12. However, in the case where a projection is provided on the outer periphery of the dielectric window 4 as shown in FIG. As shown by 2, the distance between the inner surface surrounded by the protrusions and the substrate 12 is defined as a radius r, and the protrusions are not included in the respective circles c centered on both ends of the substrate 12. The diameter of the dielectric window 4 may be determined. The reason why the preferable diameter of the dielectric window 4 differs depending on the presence or absence of the protrusion is to prevent the protrusion from affecting the film thickness at the end of the substrate 4. For example, in FIG. 1, the distance between the inner surface surrounded by the protrusions and the substrate 12 is about 60 mm, and when the substrate 4 is 200 mm, the inner diameter surrounded by the protrusions of the dielectric window 4 is approximately 280 mm. It becomes.
[0036]
At this time, depending on the pressure, a wavy plasma may be formed between the outer peripheral portion of the dielectric window 4 and the side wall surface of the plasma processing container 1 when viewed from the substrate 12 side. The plasma P on the surface of the dielectric window 4 on the substrate 12 becomes uniform because power is consumed in the outer peripheral portion without affecting the processing. In this case, the distance between the outer peripheral portion of the dielectric window 4 and the side wall surface of the plasma processing container 1 may be at least one-quarter of the wavelength of the microwave to be introduced. For example, in the present embodiment, the microwave to be introduced is at 2.45 GHz, so that it is sufficient that the microwave is separated by a distance of about 30 mm or more with respect to the wavelength of 122 mm.
[0037]
In the present embodiment, as means for introducing microwaves into the microwave processing vessel 1, a coaxial waveguide converter that converts microwaves to coaxial and then irradiates through the slots 3 and the antenna 2 are used. However, as the antenna means, one having a slit in the waveguide 8 or the like can be particularly used, and is not particularly limited.
[0038]
The microwave plasma processing apparatus shown in FIGS. 3 and 4 for comparison has the same basic configuration as that of FIG. 1, and the same reference numerals in FIG. 3 denote the same components. The difference between the device shown in FIG. 3 and the device shown in FIG. 4 is that a ring-shaped protrusion is provided on the outer edge of the surface of the dielectric window 4 in FIG. 4, but this protrusion is provided in FIG. That is not done. 3 and 4, in any case, the surface of the dielectric window 4 is located farther from the substrate 12 side than the position of the inner wall surface of the ceiling 101, and therefore, around the dielectric window 4, A metal surrounding surface having a cross section of the opening formed in the ceiling 101 is formed. SWP ′ and SWP ″ are surface waves schematically represented, but both are short-circuited at the metal surrounding surface, and thus generate strong standing waves at the center. As a result, the plasma density also increases at the center of the dielectric window 4 or at a ring-shaped portion surrounding the center of the dielectric window 4, thereby impairing uniformity.
[0039]
【Example】
Hereinafter, an embodiment of the plasma processing performed using the microwave plasma processing apparatus according to the present invention will be described in comparison with the case of the conventional microwave plasma processing apparatus.
[0040]
Using the microwave plasma processing apparatus shown in FIGS. 1 and 3, the substrate 12 from which the natural oxide film was removed was diluted with 0.5% diluted hydrofluoric acid and subjected to plasma oxidation and plasma nitridation, respectively.
[0041]
Plasma oxidation was performed using Kr / O 2 gas at a pressure of 80 Pa and a processing time of 10 minutes. On the other hand, plasma nitriding was performed using Ar / NH 3 gas at a pressure of 8 Pa and a processing time of 7 minutes. 1 and 3, the distance between the surface of the dielectric window 4 and the substrate 12 was adjusted to 60 mm in both cases.
[0042]
After the plasma treatment, the film thickness distribution of the oxide film and the nitride film at an arbitrary position on the substrate was measured by a spectral dispersion ellipsometer, and the results were compared. FIG. 5 shows the result of the oxidation treatment, and FIG. 6 shows the result of the nitridation treatment.
[0043]
When plasma processing is performed using the microwave plasma processing apparatus according to the present invention, the film thickness distribution shows good uniformity in all cases. That is, the respective film thicknesses are constant around 71 ° to 72 ° when oxidized (FIG. 5), and constant around 46 ° to 50 ° when nitrided (FIG. 6). Although not shown, the same distribution tendency was observed in the oxidation treatment and the nitridation treatment under conditions different from those described above.
[0044]
On the other hand, when the plasma processing was performed using the microwave plasma processing apparatus of FIG. 3, it was found that the film thickness in the central portion of the substrate was increased in each case. That is, the respective film thicknesses are approximately 80 ° at the peripheral portion of the substrate when oxidized, are approximately 103 ° at the central portion of the substrate (FIG. 5), and are approximately 33 ° at the peripheral portion of the substrate when the nitriding process is performed. However, it is approximately 59 ° at the center of the substrate (FIG. 6). This is because, as indicated by SWP ′ in FIG. 3, the microwave reflected on the metal surrounding surface having the cross section of the opening formed in the ceiling 101 forms a standing wave, and the dielectric window 4 has This is probably because the plasma density at the center of the substrate has increased.
[0045]
Further, when the pressure was relatively high at 80 Pa, a wave-like plasma was formed between the outer peripheral portion of the dielectric window 4 of the microwave plasma processing apparatus of FIG. This is because the distance between the outer peripheral portion of the dielectric window 4 and the side wall surface of the plasma processing vessel 1 is separated by a quarter or more of the wavelength of the microwave to be introduced. In the apparatus, the microwave is reflected to the center of the dielectric window 4, whereas in the apparatus of FIG. 1, the microwave is reflected between the outer periphery of the dielectric window 4 and the side wall surface of the plasma processing vessel 1. This is presumably because plasma was formed to prevent microwaves from being reflected at the center of the dielectric window 4.
[0046]
【The invention's effect】
As is clear from the above description, in the present invention, in the plasma processing using microwaves, the surface of the dielectric window facing the substrate is placed at the same position as the position of the inner wall surface of the ceiling of the plasma processing vessel or the inner wall surface of the ceiling. The distance between the outer peripheral portion of the dielectric window and the side wall surface of the plasma processing container is set to be at least one quarter of the wavelength of the microwave, so that the plasma The standing wave which has caused the uniformity of the laser to be reduced can be suppressed. Therefore, even when the distance between the surface of the dielectric window and the substrate is short, uniformity of the plasma processing can be ensured, and even if the gas type or pressure is changed, the configuration of the apparatus is not adjusted each time. Processing with high plasma uniformity can be performed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a microwave plasma processing apparatus according to the present invention.
FIG. 2 is a cross-sectional view showing how to determine the diameter of a dielectric window when a protrusion is provided. FIG. 3 is a cross-sectional view of a conventional microwave plasma processing apparatus.
FIG. 4 is a cross-sectional view of a conventional microwave plasma processing apparatus (in which a ring-shaped protrusion is provided on the outer edge of the surface of a dielectric window).
FIG. 5 is a view showing a film thickness distribution when a silicon substrate is subjected to plasma oxidation processing using the apparatus of FIGS. 1 and 3; FIG. 6 is a plasma nitridation of a silicon substrate using the apparatus of FIGS. 1 and 3; The figure which shows the film thickness distribution at the time of processing.
DESCRIPTION OF SYMBOLS 1 Plasma processing container 2 Coaxial waveguide converter and antenna 3 Slot 4 Dielectric window 5 Magnetron 6 Isolator 7 4E tuner 8 Waveguide 9 Gas supply means 10 Exhaust pump 11 Pressure regulating valve 12 Substrate 13 Electrode 14 High frequency power supply 15 Matching device P plasma SWP surface wave

Claims (8)

天井部が開口されたプラズマ処理容器と、この天井部に気密に設けられたマイクロ波透過用誘電体窓とを少なくとも備え、上記誘電体窓に対向してプラズマ処理容器内に基板が設置できるように構成されているマイクロ波プラズマ処理装置において、基板に対向した上記誘電体窓の表面が、プラズマ処理容器の天井部内壁面の位置と同じ位置かもしくはこの天井部内壁面の位置よりも基板側に突出して位置するように構成されていることを特徴とするマイクロ波プラズマ処理装置。A plasma processing vessel having an open ceiling, and at least a microwave-transmitting dielectric window hermetically provided on the ceiling, so that a substrate can be installed in the plasma processing vessel facing the dielectric window. In the microwave plasma processing apparatus configured as described above, the surface of the dielectric window facing the substrate projects to the substrate side at the same position as the position of the ceiling inner wall surface of the plasma processing vessel or the position of the ceiling inner wall surface. A microwave plasma processing apparatus characterized in that the microwave plasma processing apparatus is configured to be positioned at a right angle. 基板に対向した上記誘電体窓の表面が、プラズマ処理容器の天井部内壁面の位置から少なくとも5mm基板側に突出して位置するように構成されていることを特徴とする請求項1記載のマイクロ波プラズマ処理装置。2. The microwave plasma according to claim 1, wherein the surface of the dielectric window facing the substrate is configured to project at least 5 mm from the position of the inner wall surface of the ceiling of the plasma processing vessel toward the substrate. Processing equipment. 基板に対向した上記誘電体窓の表面の外側縁部にリング状の突出部を設けた場合に、この突出部に囲まれた内側の表面が、プラズマ処理容器の天井部内壁面の位置と同じ位置かもしくはこの天井部内壁面の位置よりも基板側に突出して位置するように構成されていることを特徴とする請求項1もしくは請求項2記載のマイクロ波プラズマ処理装置。When a ring-shaped protrusion is provided on the outer edge of the surface of the dielectric window facing the substrate, the inner surface surrounded by the protrusion is located at the same position as the position of the inner wall surface of the ceiling of the plasma processing vessel. 3. The microwave plasma processing apparatus according to claim 1, wherein the microwave plasma processing apparatus is configured to protrude toward the substrate side from the position of the ceiling inner wall surface. 上記誘電体窓の外周部とプラズマ処理容器の側壁面との間の距離が、導入するマイクロ波の波長の4分の1以上離れていることを特徴とする請求項1記載乃至請求項3のいずれかに記載のマイクロ波プラズマ処理装置。4. The plasma processing apparatus according to claim 1, wherein a distance between an outer peripheral portion of the dielectric window and a side wall surface of the plasma processing container is at least 4 of a wavelength of the microwave to be introduced. The microwave plasma processing apparatus according to any one of the above. 導入するマイクロ波の周波数が2.45GHzの場合に、上記誘電体窓の外周部とプラズマ処理容器の側壁面との間の距離が30mm以上であることを特徴とする請求項4記載のマイクロ波プラズマ処理装置。5. The microwave according to claim 4, wherein, when the frequency of the introduced microwave is 2.45 GHz, the distance between the outer peripheral portion of the dielectric window and the side wall surface of the plasma processing container is 30 mm or more. Plasma processing equipment. 上記誘電体窓の径が、基板の径の2倍以上であることを特徴とする請求項1乃至請求項5のいずれかに記載のマイクロ波プラズマ処理装置。6. The microwave plasma processing apparatus according to claim 1, wherein the diameter of the dielectric window is at least twice the diameter of the substrate. 誘電体窓が請求項3記載の突出部を設けたものである場合は、この突出部に囲まれた内側の表面と基板との距離を半径とし、基板両端部を中心とするそれぞれの円内にこの突出部が含まれないように誘電体窓の径を定めたことを特徴とする請求項2乃至請求項5のいずれかに記載のマイクロ波プラズマ処理装置。In the case where the dielectric window is provided with the protruding portion according to claim 3, the distance between the inner surface surrounded by the protruding portion and the substrate is defined as a radius, and each of the circles is centered on both ends of the substrate. 6. The microwave plasma processing apparatus according to claim 2, wherein the diameter of the dielectric window is determined so as not to include the protrusion. ガス供給手段によってプラズマを励起するための原料ガスをプラズマ処理容器に供給し、マイクロ波発生手段により発振、増幅せしめたマイクロ波をアンテナ手段に導入して照射させ、この照射されたマイクロ波をマイクロ波透過用誘電体窓を介して真空雰囲気の上記プラズマ処理容器に導入し、このマイクロ波のつくる電磁界によってプラズマ処理容器内にプラズマを生成し、上記マイクロ波透過用誘電体窓に対向して設けられた基板をマイクロ波プラズマ処理する処理方法において、請求項1乃至請求項7のいずれかに記載のマイクロ波プラズマ装置を用いてプラズマ処理を行うことを特徴とするマイクロ波プラズマ処理方法。The source gas for exciting the plasma is supplied to the plasma processing container by the gas supply unit, and the microwave oscillated and amplified by the microwave generation unit is introduced into the antenna unit and irradiated, and the irradiated microwave is applied to the microwave. The microwave is introduced into the plasma processing container in a vacuum atmosphere through a dielectric window for wave transmission, and a plasma is generated in the plasma processing container by an electromagnetic field generated by the microwave. A microwave plasma processing method using a microwave plasma apparatus according to any one of claims 1 to 7, wherein the plasma processing is performed on the provided substrate.
JP2003099309A 2003-04-02 2003-04-02 Microwave plasma processing apparatus and processing method Expired - Fee Related JP4261236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003099309A JP4261236B2 (en) 2003-04-02 2003-04-02 Microwave plasma processing apparatus and processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003099309A JP4261236B2 (en) 2003-04-02 2003-04-02 Microwave plasma processing apparatus and processing method

Publications (2)

Publication Number Publication Date
JP2004311510A true JP2004311510A (en) 2004-11-04
JP4261236B2 JP4261236B2 (en) 2009-04-30

Family

ID=33463816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003099309A Expired - Fee Related JP4261236B2 (en) 2003-04-02 2003-04-02 Microwave plasma processing apparatus and processing method

Country Status (1)

Country Link
JP (1) JP4261236B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078782A1 (en) * 2004-02-16 2005-08-25 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
JP5202652B2 (en) * 2009-02-06 2013-06-05 国立大学法人東北大学 Plasma processing equipment
JP2020029388A (en) * 2018-08-23 2020-02-27 株式会社エスイー Method and apparatus for plasma-treating compound containing metal atom having boiling point higher than boiling point of metal material consisting only of metal atom to obtain product different from compound

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773997A (en) * 1993-06-30 1995-03-17 Kobe Steel Ltd Plasma cvd device and cvd processing method employing the device and cleaning method for inside of the device
JPH08106994A (en) * 1991-05-24 1996-04-23 Sumitomo Metal Ind Ltd Microwave plasma processor
JP2000021863A (en) * 1998-07-06 2000-01-21 Sumitomo Metal Ind Ltd Plasma treating apparatus
JP2001093839A (en) * 1999-09-27 2001-04-06 Sharp Corp Plasma process system
JP2003059919A (en) * 2001-08-17 2003-02-28 Ulvac Japan Ltd Apparatus and method for microwave plasma treatment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08106994A (en) * 1991-05-24 1996-04-23 Sumitomo Metal Ind Ltd Microwave plasma processor
JPH0773997A (en) * 1993-06-30 1995-03-17 Kobe Steel Ltd Plasma cvd device and cvd processing method employing the device and cleaning method for inside of the device
JP2000021863A (en) * 1998-07-06 2000-01-21 Sumitomo Metal Ind Ltd Plasma treating apparatus
JP2001093839A (en) * 1999-09-27 2001-04-06 Sharp Corp Plasma process system
JP2003059919A (en) * 2001-08-17 2003-02-28 Ulvac Japan Ltd Apparatus and method for microwave plasma treatment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078782A1 (en) * 2004-02-16 2005-08-25 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
US8267040B2 (en) 2004-02-16 2012-09-18 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
JP5202652B2 (en) * 2009-02-06 2013-06-05 国立大学法人東北大学 Plasma processing equipment
JP2020029388A (en) * 2018-08-23 2020-02-27 株式会社エスイー Method and apparatus for plasma-treating compound containing metal atom having boiling point higher than boiling point of metal material consisting only of metal atom to obtain product different from compound
JP7120544B2 (en) 2018-08-23 2022-08-17 株式会社エスイー Manufacturing method and manufacturing apparatus for obtaining a product different from the compound by treating a compound containing metal atoms having a boiling point higher than that of a metal material consisting only of metal atoms with plasma

Also Published As

Publication number Publication date
JP4261236B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
KR102009923B1 (en) Processing method of silicon nitride film and forming method of silicon nitride film
US7728251B2 (en) Plasma processing apparatus with dielectric plates and fixing member wavelength dependent spacing
KR100997868B1 (en) Plasma processing apparatus and plasma processing method
KR101020334B1 (en) Microwave plasma processing apparatus
US8741779B2 (en) Plasma processing apparatus and plasma processing method
KR100896552B1 (en) Plasma etching method
KR100966927B1 (en) Method of fabricating insulating layer and method of fabricating semiconductor device
US20060156984A1 (en) Plasma processing apparatus and plasma processing method
KR101028625B1 (en) Method for nitriding substrate and method for forming insulating film
WO2012026117A1 (en) Plasma treatment device, and optical monitor device
JP4252749B2 (en) Substrate processing method and substrate processing apparatus
JP4974318B2 (en) Microwave plasma processing apparatus and processing method
WO2013027470A1 (en) Plasma processor, microwave introduction device, and plasma processing method
JP2008109128A (en) Method for forming silicon oxide film
KR100936550B1 (en) Quartz member surface treatment method, plasma processing apparatus and plasma processing method
JP4261236B2 (en) Microwave plasma processing apparatus and processing method
JP2003168681A (en) Microwave plasma treatment device and treatment method
JP2001167900A (en) Plasma treatment apparatus
JPH11193466A (en) Plasma treating device and plasma treating method
KR101123538B1 (en) Quartz member
JP2001308066A (en) Plasma processing apparatus
JP2004335791A (en) Processing method of fluorine added carbon film

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20030808

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4261236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150220

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees