JP4261236B2 - Microwave plasma processing apparatus and processing method - Google Patents

Microwave plasma processing apparatus and processing method Download PDF

Info

Publication number
JP4261236B2
JP4261236B2 JP2003099309A JP2003099309A JP4261236B2 JP 4261236 B2 JP4261236 B2 JP 4261236B2 JP 2003099309 A JP2003099309 A JP 2003099309A JP 2003099309 A JP2003099309 A JP 2003099309A JP 4261236 B2 JP4261236 B2 JP 4261236B2
Authority
JP
Japan
Prior art keywords
plasma processing
dielectric window
microwave
substrate
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003099309A
Other languages
Japanese (ja)
Other versions
JP2004311510A (en
Inventor
雅嗣 中川
一弘 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2003099309A priority Critical patent/JP4261236B2/en
Publication of JP2004311510A publication Critical patent/JP2004311510A/en
Application granted granted Critical
Publication of JP4261236B2 publication Critical patent/JP4261236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロ波プラズマ処理装置およびこの装置を用いた処理方法に関する。
【0002】
【従来の技術】
近年、LSIなどの半導体デバイスの微細化にともない、半導体デバイスの製造工程においてプラズマ処理装置が多用されている。この半導体デバイスの特性の安定や歩留まりなどは、ウェハ面内における上記プラズマ処理の均一性が大きく寄与する。このプラズマ処理の均一性は、プラズマをウェハ表面で均一に分布させることによって確保される。そこで、たとえばプラズマ処理装置のプラズマ生成部と基板との距離を遠ざけることによってプラズマを拡散させてウェハ表面では均一にするなどの工夫が考えられる。
【0003】
プラズマ処理装置のうち、最近では、比較的圧力の低い高真空状態でも安定してプラズマを励起することができるマイクロ波プラズマ処理装置が注目されている。
【0004】
このマイクロ波プラズマ処理装置を用いたプラズマ処理について、具体的にシリコン表面を直接酸化および窒化し、高品質の絶縁膜を形成する場合を例として説明する。
【0005】
マイクロ波プラズマ処理装置を用いる場合、金属製のプラズマ処理容器内で上記絶縁膜を形成する。このプラズマ処理容器の天井部には開口部が形成され、マイクロ波を装置内に導入するために、石英などからできているマイクロ波透過用誘電体窓がこの開口部に気密に設けられている。
【0006】
上記絶縁膜の形成に際し、この誘電体窓の基板側の表面と基板との距離がおよそ80mm以下であれば、当該プラズマ処理に使用されるガス種や圧力に応じ、生成されるプラズマが均一になるように、マイクロ波の照射強度をアンテナで調整することがある。
【0007】
一方、プラズマが中央部分で高密度であったり、あるいはリング状の高密度部分が形成されるなど均一性が悪い場合であっても、誘電体窓の表面と基板との間の距離を80mm以上離すことによってプラズマが拡散され、基板表面では均一性が確保される。
【0008】
ところで、マイクロ波プラズマ処理装置でプラズマを励起した場合、誘電体窓の表面と発生したプラズマとの間で表面波と呼ばれるマイクロ波の波が形成される。この表面波は誘電体窓一面に広がり、基板上方ではプラズマが形成される。
【0009】
通常、プラズマ処理容器の天井部の内壁面の位置は、上記誘電体窓の表面の位置よりも基板側に突起しているため、この誘電体窓の周囲は、上記天井部に形成された開口部の断面によって包囲されている。従って上記表面波がこの開口部断面からなる包囲面に反射すると、表面波とこの反射波が互いに干渉して誘電体窓の表面近傍で定在波が形成される。
【0010】
この定在波が、マイクロ波プラズマ処理における基板表面上のプラズマの均一性を阻害する原因になっている。すなわち、誘電体窓の中央部のプラズマ密度が誘電体窓の周辺部よりも高密度になるという問題が生じていた。
【0011】
そこで、従来、誘電体窓の外周部および誘電体窓が設置されている装置壁面の形状を凸凹にして反射波を打ち消し、定在波が生じないようにしていた(例えば、特許文献1参照。)。
【0012】
【特許文献1】
特開平2002−190449号(特許請求の範囲)
【0013】
【発明が解決しようとする課題】
しかしながら、ある特定のガス種および圧力におけるプラズマ処理に対応させて、アンテナでマイクロ波の照射強度を調整した後、異なるガス種もしくは圧力でプラズマ処理を行うと、プラズマの均一性が悪くなるという不都合があった。
【0014】
従って、複数の異なるガス種もしくは圧力でそれぞれプラズマ処理を行う場合は、マイクロ波の照射強度をその都度調整しなければならないため、一度の調整でガス種もしくは圧力が異なる複数のプラズマ処理はできず、作業効率が低下するという問題があった。
【0015】
一方、誘電体窓の表面と基板との間の距離を離すと、基板表面での均一性は確保できるが、同時に基板表面でのプラズマ密度が下がり、反応活性種の基板への到達量が減少し、プラズマ処理に時間がかかるという問題が生じていた。
【0016】
さらに、基板表面のプラズマの均一性を阻害する原因の定在波を生じさせないようにするために、誘電体窓の外周部および誘電体窓が設置されているプラズマ処理容器の側壁面の形状を凸凹にすれば、上記不都合は解消されるが、凸凹の形状にする加工技術は複雑であり、実質的に加工が困難であるという問題があった。
【0017】
本発明は、上記問題点に鑑み、上記誘電体窓に複雑な加工を施さなくても、誘電体窓の表面付近で定在波を生じさせないようにし、基板表面のプラズマの均一性を確保できるマイクロ波プラズマ処理装置および処理方法を提供することを課題とする。
【0018】
【課題を解決するための手段】
上記課題を解決するため、本発明にかかるマイクロ波プラズマ処理装置は、天井部が開口されたプラズマ処理容器と、この天井部に気密に設けられたマイクロ波透過用誘電体窓とを備え、上記誘電体窓に対向してプラズマ処理容器内に基板が設置され、上記誘電体窓の表面が、プラズマ処理容器の天井部内壁面の位置と同じ位置かもしくはこの天井部内壁面の位置よりも基板側に突出して位置するように構成されているマイクロ波プラズマ処理装置において、前記誘電体窓は、表面の外側縁部にリング状の突出部を備え、この突出部に囲まれた内側の表面を、前記プラズマ処理容器の天井部内壁面の位置と同じ位置かもしくはこの天井部内壁面の位置よりも前記基板側に突出して位置するようにし、この突出部に囲まれた内側の表面から前記基板までの距離を半径とし、基板両端部を中心とするそれぞれの円内にこの突出部が含まれないように前記誘電体窓の径を定めて構成されたものであることを特徴とする。
【0019】
この構成によれば、誘電体窓の外周部には、プラズマ処理容器の天井部に形成された開口部の断面からなる包囲面がないため、表面波が反射せず、定在波の形成を抑制することができる。
【0020】
従って、誘電体窓表面と基板との距離に関係なく、また、ガス種や圧力などの条件を変化させても、基板表面で均一なプラズマ分布を得ることができる。
【0025】
この突出部の有無で好ましい誘電体窓の径の長さが異なるのは、突出部によって基板端部の膜厚に影響を与えないようにするためである。
【0026】
上記課題を解決するため、本発明にかかるマイクロ波プラズマ処理方法は、ガス供給手段によってプラズマを励起するための原料ガスをプラズマ処理容器に供給し、マイクロ波発生手段により発振、増幅されたマイクロ波をマイクロ波透過用誘電体窓を介して真空雰囲気の上記プラズマ処理容器に導入し、このマイクロ波のつくる電磁界によってプラズマ処理容器内にプラズマを生成し、上記マイクロ波透過用誘電体窓に対向して設けられた基板をマイクロ波プラズマ処理する処理方法において、前記誘電体窓を前記プラズマ処理容器の開口された天井部に機密に設け、前記誘電体窓の表面の外側縁部にリング状の突出部を設け、この突出部に囲まれた内側の表面が、前記プラズマ処理容器の天井部内壁面の位置と同じ位置かもしくはこの天井部内壁面の位置よりも前記基板側に突出して位置するように構成され、この突出部に囲まれた内側の表面から前記基板までの距離を半径とし、基板両端部を中心とするそれぞれの円内にこの突出部が含まれないように前記誘電体窓の径を定め、この誘電体窓を介して前記プラズマ処理容器内にマイクロ波を導入してプラズマ処理を行うことを特徴とする。
【0028】
図1は、本発明の一実施形態として、半導体基板用のマイクロ波プラズマ処理装置の構成を表した断面図である。図3および図4は、従来の一般的な半導体基板用のマイクロ波プラズマ処理装置を表した断面図である。
【0029】
図1において、1は、プラズマ処理を行う金属製のプラズマ処理容器である。プラズマ処理容器1の天井部101の上部には、マイクロ波の照射強度を調整する同軸導波変換器及びアンテナ2が設けられている。同軸導波変換器及びアンテナ2と、天井部101の開口部に気密に設けられた誘電体窓4との間には、マイクロ波を照射するスロット3が設けられている。なお、上記誘電体窓4の原材料は、石英などである。この誘電体窓4は、スロット3を介して照射されたマイクロ波を透過し、プラズマ処理容器1内にマイクロ波を導入する。
【0030】
このマイクロ波(2.45GHz)は、マグネトロン5で発振し、導波管8を介して上記同軸導波変換器及びアンテナ2に導入される。
【0031】
プラズマ処理容器1の内部には、上記誘導体窓4と対向する位置に、プラズマ処理基板12を保持する電極13があり、この電極13に高周波電源14から必要に応じて高周波を印加する。なお、この高周波のインピーダンス調整は整合器15によって行う。
【0032】
次に、本実施形態におけるマイクロ波プラズマ処理装置の動作を説明する。プラズマ処理容器1の側面から、ガス供給手段9によってプラズマを励起させるためのガスを供給し、排気システム10によってプラズマ処理容器1内を減圧にし、プラズマ処理容器1のプロセス圧力を圧力調整弁11によって調整し、原料および反応副生成ガスを排気する。マグネトロン5で発振、増幅されたマイクロ波は、4Eチューナ7を通して同軸導波変換器及びアンテナ2に導入され、スロット3から照射される。このとき反射波は、4Eチューナ7によってマイクロ波処理容器1側へ戻されるが、調整しきれない反射波についてはアイソレータ6で吸収されてマグネトロン5へ戻ることを防いでいる。スロット3から照射されたマイクロ波は、誘電体窓4を介して真空雰囲気のプラズマ処理容器1の内部へ導入され、このマイクロ波のつくる電磁界によってプラズマ処理容器1内にプラズマPを形成する。このプラズマPにより、エッチングや成膜プロセスなどを行うことができる。なお、SWPは、誘導体窓4の表面とプラズマPとの間に生じるマイクロ波の表面波を模式的に表したものである。
【0033】
上記マイクロ波プラズマ処理装置を用いて酸化処理を行う場合は、例えばアルゴンやクリプトンなどの希ガスと酸素を混合してトータル0.17Pa・m/sec(100sccm)以上を導入し、1〜133Paの圧力範囲において処理する。一方、窒化処理を行う場合は、例えばアルゴンやクリプトンなどのなどの希ガスとアンモニア、窒素および水素を混合し、トータル0.17Pa・m/sec(100sccm)以上を導入し、1〜133Paの圧力範囲において処理する。
【0034】
図1において、基板12に対向する側の誘電体窓4の表面の位置は、マイクロ波処理容器1の天井部101の内壁面の位置よりも基板12側に突出している。従って、表面波SWPは、プラズマ処理容器1の側壁の金属面に照射されることも、金属面から反射されることもなく、誘電体窓4の外周部で腹と節を形成する。なお、上記天井部101の内壁面の位置よりも、誘電体窓4の表面を基板12側に突出して位置するようにする場合には、誘電体窓4の表面から上記天井部101の内壁面までの距離は5mm程度が好ましい。
【0035】
なお、誘電体窓4の径は、基板12の径の2倍以上であることが好ましいが、図1のように誘電体窓4の外周部に突出部を設けたものである場合は、図2で示すとおり、この突出部に囲まれた内側の表面と基板12との距離を半径rとし、基板12の両端部を中心とするそれぞれの円c内にこの突出部が含まれないように誘電体窓4の径を定めればよい。この突出部の有無で好ましい誘電体窓4の径の長さが異なるのは、突出部によって基板4の端部の膜厚に影響を与えないようにするためである。たとえば、図1において突出部に囲まれた内側の表面と基板12との距離が60mm程度であり、基板4が200mmの場合、誘電体窓4の突出部に囲まれた内側の径はおよそ280mmとなる。
【0036】
このとき圧力によっては、基板12側からみると誘電体窓4の外周部とプラズマ処理容器1の側壁面との間に波状のプラズマを形成することがあるが、これは基板12の表面のプラズマ処理には影響せず、逆に上記外周部で電力を消費するため基板12上の誘電体窓4の表面のプラズマPは均一になる。この場合、誘電体窓4の外周部とプラズマ処理容器1の側壁面との間の距離は、導入するマイクロ波の波長の4分の1以上離せばよい。たとえば、本実施の形態では、導入するマイクロ波は、2.45GHzであるから、波長122mmにたいして約30mm以上の距離を離せばよいことになる。
【0037】
本実施の形態では、マイクロ波をマイクロ波処理容器1内に導入する手段として、マイクロ波を同軸に変換した後、スロット3を介して照射する同軸導波変換器及びアンテナ2を使用しているが、アンテナ手段としては、他に導波管8にスリットをいれたものなどを特に使用することができ特に限定されるものではない。
【0038】
比較のために示す図3および図4のマイクロ波プラズマ処理装置も基本的構成は図1と同じであり、図中の符号については図1と同じ符号は同じ構成を示す。なお、図3の装置と図4の装置の違いは、図4では誘電体窓4の表面の外側縁部にリング状の突出部を設けているのに対し、図3でこの突出部が設けられていない点である。図3および図4はいずれの場合も、誘電体窓4の表面の位置が、天井部101の内壁面の位置よりも基板12側から遠い位置にあるため、誘電体窓4の周囲には、この天井部101に形成された開口部断面からなる金属製の包囲面が形成されている。SWP’およびSWP’’は、模式的に表した表面波であるが、いずれも上記金属製の包囲面で短絡されるため、中央部分に強い定在波を生成する。その結果、プラズマ密度も誘電体窓4の中央や誘電体窓4の中央を取り囲むリング状の部分で高くなり、均一性を損なうことになる。
【0039】
【実施例】
以下、本発明にかかるマイクロ波プラズマ処理装置を用いて行うプラズマ処理の実施例について従来のマイクロ波プラズマ処理装置の場合と比較して説明する。
【0040】
図1と図3のマイクロ波プラズマ処理装置を用いて0.5%希フッ酸により、自然酸化膜を除去した基板12をそれぞれプラズマ酸化処理およびプラズマ窒化処理した。
【0041】
プラズマ酸化は、Kr/Oガスを用い、圧力を80Pa、処理時間を10分として行った。一方、プラズマ窒化はAr/NHガスを用い、圧力を8Pa、処理時間を7分として行った。図1と図3の装置において、誘電体窓4の表面と基板12との距離を調整してどちらも60mmとした。
【0042】
プラズマ処理後、基板上の任意の位置における酸化物膜および窒化物膜の膜厚分布を分光分散エリプソメータで測定し、結果を比較した。酸化処理の結果を図5に窒化処理の結果を図6にそれぞれ示す。
【0043】
本発明に係るマイクロ波プラズマ処理装置を用いてプラズマ処理した場合は、いずれも膜厚分布は良い均一性を示している。すなわち、それぞれの膜厚は、酸化処理した場合は、およそ71Å〜72Å付近で一定であり(図5)、窒化処理した場合は、およそ46Å〜50Å付近で一定である(図6)。なお、図示しないが、上記と異なる条件の酸化処理および窒化処理においても同様の分布傾向であった。
【0044】
一方、図3のマイクロ波プラズマ処理装置を用いてプラズマ処理した場合は、いずれも基板中央部の膜厚が厚くなっていることがわかる。すなわち、それぞれの膜厚は、酸化処理した場合は、基板周辺部ではおよそ80Åであるが、基板中央部ではおよそ103Åであり(図5)、窒化処理した場合は、基板周辺部ではおよそ33Åであるが、基板中央部ではおよそ59Åである(図6)。これは、図3のSWP’で示したように、天井部101に形成された開口部断面からなる上記金属製の包囲面で反射したマイクロ波が定在波を形成し、誘電体窓4の基板中央部のプラズマ密度が上がってしまったためと考えられる。
【0045】
さらに、圧力が比較的高い80Paの場合、図1のマイクロ波プラズマ処理装置の誘電体窓4の外周部とプラズマ処理容器1の側壁面との間に波状のプラズマが形成された。これは、誘電体窓4の外周部とプラズマ処理容器1の側壁面との間の距離を、導入するマイクロ波の波長の4分の1以上離したために、図3の従来のマイクロ波プラズマ処理装置では、マイクロ波が誘電体窓4の中央部に反射してくるのに対し、図1の装置の場合には、誘電体窓4の外周部とプラズマ処理容器1の側壁面との間でプラズマを形成し、マイクロ波が誘電体窓4の中央部に反射するのを防いでいるためと考えられる。
【0046】
【発明の効果】
以上の説明から明らかなように、本発明は、マイクロ波を利用したプラズマ処理において、基板に対向した誘電体窓の表面をプラズマ処理容器の天井部内壁面の位置と同じ位置かもしくはこの天井部内壁面よりも基板側に位置するように構成し、さらに誘電体窓の外周部と、プラズマ処理容器の側壁面との間の距離をマイクロ波の波長の4分の1以上離すことによって、これまでプラズマの均一性を低下させる原因であった定在波を抑制できるようになった。従って、誘電体窓の表面と基板との距離が近い場合でもプラズマ処理の均一性を確保できるようになり、また、ガス種や圧力を変化させても、その都度装置の構成を調整せずにプラズマの均一性の高い処理を行うことが可能となった。
【図面の簡単な説明】
【図1】本発明にかかるマイクロ波プラズマ処理装置の断面図。
【図2】突出部を設けた場合の誘電体窓の径の決定の仕方を示す断面図
【図3】従来のマイクロ波プラズマ処理装置の断面図。
【図4】従来のマイクロ波プラズマ処理装置の断面図(誘電体窓の表面の外側縁部にリング状の突出部を設けたもの)。
【図5】図1と図3の装置を使用してシリコン基板をプラズマ酸化処理した場合の膜厚分布を示す図
【図6】図1と図3の装置を使用してシリコン基板をプラズマ窒化処理した場合の膜厚分布を示す図
【符号の説明】
1 プラズマ処理容器
2 同軸導波変換器およびアンテナ
3 スロット
4 誘電体窓
5 マグネトロン
6 アイソレータ
7 4Eチューナ
8 導波管
9 ガス供給手段
10 排気ポンプ
11 圧力調整弁
12 基板
13 電極
14 高周波電源
15 整合器
P プラズマ
SWP表面波
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a microwave plasma processing apparatus and a processing method using the apparatus.
[0002]
[Prior art]
In recent years, with the miniaturization of semiconductor devices such as LSI, plasma processing apparatuses are frequently used in the manufacturing process of semiconductor devices. The uniformity of the plasma processing in the wafer surface greatly contributes to the stability of the characteristics of the semiconductor device and the yield. The uniformity of this plasma treatment is ensured by uniformly distributing the plasma on the wafer surface. In view of this, for example, it is conceivable to divide the plasma to make it uniform on the wafer surface by increasing the distance between the plasma generation unit of the plasma processing apparatus and the substrate.
[0003]
Among plasma processing apparatuses, recently, a microwave plasma processing apparatus that can stably excite plasma even in a high vacuum state at a relatively low pressure has attracted attention.
[0004]
The plasma processing using this microwave plasma processing apparatus will be specifically described by taking as an example the case where a silicon surface is directly oxidized and nitrided to form a high-quality insulating film.
[0005]
When a microwave plasma processing apparatus is used, the insulating film is formed in a metal plasma processing container. An opening is formed in the ceiling of the plasma processing container, and a microwave transmitting dielectric window made of quartz or the like is hermetically provided in the opening to introduce microwaves into the apparatus. .
[0006]
When the insulating film is formed, if the distance between the substrate-side surface of the dielectric window and the substrate is about 80 mm or less, the generated plasma is uniform according to the gas type and pressure used in the plasma treatment. In some cases, the intensity of microwave irradiation is adjusted by an antenna.
[0007]
On the other hand, the distance between the surface of the dielectric window and the substrate should be 80 mm or more even when the plasma is dense at the center or when the uniformity is poor, such as when a ring-shaped high-density part is formed. By separating, the plasma is diffused, and uniformity is ensured on the substrate surface.
[0008]
By the way, when plasma is excited by the microwave plasma processing apparatus, a microwave wave called a surface wave is formed between the surface of the dielectric window and the generated plasma. This surface wave spreads across the dielectric window, and plasma is formed above the substrate.
[0009]
Usually, since the position of the inner wall surface of the ceiling portion of the plasma processing container protrudes closer to the substrate than the position of the surface of the dielectric window, the periphery of the dielectric window is an opening formed in the ceiling portion. Surrounded by the cross section of the part. Therefore, when the surface wave is reflected on the surrounding surface formed by the opening cross section, the surface wave and the reflected wave interfere with each other to form a standing wave near the surface of the dielectric window.
[0010]
This standing wave is a cause of hindering the uniformity of the plasma on the substrate surface in the microwave plasma processing. That is, there has been a problem that the plasma density at the center of the dielectric window is higher than that at the periphery of the dielectric window.
[0011]
Therefore, conventionally, the shape of the outer peripheral portion of the dielectric window and the wall surface of the device on which the dielectric window is installed is made uneven to cancel the reflected wave so that no standing wave is generated (see, for example, Patent Document 1). ).
[0012]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-190449 (Claims)
[0013]
[Problems to be solved by the invention]
However, if the plasma treatment is performed with a different gas type or pressure after adjusting the microwave irradiation intensity with an antenna corresponding to the plasma treatment with a specific gas type and pressure, the plasma uniformity is deteriorated. was there.
[0014]
Therefore, when plasma processing is performed with a plurality of different gas types or pressures, the microwave irradiation intensity must be adjusted each time. Therefore, a plurality of plasma processing with different gas types or pressures cannot be performed with a single adjustment. There was a problem that work efficiency was lowered.
[0015]
On the other hand, if the distance between the surface of the dielectric window and the substrate is increased, the uniformity on the substrate surface can be ensured, but at the same time, the plasma density on the substrate surface decreases and the amount of reactive species reaching the substrate decreases. However, there has been a problem that plasma processing takes time.
[0016]
Furthermore, in order not to generate a standing wave that causes the plasma uniformity on the substrate surface to be disturbed, the shape of the outer peripheral portion of the dielectric window and the side wall surface of the plasma processing vessel in which the dielectric window is installed are changed. Although the above-described inconvenience is solved by making it uneven, there is a problem that the processing technology for making the uneven shape is complicated and the processing is substantially difficult.
[0017]
In view of the above problems, the present invention can prevent the standing wave from being generated in the vicinity of the surface of the dielectric window and ensure the uniformity of the plasma on the substrate surface without performing complicated processing on the dielectric window. It is an object to provide a microwave plasma processing apparatus and a processing method.
[0018]
[Means for Solving the Problems]
To solve the above problem, a microwave plasma processing apparatus according to the present invention comprises a plasma processing chamber ceiling is opened, and a dielectric window for microwave transmission provided hermetically the ceiling, the substrate dielectric to face the window plasma processing chamber is disposed, the surface of the dielectric window, the substrate side of a position of the ceiling portion in the same position or or the ceiling portion inner wall surface and the position of the wall of the plasma processing chamber In the microwave plasma processing apparatus configured to protrude and be positioned on the dielectric window, the dielectric window includes a ring-shaped protrusion on the outer edge of the surface, and an inner surface surrounded by the protrusion, It is located at the same position as the position of the inner wall surface of the ceiling of the plasma processing container or the position of the inner wall surface of the ceiling so as to protrude toward the substrate, and the front surface from the inner surface surrounded by the protrusion. The distance to the substrate and the radius, and characterized in that constructed defines the diameter of the dielectric window so that it does not contain the projecting portions in the respective circle centered on the substrate end portions.
[0019]
According to this configuration, the outer peripheral portion of the dielectric window does not have an enveloping surface formed of a cross section of the opening formed in the ceiling portion of the plasma processing container, so that the surface wave is not reflected and a standing wave is formed. Can be suppressed.
[0020]
Therefore, a uniform plasma distribution can be obtained on the substrate surface regardless of the distance between the dielectric window surface and the substrate, and even if the conditions such as the gas type and pressure are changed.
[0025]
The reason why the preferred dielectric window diameter varies depending on the presence or absence of the protruding portion is to prevent the protruding portion from affecting the film thickness of the end portion of the substrate.
[0026]
In order to solve the above problems, a microwave plasma processing method according to the present invention supplies a source gas for exciting plasma by a gas supply means to a plasma processing vessel, and the microwaves oscillated and amplified by the microwave generation means. Is introduced into the plasma processing container in a vacuum atmosphere through a dielectric window for microwave transmission, and plasma is generated in the plasma processing container by the electromagnetic field generated by the microwave. In the processing method of performing microwave plasma processing on a substrate provided oppositely, the dielectric window is secretly provided on the opening of the plasma processing container, and a ring shape is formed on the outer edge of the surface of the dielectric window. The inner surface surrounded by the protrusion is the same position as the inner wall surface of the ceiling of the plasma processing container or Each of the circles is configured to protrude from the inner wall surface of the well to the substrate side, and the radius from the inner surface surrounded by the protrusion to the substrate is the center of each circle. The diameter of the dielectric window is determined so that the protruding portion is not included therein, and plasma processing is performed by introducing a microwave into the plasma processing container through the dielectric window.
[0028]
FIG. 1 is a cross-sectional view showing a configuration of a microwave plasma processing apparatus for a semiconductor substrate as an embodiment of the present invention. 3 and 4 are sectional views showing a conventional microwave plasma processing apparatus for a general semiconductor substrate.
[0029]
In FIG. 1, reference numeral 1 denotes a metal plasma processing vessel for performing plasma processing. A coaxial waveguide converter and an antenna 2 for adjusting the irradiation intensity of the microwave are provided above the ceiling portion 101 of the plasma processing container 1. A slot 3 for irradiating microwaves is provided between the coaxial waveguide converter / antenna 2 and the dielectric window 4 provided in an airtight manner in the opening of the ceiling 101. The raw material of the dielectric window 4 is quartz or the like. The dielectric window 4 transmits the microwave irradiated through the slot 3 and introduces the microwave into the plasma processing container 1.
[0030]
The microwave (2.45 GHz) is oscillated by the magnetron 5 and introduced into the coaxial waveguide converter and the antenna 2 through the waveguide 8.
[0031]
Inside the plasma processing container 1, there is an electrode 13 that holds the plasma processing substrate 12 at a position facing the derivative window 4, and a high frequency is applied to the electrode 13 from a high frequency power source 14 as necessary. The high frequency impedance adjustment is performed by the matching unit 15.
[0032]
Next, the operation of the microwave plasma processing apparatus in this embodiment will be described. A gas for exciting plasma is supplied from the side surface of the plasma processing container 1 by the gas supply means 9, the inside of the plasma processing container 1 is depressurized by the exhaust system 10, and the process pressure of the plasma processing container 1 is adjusted by the pressure adjustment valve 11. Adjust and exhaust the feedstock and reaction byproduct gas. The microwaves oscillated and amplified by the magnetron 5 are introduced into the coaxial waveguide converter and the antenna 2 through the 4E tuner 7 and irradiated from the slot 3. At this time, the reflected wave is returned to the microwave processing container 1 by the 4E tuner 7, but the reflected wave that cannot be adjusted is absorbed by the isolator 6 and prevented from returning to the magnetron 5. The microwave irradiated from the slot 3 is introduced into the plasma processing container 1 in a vacuum atmosphere through the dielectric window 4, and plasma P is formed in the plasma processing container 1 by the electromagnetic field generated by the microwave. With this plasma P, etching, film formation process, and the like can be performed. SWP schematically represents a surface wave of a microwave generated between the surface of the derivative window 4 and the plasma P.
[0033]
When the oxidation treatment is performed using the above microwave plasma processing apparatus, for example, a rare gas such as argon or krypton and oxygen are mixed to introduce a total of 0.17 Pa · m 3 / sec (100 sccm) or more to 1 to 133 Pa. In the pressure range. On the other hand, when performing nitriding treatment, for example, a rare gas such as argon or krypton is mixed with ammonia, nitrogen and hydrogen, and a total of 0.17 Pa · m 3 / sec (100 sccm) or more is introduced, and 1 to 133 Pa is applied. Process in the pressure range.
[0034]
In FIG. 1, the position of the surface of the dielectric window 4 on the side facing the substrate 12 protrudes closer to the substrate 12 than the position of the inner wall surface of the ceiling portion 101 of the microwave processing container 1. Accordingly, the surface wave SWP does not irradiate the metal surface on the side wall of the plasma processing container 1 or is reflected from the metal surface, and forms an antinode and a node at the outer peripheral portion of the dielectric window 4. Note that when the surface of the dielectric window 4 protrudes toward the substrate 12 rather than the position of the inner wall surface of the ceiling portion 101, the inner wall surface of the ceiling portion 101 extends from the surface of the dielectric window 4. The distance is preferably about 5 mm.
[0035]
The diameter of the dielectric window 4 is preferably at least twice as large as the diameter of the substrate 12, but when the protrusion is provided on the outer periphery of the dielectric window 4 as shown in FIG. 2, the distance between the inner surface surrounded by the protrusions and the substrate 12 is a radius r, and the protrusions are not included in the respective circles c centering on both ends of the substrate 12. The diameter of the dielectric window 4 may be determined. The reason why the diameter of the dielectric window 4 is preferably different depending on the presence or absence of the protrusion is to prevent the protrusion from affecting the film thickness at the end of the substrate 4. For example, when the distance between the inner surface surrounded by the protrusions in FIG. 1 and the substrate 12 is about 60 mm and the substrate 4 is 200 mm, the inner diameter surrounded by the protrusions of the dielectric window 4 is about 280 mm. It becomes.
[0036]
At this time, depending on the pressure, when viewed from the substrate 12 side, a wavy plasma may be formed between the outer peripheral portion of the dielectric window 4 and the side wall surface of the plasma processing vessel 1, which is caused by the plasma on the surface of the substrate 12. The plasma P on the surface of the dielectric window 4 on the substrate 12 becomes uniform because power is consumed at the outer peripheral portion without affecting the processing. In this case, the distance between the outer peripheral portion of the dielectric window 4 and the side wall surface of the plasma processing container 1 may be separated by a quarter or more of the wavelength of the microwave to be introduced. For example, in the present embodiment, since the microwave to be introduced is 2.45 GHz, the distance of about 30 mm or more may be separated from the wavelength of 122 mm.
[0037]
In the present embodiment, as a means for introducing the microwave into the microwave processing container 1, the coaxial waveguide converter and the antenna 2 that irradiates through the slot 3 after converting the microwave to the coaxial are used. However, as the antenna means, there can be used in particular those having a slit in the waveguide 8, and the antenna means is not particularly limited.
[0038]
3 and 4 shown for comparison have the same basic configuration as that of FIG. 1, and the same reference numerals as those in FIG. 1 denote the same components. 3 is different from the apparatus of FIG. 4 in that a ring-shaped protrusion is provided on the outer edge of the surface of the dielectric window 4 in FIG. 4, whereas this protrusion is provided in FIG. This is not done. 3 and 4, since the position of the surface of the dielectric window 4 is farther from the substrate 12 side than the position of the inner wall surface of the ceiling portion 101 in both cases, the periphery of the dielectric window 4 is A metal enveloping surface having a cross section of the opening formed in the ceiling portion 101 is formed. SWP ′ and SWP ″ are surface waves schematically represented, but since both are short-circuited by the metal surrounding surface, a strong standing wave is generated in the central portion. As a result, the plasma density also increases at the center of the dielectric window 4 and the ring-shaped portion surrounding the center of the dielectric window 4, and the uniformity is impaired.
[0039]
【Example】
Hereinafter, embodiments of plasma processing performed using the microwave plasma processing apparatus according to the present invention will be described in comparison with the case of a conventional microwave plasma processing apparatus.
[0040]
The substrate 12 from which the natural oxide film was removed was subjected to plasma oxidation treatment and plasma nitridation treatment with 0.5% diluted hydrofluoric acid using the microwave plasma processing apparatus of FIGS. 1 and 3, respectively.
[0041]
Plasma oxidation was performed using Kr / O 2 gas with a pressure of 80 Pa and a treatment time of 10 minutes. On the other hand, the plasma nitridation was performed using Ar / NH 3 gas at a pressure of 8 Pa and a treatment time of 7 minutes. 1 and 3, the distance between the surface of the dielectric window 4 and the substrate 12 is adjusted to 60 mm.
[0042]
After the plasma treatment, the film thickness distribution of the oxide film and the nitride film at an arbitrary position on the substrate was measured with a spectral dispersion ellipsometer, and the results were compared. The result of the oxidation treatment is shown in FIG. 5, and the result of the nitridation treatment is shown in FIG.
[0043]
When plasma processing is performed using the microwave plasma processing apparatus according to the present invention, the film thickness distribution shows good uniformity. That is, the respective film thicknesses are constant in the vicinity of about 71 to 72 mm when oxidized (FIG. 5), and are constant in the vicinity of about 46 to 50 inches when nitrided (FIG. 6). Although not shown, the same distribution tendency was observed in the oxidation treatment and nitridation treatment under conditions different from the above.
[0044]
On the other hand, in the case where the plasma processing is performed using the microwave plasma processing apparatus of FIG. 3, it can be seen that the thickness of the central portion of the substrate is increased. That is, each film thickness is about 80 mm at the periphery of the substrate when oxidized, but is about 103 mm at the center of the substrate (FIG. 5), and is about 33 mm at the periphery of the substrate when nitriding is performed. There are about 59 mm at the center of the substrate (FIG. 6). This is because, as shown by SWP ′ in FIG. 3, the microwave reflected by the metal surrounding surface formed of the cross section of the opening formed in the ceiling 101 forms a standing wave, and the dielectric window 4 This is probably because the plasma density in the center of the substrate has increased.
[0045]
Furthermore, when the pressure was relatively high, 80 Pa, wave-like plasma was formed between the outer peripheral portion of the dielectric window 4 of the microwave plasma processing apparatus of FIG. This is because the distance between the outer peripheral portion of the dielectric window 4 and the side wall surface of the plasma processing container 1 is more than a quarter of the wavelength of the microwave to be introduced, so that the conventional microwave plasma processing of FIG. In the apparatus, microwaves are reflected on the central portion of the dielectric window 4, whereas in the case of the apparatus of FIG. 1, between the outer periphery of the dielectric window 4 and the side wall surface of the plasma processing chamber 1. This is probably because the plasma is formed and the microwave is prevented from being reflected on the central portion of the dielectric window 4.
[0046]
【The invention's effect】
As is apparent from the above description, in the plasma processing using microwaves, the present invention provides that the surface of the dielectric window facing the substrate is the same position as the position of the inner wall surface of the ceiling of the plasma processing container or the inner wall surface of the ceiling. The distance between the outer peripheral portion of the dielectric window and the side wall surface of the plasma processing container is more than a quarter of the wavelength of the microwave. It was possible to suppress the standing wave that was the cause of lowering the uniformity of. Therefore, even when the distance between the surface of the dielectric window and the substrate is short, the uniformity of the plasma processing can be ensured, and even if the gas type or pressure is changed, the configuration of the apparatus is not adjusted each time. It became possible to perform processing with high plasma uniformity.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a microwave plasma processing apparatus according to the present invention.
FIG. 2 is a cross-sectional view showing how to determine the diameter of a dielectric window when a protrusion is provided. FIG. 3 is a cross-sectional view of a conventional microwave plasma processing apparatus.
FIG. 4 is a cross-sectional view of a conventional microwave plasma processing apparatus (with a ring-shaped protrusion provided on the outer edge of the surface of a dielectric window).
5 is a graph showing a film thickness distribution when a silicon substrate is subjected to plasma oxidation using the apparatus of FIGS. 1 and 3. FIG. 6 is a plasma nitridation of the silicon substrate using the apparatus of FIGS. Diagram showing film thickness distribution when processed 【Explanation of symbols】
DESCRIPTION OF SYMBOLS 1 Plasma processing container 2 Coaxial waveguide converter and antenna 3 Slot 4 Dielectric window 5 Magnetron 6 Isolator 7 4E tuner 8 Waveguide 9 Gas supply means 10 Exhaust pump 11 Pressure adjustment valve 12 Substrate 13 Electrode 14 High frequency power supply 15 Matching device P Plasma SWP surface wave

Claims (2)

天井部が開口されたプラズマ処理容器と、この天井部に気密に設けられたマイクロ波透過用誘電体窓とを備え、前記誘電体窓に対向してプラズマ処理容器内に基板が設置され、前記誘電体窓の表面が、前記プラズマ処理容器の天井部内壁面の位置と同じ位置かもしくはこの天井部内壁面の位置よりも基板側に突出して位置するように構成されているマイクロ波プラズマ処理装置において、
前記誘電体窓は、表面の外側縁部にリング状の突出部を備え、この突出部に囲まれた内側の表面を、前記プラズマ処理容器の天井部内壁面の位置と同じ位置かもしくはこの天井部内壁面の位置よりも前記基板側に突出して位置するようにし、この突出部に囲まれた内側の表面から前記基板までの距離を半径とし、基板両端部を中心とするそれぞれの円内にこの突出部が含まれないように前記誘電体窓の径を定めて構成されたものであることを特徴とするマイクロ波プラズマ処理装置。
A plasma processing chamber ceiling is open, this is provided hermetically in a ceiling portion and a dielectric window for microwave transparent, the substrate is placed facing the dielectric window into the plasma processing chamber; In the microwave plasma processing apparatus, wherein the surface of the dielectric window is configured to be located at the same position as the position of the inner wall surface of the ceiling of the plasma processing container or to protrude toward the substrate side from the position of the inner wall surface of the ceiling ,
The dielectric window includes a ring-shaped protrusion on the outer edge of the surface, and the inner surface surrounded by the protrusion is at the same position as the position of the inner wall surface of the ceiling of the plasma processing container or inside the ceiling. The protrusion protrudes toward the substrate from the wall surface, and the distance from the inner surface surrounded by the protrusion to the substrate is a radius. The microwave plasma processing apparatus is characterized in that the diameter of the dielectric window is determined so as not to include a portion .
ガス供給手段によってプラズマを励起するための原料ガスをプラズマ処理容器に供給し、マイクロ波発生手段により発振、増幅されたマイクロ波をマイクロ波透過用誘電体窓を介して真空雰囲気の上記プラズマ処理容器に導入し、このマイクロ波のつくる電磁界によってプラズマ処理容器内にプラズマを生成し、上記マイクロ波透過用誘電体窓に対向して設けられた基板をプラズマ処理する方法において、
前記誘電体窓を前記プラズマ処理容器の開口された天井部に機密に設け、前記誘電体窓の表面の外側縁部にリング状の突出部を設け、この突出部に囲まれた内側の表面が、前記プラズマ処理容器の天井部内壁面の位置と同じ位置かもしくはこの天井部内壁面の位置よりも前記基板側に突出して位置するように構成され、この突出部に囲まれた内側の表面から前記基板までの距離を半径とし、基板両端部を中心とするそれぞれの円内にこの突出部が含まれないように前記誘電体窓の径を定め、この誘電体窓を介して前記プラズマ処理容器内にマイクロ波を導入してプラズマ処理を行うことを特徴とするマイクロ波プラズマ処理方法。
The raw material gas for exciting plasma by a gas supply means is supplied to the plasma processing chamber, oscillated by the microwave generator, the plasma treatment vacuum atmosphere amplified microwave through the dielectric window for microwave transmission In a method of introducing a plasma into a plasma processing container by an electromagnetic field generated by the microwave, and plasma processing a substrate provided facing the dielectric window for microwave transmission,
The dielectric window is secretly provided on the opened ceiling of the plasma processing vessel, and a ring-shaped protrusion is provided on the outer edge of the surface of the dielectric window, and the inner surface surrounded by the protrusion is The plasma processing container is configured to be located at the same position as the position of the inner wall surface of the ceiling portion of the plasma processing container or to protrude toward the substrate side from the position of the inner wall surface of the ceiling portion, and from the inner surface surrounded by the protruding portion, the substrate The diameter of the dielectric window is determined so that the protrusions are not included in the respective circles centered on both ends of the substrate, and the distance to the substrate is set in the plasma processing container through the dielectric window. A microwave plasma processing method comprising performing plasma processing by introducing a microwave.
JP2003099309A 2003-04-02 2003-04-02 Microwave plasma processing apparatus and processing method Expired - Fee Related JP4261236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003099309A JP4261236B2 (en) 2003-04-02 2003-04-02 Microwave plasma processing apparatus and processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003099309A JP4261236B2 (en) 2003-04-02 2003-04-02 Microwave plasma processing apparatus and processing method

Publications (2)

Publication Number Publication Date
JP2004311510A JP2004311510A (en) 2004-11-04
JP4261236B2 true JP4261236B2 (en) 2009-04-30

Family

ID=33463816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003099309A Expired - Fee Related JP4261236B2 (en) 2003-04-02 2003-04-02 Microwave plasma processing apparatus and processing method

Country Status (1)

Country Link
JP (1) JP4261236B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8267040B2 (en) 2004-02-16 2012-09-18 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
KR101239772B1 (en) * 2009-02-06 2013-03-06 도쿄엘렉트론가부시키가이샤 Plasma processing device
JP7120544B2 (en) * 2018-08-23 2022-08-17 株式会社エスイー Manufacturing method and manufacturing apparatus for obtaining a product different from the compound by treating a compound containing metal atoms having a boiling point higher than that of a metal material consisting only of metal atoms with plasma

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5234526A (en) * 1991-05-24 1993-08-10 Lam Research Corporation Window for microwave plasma processing device
JPH0773997A (en) * 1993-06-30 1995-03-17 Kobe Steel Ltd Plasma cvd device and cvd processing method employing the device and cleaning method for inside of the device
JP4052735B2 (en) * 1998-07-06 2008-02-27 東京エレクトロン株式会社 Plasma processing equipment
JP2001093839A (en) * 1999-09-27 2001-04-06 Sharp Corp Plasma process system
JP4974318B2 (en) * 2001-08-17 2012-07-11 株式会社アルバック Microwave plasma processing apparatus and processing method

Also Published As

Publication number Publication date
JP2004311510A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
CN107507774B (en) Method for processing silicon nitride film and method for forming silicon nitride film
KR100997868B1 (en) Plasma processing apparatus and plasma processing method
KR101020334B1 (en) Microwave plasma processing apparatus
KR101028625B1 (en) Method for nitriding substrate and method for forming insulating film
JP4252749B2 (en) Substrate processing method and substrate processing apparatus
KR100966927B1 (en) Method of fabricating insulating layer and method of fabricating semiconductor device
WO2012026117A1 (en) Plasma treatment device, and optical monitor device
US20060156984A1 (en) Plasma processing apparatus and plasma processing method
JP4974318B2 (en) Microwave plasma processing apparatus and processing method
KR101477831B1 (en) Method for pretreating inner space of chamber in plasma nitridation, plasma processing method and plasma processing apparatus
KR20120069755A (en) Selective plasma nitriding method and plasma nitriding device
KR100936550B1 (en) Quartz member surface treatment method, plasma processing apparatus and plasma processing method
WO2010038654A1 (en) Method and apparatus for forming silicon oxide film
JP4261236B2 (en) Microwave plasma processing apparatus and processing method
JP2003168681A (en) Microwave plasma treatment device and treatment method
JP2001167900A (en) Plasma treatment apparatus
JPH11193466A (en) Plasma treating device and plasma treating method
JP2004265916A (en) Plasma oxidation treatment method of substrate
JP3796265B2 (en) Plasma processing method, plasma processing apparatus, semiconductor device manufacturing method, and microwave dispersion plate
JP2010238739A (en) Plasma processing method
JP2004335791A (en) Processing method of fluorine added carbon film

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20030808

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4261236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150220

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees