WO2013027470A1 - Plasma processor, microwave introduction device, and plasma processing method - Google Patents

Plasma processor, microwave introduction device, and plasma processing method Download PDF

Info

Publication number
WO2013027470A1
WO2013027470A1 PCT/JP2012/064922 JP2012064922W WO2013027470A1 WO 2013027470 A1 WO2013027470 A1 WO 2013027470A1 JP 2012064922 W JP2012064922 W JP 2012064922W WO 2013027470 A1 WO2013027470 A1 WO 2013027470A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
processing container
plasma
processing apparatus
plasma processing
Prior art date
Application number
PCT/JP2012/064922
Other languages
French (fr)
Japanese (ja)
Inventor
藤野 豊
篤 植田
成則 尾▲崎▼
北川 淳一
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2013027470A1 publication Critical patent/WO2013027470A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32266Means for controlling power transmitted to the plasma

Definitions

  • the present invention relates to a plasma processing apparatus, a microwave introducing apparatus, and a plasma processing method for guiding a microwave of a predetermined frequency to a processing container and generating plasma to plasma process an object to be processed.
  • a microwave plasma processing apparatus that performs a predetermined plasma process on an object to be processed such as a semiconductor wafer.
  • a microwave plasma processing apparatus that generates plasma by introducing a microwave into a processing container is known.
  • this microwave plasma processing apparatus it is possible to generate high-density plasma in a processing container, and for example, oxidation processing, nitriding processing, deposition processing, etching processing, and the like are performed by the generated plasma.
  • a microwave introduction mechanism for introducing a microwave into the processing container is disposed on the upper part of the processing container.
  • a microwave transmission window larger than the diameter of the object to be processed is usually provided on the ceiling of the processing container.
  • the part is disposed to face the object to be processed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-259633
  • a plurality of microwave introduction mechanisms are provided on the upper part of the processing container in order to obtain a large plasma discharge in the processing container by applying a large amount of power.
  • a microwave plasma processing apparatus has also been proposed.
  • the present invention provides a microwave plasma processing apparatus having a high degree of freedom in apparatus design, without providing a microwave introduction mechanism at the top of the processing vessel.
  • the plasma processing apparatus of the present invention comprises: A processing container for storing an object to be processed; A mounting section for mounting the object to be processed in the processing container; A gas supply mechanism for supplying a processing gas into the processing container; A microwave introduction device for generating a microwave for generating plasma of the processing gas in the processing container and for introducing the microwave into the processing container is provided.
  • the microwave introduction device includes: A dielectric window member disposed around the object to be processed and transmitting microwaves into the processing container; A conductor member for regulating the microwave radiated into the processing container through the dielectric window member so as to be directed to the target object in a direction parallel to the surface of the target object; A microwave radiation module.
  • the microwave introduction device generates a microwave and outputs a microwave
  • It may further include one or a plurality of antenna modules that are attached to the lower part of the processing container from the outside and supply the microwaves output from the microwave output unit to the microwave radiation module.
  • the dielectric window member may have a microwave radiation surface that is exposed to a space in the processing container and emits microwaves toward the object to be processed.
  • the conductor member may cover the surface of the dielectric window member excluding the microwave radiation surface.
  • the microwave radiation surface may have a shape corresponding to the shape of the edge of the object to be processed. For example, when the object to be processed is circular in plan view, the microwave radiation surface has an arc shape. It may have a curved shape.
  • the plasma processing apparatus of the present invention may have a plurality of the microwave radiation modules so as to surround the object to be processed.
  • one or a plurality of the antenna modules may be connected to one microwave radiation module.
  • the plasma processing apparatus of the present invention may have at least three antenna modules.
  • the lower end of the dielectric window member may be disposed at a height position equal to or higher than the height of the upper surface of the object to be processed placed on the placement portion.
  • a gas introduction part for introducing a processing gas supplied from the gas supply mechanism may be provided in a ceiling part of the processing container.
  • an exhaust port connected to an exhaust device for evacuating and exhausting the inside of the processing container may be provided in a ceiling portion of the processing container.
  • an exhaust port connected to an exhaust device for evacuating and exhausting the inside of the processing container may be provided in a side wall portion or a bottom wall portion of the processing container.
  • the placement section may be provided on the bottom wall portion of the processing container.
  • the plasma processing apparatus of the present invention may have a high frequency power supply unit that supplies high frequency power to the mounting unit.
  • the plasma processing apparatus of the present invention may have a DC voltage application unit to which a DC voltage is applied between the mounting unit and the microwave radiation module.
  • the plasma processing method of the present invention is to process an object to be processed by any of the above plasma processing apparatuses.
  • the microwave introducing apparatus of the present invention generates a microwave for generating plasma of a processing gas in a processing container that accommodates an object to be processed, and introduces the microwave into the processing container. It is.
  • This microwave introduction device A dielectric window member disposed around the object to be processed and transmitting microwaves into the processing container; A conductor member for regulating the microwave radiated into the processing container through the dielectric window member so as to be directed to the target object in a direction parallel to the surface of the target object; A microwave radiation module may be included.
  • the microwave introducing device of the present invention is A microwave output unit for generating and outputting a microwave;
  • One or a plurality of antenna modules that are attached to the lower part of the processing container from the outside and that supply the microwaves output from the microwave output unit to the microwave radiation module; May be further provided.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of the plasma processing apparatus according to the present embodiment.
  • FIG. 2 is an explanatory diagram illustrating a configuration of the control unit illustrated in FIG. 1.
  • the plasma processing apparatus 1 according to the present embodiment performs film formation processing and diffusion on a semiconductor wafer (hereinafter, simply referred to as “wafer”) W for manufacturing a semiconductor device, for example, with a plurality of continuous operations. It is an apparatus that performs predetermined processing such as processing, etching processing, and ashing processing.
  • the plasma processing apparatus 1 includes a processing container 2 that accommodates a wafer W that is an object to be processed, a placement unit 17 that places the wafer W inside the processing container 2, and a gas supply that supplies gas into the processing container 2.
  • a control unit 8 that controls each component of the plasma processing apparatus 1.
  • an external gas supply mechanism that is not included in the configuration of the plasma processing apparatus 1 may be used instead of the gas supply mechanism 3.
  • the processing container 2 has a substantially cylindrical shape, for example.
  • the processing container 2 is made of a metal material such as aluminum and an alloy thereof.
  • the surface of the processing container 2 may be subjected to, for example, alumite treatment (anodizing treatment).
  • the processing container 2 is grounded. Note that a sealing member is provided at a joint portion between the processing container 2 and each member attached to the processing container 2, and the airtightness in the processing container 2 is maintained.
  • the processing container 2 has a plate-like ceiling portion 11 and a bottom wall portion 13, and a side wall portion 12 that connects the ceiling portion 11 and the bottom wall portion 13.
  • the ceiling part 11 has a plurality of openings.
  • the ceiling portion 11 is provided with a plurality of exhaust ports 11a.
  • the ceiling portion 11 is provided with a plurality of gas introduction openings 11b.
  • a nozzle 16 described later is attached to each gas introduction opening 11b.
  • the side wall portion 12 has a loading / unloading port 12 a for loading / unloading the wafer W to / from a transfer chamber (not shown) adjacent to the processing container 2.
  • a gate valve G is disposed between the processing container 2 and a transfer chamber (not shown).
  • the gate valve G has a function of opening and closing the loading / unloading port 12a.
  • the gate valve G hermetically seals the processing container 2 in the closed state, and enables the transfer of the wafer W between the processing container 2 and a transfer chamber (not shown) in the open state.
  • a mounting portion 17 is provided on the bottom wall portion 13.
  • the placement portion 17 is formed with a thickness slightly larger than that of the bottom wall portion 13 by a member different from the bottom wall portion 13, and is fixed to the bottom wall portion 13.
  • the mounting portion 17 can be formed of, for example, a metal material such as aluminum and its alloy, ceramics, and the like, similar to the processing container 2.
  • the placement unit 17 is provided with a placement region 17a. This placement area 17a is for placing the wafer W, which is the object to be processed, horizontally.
  • the placement region 17 a is a recess formed on the inner wall surface of the placement portion 17 slightly larger than the size of the wafer W.
  • the placement region 17a is not limited to the concave portion, and may be provided in a convex portion or a table shape. Further, an electrode 26 is embedded in the mounting portion 17 in the vicinity of the mounting region 17a and immediately below it. The electrode 26 has the same size as the placement region 17 a and is entirely covered with an insulating coating material 27.
  • the bottom wall portion 13 has a plurality of openings 13b (only two are shown in FIG. 1).
  • a microwave introducing portion 63 (a part of the antenna module 61) of the microwave introducing device 5 described later is attached to each opening 13b from the outside of the processing container 2. That is, the microwave introduction device 5 is provided in the lower part of the processing container 2.
  • the microwave introduction device 5 functions as a plasma generation unit that introduces an electromagnetic wave (microwave) into the processing container 2 to generate plasma.
  • the configuration of the microwave introduction device 5 will be described in detail later.
  • the plasma processing apparatus 1 further includes a high-frequency bias power source 25 that supplies high-frequency power to the mounting unit 17 including the mounting region 17a, and a matching unit 24 provided between the mounting unit 17 and the high-frequency bias power source 25. It has.
  • the high-frequency bias power source 25 is electrically connected to an electrode 26 embedded immediately below the placement region 17 a of the placement unit 17.
  • the high frequency bias power supply 25 supplies high frequency power to the mounting unit 17 in order to attract ions to the wafer W.
  • the mounting portion 17 is formed of a conductive material, the electrode 26 is not provided, and an insulating material is interposed between the mounting portion 17 and the bottom wall portion 13, so that the mounting portion 17 and the high frequency bias power source are provided. 25 may be electrically connected to each other. Further, it is possible to adopt an apparatus configuration that does not use the high-frequency bias power supply 25 and the matching unit 24. In this case, the mounting portion 17 may be formed integrally with the bottom wall portion 13.
  • the plasma processing apparatus 1 further includes a temperature control mechanism that heats or cools the placement region 17a.
  • the temperature control mechanism controls the temperature of the wafer W within a range of 25 ° C. (room temperature) to 900 ° C.
  • the mounting region 17a is provided with a plurality of support pins 28 provided so as to be able to project and retract with respect to the upper surface (mounting surface) thereof.
  • the plurality of support pins 28 are configured to be displaced up and down by an arbitrary lifting mechanism so that the wafer W can be transferred to and from a transfer chamber (not shown) at the raised position.
  • the plasma processing apparatus 1 further includes a gas introduction part 15 provided in the ceiling part 11 of the processing container 2.
  • the gas introduction part 15 has a nozzle 16 having a cylindrical shape that is attached to a plurality of gas introduction openings 11 b of the ceiling part 11.
  • the nozzle 16 has a gas hole 16a formed on the lower surface thereof. The arrangement of the nozzles 16 will be described later.
  • the gas supply mechanism 3 includes a gas supply device 3 a including a gas supply source 31, and a pipe 32 that connects the gas supply source 31 and the gas introduction unit 15.
  • a gas supply device 3 a including a gas supply source 31, and a pipe 32 that connects the gas supply source 31 and the gas introduction unit 15.
  • one gas supply source 31 is illustrated, but the gas supply device 3 a may include a plurality of gas supply sources according to the type of gas used.
  • the gas supply source 31 is used as a gas supply source of, for example, a rare gas for plasma generation or a processing gas used for oxidation treatment, nitridation treatment, film formation treatment, etching treatment, and ashing treatment.
  • a rare gas for plasma generation for example, Ar, Kr, Xe, He, or the like is used as a rare gas for generating plasma.
  • an oxidizing gas such as oxygen gas, ozone, or NO 2 gas is used.
  • Nitriding gas, NH 3 gas, N 2 O gas, or the like is used as a processing gas used for the nitriding treatment.
  • the gas supply source 31 is used to clean the inside of the processing container 2, the film forming raw material gas, the purge gas used when replacing the atmosphere in the processing container 2, and the inside of the processing container 2. It is used as a supply source for cleaning gas and the like used in the process.
  • TiCl 4 gas and NH 3 gas are used as the film forming source gas.
  • the purge gas for example, N 2 , Ar, or the like is used.
  • ClF 3 , NF 3 or the like is used as the cleaning gas.
  • the etching gas CF 4 gas, HBr gas, or the like is used.
  • oxygen gas or the like is used.
  • the gas supply device 3a further includes a mass flow controller and an opening / closing valve provided in the middle of the pipe 32.
  • the types of gases supplied into the processing container 2 and the flow rates of these gases are controlled by a mass flow controller and an opening / closing valve.
  • the plasma processing apparatus 1 further includes an exhaust pipe 14 that connects the exhaust port 11 a and the exhaust apparatus 4.
  • the exhaust device 4 includes, for example, an APC valve and a high-speed vacuum pump that can depressurize the internal space of the processing container 2 to a predetermined vacuum level at high speed. Examples of such a high-speed vacuum pump include a turbo molecular pump. By operating the high-speed vacuum pump of the exhaust device 4, the internal space of the processing container 2 is depressurized to a predetermined degree of vacuum, for example, 0.133 Pa.
  • a plurality of exhaust ports 11a are connected to one exhaust device 4 via the exhaust pipe 14, but the exhaust devices 4 may be provided individually for each exhaust port 11a.
  • the control unit 8 is typically a computer.
  • the control unit 8 includes a process controller 91 including a CPU, and a user interface 92 and a storage unit 93 connected to the process controller 91.
  • the process controller 91 includes each component (for example, the high frequency bias power supply 25, the gas supply device, etc.) related to process conditions such as temperature, pressure, gas flow rate, high frequency power for bias application, and microwave output. 3a, the exhaust device 4, the microwave introduction device 5 and the like).
  • the user interface 92 has a keyboard and a touch panel on which a process manager manages command input to manage the plasma processing apparatus 1, a display that visualizes and displays the operating status of the plasma processing apparatus 1, and the like.
  • the storage unit 93 stores a control program (software) for realizing various processes executed by the plasma processing apparatus 1 under the control of the process controller 91, a recipe in which processing condition data, and the like are recorded. .
  • the process controller 91 calls and executes an arbitrary control program or recipe from the storage unit 93 as necessary, such as an instruction from the user interface 92. Thus, desired processing is performed in the processing container 2 of the plasma processing apparatus 1 under the control of the process controller 91.
  • control program and recipe described above can be stored in a computer-readable storage medium such as a CD-ROM, hard disk, flexible disk, flash memory, DVD, or Blu-ray disk. Also, the above recipe can be transmitted from other devices as needed via, for example, a dedicated line and used online.
  • FIG. 3 is an explanatory diagram showing configurations of the microwave output unit 50 and the antenna unit 60 in the microwave introduction device 5.
  • FIG. 4 is an enlarged cross-sectional view showing the microwave introduction part 63 and the microwave radiation module 80 attached to the processing container 2.
  • FIG. 5 is a plan view showing the planar antenna 71 in the microwave introduction unit 63 shown in FIG.
  • FIG. 6 is a plan view for explaining the arrangement of the microwave radiation module 80 in the processing container 2.
  • FIG. 7 is a main part perspective view for explaining the arrangement of one microwave radiation module 80 and the wafer W.
  • the microwave introduction device 5 is provided at the lower portion of the processing container 2 and functions as a plasma generating means for introducing an electromagnetic wave (microwave) into the processing container 2 to generate plasma. As shown in FIG. 1 and FIG. 3, the microwave introduction device 5 generates a microwave, distributes the microwave to a plurality of paths, and outputs the microwave, and the microwave output unit 50 An antenna unit 60 for introducing the output microwave into the processing container 2 and a microwave radiation module 80 for radiating the microwave introduced by the antenna unit 60 into the processing container 2 are provided.
  • the microwave output unit 50 distributes the microwave amplified by the power supply unit 51, the microwave oscillator 52, the amplifier 53 that amplifies the microwave oscillated by the microwave oscillator 52, and the microwave amplified by the amplifier 53 to a plurality of paths. And a distributor 54.
  • the microwave oscillator 52 oscillates microwaves (for example, PLL oscillation) at a predetermined frequency (for example, 2.45 GHz).
  • a predetermined frequency for example, 2.45 GHz.
  • the frequency of the microwave is not limited to 2.45 GHz, and may be 8.35 GHz, 5.8 GHz, 1.98 GHz, or the like.
  • such a microwave output part 50 can be applied also when the frequency of a microwave is made into the range of 800 MHz to 1 GHz, for example.
  • the distributor 54 distributes the microwave while matching the impedances of the input side and the output side.
  • the antenna unit 60 includes a plurality of antenna modules 61. Each of the plurality of antenna modules 61 introduces the microwave distributed by the distributor 54 into the processing container 2. Each antenna module 61 has an amplifier unit 62 that mainly amplifies and outputs the distributed microwave, and a microwave introduction unit 63 that introduces the microwave output from the amplifier unit 62 into the processing container 2. is doing.
  • the amplifier unit 62 includes a phase shifter 62A that changes the phase of the microwave, a variable gain amplifier 62B that adjusts the power level of the microwave input to the main amplifier 62C, a main amplifier 62C configured as a solid state amplifier, It includes an isolator 62D that separates reflected microwaves that are reflected by an antenna unit of a microwave introducing unit 63, which will be described later, and that travel toward the main amplifier 62C.
  • the phase shifter 62A is configured to change the microwave radiation characteristic by changing the phase of the microwave.
  • the phase shifter 62A is used to change the plasma distribution by controlling the directivity of the microwave by adjusting the phase of the microwave for each antenna module 61, for example. If such adjustment of the radiation characteristics is not performed, the phase shifter 62A may not be provided.
  • variable gain amplifier 62B is used for adjusting variations of individual antenna modules 61 and adjusting plasma intensity. For example, by changing the variable gain amplifier 62B for each antenna module 61, the plasma distribution in the entire processing container 2 can be adjusted.
  • the main amplifier 62C includes, for example, an input matching circuit, a semiconductor amplifying element, an output matching circuit, and a high Q resonance circuit.
  • the semiconductor amplifying element for example, GaAs HEMT, GaN HEMT, and LD (Laterally Diffused) -MOS capable of class E operation are used.
  • the isolator 62D has a circulator and a dummy load (coaxial terminator).
  • the circulator guides the reflected microwave reflected by the antenna section of the microwave introduction section 63 described later to the dummy load.
  • the dummy load converts the reflected microwave guided by the circulator into heat.
  • the microwave introduction unit 63 includes a tuner 64 that matches impedance, an antenna unit 65 that radiates the amplified microwave into the processing container 2, and a metal material.
  • a main body container 66 having a cylindrical shape extending in the direction, and an inner conductor 67 extending in the same direction as the main container container 66 extends in the main body container 66.
  • the main body container 66 and the inner conductor 67 constitute a coaxial tube.
  • the main body container 66 constitutes the outer conductor of this coaxial tube.
  • the inner conductor 67 has a rod shape or a cylindrical shape. A space between the inner peripheral surface of the main body container 66 and the outer peripheral surface of the inner conductor 67 forms a microwave transmission path 68.
  • the antenna module 61 further includes a power feeding conversion unit provided on the base end side (lower end side) of the main body container 66.
  • the power feeding conversion unit is connected to the main amplifier 62C via a coaxial cable.
  • the isolator 62D is provided in the middle of the coaxial cable.
  • the tuner 64 constitutes a slag tuner. Specifically, as shown in FIG. 4, the tuner 64 includes two slugs 74 ⁇ / b> A and 74 ⁇ / b> B disposed on the base end side (lower end side) of the antenna body 65 of the main body container 66, and 2 An actuator 75 for operating the two slugs 74A and 74B and a tuner controller 76 for controlling the actuator 75 are provided.
  • the slugs 74 ⁇ / b> A and 74 ⁇ / b> B have a plate shape and an annular shape, and are disposed between the inner peripheral surface of the main body container 66 and the outer peripheral surface of the inner conductor 67.
  • the slugs 74A and 74B are made of a dielectric material.
  • a dielectric material for forming the slags 74A and 74B for example, high-purity alumina having a relative dielectric constant of 10 can be used.
  • High-purity alumina usually has a relative dielectric constant larger than that of quartz (relative dielectric constant 3.88) or Teflon (registered trademark) (relative dielectric constant 2.03), which is used as a material for forming slag.
  • the thickness of 74A, 74B can be made small.
  • high-purity alumina has a feature that the dielectric loss tangent (tan ⁇ ) is smaller than that of quartz or Teflon (registered trademark), and the loss of microwaves can be reduced.
  • High-purity alumina further has a feature of low distortion and a feature of being resistant to heat.
  • the high-purity alumina is preferably an alumina sintered body having a purity of 99.9% or more. Further, single crystal alumina (sapphire) may be used as high purity alumina.
  • the tuner 64 moves the slugs 74A and 74B in the vertical direction by the actuator 75 based on a command from the tuner controller 76. Thereby, the tuner 64 adjusts the impedance. For example, the tuner controller 76 adjusts the positions of the slugs 74A and 74B so that the terminal impedance is 50 ⁇ .
  • the main amplifier 62C of the amplifier unit 62, the tuner 64 of the microwave introduction unit 63, and the planar antenna 71 are arranged close to each other.
  • the tuner 64 and the planar antenna 71 constitute a lumped constant circuit and function as a resonator.
  • the tuner 64 can be tuned with high accuracy including plasma, and the influence of reflection on the planar antenna 71 can be eliminated.
  • the tuner 64 can eliminate impedance mismatch up to the planar antenna 71 with high accuracy, and can substantially make the mismatched portion a plasma space. Thereby, the tuner 64 enables high-precision plasma control.
  • the antenna unit 65 is provided on the opposite side of the main body container 66 from the power conversion unit. As described above, the portion of the main body container 66 closer to the base end than the antenna portion 65 has an impedance adjustment range by the tuner 64.
  • the antenna unit 65 includes a planar antenna 71 connected to the upper end portion of the inner conductor 67 and a microwave slow wave material 72 disposed on the lower surface side of the planar antenna 71. .
  • the planar antenna 71 has a disc shape.
  • the planar antenna 71 has a slot 71 a formed so as to penetrate the planar antenna 71.
  • four slots 71a are provided, and each slot 71a has a circular arc shape of an equal size.
  • the number of slots 71a is not limited to four, but may be five or more, or may be one or more and three or less.
  • the microwave slow wave material 72 is formed of a material having a dielectric constant larger than that of a vacuum.
  • a material for forming the microwave slow wave material 72 for example, fluororesin such as quartz, ceramics, polytetrafluoroethylene resin, polyimide resin, or the like can be used. Microwaves have a longer wavelength in vacuum.
  • the microwave slow wave material 72 has a function of adjusting the plasma by shortening the wavelength of the microwave. Further, the phase of the microwave varies depending on the thickness of the microwave slow wave material 72. Therefore, by adjusting the phase of the microwave according to the thickness of the microwave slow wave material 72, the planar antenna 71 can be adjusted to be at the antinode position of the standing wave. Thereby, while being able to suppress the reflected wave in the planar antenna 71, the radiation energy of the microwave radiated
  • the microwave radiation module 80 includes a microwave transmission plate 81 as a dielectric window member and a cover member 82 as a conductor member.
  • the microwave radiation module 80 is disposed inside the processing container 2.
  • the lower end of the microwave radiation module 80 (that is, the lower surface of the microwave transmission plate 81) is provided so as to be substantially in contact with the upper surface of the planar antenna 71.
  • one microwave radiation module 80 is connected to one antenna module 61 and radiates the microwave introduced through the antenna module 61 toward the space in the processing container 2.
  • microwave radiation modules 80 in FIG. 6, reference numerals 80A1, 80A2, 80A3, and 80A4. Express).
  • the microwave radiation modules 80A1, 80A2, 80A3, and 80A4 are separated from each other and are equally arranged on the same circumference so as to surround the periphery of the wafer W.
  • the four microwave radiation modules 80A1, 80A2, 80A3 and 80A4 have the same configuration.
  • the position of the planar antenna 71 of the antenna module 61 connected to each of the microwave radiation modules 80A1, 80A2, 80A3, and 80A4 is indicated by a broken line, and the processing container 2 is not shown.
  • the microwave transmission plate 81 is disposed around the wafer W so as to surround the wafer W, and transmits the microwave introduced by the antenna module 61 and radiates it into the processing container 2.
  • the microwave transmission plate 81 is made of a dielectric material.
  • quartz or ceramics is used as a dielectric material for forming the microwave transmission plate 81.
  • the microwave transmission plate 81 is fixed to the bottom wall portion 13 of the processing container 2 by a cover member 82.
  • the cover member 82 regulates the direction of the microwave so that the microwave introduced into the processing container 2 through the microwave transmission plate 81 is directed to the wafer W along a plane parallel to the surface of the wafer W.
  • the cover member 82 is a member that determines the direction of the microwave that is transmitted through the microwave transmission plate 81 and introduced into the space in the processing container 2.
  • the cover member 82 is formed of a metal material such as aluminum and an alloy thereof.
  • the surface of the cover member 82 may be subjected to, for example, alumite treatment (anodization treatment). Further, a film such as silicon or Y 2 O 3 may be formed.
  • the cover member 82 is provided in close contact with the microwave transmission plate 81 so as to cover the microwave transmission plate 81.
  • the cover member 82 is fixed to the bottom wall portion 13 of the processing container 2 by an arbitrary fixing means such as a screw.
  • the microwave transmission plate 81 has a rectangular shape with a fan shape in plan view, and has a three-dimensional shape whose longitudinal section has a constant thickness.
  • the cover member 82 also has a fan shape in plan view corresponding to the microwave transmitting plate 81, and its longitudinal section in the short direction is L-shaped.
  • the shapes of the microwave transmission plate 81 and the cover member 82 are not limited to those shown in the drawings, and can be any shape according to the shape of the object to be processed.
  • the side surface on one side (inner peripheral side) of the microwave transmission plate 81 is not covered with the cover member 82 and is exposed to the internal space of the processing container 2.
  • the exposed surface of the microwave transmission plate 81 is a microwave radiation surface 81 a that radiates microwaves toward the wafer W placed on the placement region 17 a in the processing container 2.
  • the direction of the microwave in the surface wave mode radiated from the microwave radiation surface 81a is indicated by a thick arrow.
  • the microwave radiation surface 81a has a shape corresponding to the edge shape of the wafer W that is circular in plan view. That is, the microwave radiation surface 81 a is curved in an arc shape and has a curved surface corresponding to the edge shape of the wafer W.
  • the microwaves are efficiently directed from the microwave radiation surfaces 81a of the four microwave transmission plates 81 toward the center O of the wafer W. Can radiate.
  • the lower end of the microwave transmission plate 81 is disposed at a height position equal to or higher than the height of the upper surface of the wafer W placed on the placement region 17a.
  • the lower surface of the microwave transmission plate 81 coincides with a virtual plane obtained by enlarging the upper surface of the wafer W placed on the placement region 17a.
  • the upper surface of the wafer W, the inner surface S around the wafer W in the surface of the mounting portion 17 and the bottom wall portion 13, and the lower surface of the microwave transmission plate 81 are substantially the same. They are the same height and are formed on the same virtual plane.
  • the microwave transmission plate 81 By arranging the microwave transmission plate 81 at such a height, boundary conditions such as a step can be eliminated between the microwave radiation surface 81 a of the microwave transmission plate 81 and the wafer W. Accordingly, it is possible to efficiently guide the surface-wave mode microwave radiated from the microwave radiation surface 81 a toward the surface of the wafer W and generate plasma above the wafer W.
  • the plasma processing apparatus 1 is configured such that high-frequency power can be supplied from the high-frequency bias power source 25 to the placement unit 17 including the placement region 17a.
  • high-frequency power can be supplied from the high-frequency bias power source 25 to the placement unit 17 including the placement region 17a.
  • ions can be drawn into the wafer W, so that, for example, when the plasma processing apparatus 1 performs processing with strongly ionic plasma, the processing efficiency is improved. Can be improved.
  • the microwave radiated from the microwave radiation surface 81a of the microwave transmission plate 81 is exposed between the microwave transmission plate 81 and the wafer W as shown in FIG. It propagates in the surface wave mode on the metal surface (the inner surface S around the wafer W in the bottom wall portion 13).
  • the surface wave propagating on the metal surface is guided by a sheath (not shown) existing between the plasma and the metal surface. That is, the surface wave propagates between the low electron density layer having a low dielectric constant present in the sheath and the plasma.
  • the sprayed film can prevent the inner surface S from being scraped by microwaves and causing contamination.
  • a silicon annular member may be disposed on the inner surface S exposed between the microwave transmitting plate 81 and the wafer W to cover the inner surface S.
  • the microwave amplified by the main amplifier 62C passes between the inner peripheral surface of the main body container 66 and the outer peripheral surface of the inner conductor 67 (microwave transmission path 68). It passes through the planar antenna 71, passes through the microwave transmission plate 81 from the slot 71 a of the planar antenna 71, and is radiated to the internal space of the processing container 2. At this time, since the radiation direction of the microwave is regulated by the cover member 82, the microwave is radiated from the microwave radiation surface 81 a facing the space in the processing chamber 2 toward the wafer W. This microwave propagates in the direction of the wafer W as a surface wave on the inner surface S around the wafer W in the bottom wall portion 13.
  • the microwave radiation surface 81a has a curved surface corresponding to the edge shape of the wafer W that is circular in plan view, so that the microwave in the surface wave mode is directed to the center O of the wafer W. It is radiated efficiently toward.
  • emitted from microwave radiation module 80A1 typically was shown with the thick arrow.
  • the surface wave mode microwaves radiated from the microwave radiation modules 80A1, 80A2, 80A3, and 80A4 can be controlled in phase by the phase shifter 62A of the amplifier unit 62 to control mutual interference. it can.
  • a surface wave plasma is generated immediately above the wafer W by the microwaves thus radiated, and a predetermined plasma process is performed on the wafer W.
  • FIG. 8 is an explanatory diagram showing a first modification of the microwave introduction device 5 in the plasma processing apparatus 1 of the first embodiment.
  • FIG. 8 shows the arrangement of the microwave radiation module 80 and the wafer W in the processing container 2 as in FIG.
  • two antenna modules 61 are connected to one microwave radiation module 80. That is, in this modification, four microwave radiation modules 80 (represented by reference numerals 80B1, 80B2, 80B3, and 80B4 in FIG. 8) are provided around the wafer W so as to surround the wafer W.
  • Two antenna modules 61 are connected to each.
  • the position of the planar antenna 71 of the antenna module 61 is indicated by a broken line.
  • the number of antenna modules 61 connected to one microwave radiation module 80 may be three or more. Further, in FIG. 8, an equal number of antenna modules 61 are connected to the four microwave radiation modules 80 (80B1 to 80B4), but a different number of antenna modules 61 are connected to each microwave radiation module 80. You can also
  • FIG. 9 is explanatory drawing which shows the 2nd modification of the microwave introduction apparatus 5 in the plasma processing apparatus 1 of 1st Embodiment.
  • 6 and 8 show an example in which four microwave radiation modules 80 are provided around the wafer W in the processing container 2 so as to surround the wafer W. However, if the wafer W can be surrounded, microwaves can be provided.
  • the number of radiation modules 80 is arbitrary.
  • the number of the microwave radiation modules 80 may be single, two to three, or five or more.
  • FIG. 9 shows an example in which four antenna modules 61 are connected to a single microwave radiation module 80C.
  • the position of the planar antenna 71 of the antenna module 61 is indicated by a broken line.
  • the microwave transmission plate 81 and the cover member 82 constituting the microwave radiation module 80C are both a single member formed in an annular shape.
  • the four antenna modules 61 are evenly arranged around the wafer W.
  • the plasma processing apparatus 1 selects the configuration of the microwave introduction apparatus 5, particularly the combination of the arrangement of the microwave radiation module 80 and the antenna module 61, according to the purpose of processing. be able to. Thereby, local control of the plasma density in the processing container 2 can be easily performed.
  • the microwave introduction apparatus is arranged so that at least three antenna modules 61 are arranged around the wafer W. 5 is preferable. Further, as the number of antenna modules 61 increases, local control of plasma in the processing container 2 becomes easier.
  • microwave radiation modules 80 are arranged in a concentric manner around the wafer W that is circular in plan view.
  • the microwave radiation modules 80 can be arranged around the substrate so as to form a square as a whole.
  • FIG. 10 is a bottom view of the ceiling portion 11 of the plasma processing apparatus 1 of the present embodiment, and shows an arrangement example of the nozzles 16 and the exhaust ports 11a in the ceiling portion 11.
  • 12 nozzles 16 are arranged in a concentric manner on the inner side and 28 nozzles 16 on the outer side.
  • one exhaust port 11 a is formed in the central portion, and six exhaust ports 11 a are formed in an intermediate region between the central portion and the peripheral portion.
  • the nozzles 16 and the exhaust ports 11a are alternately arranged concentrically.
  • the arrangement and the number of the nozzles 16 and the exhaust ports 11a in the ceiling portion 11 are not limited to the configuration shown in FIG. 10, and various types such as alternately arranging the nozzles 16 and the exhaust ports 11a in a grid pattern, for example. Can be modified.
  • the surface of the wafer W (surface to be processed) is provided by providing both the nozzle 16 for introducing gas and the exhaust port 11a for exhausting close to each other in the ceiling portion 11 of the processing chamber 2.
  • the residence time of processing gas in the vicinity can be shortened. That is, the processing gas introduced into the processing container 2 from the nozzle 16 can be discharged from the exhaust port 11a (by the exhaust device 4) in a short time.
  • the gas residence time in the processing container 2 it becomes possible to improve the film quality in the film forming process.
  • the gas residence time is shortened so that the film can be introduced into the film due to oxygen released from the parts in the processing chamber 2. Oxygen contamination can be reduced.
  • the oxidation rate can be improved by shortening the gas residence time.
  • a command is input from the user interface 92 to the process controller 91 so as to perform plasma nitriding in the plasma processing apparatus 1.
  • the process controller 91 receives this command and reads a recipe stored in the storage unit 93 or a computer-readable storage medium.
  • each end device for example, the high-frequency bias power supply 25, the gas supply device 3a, the exhaust device 4, and the microwave introduction is introduced from the process controller 91 so that the plasma nitridation process is executed according to the conditions based on the recipe.
  • a control signal is sent to the apparatus 5 or the like.
  • the gate valve G is opened, and the wafer W is loaded into the processing container 2 through the gate valve G and the loading / unloading port 12a by a transfer device (not shown).
  • the wafer W is transferred to the plurality of support pins 28 and placed on the placement region 17 a of the placement unit 17.
  • the gate valve G is closed, and the inside of the processing container 2 is evacuated by the exhaust device 4.
  • the gas supply mechanism 3 introduces a rare gas and a nitrogen-containing gas at a predetermined flow rate into the processing container 2 through the gas introduction unit 15.
  • the internal space of the processing container 2 is adjusted to a predetermined pressure by adjusting the exhaust amount and the gas supply amount.
  • the microwave to be introduced into the processing container 2 is generated in the microwave output unit 50.
  • the microwaves are distributed to a plurality of systems (for example, 4 systems) by the distributor 54.
  • the plurality of microwaves output from the distributor 54 of the microwave output unit 50 are input to the plurality of antenna modules 61 of the antenna unit 60 and are introduced into the processing container 2 by each antenna module 61.
  • the microwave propagates through the amplifier unit 62 and the microwave introduction unit 63.
  • the microwave that has reached the antenna section 65 of the microwave introduction section 63 is directed by the cover member 82 of the microwave radiation module 80 through the slot 71 a of the planar antenna 71 and transmits through the microwave transmission plate 81.
  • the light is emitted from the microwave radiation surface 81 a toward the space above the wafer W in the processing chamber 2.
  • microwaves are individually introduced into the processing container 2 from the respective antenna modules 61.
  • the microwave distributed by the distributor 54 can be individually amplified by the amplifier unit 62, so that the power of the microwave introduced into the processing container 2 can be individually controlled. Therefore, the plasma density in the processing container 2 can be locally controlled.
  • the microwaves introduced into the processing container 2 from a plurality of parts around the wafer W form an electromagnetic field at a position immediately above the wafer W in the processing container 2, respectively.
  • the processing gas such as an inert gas or a nitrogen-containing gas introduced into the processing container 2 is turned into plasma.
  • the silicon surface of the wafer W is nitrided by the action of active species in the plasma, such as radicals or ions, to form a thin silicon nitride film SiN.
  • the oxidation treatment can be performed on the wafer W by using an oxygen-containing gas instead of the nitrogen-containing gas.
  • the film forming process can be performed on the wafer W by the plasma CVD method.
  • the microwave radiation module 80 of the microwave introducing device 5 is disposed around the wafer W that is the object to be processed, and the microwave is introduced from the periphery of the wafer W. To do.
  • the microwave introduction device 5 By arranging the microwave introduction device 5 at the lower portion of the processing container 2, it is no longer essential to provide a microwave introduction mechanism in the ceiling portion 11 of the processing container 2. Therefore, the ceiling portion 11 can be used for other mechanisms, and as illustrated in FIG. 10, gas can be introduced / exhausted from the ceiling portion 11 of the processing container 2, and freedom in designing the apparatus. It became possible to greatly improve the degree.
  • microwaves are introduced into the processing container 2 through the antenna module 61 and the microwave radiation module 80 mounted on the bottom wall portion 13 of the processing container 2. Is done.
  • the effects of such a configuration will be described below in comparison with a plasma processing apparatus of a comparative example.
  • a plasma processing apparatus that introduces microwaves from above the processing container is referred to as a plasma processing apparatus of a comparative example.
  • FIG. 11 is a cross-sectional view schematically showing a configuration of a plasma processing apparatus of a comparative example.
  • the plasma processing apparatus 501 of the comparative example includes a processing container 502, a mounting table 521, and a support member 522.
  • the plasma processing apparatus 501 includes a microwave introducing device 505 instead of the microwave introducing device 5 shown in FIG.
  • the microwave introduction device 505 is provided on the upper portion of the processing container 502.
  • the microwave introducing device 505 is a microwave introducing device having a known configuration including only one microwave transmitting plate 573 made of quartz, for example.
  • the processing gas cannot be introduced or exhausted from the upper part of the processing container 502.
  • the processing gas is introduced from the side of the processing container 502, or a shower plate (not shown) is interposed between the mounting table 521 and the microwave transmission plate 573. Limited to the method. Further, in many cases, the exhaust of gas is limited to a method performed from the bottom of the processing container 502.
  • the microwave transmission plate 573 since the microwave transmission plate 573 is present immediately above the mounting table 521, for example, the thin film attached to the microwave transmission plate 573 is peeled off while the plasma oxidation process and the plasma nitridation process are repeated, and the wafer is removed. It falls on W and becomes a particle generation source.
  • the microwave introduction apparatus 505 is provided on the upper part of the processing container 502, and since the processing container 502 includes the mounting table 521 on which the wafer W is mounted and the support member 522, The volume of the processing container 502 becomes large and it is difficult to reduce the size.
  • the microwave introduction mechanism is provided in the ceiling portion of the processing container 502, it is difficult to reduce the volume of the processing container, and other mechanisms are mounted on the ceiling. It was difficult to provide in the part. As a result, the degree of freedom in device design was greatly restricted. Further, in the plasma processing apparatus 501, it is necessary to provide a microwave transmission plate 573 that may be a particle generation source immediately above the mounting table 521, and thus it is difficult to take measures against particles. On the other hand, in the plasma processing apparatus 1 of the present embodiment, a microwave introduction mechanism is provided on the bottom wall portion 13 of the processing container 2, and microwaves for generating plasma in the processing container 2 are generated around the wafer W.
  • the plasma processing apparatus 1 can significantly reduce the volume of the processing vessel 2 as compared to the microwave plasma processing apparatus having a conventional configuration.
  • a gas introduction portion for introducing gas and an exhaust portion for exhausting gas are provided in the ceiling portion 11 of the processing vessel 2. Gas can be introduced and exhausted through the ceiling 11.
  • generation of particles due to the microwave transmission plate can be reduced.
  • the effects of the plasma processing apparatus 1 of the present embodiment will be described in more detail with reference to examples of arrangement of the gas introduction part and the exhaust part in the processing container 2.
  • the gas is introduced into the processing container 2 and exhausted through the ceiling portion 11.
  • the plasma processing apparatus of the present invention has a high degree of freedom in apparatus design, for example, more variations can be adopted for the configuration of the gas introduction part and the exhaust part.
  • 12A to 12C schematically show a modified plasma processing apparatus in which the gas introduction position and the exhaust position are different from the plasma processing apparatus 1 of FIG. 1, and the other configuration is the first plasma processing apparatus. Same as 1.
  • the gas introduction part 94 and the exhaust part 95 are used only in the meaning of symbolically indicating a rough place where they are disposed.
  • the specific arrangement of nozzles and exhaust ports can be made more complicated as illustrated in FIG. 10, for example.
  • FIG. 12A is a mode in which the gas introduction part 94 is provided in the ceiling part 11 of the processing container 2 and the exhaust part 95 is provided in the side wall part 12 of the processing container 2.
  • the processing gas is introduced from the ceiling portion 11 of the processing container 2, and the side wall portion 12 is introduced.
  • the flow of gas exhausted from the provided exhaust unit 95 can make it difficult for particles to adhere to the surface of the wafer W.
  • the probability that the particles fall onto the surface of the wafer W can be reduced because the exhaust portion 95 does not exist immediately above the wafer W.
  • FIG. 12B is a mode in which the gas introduction part 94 is provided in the side wall part 12 of the processing container 2 and the exhaust part 95 is provided in the ceiling part 11 of the processing container 2.
  • gas is exhausted from the ceiling part 11 of the processing container 2.
  • the degree of freedom of arrangement of the exhaust part 95 in the ceiling part 11 is high, for example, the position directly above the wafer W is removed and the exhaust port is opened. Can be provided. Thereby, contamination of the wafer W due to falling particles can be reduced.
  • FIG. 12C shows a mode in which the gas introduction part 94A is provided in the ceiling part 11 of the processing container 2, the gas introduction part 94B is provided in the side wall part 12 of the processing container 2, and the exhaust part 95 is provided in the bottom wall part 13 of the processing container 2.
  • a certain type of gas can be introduced from the gas introduction unit 94A, and a gas of the same type or a different type from the gas introduced from the gas introduction unit 94A can be introduced from the gas introduction unit 94B.
  • This modification is effective for a process using a plurality of gases simultaneously.
  • the probability that the particles fall onto the surface of the wafer W can be reduced because the exhaust portion 95 does not exist immediately above the wafer W.
  • gas can be introduced and exhausted from the ceiling portion 11 and the side wall portion 12 in various combinations. Is possible.
  • the modes of gas introduction / exhaustion listed in the third to fifth modifications of FIGS. 12A to 12C are merely examples, and combinations of these modifications are possible.
  • various mechanisms are provided on the ceiling portion 11 of the processing container 2 in addition to the gas introduction / exhaust mechanism. Can do.
  • various mechanisms such as a measuring instrument for monitoring the film thickness of the wafer W and a measuring instrument for monitoring the state of plasma in the processing container 2 can be provided on the ceiling portion 11.
  • FIG. 13 is a cross-sectional view showing a schematic configuration of the plasma processing apparatus 1A in the present embodiment, and corresponds to FIG. 1 of the first embodiment.
  • FIG. 14 is an explanatory diagram showing configurations of the microwave output unit 50A and the antenna module 61 of the microwave introduction device 5A of the present embodiment, and is a diagram that substantially corresponds to FIG. 3 of the first embodiment.
  • a distributor 54 is provided in the microwave output unit 50 of the microwave introduction apparatus 5, and the microwaves are distributed to the plurality of antenna modules 61 and then the plurality of microwave radiation modules. 80 to supply.
  • a plurality of microwave introduction apparatuses 5A are provided, and microwaves are supplied from one antenna module 61 to one microwave radiation module 80.
  • Other configurations of the plasma processing apparatus 1A according to the present embodiment are the same as those of the plasma processing apparatus 1 according to the first embodiment, and therefore, in FIGS. 13 and 14, the configurations are the same as those in FIGS. Are denoted by the same reference numerals and description thereof is omitted.
  • the configuration of the amplifier section 62 of the antenna module 61 shown in FIG. 14 may be further simplified.
  • the microwave introduction device 5A is configured to supply microwaves from one microwave output unit 50A to one microwave radiation module 80 via one antenna module 61.
  • the microwave introduction device 5A is configured to supply microwaves from one microwave output unit 50A to one microwave radiation module 80 via one antenna module 61.
  • the plasma processing apparatus 1A of the present embodiment can be used, for example, when a plurality of objects to be processed are simultaneously processed in the same processing container.
  • the microwave radiation module 80 can be shared in the plurality of microwave introduction apparatuses 5A.
  • FIG. 15 is a cross-sectional view showing a schematic configuration of plasma processing apparatus 1B in the present embodiment, and corresponds to FIG. 1 of the first embodiment.
  • FIG. 16 is an enlarged cross-sectional view showing a main part including the microwave introduction part 63 and the microwave radiation module 80 of the plasma processing apparatus 1B of the present embodiment, which is substantially the same as FIG. 4 of the first embodiment. It is a corresponding figure.
  • a DC application unit 83 as a DC voltage application unit and a variable direct current electrically connected to the DC application unit 83 are provided on the bottom wall 13 around the mounting unit 17.
  • a power supply 85 the plasma processing apparatus 1B includes a processing container 2 that accommodates the wafer W, a placement unit 17 that places the wafer W inside the processing container 2, and a gas supply mechanism 3 that supplies gas into the processing container 2.
  • the DC application unit 83 is made of, for example, a conductive material such as metal, surrounds the mounting unit 17, and is provided, for example, in an annular shape so as to be interposed between the microwave radiation module 80 and the mounting unit 17. .
  • the DC application unit 83 is embedded in the bottom wall portion 13 so that the upper surface thereof is exposed in the processing container 2.
  • An insulating material 84 is provided between the bottom wall portion 13 and the DC application portion 83 to be insulated, and is in an electrically floating state with respect to the bottom wall portion 13 at the ground potential.
  • the variable DC power supply 85 is configured to be turned on / off by a switch unit (not shown), and applies a negative DC voltage to the DC application unit 83, for example.
  • the microwave from the microwave transmission plate 81 is easily propagated in the direction of the wafer W by applying a DC voltage from the variable DC power supply 85 to the DC applying unit 83.
  • the microwave radiated from the microwave radiation surface 81a of the microwave transmission plate 81 is a metal surface (bottom wall) exposed between the microwave transmission plate 81 and the wafer W as shown by a thick arrow in FIG.
  • the inner surface S ′ around the wafer W in the part 13 and the DC application part 83 propagates in the surface wave mode.
  • the surface wave propagating on the metal surface is guided by a sheath (not shown) existing between the plasma and the metal surface.
  • the surface wave propagates between the low electron density layer having a low dielectric constant present in the sheath and the plasma.
  • it is possible to increase the sheath thickness by providing a DC applying unit 83 around the placement region 17a and applying a negative voltage from the variable DC power supply 85, for example.
  • the sheath thickness By enlarging the sheath thickness, the surface wave can be efficiently guided to the vicinity of the wafer W along the sheath.
  • the DC application unit 83 and applying a DC voltage thereto the sheath thickness can be adjusted, and the propagation efficiency of the microwave in the surface wave mode can be increased.
  • FIG. 17 is a cross-sectional view showing a schematic configuration of a plasma processing apparatus 1C according to the present embodiment, and corresponds to FIG. 1 of the first embodiment.
  • the whole microwave radiation module 80 is configured to be accommodated in the processing container 2, but in the present embodiment, most of the microwave radiation module 80 is processed.
  • the container 2 is mounted on the outside of the container 2. That is, the plasma processing apparatus 1 ⁇ / b> C includes a processing container 2 that accommodates the wafer W, a placement unit 17 that places the wafer W inside the processing container 2, and a gas supply mechanism 3 that supplies gas into the processing container 2.
  • the microwave radiation module 80 of the microwave introduction device 5 is attached to the lower end of the side wall portion 12 from the outside. More specifically, as shown in FIG. 17, in the plasma processing apparatus 1 ⁇ / b> C, the cover member 82 of the microwave radiation module 80 is in contact with the lower end of the side wall portion 12, and the main body container 66 of the microwave introduction portion 63 of the antenna module 61.
  • the microwave introduction device 5 is disposed so that the side wall is in contact with the side end of the bottom wall portion 13.
  • the outer peripheral side of the cover member 82 of the microwave radiation module 80 is exposed to the external space of the processing container 2.
  • a sealing member (not shown) is provided at the contact portion between the upper surface of the cover member 82 of the microwave radiation module 80 and the lower end of the side wall portion 12 to maintain airtightness. Further, a sealing member (not shown) is also provided at the abutting portion between the main body container 66 of the microwave introduction portion 63 and the side end of the bottom wall portion 13 to maintain airtightness.
  • the microwave radiation surface 81a of the microwave transmission plate 81 exposed to the space in the processing container 2 and the inner peripheral surface of the cover member 82 are continuous with the inner peripheral surface of the side wall portion 12 of the processing container 2 without a step. It is the same.
  • the inner diameter of the processing chamber 2 (the distance between the side wall portions 12 facing each other) matches the distance between the microwave radiation surfaces 81a facing each other with the wafer W interposed therebetween.
  • the positions of the microwave radiation surface 81a of the microwave transmission plate 81 and the inner peripheral surface of the cover member 82 may not necessarily coincide with the position of the inner peripheral surface of the side wall portion 12 of the processing container 2 in the horizontal direction. Good. Since other configurations in the plasma processing apparatus 1C of the present embodiment are the same as those of the plasma processing apparatus 1 according to the first embodiment, the same reference numerals are given to the same configurations in FIG. 17 as in FIG. The description is omitted.
  • the diameter of the processing container can be significantly reduced as compared with the plasma processing apparatus 501 of the comparative example shown in FIG.
  • a microwave is introduced from the microwave transmission plate 573 of the microwave introduction apparatus 505 provided on the upper part of the processing container 502, and plasma P is generated inside the processing container 502.
  • the plasma density in the processing container 502 becomes substantially zero on the inner surface of the side wall portion 512.
  • the microwave radiation module 80 is provided around the wafer W, and the microwave is introduced from the position close to the edge of the wafer W toward the wafer W in the horizontal direction. Then, plasma is generated immediately above the wafer W. For this reason, even if the position of the side wall portion 12 of the processing container 2 is close to the edge of the wafer W, there is almost no fear of adversely affecting the uniformity of processing within the wafer W surface. Therefore, in the plasma processing apparatus 1C of the present embodiment, the inner diameter of the processing container 2 may be smaller than that of the plasma processing apparatus 501 of the comparative example, and the internal volume can be greatly reduced. Therefore, the processing container 2 can be downsized.
  • the internal volume of the processing container 2 can be reduced as compared with the plasma processing apparatus 501 of the comparative example, the residence time of the processing gas in the processing container 2 can be shortened. For example, when used as a film forming apparatus, an improvement in film quality can be expected.
  • the plasma processing apparatus 1C of the present embodiment since most of the microwave radiation module 80 is placed outside the processing container 2, for example, the plasma processing apparatuses 1 and 1 of the first to third embodiments are used. Compared with 1A and 1B, the volume of the internal space of the processing container 2 can be further reduced.
  • the configuration in which the microwave radiation module 80 is attached to the lower end of the side wall portion 12 is the same as that of the plasma processing apparatus 1A of the second embodiment (see FIG. 13) or the third embodiment.
  • the present invention can also be applied to the plasma processing apparatus 1B (see FIG. 15).
  • the plasma processing apparatus of the present invention is not limited to a case where a semiconductor wafer is used as an object to be processed, and can also be applied to a plasma processing apparatus using, for example, a solar cell panel substrate or a flat panel display substrate as an object to be processed.
  • the mounting portion 17 is provided on the bottom wall portion 13 of the processing container 2, but a metal stage or base is provided in the processing container 2, and the stage or base is provided.
  • a microwave may be radiated from a microwave radiation module arranged with its height aligned around the wafer W placed on the part.
  • the microwave introduction mechanism is not provided in the ceiling portion 11 of the processing container 2.
  • it does not preclude providing a microwave introduction mechanism on the ceiling portion 11 of the processing container 2 as an auxiliary.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A microwave introduction device (5) has a microwave output unit (50) that generates microwaves and distributes and outputs the microwaves to a plurality of paths, an antenna unit (60) that introduces the microwaves output from the microwave output unit (50) into a process container (2), and a microwave radiation module (80) for radiating the microwaves introduced by the antenna unit (60) into the process container (2). The microwave radiation module (80) has a microwave-transmitting plate (81) as a dielectric window and a cover (82) as a conductor. The cover (82) controls the directions of the microwaves so that the microwaves introduced through the microwave-transmitting plate (81) into the process container (2) are directed toward a wafer (W).

Description

プラズマ処理装置、マイクロ波導入装置及びプラズマ処理方法Plasma processing apparatus, microwave introducing apparatus, and plasma processing method
 本発明は、処理容器へ所定周波数のマイクロ波を導き、プラズマを生成させて被処理体をプラズマ処理するプラズマ処理装置、マイクロ波導入装置及びプラズマ処理方法に関する。 The present invention relates to a plasma processing apparatus, a microwave introducing apparatus, and a plasma processing method for guiding a microwave of a predetermined frequency to a processing container and generating plasma to plasma process an object to be processed.
 半導体ウエハ等の被処理体に対して所定のプラズマ処理を施すプラズマ処理装置として、処理容器内にマイクロ波を導入してプラズマを生成させるマイクロ波プラズマ処理装置が知られている。このマイクロ波プラズマ処理装置では、処理容器内で高密度のプラズマを生成させることが可能であり、生成されたプラズマによって、例えば酸化処理、窒化処理、堆積処理、エッチング処理等が行われる。 2. Description of the Related Art As a plasma processing apparatus that performs a predetermined plasma process on an object to be processed such as a semiconductor wafer, a microwave plasma processing apparatus that generates plasma by introducing a microwave into a processing container is known. In this microwave plasma processing apparatus, it is possible to generate high-density plasma in a processing container, and for example, oxidation processing, nitriding processing, deposition processing, etching processing, and the like are performed by the generated plasma.
 マイクロ波プラズマ処理装置では、処理容器内にマイクロ波を導入するためのマイクロ波導入機構が、処理容器の上部に配置される。例えば、複数のスロットを有する平面アンテナを用いて処理容器内にマイクロ波を導入するスロットアンテナ方式のマイクロ波プラズマ処理装置では、通常、被処理体の径より大きなマイクロ波透過窓が処理容器の天井部に被処理体に対向して配置される。また、例えば特許文献1(日本国特開2005-259633号公報)では、大電力を投入して処理容器内で大きなプラズマ放電を得るため、処理容器の上部に複数のマイクロ波導入機構を設けたマイクロ波プラズマ処理装置も提案されている。 In the microwave plasma processing apparatus, a microwave introduction mechanism for introducing a microwave into the processing container is disposed on the upper part of the processing container. For example, in a microwave plasma processing apparatus of a slot antenna type in which microwaves are introduced into a processing container using a planar antenna having a plurality of slots, a microwave transmission window larger than the diameter of the object to be processed is usually provided on the ceiling of the processing container. The part is disposed to face the object to be processed. Further, for example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2005-259633), a plurality of microwave introduction mechanisms are provided on the upper part of the processing container in order to obtain a large plasma discharge in the processing container by applying a large amount of power. A microwave plasma processing apparatus has also been proposed.
 しかし、従来のマイクロ波プラズマ処理装置では、処理容器の上部には、マイクロ波導入機構以外の他の機構、例えばガス導入機構などを配設する余地がほとんどなく、装置設計における自由度が制約されてしまうという課題があった。 However, in the conventional microwave plasma processing apparatus, there is almost no room for arranging other mechanisms other than the microwave introduction mechanism, such as a gas introduction mechanism, in the upper part of the processing vessel, and the degree of freedom in designing the apparatus is limited. There was a problem that it would end up.
 本発明は、処理容器の上部にマイクロ波導入機構を設けることが必須でなく、装置設計における自由度が高いマイクロ波プラズマ処理装置を提供する。 The present invention provides a microwave plasma processing apparatus having a high degree of freedom in apparatus design, without providing a microwave introduction mechanism at the top of the processing vessel.
 本発明のプラズマ処理装置は、
 被処理体を収容する処理容器と、
 前記処理容器内で被処理体を載置する載置部と、
 前記処理容器内に処理ガスを供給するガス供給機構と、
 前記処理容器内で前記処理ガスのプラズマを生成させるためのマイクロ波を発生させると共に、前記処理容器内に前記マイクロ波を導入するマイクロ波導入装置と
を備えている。
 本発明のプラズマ処理装置において、前記マイクロ波導入装置は、
 被処理体の周囲に配置され、マイクロ波を透過させて前記処理容器内へ放射する誘電体窓部材と、
 前記誘電体窓部材を介して前記処理容器内に放射されるマイクロ波が被処理体の表面と平行な方向で被処理体へ向かうように規制する導体部材と、
を含むマイクロ波放射モジュールを有している。
The plasma processing apparatus of the present invention comprises:
A processing container for storing an object to be processed;
A mounting section for mounting the object to be processed in the processing container;
A gas supply mechanism for supplying a processing gas into the processing container;
A microwave introduction device for generating a microwave for generating plasma of the processing gas in the processing container and for introducing the microwave into the processing container is provided.
In the plasma processing apparatus of the present invention, the microwave introduction device includes:
A dielectric window member disposed around the object to be processed and transmitting microwaves into the processing container;
A conductor member for regulating the microwave radiated into the processing container through the dielectric window member so as to be directed to the target object in a direction parallel to the surface of the target object;
A microwave radiation module.
 本発明のプラズマ処理装置において、前記マイクロ波導入装置は、マイクロ波を生成すると共に出力するマイクロ波出力部と、
 前記処理容器の下部に外側から装着されて前記マイクロ波出力部から出力されたマイクロ波を前記マイクロ波放射モジュールへ供給する1つ又は複数のアンテナモジュールと、をさらに備えていてもよい。
In the plasma processing apparatus of the present invention, the microwave introduction device generates a microwave and outputs a microwave, and
It may further include one or a plurality of antenna modules that are attached to the lower part of the processing container from the outside and supply the microwaves output from the microwave output unit to the microwave radiation module.
 本発明のプラズマ処理装置において、前記誘電体窓部材は、前記処理容器内の空間に露出して被処理体に向けてマイクロ波を放射するマイクロ波放射面を有していてもよい。また、前記導体部材は、前記マイクロ波放射面を除く前記誘電体窓部材の表面を覆うものであってもよい。この場合、前記マイクロ波放射面は、被処理体のエッジの形状に対応した形状を有していてもよく、例えば、被処理体が平面視円形である場合、前記マイクロ波放射面が弧状に湾曲した形状を有していてもよい。 In the plasma processing apparatus of the present invention, the dielectric window member may have a microwave radiation surface that is exposed to a space in the processing container and emits microwaves toward the object to be processed. The conductor member may cover the surface of the dielectric window member excluding the microwave radiation surface. In this case, the microwave radiation surface may have a shape corresponding to the shape of the edge of the object to be processed. For example, when the object to be processed is circular in plan view, the microwave radiation surface has an arc shape. It may have a curved shape.
 本発明のプラズマ処理装置は、被処理体を囲むように、複数の前記マイクロ波放射モジュールを有していてもよい。この場合、1つの前記マイクロ波放射モジュールに対し、1つ又は複数の前記アンテナモジュールが接続されていてもよい。 The plasma processing apparatus of the present invention may have a plurality of the microwave radiation modules so as to surround the object to be processed. In this case, one or a plurality of the antenna modules may be connected to one microwave radiation module.
 本発明のプラズマ処理装置は、前記アンテナモジュールを少なくとも3つ以上有していてもよい。 The plasma processing apparatus of the present invention may have at least three antenna modules.
 本発明のプラズマ処理装置は、前記誘電体窓部材の下端が、前記載置部に載置された被処理体の上面の高さ以上の高さ位置に配置されていてもよい。 In the plasma processing apparatus of the present invention, the lower end of the dielectric window member may be disposed at a height position equal to or higher than the height of the upper surface of the object to be processed placed on the placement portion.
 本発明のプラズマ処理装置は、前記ガス供給機構から供給される処理ガスを導入するガス導入部が、前記処理容器の天井部に設けられていてもよい。この場合、前記処理容器内を減圧排気する排気装置に接続する排気口が、前記処理容器の天井部に設けられていてもよい。 In the plasma processing apparatus of the present invention, a gas introduction part for introducing a processing gas supplied from the gas supply mechanism may be provided in a ceiling part of the processing container. In this case, an exhaust port connected to an exhaust device for evacuating and exhausting the inside of the processing container may be provided in a ceiling portion of the processing container.
 また、本発明のプラズマ処理装置は、前記処理容器内を減圧排気する排気装置に接続する排気口が、前記処理容器の側壁部又は底壁部に設けられていてもよい。 Further, in the plasma processing apparatus of the present invention, an exhaust port connected to an exhaust device for evacuating and exhausting the inside of the processing container may be provided in a side wall portion or a bottom wall portion of the processing container.
 また、本発明のプラズマ処理装置において、前記載置部は、前記処理容器の底壁部に設けられていてもよい。 Further, in the plasma processing apparatus of the present invention, the placement section may be provided on the bottom wall portion of the processing container.
 また、本発明のプラズマ処理装置は、前記載置部に高周波電力を供給する高周波電源部を有していてもよい。 Moreover, the plasma processing apparatus of the present invention may have a high frequency power supply unit that supplies high frequency power to the mounting unit.
 また、本発明のプラズマ処理装置は、前記載置部と前記マイクロ波放射モジュールとの間に、直流電圧が印加される直流電圧印加部を有していてもよい。 Further, the plasma processing apparatus of the present invention may have a DC voltage application unit to which a DC voltage is applied between the mounting unit and the microwave radiation module.
 本発明のプラズマ処理方法は、上記いずれかのプラズマ処理装置により、被処理体を処理するものである。 The plasma processing method of the present invention is to process an object to be processed by any of the above plasma processing apparatuses.
 本発明のマイクロ波導入装置は、被処理体を収容する処理容器内で処理ガスのプラズマを生成させるためのマイクロ波を発生させると共に、前記処理容器内に前記マイクロ波を導入するマイクロ波導入装置である。
 このマイクロ波導入装置は、
 被処理体を囲むようにその周囲に配置され、マイクロ波を透過させて前記処理容器内へ放射する誘電体窓部材と、
 前記誘電体窓部材を介して前記処理容器内に放射されるマイクロ波が被処理体の表面と平行な方向で被処理体へ向かうように規制する導体部材と、
を含むマイクロ波放射モジュールを有していてもよい。
The microwave introducing apparatus of the present invention generates a microwave for generating plasma of a processing gas in a processing container that accommodates an object to be processed, and introduces the microwave into the processing container. It is.
This microwave introduction device
A dielectric window member disposed around the object to be processed and transmitting microwaves into the processing container;
A conductor member for regulating the microwave radiated into the processing container through the dielectric window member so as to be directed to the target object in a direction parallel to the surface of the target object;
A microwave radiation module may be included.
 本発明のマイクロ波導入装置は、
 マイクロ波を生成すると共に出力するマイクロ波出力部と、
 前記処理容器の下部に外側から装着されて前記マイクロ波出力部から出力されたマイクロ波を、前記マイクロ波放射モジュールへ供給する1つ又は複数のアンテナモジュールと、
をさらに備えていてもよい。
The microwave introducing device of the present invention is
A microwave output unit for generating and outputting a microwave;
One or a plurality of antenna modules that are attached to the lower part of the processing container from the outside and that supply the microwaves output from the microwave output unit to the microwave radiation module;
May be further provided.
本発明の第1の実施の形態に係るプラズマ処理装置の概略の構成を示す断面図である。It is sectional drawing which shows the structure of the outline of the plasma processing apparatus which concerns on the 1st Embodiment of this invention. 図1に示した制御部の構成を示す説明図である。It is explanatory drawing which shows the structure of the control part shown in FIG. 図1に示したマイクロ波導入装置におけるマイクロ波出力部とアンテナユニットの構成を示す説明図である。It is explanatory drawing which shows the structure of the microwave output part and antenna unit in the microwave introduction apparatus shown in FIG. 図1に示したマイクロ波導入装置におけるマイクロ波導入部とマイクロ波放射モジュールを拡大して示す要部断面図である。It is principal part sectional drawing which expands and shows the microwave introduction part and microwave radiation module in the microwave introduction apparatus shown in FIG. マイクロ波導入部の平面アンテナを示す平面図である。It is a top view which shows the planar antenna of a microwave introduction part. 図1に示したマイクロ波放射モジュールの配置を示す平面図である。It is a top view which shows arrangement | positioning of the microwave radiation module shown in FIG. 一つのマイクロ波放射モジュールとウエハとの配置を説明する要部斜視図である。It is a principal part perspective view explaining arrangement | positioning of one microwave radiation module and a wafer. 第1の実施の形態に係るプラズマ処理装置の第1の変形例を示す説明図である。It is explanatory drawing which shows the 1st modification of the plasma processing apparatus which concerns on 1st Embodiment. 第1の実施の形態に係るプラズマ処理装置の第2の変形例を示す説明図である。It is explanatory drawing which shows the 2nd modification of the plasma processing apparatus which concerns on 1st Embodiment. 図1のプラズマ処理装置における天井部の底面図である。It is a bottom view of the ceiling part in the plasma processing apparatus of FIG. 比較例のプラズマ処理装置の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the plasma processing apparatus of a comparative example. 第1の実施の形態に係るプラズマ処理装置の第3の変形例を示す説明図である。It is explanatory drawing which shows the 3rd modification of the plasma processing apparatus which concerns on 1st Embodiment. 第1の実施の形態に係るプラズマ処理装置の第4の変形例を示す説明図である。It is explanatory drawing which shows the 4th modification of the plasma processing apparatus which concerns on 1st Embodiment. 第1の実施の形態に係るプラズマ処理装置の第5の変形例を示す説明図である。It is explanatory drawing which shows the 5th modification of the plasma processing apparatus which concerns on 1st Embodiment. 本発明の第2の実施の形態に係るプラズマ処理装置の概略の構成を示す断面図である。It is sectional drawing which shows the structure of the outline of the plasma processing apparatus which concerns on the 2nd Embodiment of this invention. 図13に示したマイクロ波導入装置におけるマイクロ波出力部とアンテナモジュールの構成を示す説明図である。It is explanatory drawing which shows the structure of the microwave output part and antenna module in the microwave introduction apparatus shown in FIG. 本発明の第3の実施の形態に係るプラズマ処理装置の概略の構成を示す断面図である。It is sectional drawing which shows the structure of the outline of the plasma processing apparatus which concerns on the 3rd Embodiment of this invention. 図15に示したプラズマ処理装置の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the plasma processing apparatus shown in FIG. 本発明の第4の実施の形態に係るプラズマ処理装置の概略の構成を示す断面図である。It is sectional drawing which shows the schematic structure of the plasma processing apparatus which concerns on the 4th Embodiment of this invention.
[第1の実施の形態]
 以下、本発明の実施の形態について図面を参照して詳細に説明する。始めに、図1および図2を参照して、本発明の第1の実施の形態に係るプラズマ処理装置の概略の構成について説明する。図1は、本実施の形態に係るプラズマ処理装置の概略の構成を示す断面図である。図2は、図1に示した制御部の構成を示す説明図である。本実施の形態に係るプラズマ処理装置1は、連続する複数の動作を伴って、例えば半導体デバイス製造用の半導体ウエハ(以下、単に「ウエハ」と記す。)Wに対して、成膜処理、拡散処理、エッチング処理、アッシング処理等の所定の処理を施す装置である。
[First Embodiment]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. First, a schematic configuration of the plasma processing apparatus according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a cross-sectional view showing a schematic configuration of the plasma processing apparatus according to the present embodiment. FIG. 2 is an explanatory diagram illustrating a configuration of the control unit illustrated in FIG. 1. The plasma processing apparatus 1 according to the present embodiment performs film formation processing and diffusion on a semiconductor wafer (hereinafter, simply referred to as “wafer”) W for manufacturing a semiconductor device, for example, with a plurality of continuous operations. It is an apparatus that performs predetermined processing such as processing, etching processing, and ashing processing.
 プラズマ処理装置1は、被処理体であるウエハWを収容する処理容器2と、処理容器2の内部においてウエハWを載置する載置部17と、処理容器2内にガスを供給するガス供給機構3と、処理容器2内を減圧排気する排気装置4と、処理容器2内にプラズマを生成させるためのマイクロ波を発生させると共に、処理容器2内にマイクロ波を導入するマイクロ波導入装置5と、これらプラズマ処理装置1の各構成部を制御する制御部8とを備えている。なお、処理容器2内にガスを供給する手段としては、ガス供給機構3の代りに、プラズマ処理装置1の構成には含まれない外部のガス供給機構を使用してもよい。 The plasma processing apparatus 1 includes a processing container 2 that accommodates a wafer W that is an object to be processed, a placement unit 17 that places the wafer W inside the processing container 2, and a gas supply that supplies gas into the processing container 2. A mechanism 3, an exhaust device 4 for evacuating the inside of the processing container 2, and a microwave introducing device 5 for generating a microwave for generating plasma in the processing container 2 and introducing a microwave into the processing container 2. And a control unit 8 that controls each component of the plasma processing apparatus 1. As a means for supplying the gas into the processing container 2, an external gas supply mechanism that is not included in the configuration of the plasma processing apparatus 1 may be used instead of the gas supply mechanism 3.
 処理容器2は、例えば略円筒形状をなしている。処理容器2は、例えばアルミニウムおよびその合金等の金属材料によって形成されている。処理容器2の表面は、例えばアルマイト処理(陽極酸化処理)が施されていてもよい。処理容器2は、接地されている。なお、処理容器2と処理容器2に装着された各部材との接合部分には、シール部材が配備されており、処理容器2内の気密性が維持されている。 The processing container 2 has a substantially cylindrical shape, for example. The processing container 2 is made of a metal material such as aluminum and an alloy thereof. The surface of the processing container 2 may be subjected to, for example, alumite treatment (anodizing treatment). The processing container 2 is grounded. Note that a sealing member is provided at a joint portion between the processing container 2 and each member attached to the processing container 2, and the airtightness in the processing container 2 is maintained.
 処理容器2は、板状の天井部11および底壁部13と、天井部11と底壁部13とを連結する側壁部12とを有している。天井部11は、複数の開口部を有している。例えば、天井部11には、複数の排気口11aが設けられている。また、天井部11には、複数のガス導入用開口11bが設けられている。各ガス導入用開口11bには、後述するノズル16が装着されている。 The processing container 2 has a plate-like ceiling portion 11 and a bottom wall portion 13, and a side wall portion 12 that connects the ceiling portion 11 and the bottom wall portion 13. The ceiling part 11 has a plurality of openings. For example, the ceiling portion 11 is provided with a plurality of exhaust ports 11a. The ceiling portion 11 is provided with a plurality of gas introduction openings 11b. A nozzle 16 described later is attached to each gas introduction opening 11b.
 側壁部12は、処理容器2に隣接する図示しない搬送室との間でウエハWの搬入出を行うための搬入出口12aを有している。処理容器2と図示しない搬送室との間には、ゲートバルブGが配置されている。ゲートバルブGは、搬入出口12aを開閉する機能を有している。ゲートバルブGは、閉状態で処理容器2を気密にシールすると共に、開状態で処理容器2と図示しない搬送室との間でウエハWの移送を可能にする。 The side wall portion 12 has a loading / unloading port 12 a for loading / unloading the wafer W to / from a transfer chamber (not shown) adjacent to the processing container 2. A gate valve G is disposed between the processing container 2 and a transfer chamber (not shown). The gate valve G has a function of opening and closing the loading / unloading port 12a. The gate valve G hermetically seals the processing container 2 in the closed state, and enables the transfer of the wafer W between the processing container 2 and a transfer chamber (not shown) in the open state.
 底壁部13には、載置部17が設けられている。載置部17は、底壁部13とは別部材によって底壁部13よりもやや厚みをもって形成され、底壁部13に固定されている。載置部17は、例えば処理容器2と同様のアルミニウムおよびその合金等の金属材料や、セラミックスなどによって形成することができる。載置部17には、載置領域17aが設けられている。この載置領域17aは、被処理体であるウエハWを水平に載置するためのものである。本実施の形態のプラズマ処理装置1において、載置領域17aは、載置部17の内壁面に、ウエハWの大きさより少し大きく形成された凹部である。なお、載置領域17aは、凹部に限らず、凸部やテーブル状に設けてもよい。また、載置部17には、載置領域17aに近接して、その直下に電極26が埋設されている。電極26は、載置領域17aと同程度の大きさを有し、全体が絶縁被覆材27によって被覆されている。 A mounting portion 17 is provided on the bottom wall portion 13. The placement portion 17 is formed with a thickness slightly larger than that of the bottom wall portion 13 by a member different from the bottom wall portion 13, and is fixed to the bottom wall portion 13. The mounting portion 17 can be formed of, for example, a metal material such as aluminum and its alloy, ceramics, and the like, similar to the processing container 2. The placement unit 17 is provided with a placement region 17a. This placement area 17a is for placing the wafer W, which is the object to be processed, horizontally. In the plasma processing apparatus 1 of the present embodiment, the placement region 17 a is a recess formed on the inner wall surface of the placement portion 17 slightly larger than the size of the wafer W. The placement region 17a is not limited to the concave portion, and may be provided in a convex portion or a table shape. Further, an electrode 26 is embedded in the mounting portion 17 in the vicinity of the mounting region 17a and immediately below it. The electrode 26 has the same size as the placement region 17 a and is entirely covered with an insulating coating material 27.
 底壁部13は、複数(図1では2つのみ図示)の開口部13bを有している。各開口部13bには、後述するマイクロ波導入装置5のマイクロ波導入部63(アンテナモジュール61の一部分)が、処理容器2の外側から装着されている。つまり、マイクロ波導入装置5は、処理容器2の下部に設けられている。マイクロ波導入装置5は、処理容器2内に電磁波(マイクロ波)を導入してプラズマを生成するプラズマ生成手段として機能する。マイクロ波導入装置5の構成については、後で詳しく説明する。 The bottom wall portion 13 has a plurality of openings 13b (only two are shown in FIG. 1). A microwave introducing portion 63 (a part of the antenna module 61) of the microwave introducing device 5 described later is attached to each opening 13b from the outside of the processing container 2. That is, the microwave introduction device 5 is provided in the lower part of the processing container 2. The microwave introduction device 5 functions as a plasma generation unit that introduces an electromagnetic wave (microwave) into the processing container 2 to generate plasma. The configuration of the microwave introduction device 5 will be described in detail later.
 プラズマ処理装置1は、更に、載置領域17aを含む載置部17に高周波電力を供給する高周波バイアス電源25と、載置部17と高周波バイアス電源25との間に設けられた整合器24とを備えている。高周波バイアス電源25は、載置部17の載置領域17aの直下に埋設された電極26に電気的に接続されている。高周波バイアス電源25は、ウエハWにイオンを引き込むために、載置部17に高周波電力を供給する。なお、載置部17を導電性材料で形成する場合は、電極26を設けず、載置部17と底壁部13との間に絶縁材を介在させて、載置部17と高周波バイアス電源25とを電気的に接続する構成としてもよい。また、高周波バイアス電源25と整合器24とを用いない装置構成とすることも可能であり、この場合、載置部17を底壁部13と一体に形成してもよい。 The plasma processing apparatus 1 further includes a high-frequency bias power source 25 that supplies high-frequency power to the mounting unit 17 including the mounting region 17a, and a matching unit 24 provided between the mounting unit 17 and the high-frequency bias power source 25. It has. The high-frequency bias power source 25 is electrically connected to an electrode 26 embedded immediately below the placement region 17 a of the placement unit 17. The high frequency bias power supply 25 supplies high frequency power to the mounting unit 17 in order to attract ions to the wafer W. When the mounting portion 17 is formed of a conductive material, the electrode 26 is not provided, and an insulating material is interposed between the mounting portion 17 and the bottom wall portion 13, so that the mounting portion 17 and the high frequency bias power source are provided. 25 may be electrically connected to each other. Further, it is possible to adopt an apparatus configuration that does not use the high-frequency bias power supply 25 and the matching unit 24. In this case, the mounting portion 17 may be formed integrally with the bottom wall portion 13.
 図示しないが、プラズマ処理装置1は、更に、載置領域17aを加熱または冷却する温度制御機構を備えている。温度制御機構は、例えば、ウエハWの温度を、25℃(室温)~900℃の範囲内で制御する。また、載置領域17aには、その上面(載置面)に対して突没可能に設けられた複数の支持ピン28が設けられている。複数の支持ピン28は、任意の昇降機構により上下に変位し、上昇位置において、図示しない搬送室との間でウエハWの受け渡しを行うことができるように構成されている。 Although not shown, the plasma processing apparatus 1 further includes a temperature control mechanism that heats or cools the placement region 17a. For example, the temperature control mechanism controls the temperature of the wafer W within a range of 25 ° C. (room temperature) to 900 ° C. The mounting region 17a is provided with a plurality of support pins 28 provided so as to be able to project and retract with respect to the upper surface (mounting surface) thereof. The plurality of support pins 28 are configured to be displaced up and down by an arbitrary lifting mechanism so that the wafer W can be transferred to and from a transfer chamber (not shown) at the raised position.
 プラズマ処理装置1は、更に、処理容器2の天井部11に設けられたガス導入部15を備えている。ガス導入部15は、天井部11の複数のガス導入用開口11bに装着された円筒形状をなすノズル16を有している。ノズル16は、その下面に形成されたガス孔16aを有している。ノズル16の配置については、後で説明する。 The plasma processing apparatus 1 further includes a gas introduction part 15 provided in the ceiling part 11 of the processing container 2. The gas introduction part 15 has a nozzle 16 having a cylindrical shape that is attached to a plurality of gas introduction openings 11 b of the ceiling part 11. The nozzle 16 has a gas hole 16a formed on the lower surface thereof. The arrangement of the nozzles 16 will be described later.
 ガス供給機構3は、ガス供給源31を含むガス供給装置3aと、ガス供給源31とガス導入部15とを接続する配管32とを有している。なお、図1では、1つのガス供給源31を図示しているが、ガス供給装置3aは、使用されるガスの種類に応じて複数のガス供給源を含んでいてもよい。 The gas supply mechanism 3 includes a gas supply device 3 a including a gas supply source 31, and a pipe 32 that connects the gas supply source 31 and the gas introduction unit 15. In FIG. 1, one gas supply source 31 is illustrated, but the gas supply device 3 a may include a plurality of gas supply sources according to the type of gas used.
 ガス供給源31は、例えば、プラズマ生成用の希ガスや、酸化処理、窒化処理、成膜処理、エッチング処理およびアッシング処理に使用される処理ガス等のガス供給源として用いられる。なお、プラズマ生成用の希ガスとしては、例えば、Ar、Kr、Xe、He等が使用される。酸化処理に使用される処理ガスとしては、例えば、酸素ガス、オゾン、NOガス等の酸化性ガスが使用される。窒化処理に使用される処理ガスとしては、窒化ガス、NHガス、NOガス等が使用される。また、処理容器2においてCVD処理が行われる場合には、ガス供給源31は、成膜原料ガス、処理容器2内の雰囲気を置換する際に使用されるパージガス、処理容器2内をクリーニングする際に使用されるクリーニングガス等の供給源として用いられる。なお、成膜原料ガスとしては、例えば、TiClガスとNHガスが使用される。パージガスとしては、例えば、N、Ar等が使用される。クリーニングガスとしては、例えば、ClF、NF等が使用される。エッチングガスとしては、CFガス、HBrガス等が使用される。アッシングガスとしては、酸素ガス等が使用される。 The gas supply source 31 is used as a gas supply source of, for example, a rare gas for plasma generation or a processing gas used for oxidation treatment, nitridation treatment, film formation treatment, etching treatment, and ashing treatment. For example, Ar, Kr, Xe, He, or the like is used as a rare gas for generating plasma. As the processing gas used for the oxidation treatment, for example, an oxidizing gas such as oxygen gas, ozone, or NO 2 gas is used. Nitriding gas, NH 3 gas, N 2 O gas, or the like is used as a processing gas used for the nitriding treatment. When the CVD process is performed in the processing container 2, the gas supply source 31 is used to clean the inside of the processing container 2, the film forming raw material gas, the purge gas used when replacing the atmosphere in the processing container 2, and the inside of the processing container 2. It is used as a supply source for cleaning gas and the like used in the process. For example, TiCl 4 gas and NH 3 gas are used as the film forming source gas. As the purge gas, for example, N 2 , Ar, or the like is used. For example, ClF 3 , NF 3 or the like is used as the cleaning gas. As the etching gas, CF 4 gas, HBr gas, or the like is used. As the ashing gas, oxygen gas or the like is used.
 図示しないが、ガス供給装置3aは、更に、配管32の途中に設けられたマスフローコントローラおよび開閉バルブを含んでいる。処理容器2内に供給されるガスの種類や、これらのガスの流量等は、マスフローコントローラおよび開閉バルブによって制御される。 Although not shown, the gas supply device 3a further includes a mass flow controller and an opening / closing valve provided in the middle of the pipe 32. The types of gases supplied into the processing container 2 and the flow rates of these gases are controlled by a mass flow controller and an opening / closing valve.
 プラズマ処理装置1は、更に、排気口11aと排気装置4とを接続する排気管14を備えている。排気装置4は、例えばAPCバルブと、処理容器2の内部空間を所定の真空度まで高速に減圧することが可能な高速真空ポンプとを有している。このような高速真空ポンプとしては、例えばターボ分子ポンプ等がある。排気装置4の高速真空ポンプを作動させることによって、処理容器2は、その内部空間が所定の真空度、例えば0.133Paまで減圧される。なお、図1では、複数の排気口11aから排気管14を介して1つの排気装置4に接続する構成となっているが、排気装置4は排気口11a毎に個別に設けてもよい。 The plasma processing apparatus 1 further includes an exhaust pipe 14 that connects the exhaust port 11 a and the exhaust apparatus 4. The exhaust device 4 includes, for example, an APC valve and a high-speed vacuum pump that can depressurize the internal space of the processing container 2 to a predetermined vacuum level at high speed. Examples of such a high-speed vacuum pump include a turbo molecular pump. By operating the high-speed vacuum pump of the exhaust device 4, the internal space of the processing container 2 is depressurized to a predetermined degree of vacuum, for example, 0.133 Pa. In FIG. 1, a plurality of exhaust ports 11a are connected to one exhaust device 4 via the exhaust pipe 14, but the exhaust devices 4 may be provided individually for each exhaust port 11a.
 プラズマ処理装置1の各構成部は、それぞれ制御部8に接続されて、制御部8によって制御される。制御部8は、典型的にはコンピュータである。図2に示した例では、制御部8は、CPUを備えたプロセスコントローラ91と、このプロセスコントローラ91に接続されたユーザーインターフェース92および記憶部93とを備えている。 Each component of the plasma processing apparatus 1 is connected to the control unit 8 and controlled by the control unit 8. The control unit 8 is typically a computer. In the example illustrated in FIG. 2, the control unit 8 includes a process controller 91 including a CPU, and a user interface 92 and a storage unit 93 connected to the process controller 91.
 プロセスコントローラ91は、プラズマ処理装置1において、例えば温度、圧力、ガス流量、バイアス印加用の高周波電力、マイクロ波出力等のプロセス条件に関係する各構成部(例えば、高周波バイアス電源25、ガス供給装置3a、排気装置4、マイクロ波導入装置5等)を統括して制御する制御手段である。 In the plasma processing apparatus 1, the process controller 91 includes each component (for example, the high frequency bias power supply 25, the gas supply device, etc.) related to process conditions such as temperature, pressure, gas flow rate, high frequency power for bias application, and microwave output. 3a, the exhaust device 4, the microwave introduction device 5 and the like).
 ユーザーインターフェース92は、工程管理者がプラズマ処理装置1を管理するためにコマンドの入力操作等を行うキーボードやタッチパネル、プラズマ処理装置1の稼働状況を可視化して表示するディスプレイ等を有している。 The user interface 92 has a keyboard and a touch panel on which a process manager manages command input to manage the plasma processing apparatus 1, a display that visualizes and displays the operating status of the plasma processing apparatus 1, and the like.
 記憶部93には、プラズマ処理装置1で実行される各種処理をプロセスコントローラ91の制御によって実現するための制御プログラム(ソフトウエア)や、処理条件データ等が記録されたレシピ等が保存されている。プロセスコントローラ91は、ユーザーインターフェース92からの指示等、必要に応じて、任意の制御プログラムやレシピを記憶部93から呼び出して実行する。これにより、プロセスコントローラ91による制御下で、プラズマ処理装置1の処理容器2内において所望の処理が行われる。 The storage unit 93 stores a control program (software) for realizing various processes executed by the plasma processing apparatus 1 under the control of the process controller 91, a recipe in which processing condition data, and the like are recorded. . The process controller 91 calls and executes an arbitrary control program or recipe from the storage unit 93 as necessary, such as an instruction from the user interface 92. Thus, desired processing is performed in the processing container 2 of the plasma processing apparatus 1 under the control of the process controller 91.
 上記の制御プログラムおよびレシピは、例えば、CD-ROM、ハードディスク、フレキシブルディスク、フラッシュメモリ、DVD、ブルーレイディスク等のコンピュータ読み取り可能な記憶媒体に格納された状態のものを利用することができる。また、上記のレシピは、他の装置から、例えば専用回線を介して随時伝送させてオンラインで利用することも可能である。 The control program and recipe described above can be stored in a computer-readable storage medium such as a CD-ROM, hard disk, flexible disk, flash memory, DVD, or Blu-ray disk. Also, the above recipe can be transmitted from other devices as needed via, for example, a dedicated line and used online.
 次に、図1、図3ないし図7を参照して、マイクロ波導入装置5の構成について詳しく説明する。図3は、マイクロ波導入装置5におけるマイクロ波出力部50とアンテナユニット60の構成を示す説明図である。図4は、処理容器2に装着されたマイクロ波導入部63とマイクロ波放射モジュール80を拡大して示す断面図である。図5は、図4に示したマイクロ波導入部63における平面アンテナ71を示す平面図である。図6は、処理容器2内におけるマイクロ波放射モジュール80の配置を説明する平面図である。図7は、一つのマイクロ波放射モジュール80とウエハWとの配置を説明する要部斜視図である。 Next, the configuration of the microwave introduction device 5 will be described in detail with reference to FIGS. 1 and 3 to 7. FIG. 3 is an explanatory diagram showing configurations of the microwave output unit 50 and the antenna unit 60 in the microwave introduction device 5. FIG. 4 is an enlarged cross-sectional view showing the microwave introduction part 63 and the microwave radiation module 80 attached to the processing container 2. FIG. 5 is a plan view showing the planar antenna 71 in the microwave introduction unit 63 shown in FIG. FIG. 6 is a plan view for explaining the arrangement of the microwave radiation module 80 in the processing container 2. FIG. 7 is a main part perspective view for explaining the arrangement of one microwave radiation module 80 and the wafer W. FIG.
 前述のように、マイクロ波導入装置5は、処理容器2の下部に設けられ、処理容器2内に電磁波(マイクロ波)を導入してプラズマを生成するプラズマ生成手段として機能する。図1および図3に示したように、マイクロ波導入装置5は、マイクロ波を生成すると共に、マイクロ波を複数の経路に分配して出力するマイクロ波出力部50と、マイクロ波出力部50から出力されたマイクロ波を処理容器2内へ導入するアンテナユニット60と、アンテナユニット60により導入されたマイクロ波を処理容器2内に放射するマイクロ波放射モジュール80と、を有している。 As described above, the microwave introduction device 5 is provided at the lower portion of the processing container 2 and functions as a plasma generating means for introducing an electromagnetic wave (microwave) into the processing container 2 to generate plasma. As shown in FIG. 1 and FIG. 3, the microwave introduction device 5 generates a microwave, distributes the microwave to a plurality of paths, and outputs the microwave, and the microwave output unit 50 An antenna unit 60 for introducing the output microwave into the processing container 2 and a microwave radiation module 80 for radiating the microwave introduced by the antenna unit 60 into the processing container 2 are provided.
<マイクロ波出力部>
 マイクロ波出力部50は、電源部51と、マイクロ波発振器52と、マイクロ波発振器52によって発振されたマイクロ波を増幅するアンプ53と、アンプ53によって増幅されたマイクロ波を複数の経路に分配する分配器54とを有している。マイクロ波発振器52は、所定の周波数(例えば、2.45GHz)でマイクロ波を発振(例えば、PLL発振)させる。なお、マイクロ波の周波数は、2.45GHzに限らず、8.35GHz、5.8GHz、1.98GHz等であってもよい。また、このようなマイクロ波出力部50は、マイクロ波の周波数を例えば800MHzから1GHzの範囲内とする場合にも適用することが可能である。分配器54は、入力側と出力側のインピーダンスを整合させながらマイクロ波を分配する。
<Microwave output section>
The microwave output unit 50 distributes the microwave amplified by the power supply unit 51, the microwave oscillator 52, the amplifier 53 that amplifies the microwave oscillated by the microwave oscillator 52, and the microwave amplified by the amplifier 53 to a plurality of paths. And a distributor 54. The microwave oscillator 52 oscillates microwaves (for example, PLL oscillation) at a predetermined frequency (for example, 2.45 GHz). Note that the frequency of the microwave is not limited to 2.45 GHz, and may be 8.35 GHz, 5.8 GHz, 1.98 GHz, or the like. Moreover, such a microwave output part 50 can be applied also when the frequency of a microwave is made into the range of 800 MHz to 1 GHz, for example. The distributor 54 distributes the microwave while matching the impedances of the input side and the output side.
<アンテナユニット>
 アンテナユニット60は、複数のアンテナモジュール61を含んでいる。複数のアンテナモジュール61は、それぞれ、分配器54によって分配されたマイクロ波を処理容器2内に導入する。各アンテナモジュール61は、分配されたマイクロ波を主に増幅して出力するアンプ部62と、アンプ部62から出力されたマイクロ波を処理容器2内に導入するマイクロ波導入部63と、を有している。
<Antenna unit>
The antenna unit 60 includes a plurality of antenna modules 61. Each of the plurality of antenna modules 61 introduces the microwave distributed by the distributor 54 into the processing container 2. Each antenna module 61 has an amplifier unit 62 that mainly amplifies and outputs the distributed microwave, and a microwave introduction unit 63 that introduces the microwave output from the amplifier unit 62 into the processing container 2. is doing.
(アンプ部)
 アンプ部62は、マイクロ波の位相を変化させる位相器62Aと、メインアンプ62Cに入力されるマイクロ波の電力レベルを調整する可変ゲインアンプ62Bと、ソリッドステートアンプとして構成されたメインアンプ62Cと、後述するマイクロ波導入部63のアンテナ部で反射されてメインアンプ62Cに向かう反射マイクロ波を分離するアイソレータ62Dとを含んでいる。
(Amplifier part)
The amplifier unit 62 includes a phase shifter 62A that changes the phase of the microwave, a variable gain amplifier 62B that adjusts the power level of the microwave input to the main amplifier 62C, a main amplifier 62C configured as a solid state amplifier, It includes an isolator 62D that separates reflected microwaves that are reflected by an antenna unit of a microwave introducing unit 63, which will be described later, and that travel toward the main amplifier 62C.
 位相器62Aは、マイクロ波の位相を変化させて、マイクロ波の放射特性を変化させることができるように構成されている。位相器62Aは、例えば、アンテナモジュール61毎にマイクロ波の位相を調整することによって、マイクロ波の指向性を制御してプラズマの分布を変化させることに用いられる。なお、このような放射特性の調整を行わない場合には、位相器62Aを設けなくてもよい。 The phase shifter 62A is configured to change the microwave radiation characteristic by changing the phase of the microwave. The phase shifter 62A is used to change the plasma distribution by controlling the directivity of the microwave by adjusting the phase of the microwave for each antenna module 61, for example. If such adjustment of the radiation characteristics is not performed, the phase shifter 62A may not be provided.
 可変ゲインアンプ62Bは、個々のアンテナモジュール61のばらつきの調整や、プラズマ強度の調整のために用いられる。例えば、可変ゲインアンプ62Bをアンテナモジュール61毎に変化させることによって、処理容器2内全体のプラズマの分布を調整することができる。 The variable gain amplifier 62B is used for adjusting variations of individual antenna modules 61 and adjusting plasma intensity. For example, by changing the variable gain amplifier 62B for each antenna module 61, the plasma distribution in the entire processing container 2 can be adjusted.
 図示しないが、メインアンプ62Cは、例えば、入力整合回路、半導体増幅素子、出力整合回路および高Q共振回路を含んでいる。半導体増幅素子としては、例えば、E級動作が可能なGaAsHEMT、GaNHEMT、LD(Laterally Diffused)-MOSが用いられる。 Although not shown, the main amplifier 62C includes, for example, an input matching circuit, a semiconductor amplifying element, an output matching circuit, and a high Q resonance circuit. As the semiconductor amplifying element, for example, GaAs HEMT, GaN HEMT, and LD (Laterally Diffused) -MOS capable of class E operation are used.
 アイソレータ62Dは、サーキュレータとダミーロード(同軸終端器)とを有している。サーキュレータは、後述するマイクロ波導入部63のアンテナ部で反射された反射マイクロ波をダミーロードへ導くものである。ダミーロードは、サーキュレータによって導かれた反射マイクロ波を熱に変換するものである。 The isolator 62D has a circulator and a dummy load (coaxial terminator). The circulator guides the reflected microwave reflected by the antenna section of the microwave introduction section 63 described later to the dummy load. The dummy load converts the reflected microwave guided by the circulator into heat.
(マイクロ波導入部)
 図1に示したように、複数のマイクロ波導入部63は、処理容器2の底壁部13に設けられた開口部13bに装着されている。より具体的には、マイクロ波導入部63の上部が開口部13bに挿入され、図示しない固定手段で固定されている。図4に示したように、マイクロ波導入部63は、インピーダンスを整合させるチューナ64と、増幅されたマイクロ波を処理容器2内に放射するアンテナ部65と、金属材料よりなり、図4における上下方向に延びる円筒状の形状を有する本体容器66と、本体容器66内において本体容器66が延びる方向と同じ方向に延びる内側導体67とを有している。本体容器66および内側導体67は、同軸管を構成している。本体容器66は、この同軸管の外側導体を構成している。内側導体67は、棒状または筒状の形状を有している。本体容器66の内周面と内側導体67の外周面との間の空間は、マイクロ波伝送路68を形成する。
(Microwave introduction part)
As shown in FIG. 1, the plurality of microwave introduction portions 63 are attached to the opening 13 b provided in the bottom wall portion 13 of the processing container 2. More specifically, the upper part of the microwave introduction part 63 is inserted into the opening part 13b and fixed by a fixing means (not shown). As shown in FIG. 4, the microwave introduction unit 63 includes a tuner 64 that matches impedance, an antenna unit 65 that radiates the amplified microwave into the processing container 2, and a metal material. A main body container 66 having a cylindrical shape extending in the direction, and an inner conductor 67 extending in the same direction as the main container container 66 extends in the main body container 66. The main body container 66 and the inner conductor 67 constitute a coaxial tube. The main body container 66 constitutes the outer conductor of this coaxial tube. The inner conductor 67 has a rod shape or a cylindrical shape. A space between the inner peripheral surface of the main body container 66 and the outer peripheral surface of the inner conductor 67 forms a microwave transmission path 68.
 図示しないが、アンテナモジュール61は、更に、本体容器66の基端側(下端側)に設けられた給電変換部を有している。給電変換部は、同軸ケーブルを介してメインアンプ62Cに接続されている。アイソレータ62Dは、同軸ケーブルの途中に設けられている。 Although not shown, the antenna module 61 further includes a power feeding conversion unit provided on the base end side (lower end side) of the main body container 66. The power feeding conversion unit is connected to the main amplifier 62C via a coaxial cable. The isolator 62D is provided in the middle of the coaxial cable.
 チューナ64は、スラグチューナを構成している。具体的には、図4に示したように、チューナ64は、本体容器66のアンテナ部65よりも基端部側(下端部側)の部分に配置された2つのスラグ74A,74Bと、2つのスラグ74A,74Bを動作させるアクチュエータ75と、このアクチュエータ75を制御するチューナコントローラ76とを有している。 The tuner 64 constitutes a slag tuner. Specifically, as shown in FIG. 4, the tuner 64 includes two slugs 74 </ b> A and 74 </ b> B disposed on the base end side (lower end side) of the antenna body 65 of the main body container 66, and 2 An actuator 75 for operating the two slugs 74A and 74B and a tuner controller 76 for controlling the actuator 75 are provided.
 スラグ74A,74Bは、板状且つ環状の形状を有し、本体容器66の内周面と内側導体67の外周面との間に配置されている。また、スラグ74A,74Bは、誘電体材料によって形成されている。スラグ74A,74Bを形成する誘電体材料としては、例えば、比誘電率が10の高純度アルミナを用いることができる。高純度アルミナは、通常、スラグを形成する材料として用いられている石英(比誘電率3.88)やテフロン(登録商標)(比誘電率2.03)よりも比誘電率が大きいため、スラグ74A,74Bの厚みを小さくすることができる。また、高純度アルミナは、石英やテフロン(登録商標)に比べて、誘電正接(tanδ)が小さく、マイクロ波の損失を小さくすることができるという特徴を有している。高純度アルミナは、更に、歪みが小さいという特徴と、熱に強いという特徴も有している。高純度アルミナとしては、純度99.9%以上のアルミナ焼結体であることが好ましい。また、高純度アルミナとして、単結晶アルミナ(サファイア)を用いてもよい。 The slugs 74 </ b> A and 74 </ b> B have a plate shape and an annular shape, and are disposed between the inner peripheral surface of the main body container 66 and the outer peripheral surface of the inner conductor 67. The slugs 74A and 74B are made of a dielectric material. As a dielectric material for forming the slags 74A and 74B, for example, high-purity alumina having a relative dielectric constant of 10 can be used. High-purity alumina usually has a relative dielectric constant larger than that of quartz (relative dielectric constant 3.88) or Teflon (registered trademark) (relative dielectric constant 2.03), which is used as a material for forming slag. The thickness of 74A, 74B can be made small. Further, high-purity alumina has a feature that the dielectric loss tangent (tan δ) is smaller than that of quartz or Teflon (registered trademark), and the loss of microwaves can be reduced. High-purity alumina further has a feature of low distortion and a feature of being resistant to heat. The high-purity alumina is preferably an alumina sintered body having a purity of 99.9% or more. Further, single crystal alumina (sapphire) may be used as high purity alumina.
 チューナ64は、チューナコントローラ76からの指令に基づいて、アクチュエータ75によって、スラグ74A,74Bを上下方向に移動させる。これにより、チューナ64は、インピーダンスを調整する。例えば、チューナコントローラ76は、終端部のインピーダンスが50Ωになるように、スラグ74A,74Bの位置を調整する。 The tuner 64 moves the slugs 74A and 74B in the vertical direction by the actuator 75 based on a command from the tuner controller 76. Thereby, the tuner 64 adjusts the impedance. For example, the tuner controller 76 adjusts the positions of the slugs 74A and 74B so that the terminal impedance is 50Ω.
 本実施の形態では、アンプ部62のメインアンプ62C、マイクロ波導入部63のチューナ64および平面アンテナ71は、互いに近接して配置されている。特に、チューナ64および平面アンテナ71は、集中定数回路を構成し、且つ共振器として機能する。平面アンテナ71の取り付け部分には、インピーダンス不整合が存在する。本実施の形態では、チューナ64によって、プラズマを含めて高精度でチューニングすることができ、平面アンテナ71における反射の影響を解消することができる。また、チューナ64によって、平面アンテナ71に至るまでのインピーダンス不整合を高精度で解消することができ、実質的に不整合部分をプラズマ空間とすることができる。これにより、チューナ64によって、高精度のプラズマ制御が可能になる。 In the present embodiment, the main amplifier 62C of the amplifier unit 62, the tuner 64 of the microwave introduction unit 63, and the planar antenna 71 are arranged close to each other. In particular, the tuner 64 and the planar antenna 71 constitute a lumped constant circuit and function as a resonator. There is an impedance mismatch in the mounting portion of the planar antenna 71. In the present embodiment, the tuner 64 can be tuned with high accuracy including plasma, and the influence of reflection on the planar antenna 71 can be eliminated. Further, the tuner 64 can eliminate impedance mismatch up to the planar antenna 71 with high accuracy, and can substantially make the mismatched portion a plasma space. Thereby, the tuner 64 enables high-precision plasma control.
 アンテナ部65は、本体容器66における給電変換部とは反対側に設けられている。上述のように、本体容器66におけるアンテナ部65よりも基端側の部分は、チューナ64によるインピーダンス調整範囲となっている。 The antenna unit 65 is provided on the opposite side of the main body container 66 from the power conversion unit. As described above, the portion of the main body container 66 closer to the base end than the antenna portion 65 has an impedance adjustment range by the tuner 64.
 図4に示したように、アンテナ部65は、内側導体67の上端部に接続された平面アンテナ71と、平面アンテナ71の下面側に配置されたマイクロ波遅波材72とを有している。 As shown in FIG. 4, the antenna unit 65 includes a planar antenna 71 connected to the upper end portion of the inner conductor 67 and a microwave slow wave material 72 disposed on the lower surface side of the planar antenna 71. .
 平面アンテナ71は、円板形状を有している。また、平面アンテナ71は、平面アンテナ71を貫通するように形成されたスロット71aを有している。図5に示した例では、4つのスロット71aが設けられており、各スロット71aは、均等な大きさの円弧形状を有している。なお、スロット71aの数は、4つに限らず、5つ以上であってもよいし、1つ以上3つ以下であってもよい。 The planar antenna 71 has a disc shape. The planar antenna 71 has a slot 71 a formed so as to penetrate the planar antenna 71. In the example shown in FIG. 5, four slots 71a are provided, and each slot 71a has a circular arc shape of an equal size. The number of slots 71a is not limited to four, but may be five or more, or may be one or more and three or less.
 マイクロ波遅波材72は、真空よりも大きい誘電率を有する材料によって形成されている。マイクロ波遅波材72を形成する材料としては、例えば、石英、セラミックス、ポリテトラフルオロエチレン樹脂等のフッ素系樹脂、ポリイミド樹脂等を用いることができる。マイクロ波は、真空中ではその波長が長くなる。マイクロ波遅波材72は、マイクロ波の波長を短くしてプラズマを調整する機能を有している。また、マイクロ波の位相は、マイクロ波遅波材72の厚みによって変化する。そのため、マイクロ波遅波材72の厚みによってマイクロ波の位相を調整することにより、平面アンテナ71が定在波の腹の位置になるように調整することができる。これにより、平面アンテナ71における反射波を抑制することができると共に、平面アンテナ71から放射されるマイクロ波の放射エネルギーを大きくすることができる。つまり、これにより、マイクロ波のパワーを効率よく処理容器2内に導入することができる。 The microwave slow wave material 72 is formed of a material having a dielectric constant larger than that of a vacuum. As a material for forming the microwave slow wave material 72, for example, fluororesin such as quartz, ceramics, polytetrafluoroethylene resin, polyimide resin, or the like can be used. Microwaves have a longer wavelength in vacuum. The microwave slow wave material 72 has a function of adjusting the plasma by shortening the wavelength of the microwave. Further, the phase of the microwave varies depending on the thickness of the microwave slow wave material 72. Therefore, by adjusting the phase of the microwave according to the thickness of the microwave slow wave material 72, the planar antenna 71 can be adjusted to be at the antinode position of the standing wave. Thereby, while being able to suppress the reflected wave in the planar antenna 71, the radiation energy of the microwave radiated | emitted from the planar antenna 71 can be enlarged. In other words, this allows microwave power to be efficiently introduced into the processing container 2.
<マイクロ波放射モジュール>
 図1及び図4に示すように、マイクロ波放射モジュール80は、誘電体窓部材としてのマイクロ波透過板81と、導体部材としてのカバー部材82とを有している。マイクロ波放射モジュール80は、処理容器2の内部に配置されている。マイクロ波放射モジュール80の下端(つまり、マイクロ波透過板81の下面)は、平面アンテナ71の上面にほぼ接して設けられている。これにより、一つのマイクロ波放射モジュール80は、一つのアンテナモジュール61に接続され、アンテナモジュール61を介して導入されたマイクロ波を処理容器2内の空間へ向けて放射する。
<Microwave radiation module>
As shown in FIGS. 1 and 4, the microwave radiation module 80 includes a microwave transmission plate 81 as a dielectric window member and a cover member 82 as a conductor member. The microwave radiation module 80 is disposed inside the processing container 2. The lower end of the microwave radiation module 80 (that is, the lower surface of the microwave transmission plate 81) is provided so as to be substantially in contact with the upper surface of the planar antenna 71. Thereby, one microwave radiation module 80 is connected to one antenna module 61 and radiates the microwave introduced through the antenna module 61 toward the space in the processing container 2.
 図6に示すように、本実施の形態のプラズマ処理装置1では、処理容器2内のウエハWの周囲に、4つのマイクロ波放射モジュール80(図6では、符号80A1,80A2,80A3及び80A4で表す)を有している。マイクロ波放射モジュール80A1,80A2,80A3及び80A4は、互いに分離して、ウエハWの周囲を囲むように、同一円周上に均等に配置されている。本実施の形態では、4つのマイクロ波放射モジュール80A1,80A2,80A3及び80A4は同じ構成である。なお、図6では、各マイクロ波放射モジュール80A1,80A2,80A3,80A4にそれぞれ接続されるアンテナモジュール61の平面アンテナ71の位置を破線で示すとともに、処理容器2は図示を省略している。 As shown in FIG. 6, in the plasma processing apparatus 1 of the present embodiment, around the wafer W in the processing container 2, four microwave radiation modules 80 (in FIG. 6, reference numerals 80A1, 80A2, 80A3, and 80A4). Express). The microwave radiation modules 80A1, 80A2, 80A3, and 80A4 are separated from each other and are equally arranged on the same circumference so as to surround the periphery of the wafer W. In the present embodiment, the four microwave radiation modules 80A1, 80A2, 80A3 and 80A4 have the same configuration. In FIG. 6, the position of the planar antenna 71 of the antenna module 61 connected to each of the microwave radiation modules 80A1, 80A2, 80A3, and 80A4 is indicated by a broken line, and the processing container 2 is not shown.
(マイクロ波透過板)
 マイクロ波透過板81は、ウエハWを囲むようにその周囲に配置され、アンテナモジュール61により導入されたマイクロ波を透過させて処理容器2内に放射する。マイクロ波透過板81は、誘電体材料によって形成されている。マイクロ波透過板81を形成する誘電体材料としては、例えば石英やセラミックス等が用いられる。本実施の形態のプラズマ処理装置1では、マイクロ波透過板81は、カバー部材82によって、処理容器2の底壁部13に固定されている。
(Microwave transmission plate)
The microwave transmission plate 81 is disposed around the wafer W so as to surround the wafer W, and transmits the microwave introduced by the antenna module 61 and radiates it into the processing container 2. The microwave transmission plate 81 is made of a dielectric material. For example, quartz or ceramics is used as a dielectric material for forming the microwave transmission plate 81. In the plasma processing apparatus 1 of the present embodiment, the microwave transmission plate 81 is fixed to the bottom wall portion 13 of the processing container 2 by a cover member 82.
(カバー部材)
 カバー部材82は、マイクロ波透過板81を介して処理容器2内に導入されるマイクロ波が、ウエハWの表面と平行な面に沿ってウエハWへ向かうように、マイクロ波の方向を規制する。つまり、カバー部材82は、マイクロ波透過板81を透過して処理容器2内の空間へ導入されるマイクロ波の方向を定める部材である。カバー部材82は、例えばアルミニウムおよびその合金等の金属材料によって形成されている。カバー部材82の表面は、例えばアルマイト処理(陽極酸化処理)が施されていてもよい。また、シリコンやYなどの被膜が形成されていてもよい。カバー部材82は、マイクロ波透過板81を覆うように、かつマイクロ波透過板81に密着して設けられている。カバー部材82は、例えば螺子等の任意の固定手段で、処理容器2の底壁部13に固定されている。
(Cover member)
The cover member 82 regulates the direction of the microwave so that the microwave introduced into the processing container 2 through the microwave transmission plate 81 is directed to the wafer W along a plane parallel to the surface of the wafer W. . That is, the cover member 82 is a member that determines the direction of the microwave that is transmitted through the microwave transmission plate 81 and introduced into the space in the processing container 2. The cover member 82 is formed of a metal material such as aluminum and an alloy thereof. The surface of the cover member 82 may be subjected to, for example, alumite treatment (anodization treatment). Further, a film such as silicon or Y 2 O 3 may be formed. The cover member 82 is provided in close contact with the microwave transmission plate 81 so as to cover the microwave transmission plate 81. The cover member 82 is fixed to the bottom wall portion 13 of the processing container 2 by an arbitrary fixing means such as a screw.
 図4、図6及び図7に示した例では、マイクロ波透過板81は、平面視扇型の短冊状をなし、その縦断面が一定の厚みを有する立体形状を有している。カバー部材82もマイクロ波透過板81に対応して平面視が扇型をなし、その短尺方向の縦断面はL字形をしている。なお、マイクロ波透過板81やカバー部材82の形状は、図示のものに限らず、被処理体の形状に応じて任意の形状とすることができる。 In the example shown in FIGS. 4, 6 and 7, the microwave transmission plate 81 has a rectangular shape with a fan shape in plan view, and has a three-dimensional shape whose longitudinal section has a constant thickness. The cover member 82 also has a fan shape in plan view corresponding to the microwave transmitting plate 81, and its longitudinal section in the short direction is L-shaped. The shapes of the microwave transmission plate 81 and the cover member 82 are not limited to those shown in the drawings, and can be any shape according to the shape of the object to be processed.
 図4及び図7に示すように、マイクロ波透過板81の片側(内周側)の側面は、カバー部材82に覆われておらず、処理容器2の内部空間に露出している。このマイクロ波透過板81の露出面は、処理容器2内の載置領域17aに載置されたウエハWへ向けてマイクロ波を放射するマイクロ波放射面81aとなっている。なお、図4では、マイクロ波放射面81aから放射される表面波モードのマイクロ波の方向を太い矢印で示した。 As shown in FIGS. 4 and 7, the side surface on one side (inner peripheral side) of the microwave transmission plate 81 is not covered with the cover member 82 and is exposed to the internal space of the processing container 2. The exposed surface of the microwave transmission plate 81 is a microwave radiation surface 81 a that radiates microwaves toward the wafer W placed on the placement region 17 a in the processing container 2. In FIG. 4, the direction of the microwave in the surface wave mode radiated from the microwave radiation surface 81a is indicated by a thick arrow.
 本実施の形態のプラズマ処理装置1では、マイクロ波放射面81aは、平面視円形のウエハWのエッジ形状に対応した形状となっている。すなわち、マイクロ波放射面81aは、弧状に湾曲し、ウエハWのエッジ形状に対応した曲面を有している。このように、マイクロ波放射面81aの形状をウエハWのエッジ形状に対応させることによって、4つのマイクロ波透過板81のマイクロ波放射面81aからウエハWの中心Oへ向けてマイクロ波を効率よく放射できる。 In the plasma processing apparatus 1 of the present embodiment, the microwave radiation surface 81a has a shape corresponding to the edge shape of the wafer W that is circular in plan view. That is, the microwave radiation surface 81 a is curved in an arc shape and has a curved surface corresponding to the edge shape of the wafer W. Thus, by making the shape of the microwave radiation surface 81a correspond to the edge shape of the wafer W, the microwaves are efficiently directed from the microwave radiation surfaces 81a of the four microwave transmission plates 81 toward the center O of the wafer W. Can radiate.
 図4に示したように、マイクロ波透過板81の下端が、載置領域17aに載置されたウエハWの上面の高さ以上の高さ位置に配置されることが好ましい。特に、載置領域17aに載置されたウエハWの上面を拡大した仮想平面に対し、マイクロ波透過板81の下面が一致することがより好ましい。本実施の形態のプラズマ処理装置1では、ウエハWの上面と、載置部17の表面及び底壁部13におけるウエハWの周囲の内表面Sと、マイクロ波透過板81の下面と、がほぼ同じ高さであり、同一の仮想平面上に形成されている。このような高さにマイクロ波透過板81を配置することによって、マイクロ波透過板81のマイクロ波放射面81aとウエハWとの間に、段差等の境界条件をなくすことができる。従って、マイクロ波放射面81aから放射される表面波モードのマイクロ波を効率よくウエハWの表面へ向けて導き、ウエハWの上方でプラズマを生成させることが可能になる。 As shown in FIG. 4, it is preferable that the lower end of the microwave transmission plate 81 is disposed at a height position equal to or higher than the height of the upper surface of the wafer W placed on the placement region 17a. In particular, it is more preferable that the lower surface of the microwave transmission plate 81 coincides with a virtual plane obtained by enlarging the upper surface of the wafer W placed on the placement region 17a. In the plasma processing apparatus 1 of the present embodiment, the upper surface of the wafer W, the inner surface S around the wafer W in the surface of the mounting portion 17 and the bottom wall portion 13, and the lower surface of the microwave transmission plate 81 are substantially the same. They are the same height and are formed on the same virtual plane. By arranging the microwave transmission plate 81 at such a height, boundary conditions such as a step can be eliminated between the microwave radiation surface 81 a of the microwave transmission plate 81 and the wafer W. Accordingly, it is possible to efficiently guide the surface-wave mode microwave radiated from the microwave radiation surface 81 a toward the surface of the wafer W and generate plasma above the wafer W.
 また、本実施の形態のプラズマ処理装置1では、図1に示すように、載置領域17aを含む載置部17に高周波バイアス電源25から高周波電力を供給できるように構成されている。載置部17に高周波バイアス電源25から高周波電力を印加することで、ウエハWにイオンを引き込むことができるため、例えばプラズマ処理装置1でイオン性の強いプラズマによる処理を行う場合に、処理効率を向上させることができる。 Further, as shown in FIG. 1, the plasma processing apparatus 1 according to the present embodiment is configured such that high-frequency power can be supplied from the high-frequency bias power source 25 to the placement unit 17 including the placement region 17a. By applying high frequency power from the high frequency bias power supply 25 to the mounting portion 17, ions can be drawn into the wafer W, so that, for example, when the plasma processing apparatus 1 performs processing with strongly ionic plasma, the processing efficiency is improved. Can be improved.
 本実施の形態のプラズマ処理装置1では、マイクロ波透過板81のマイクロ波放射面81aから放射されたマイクロ波は、図4に示すように、マイクロ波透過板81とウエハWとの間に露出している金属表面(底壁部13におけるウエハWの周囲の内表面S)を表面波モードで伝搬する。このように金属表面を伝搬する表面波は、プラズマと金属表面との間に存在するシース(図示せず)によりガイドされる。すなわち、シース内に存在する誘電率が低い低電子密度の層とプラズマとの間を表面波が伝搬する。このため、少なくとも底壁部13におけるウエハWの周囲の内表面Sに、例えばシリコン等の材質の溶射膜を形成しておくことが好ましい。溶射膜によって、内表面Sがマイクロ波で削られてコンタミネーション発生原因となることを防止できる。なお、溶射膜に代えて、マイクロ波透過板81とウエハWとの間に露出している内表面Sに例えばシリコン製の環状部材を配置して、内表面Sを覆ってもよい。 In the plasma processing apparatus 1 of the present embodiment, the microwave radiated from the microwave radiation surface 81a of the microwave transmission plate 81 is exposed between the microwave transmission plate 81 and the wafer W as shown in FIG. It propagates in the surface wave mode on the metal surface (the inner surface S around the wafer W in the bottom wall portion 13). Thus, the surface wave propagating on the metal surface is guided by a sheath (not shown) existing between the plasma and the metal surface. That is, the surface wave propagates between the low electron density layer having a low dielectric constant present in the sheath and the plasma. For this reason, it is preferable to form a sprayed film made of a material such as silicon on at least the inner surface S around the wafer W in the bottom wall portion 13. The sprayed film can prevent the inner surface S from being scraped by microwaves and causing contamination. Instead of the sprayed film, for example, a silicon annular member may be disposed on the inner surface S exposed between the microwave transmitting plate 81 and the wafer W to cover the inner surface S.
 上記のように構成されたマイクロ波導入装置5では、メインアンプ62Cで増幅されたマイクロ波が、本体容器66の内周面と内側導体67の外周面との間(マイクロ波伝送路68)を通って平面アンテナ71に達し、平面アンテナ71のスロット71aからマイクロ波透過板81を透過して処理容器2の内部空間に放射される。この際、マイクロ波の放射方向は、カバー部材82によって規制されるため、処理容器2内の空間に臨むマイクロ波放射面81aからウエハWへ向けてマイクロ波が放射される。このマイクロ波は、底壁部13におけるウエハWの周囲の内表面S上を表面波としてウエハWの方向へ伝搬する。本実施の形態のプラズマ処理装置1では、マイクロ波放射面81aが平面視円形のウエハWのエッジ形状に対応した曲面を有しているため、表面波モードのマイクロ波がウエハWの中心Oへ向けて効率よく放射される。図6では、代表的にマイクロ波放射モジュール80A1から放射されるマイクロ波の方向を太い矢印で示した。なお、マイクロ波放射モジュール80A1,80A2,80A3及び80A4から、それぞれ放射される表面波モードのマイクロ波は、アンプ部62の位相器62Aで位相調節を行うことにより、互いの干渉を制御することができる。このようにして放射されたマイクロ波によって、ウエハWの直上部で表面波プラズマが生成し、ウエハWに対して所定のプラズマ処理が行われる。 In the microwave introducing device 5 configured as described above, the microwave amplified by the main amplifier 62C passes between the inner peripheral surface of the main body container 66 and the outer peripheral surface of the inner conductor 67 (microwave transmission path 68). It passes through the planar antenna 71, passes through the microwave transmission plate 81 from the slot 71 a of the planar antenna 71, and is radiated to the internal space of the processing container 2. At this time, since the radiation direction of the microwave is regulated by the cover member 82, the microwave is radiated from the microwave radiation surface 81 a facing the space in the processing chamber 2 toward the wafer W. This microwave propagates in the direction of the wafer W as a surface wave on the inner surface S around the wafer W in the bottom wall portion 13. In the plasma processing apparatus 1 of the present embodiment, the microwave radiation surface 81a has a curved surface corresponding to the edge shape of the wafer W that is circular in plan view, so that the microwave in the surface wave mode is directed to the center O of the wafer W. It is radiated efficiently toward. In FIG. 6, the direction of the microwave radiated | emitted from microwave radiation module 80A1 typically was shown with the thick arrow. Note that the surface wave mode microwaves radiated from the microwave radiation modules 80A1, 80A2, 80A3, and 80A4 can be controlled in phase by the phase shifter 62A of the amplifier unit 62 to control mutual interference. it can. A surface wave plasma is generated immediately above the wafer W by the microwaves thus radiated, and a predetermined plasma process is performed on the wafer W.
(第1の変形例)
 図8は、第1の実施の形態のプラズマ処理装置1におけるマイクロ波導入装置5の第1の変形例を示す説明図である。図8では、図6と同様に、処理容器2内におけるマイクロ波放射モジュール80とウエハWの配置を示している。図8は、一つのマイクロ波放射モジュール80に対して、二つのアンテナモジュール61が接続されている。すなわち、本変形例では、ウエハWの周囲に、ウエハWを囲むように互いに分離した4つのマイクロ波放射モジュール80(図8では、符号80B1,80B2,80B3及び80B4で表している)が設けられており、それぞれに、アンテナモジュール61が二つずつ接続されている。図8では、アンテナモジュール61の平面アンテナ71の位置を破線で示している。このように、一つのマイクロ波放射モジュール80に対して、二つ以上のアンテナモジュール61を接続することにより、処理容器2内で生成するプラズマの密度の制御性を向上させることができる。
(First modification)
FIG. 8 is an explanatory diagram showing a first modification of the microwave introduction device 5 in the plasma processing apparatus 1 of the first embodiment. FIG. 8 shows the arrangement of the microwave radiation module 80 and the wafer W in the processing container 2 as in FIG. In FIG. 8, two antenna modules 61 are connected to one microwave radiation module 80. That is, in this modification, four microwave radiation modules 80 (represented by reference numerals 80B1, 80B2, 80B3, and 80B4 in FIG. 8) are provided around the wafer W so as to surround the wafer W. Two antenna modules 61 are connected to each. In FIG. 8, the position of the planar antenna 71 of the antenna module 61 is indicated by a broken line. Thus, by connecting two or more antenna modules 61 to one microwave radiation module 80, the controllability of the density of the plasma generated in the processing container 2 can be improved.
 なお、一つのマイクロ波放射モジュール80に接続されるアンテナモジュール61の数は、3つ以上でもよい。また、図8では、4つのマイクロ波放射モジュール80(80B1~80B4)に、それぞれ均等な数のアンテナモジュール61が接続されているが、マイクロ波放射モジュール80毎に異なる数のアンテナモジュール61を接続することもできる。 Note that the number of antenna modules 61 connected to one microwave radiation module 80 may be three or more. Further, in FIG. 8, an equal number of antenna modules 61 are connected to the four microwave radiation modules 80 (80B1 to 80B4), but a different number of antenna modules 61 are connected to each microwave radiation module 80. You can also
(第2の変形例)
 また、図9は、第1の実施の形態のプラズマ処理装置1におけるマイクロ波導入装置5の第2の変形例を示す説明図である。図6及び図8では、処理容器2内のウエハWの周囲に、ウエハWを囲むように4つのマイクロ波放射モジュール80を設けた例を示したが、ウエハWを囲むことができれば、マイクロ波放射モジュール80の数は任意である。例えば、マイクロ波放射モジュール80の数は、単一でもよいし、2つないし3つでもよく、5つ以上でもよい。図9には、単一のマイクロ波放射モジュール80Cに4つのアンテナモジュール61を接続した例を示した。図9では、アンテナモジュール61の平面アンテナ71の位置を破線で示している。図9に示す例では、マイクロ波放射モジュール80Cを構成するマイクロ波透過板81及びカバー部材82は、共に環状に形成された単一の部材である。4つのアンテナモジュール61は、ウエハWの周囲に均等に配置されている。
(Second modification)
Moreover, FIG. 9 is explanatory drawing which shows the 2nd modification of the microwave introduction apparatus 5 in the plasma processing apparatus 1 of 1st Embodiment. 6 and 8 show an example in which four microwave radiation modules 80 are provided around the wafer W in the processing container 2 so as to surround the wafer W. However, if the wafer W can be surrounded, microwaves can be provided. The number of radiation modules 80 is arbitrary. For example, the number of the microwave radiation modules 80 may be single, two to three, or five or more. FIG. 9 shows an example in which four antenna modules 61 are connected to a single microwave radiation module 80C. In FIG. 9, the position of the planar antenna 71 of the antenna module 61 is indicated by a broken line. In the example shown in FIG. 9, the microwave transmission plate 81 and the cover member 82 constituting the microwave radiation module 80C are both a single member formed in an annular shape. The four antenna modules 61 are evenly arranged around the wafer W.
 上記各変形例に示したように、プラズマ処理装置1では、処理の目的に応じて、マイクロ波導入装置5の構成、特にマイクロ波放射モジュール80とアンテナモジュール61との配置の組み合わせ、を選択することができる。これにより、処理容器2内におけるプラズマ密度の局所的な制御を容易に行うことができる。プラズマ処理装置1において、処理容器2内で生成するプラズマの分布を制御しやすくするという観点では、ウエハWの周囲に、少なくとも3つ以上のアンテナモジュール61が配置されるように、マイクロ波導入装置5を構成することが好ましい。また、アンテナモジュール61の数が多いほど、処理容器2内でのプラズマの局所的な制御が容易になる。 As shown in each of the above modifications, the plasma processing apparatus 1 selects the configuration of the microwave introduction apparatus 5, particularly the combination of the arrangement of the microwave radiation module 80 and the antenna module 61, according to the purpose of processing. be able to. Thereby, local control of the plasma density in the processing container 2 can be easily performed. In the plasma processing apparatus 1, from the viewpoint of facilitating control of the distribution of plasma generated in the processing container 2, the microwave introduction apparatus is arranged so that at least three antenna modules 61 are arranged around the wafer W. 5 is preferable. Further, as the number of antenna modules 61 increases, local control of plasma in the processing container 2 becomes easier.
 また、以上の説明では、平面視円形のウエハWに対して、その周囲に略同心円状に、複数のマイクロ波放射モジュール80を配列する例を挙げた。しかし、被処理体が例えば矩形のフラットパネルディスプレイ用基板などである場合は、該基板の周囲に、全体として四角形になるようにマイクロ波放射モジュール80を配列することができる。 In the above description, an example in which a plurality of microwave radiation modules 80 are arranged in a concentric manner around the wafer W that is circular in plan view has been described. However, when the object to be processed is, for example, a rectangular flat panel display substrate, the microwave radiation modules 80 can be arranged around the substrate so as to form a square as a whole.
<ガス導入・排気>
 上述のとおり、プラズマ処理装置1の処理容器2の天井部11には、複数のガス導入用開口11bが設けられ、各ガス導入用開口11bに装着されたノズル16を有している(図1も参照)。また、処理容器2の天井部11には、複数の排気口11aが設けられ、排気装置4が接続されている。図10は、本実施の形態のプラズマ処理装置1の天井部11の底面図であり、天井部11におけるノズル16と排気口11aの配置例を示したものである。図10に示す例では、天井部11において、同心円状に内側に12個、外側に28個のノズル16が2重に配列されている。また、天井部11において、その中心部に1個、中心部と周縁部との中間領域に6個の排気口11aが形成されている。そして、ノズル16と排気口11aとは、同心円状に交互に配置されている。なお、天井部11におけるノズル16と排気口11aとの配置や個数は、図10に示した構成に限るものではなく、例えばノズル16と排気口11aとを格子状に交互に配置するなど、種々の変形が可能である。
<Gas introduction / exhaust>
As described above, the ceiling portion 11 of the processing container 2 of the plasma processing apparatus 1 is provided with a plurality of gas introduction openings 11b and has nozzles 16 attached to the respective gas introduction openings 11b (FIG. 1). See also). Further, a plurality of exhaust ports 11 a are provided in the ceiling portion 11 of the processing container 2, and the exhaust device 4 is connected thereto. FIG. 10 is a bottom view of the ceiling portion 11 of the plasma processing apparatus 1 of the present embodiment, and shows an arrangement example of the nozzles 16 and the exhaust ports 11a in the ceiling portion 11. In the example shown in FIG. 10, in the ceiling portion 11, 12 nozzles 16 are arranged in a concentric manner on the inner side and 28 nozzles 16 on the outer side. Further, in the ceiling portion 11, one exhaust port 11 a is formed in the central portion, and six exhaust ports 11 a are formed in an intermediate region between the central portion and the peripheral portion. The nozzles 16 and the exhaust ports 11a are alternately arranged concentrically. The arrangement and the number of the nozzles 16 and the exhaust ports 11a in the ceiling portion 11 are not limited to the configuration shown in FIG. 10, and various types such as alternately arranging the nozzles 16 and the exhaust ports 11a in a grid pattern, for example. Can be modified.
 図10に示すように、ガス導入のためのノズル16と排気のための排気口11aの両方を、処理容器2の天井部11において互いに近接して設けることにより、ウエハW表面(処理対象面)付近での処理ガスのレジデンスタイムを短くすることができる。つまり、ノズル16から処理容器2内に導入された処理ガスを、排気口11aから(排気装置4により)短時間で排出できる。このように、処理容器2内でのガスレジデンスタイムを短くすることで、成膜処理の場合の膜質の改善を図ることが可能となる。例えば、プラズマ処理装置1を用いてウエハW上のポリシリコンの窒化処理を行う場合では、ガスレジデンスタイムを短くすることで、処理容器2内のパーツから放出される酸素に起因する膜中への酸素の混入を低減できる。また、例えば、プラズマ処理装置1を用いてウエハW上のポリシリコンの酸化処理を行う場合では、ガスレジデンスタイムを短くすることで、酸化レートを向上させることができる。 As shown in FIG. 10, the surface of the wafer W (surface to be processed) is provided by providing both the nozzle 16 for introducing gas and the exhaust port 11a for exhausting close to each other in the ceiling portion 11 of the processing chamber 2. The residence time of processing gas in the vicinity can be shortened. That is, the processing gas introduced into the processing container 2 from the nozzle 16 can be discharged from the exhaust port 11a (by the exhaust device 4) in a short time. Thus, by shortening the gas residence time in the processing container 2, it becomes possible to improve the film quality in the film forming process. For example, in the case of performing nitridation processing of polysilicon on the wafer W using the plasma processing apparatus 1, the gas residence time is shortened so that the film can be introduced into the film due to oxygen released from the parts in the processing chamber 2. Oxygen contamination can be reduced. In addition, for example, in the case where the oxidation processing of polysilicon on the wafer W is performed using the plasma processing apparatus 1, the oxidation rate can be improved by shortening the gas residence time.
 次に、プラズマ処理装置1におけるプラズマ処理の一例について説明する。ここでは、処理ガスとして窒素を含有するガスを使用して、ウエハWの表面に対してプラズマ窒化処理を施す場合を例に挙げて、プラズマ処理の手順について説明する。まず、例えばユーザーインターフェース92から、プラズマ処理装置1においてプラズマ窒化処理を行うように、プロセスコントローラ91に指令が入力される。次に、プロセスコントローラ91は、この指令を受けて、記憶部93またはコンピュータ読み取り可能な記憶媒体に保存されたレシピを読み出す。次に、レシピに基づく条件によってプラズマ窒化処理が実行されるように、プロセスコントローラ91からプラズマ処理装置1の各エンドデバイス(例えば、高周波バイアス電源25、ガス供給装置3a、排気装置4、マイクロ波導入装置5等)に制御信号が送出される。 Next, an example of plasma processing in the plasma processing apparatus 1 will be described. Here, the procedure of the plasma processing will be described by taking as an example a case where plasma nitridation processing is performed on the surface of the wafer W using a gas containing nitrogen as the processing gas. First, for example, a command is input from the user interface 92 to the process controller 91 so as to perform plasma nitriding in the plasma processing apparatus 1. Next, the process controller 91 receives this command and reads a recipe stored in the storage unit 93 or a computer-readable storage medium. Next, each end device (for example, the high-frequency bias power supply 25, the gas supply device 3a, the exhaust device 4, and the microwave introduction is introduced from the process controller 91 so that the plasma nitridation process is executed according to the conditions based on the recipe. A control signal is sent to the apparatus 5 or the like.
 次に、ゲートバルブGが開状態にされて、図示しない搬送装置によって、ウエハWが、ゲートバルブGおよび搬入出口12aを通って処理容器2内に搬入される。ウエハWは、複数の支持ピン28に受け渡され、載置部17の載置領域17aに載置される。次に、ゲートバルブGが閉状態にされて、排気装置4によって、処理容器2内が減圧排気される。次に、ガス供給機構3によって、所定の流量の希ガスおよび窒素含有ガスが、ガス導入部15を介して処理容器2内に導入される。処理容器2の内部空間は、排気量およびガス供給量を調整することによって、所定の圧力に調整される。 Next, the gate valve G is opened, and the wafer W is loaded into the processing container 2 through the gate valve G and the loading / unloading port 12a by a transfer device (not shown). The wafer W is transferred to the plurality of support pins 28 and placed on the placement region 17 a of the placement unit 17. Next, the gate valve G is closed, and the inside of the processing container 2 is evacuated by the exhaust device 4. Next, the gas supply mechanism 3 introduces a rare gas and a nitrogen-containing gas at a predetermined flow rate into the processing container 2 through the gas introduction unit 15. The internal space of the processing container 2 is adjusted to a predetermined pressure by adjusting the exhaust amount and the gas supply amount.
 次に、マイクロ波出力部50において、処理容器2内に導入するマイクロ波を発生させる。マイクロ波は、分配器54によって複数系統(例えば4系統)に分配される。マイクロ波出力部50の分配器54から出力された複数のマイクロ波は、アンテナユニット60の複数のアンテナモジュール61に入力され、各アンテナモジュール61によって、処理容器2内に導入される。各アンテナモジュール61では、マイクロ波は、アンプ部62およびマイクロ波導入部63を伝搬する。マイクロ波導入部63のアンテナ部65に到達したマイクロ波は、平面アンテナ71のスロット71aを介し、マイクロ波放射モジュール80のカバー部材82によって方向を規定されると共にマイクロ波透過板81を透過して、マイクロ波放射面81aから処理容器2内におけるウエハWの上方の空間に向けて放射される。このようにして、各アンテナモジュール61から、それぞれ別々にマイクロ波が処理容器2内に導入される。各アンテナモジュール61では、分配器54で分配されたマイクロ波をアンプ部62で個別に増幅することが可能であるため、処理容器2内に導入されるマイクロ波のパワーを個別に制御できる。従って、処理容器2内のプラズマ密度を局所的に制御することが可能である。 Next, the microwave to be introduced into the processing container 2 is generated in the microwave output unit 50. The microwaves are distributed to a plurality of systems (for example, 4 systems) by the distributor 54. The plurality of microwaves output from the distributor 54 of the microwave output unit 50 are input to the plurality of antenna modules 61 of the antenna unit 60 and are introduced into the processing container 2 by each antenna module 61. In each antenna module 61, the microwave propagates through the amplifier unit 62 and the microwave introduction unit 63. The microwave that has reached the antenna section 65 of the microwave introduction section 63 is directed by the cover member 82 of the microwave radiation module 80 through the slot 71 a of the planar antenna 71 and transmits through the microwave transmission plate 81. Then, the light is emitted from the microwave radiation surface 81 a toward the space above the wafer W in the processing chamber 2. In this way, microwaves are individually introduced into the processing container 2 from the respective antenna modules 61. In each antenna module 61, the microwave distributed by the distributor 54 can be individually amplified by the amplifier unit 62, so that the power of the microwave introduced into the processing container 2 can be individually controlled. Therefore, the plasma density in the processing container 2 can be locally controlled.
 上記のように、ウエハWの周囲の複数の部位から処理容器2内に導入されたマイクロ波は、それぞれ処理容器2内のウエハWの直上位置に電磁界を形成する。これにより、処理容器2内に導入された不活性ガスや窒素含有ガス等の処理ガスをプラズマ化する。そして、プラズマ中の活性種、例えばラジカルやイオンの作用によって、ウエハWのシリコン表面が窒化されてシリコン窒化膜SiNの薄膜が形成される。 As described above, the microwaves introduced into the processing container 2 from a plurality of parts around the wafer W form an electromagnetic field at a position immediately above the wafer W in the processing container 2, respectively. Thereby, the processing gas such as an inert gas or a nitrogen-containing gas introduced into the processing container 2 is turned into plasma. Then, the silicon surface of the wafer W is nitrided by the action of active species in the plasma, such as radicals or ions, to form a thin silicon nitride film SiN.
 プロセスコントローラ91からプラズマ処理装置1の各エンドデバイスにプラズマ処理を終了させる制御信号が送出されると、マイクロ波の発生が停止されると共に、希ガスおよび窒素含有ガスの供給が停止されて、ウエハWに対するプラズマ処理が終了する。次に、ゲートバルブGが開状態にされて、図示しない搬送装置によって、ウエハWが搬出される。 When a control signal for terminating the plasma processing is sent from the process controller 91 to each end device of the plasma processing apparatus 1, the generation of microwaves is stopped and the supply of the rare gas and the nitrogen-containing gas is stopped and the wafer is stopped. The plasma processing for W ends. Next, the gate valve G is opened, and the wafer W is unloaded by a transfer device (not shown).
 なお、窒素含有ガスの代りに酸素含有ガスを使用することにより、ウエハWに対して酸化処理を施すことができる。また、成膜原料ガスを使用することにより、プラズマCVD法によって、ウエハWに対して成膜処理を施すことができる。 Note that the oxidation treatment can be performed on the wafer W by using an oxygen-containing gas instead of the nitrogen-containing gas. Further, by using the film forming raw material gas, the film forming process can be performed on the wafer W by the plasma CVD method.
 本実施の形態のプラズマ処理装置1では、被処理体であるウエハWを囲むように、その周囲にマイクロ波導入装置5のマイクロ波放射モジュール80を配置し、ウエハWの周囲からマイクロ波を導入する。処理容器2の下部にマイクロ波導入装置5を配置したことにより、処理容器2の天井部11にマイクロ波導入機構を設けることが必須ではなくなった。従って、天井部11を他の機構に利用することが可能となり、図10に例示したように、処理容器2の天井部11からガス導入/排気を行うことが可能であり、装置設計上の自由度を大幅に向上させることが可能となった。 In the plasma processing apparatus 1 of the present embodiment, the microwave radiation module 80 of the microwave introducing device 5 is disposed around the wafer W that is the object to be processed, and the microwave is introduced from the periphery of the wafer W. To do. By arranging the microwave introduction device 5 at the lower portion of the processing container 2, it is no longer essential to provide a microwave introduction mechanism in the ceiling portion 11 of the processing container 2. Therefore, the ceiling portion 11 can be used for other mechanisms, and as illustrated in FIG. 10, gas can be introduced / exhausted from the ceiling portion 11 of the processing container 2, and freedom in designing the apparatus. It became possible to greatly improve the degree.
 次に、本実施の形態における効果について説明する。前述のように、本実施の形態に係るプラズマ処理装置1では、処理容器2の底壁部13に装着されたアンテナモジュール61及びマイクロ波放射モジュール80を介して処理容器2内にマイクロ波が導入される。このような構成による効果について、以下、比較例のプラズマ処理装置と比較しながら説明する。なお、処理容器の上部からマイクロ波を導入するプラズマ処理装置を、比較例のプラズマ処理装置と呼ぶ。 Next, the effect in this embodiment will be described. As described above, in the plasma processing apparatus 1 according to the present embodiment, microwaves are introduced into the processing container 2 through the antenna module 61 and the microwave radiation module 80 mounted on the bottom wall portion 13 of the processing container 2. Is done. The effects of such a configuration will be described below in comparison with a plasma processing apparatus of a comparative example. Note that a plasma processing apparatus that introduces microwaves from above the processing container is referred to as a plasma processing apparatus of a comparative example.
 図11は、比較例のプラズマ処理装置の構成を模式的に示す断面図である。比較例のプラズマ処理装置501は、処理容器502、載置台521および支持部材522を備えている。プラズマ処理装置501は、図1に示したマイクロ波導入装置5の代りに、マイクロ波導入装置505を備えている。マイクロ波導入装置505は、処理容器502の上部に設けられる。マイクロ波導入装置505としては、例えば石英製のマイクロ波透過板573を1個だけ含む既知の構成のマイクロ波導入装置である。 FIG. 11 is a cross-sectional view schematically showing a configuration of a plasma processing apparatus of a comparative example. The plasma processing apparatus 501 of the comparative example includes a processing container 502, a mounting table 521, and a support member 522. The plasma processing apparatus 501 includes a microwave introducing device 505 instead of the microwave introducing device 5 shown in FIG. The microwave introduction device 505 is provided on the upper portion of the processing container 502. The microwave introducing device 505 is a microwave introducing device having a known configuration including only one microwave transmitting plate 573 made of quartz, for example.
 プラズマ処理装置501では、マイクロ波導入装置505のマイクロ波透過板573が処理容器502の上部に設けられているため、処理ガスの導入や排気を、処理容器502の上部から行うことができない。プラズマ処理装置501では、多くの場合、処理ガスの導入は、処理容器502の側部から行うか、載置台521とマイクロ波透過板573との間にシャワープレート(図示せず)を介在配備させる方法に限られてしまう。また、ガスの排気は、多くの場合、処理容器502の底部から行う方法に限られてしまう。 In the plasma processing apparatus 501, since the microwave transmission plate 573 of the microwave introduction apparatus 505 is provided on the upper part of the processing container 502, the processing gas cannot be introduced or exhausted from the upper part of the processing container 502. In many cases, in the plasma processing apparatus 501, the processing gas is introduced from the side of the processing container 502, or a shower plate (not shown) is interposed between the mounting table 521 and the microwave transmission plate 573. Limited to the method. Further, in many cases, the exhaust of gas is limited to a method performed from the bottom of the processing container 502.
 また、プラズマ処理装置501では、マイクロ波透過板573が載置台521の直上に存在するため、例えば、プラズマ酸化処理やプラズマ窒化処理を繰返す間にマイクロ波透過板573に付着した薄膜が剥がれ、ウエハW上に落下し、パーティクル発生源となる。 Further, in the plasma processing apparatus 501, since the microwave transmission plate 573 is present immediately above the mounting table 521, for example, the thin film attached to the microwave transmission plate 573 is peeled off while the plasma oxidation process and the plasma nitridation process are repeated, and the wafer is removed. It falls on W and becomes a particle generation source.
 プラズマ処理装置501では、マイクロ波導入装置505が処理容器502の上部に設けられていることや、処理容器502内に、ウエハWを載置する載置台521および支持部材522を備えているため、処理容器502の容積が大きくなり、小型化が困難である。 In the plasma processing apparatus 501, the microwave introduction apparatus 505 is provided on the upper part of the processing container 502, and since the processing container 502 includes the mounting table 521 on which the wafer W is mounted and the support member 522, The volume of the processing container 502 becomes large and it is difficult to reduce the size.
 以上のように、比較例のプラズマ処理装置501では、処理容器502の天井部にマイクロ波導入機構を配備していたため、処理容器の容積の小型化が困難であり、また、他の機構を天井部に設けることが困難であった。その結果、装置設計の自由度が大幅に制約を受けていた。また、プラズマ処理装置501では、パーティクル発生源となる可能性があるマイクロ波透過板573を載置台521の直上に設ける必要があったため、パーティクル対策も困難であった。それに対し、本実施の形態のプラズマ処理装置1では、処理容器2の底壁部13にマイクロ波導入機構を設け、処理容器2内でプラズマを生成させるためのマイクロ波を、ウエハWの周囲に設けたマイクロ波放射モジュール80から導入する構成とした。かかる構成を採用したことにより、プラズマ処理装置1では、処理容器2の容積を従来の構成のマイクロ波プラズマ処理装置に比べて格段に小さくすることが可能である。また、処理容器2の天井部11にマイクロ波導入機構を設けることが必須でなくなるため、処理容器2の天井部11に、ガスを導入するガス導入部や、ガスを排気する排気部を設け、天井部11を介してガスの導入、排気を行うことも可能となった。さらに、ウエハWの直上にマイクロ波透過板を配置する必要がないため、マイクロ波透過板に起因するパーティクルの発生も低減できる。 As described above, in the plasma processing apparatus 501 of the comparative example, since the microwave introduction mechanism is provided in the ceiling portion of the processing container 502, it is difficult to reduce the volume of the processing container, and other mechanisms are mounted on the ceiling. It was difficult to provide in the part. As a result, the degree of freedom in device design was greatly restricted. Further, in the plasma processing apparatus 501, it is necessary to provide a microwave transmission plate 573 that may be a particle generation source immediately above the mounting table 521, and thus it is difficult to take measures against particles. On the other hand, in the plasma processing apparatus 1 of the present embodiment, a microwave introduction mechanism is provided on the bottom wall portion 13 of the processing container 2, and microwaves for generating plasma in the processing container 2 are generated around the wafer W. It was set as the structure introduce | transduced from the provided microwave radiation module 80. FIG. By adopting such a configuration, the plasma processing apparatus 1 can significantly reduce the volume of the processing vessel 2 as compared to the microwave plasma processing apparatus having a conventional configuration. In addition, since it is not essential to provide a microwave introduction mechanism in the ceiling portion 11 of the processing container 2, a gas introduction portion for introducing gas and an exhaust portion for exhausting gas are provided in the ceiling portion 11 of the processing vessel 2. Gas can be introduced and exhausted through the ceiling 11. Furthermore, since it is not necessary to arrange a microwave transmission plate immediately above the wafer W, generation of particles due to the microwave transmission plate can be reduced.
 次に、図12A~図12Cを参照して、処理容器2におけるガス導入部と排気部の配置例を挙げ、本実施の形態のプラズマ処理装置1の効果についてさらに詳しく説明する。図1に示したプラズマ処理装置1では、処理容器2内へのガスの導入と排気を共に天井部11を介して行う構成とした。しかし、本発明のプラズマ処理装置は、装置設計の自由度が大きいため、例えばガスの導入部と排気部の構成について、さらに多くのバリエーションを採用することが可能である。 Next, with reference to FIGS. 12A to 12C, the effects of the plasma processing apparatus 1 of the present embodiment will be described in more detail with reference to examples of arrangement of the gas introduction part and the exhaust part in the processing container 2. In the plasma processing apparatus 1 shown in FIG. 1, the gas is introduced into the processing container 2 and exhausted through the ceiling portion 11. However, since the plasma processing apparatus of the present invention has a high degree of freedom in apparatus design, for example, more variations can be adopted for the configuration of the gas introduction part and the exhaust part.
 図12A~図12Cは、ガス導入位置と排気位置が図1のプラズマ処理装置1と異なる変形例のプラズマ処理装置を簡略化して示したものであり、それ以外の構成は第1のプラズマ処理装置1と同様である。なお、図12A~図12Cにおいて、ガス導入部94と排気部95は、これらを配設する大まかな場所を象徴的に示す意味でのみ用いられる。図12A~図12Cにおいて、具体的なノズルや排気口の配置は、例えば図10に例示したように、より複雑な構成とすることができる。 12A to 12C schematically show a modified plasma processing apparatus in which the gas introduction position and the exhaust position are different from the plasma processing apparatus 1 of FIG. 1, and the other configuration is the first plasma processing apparatus. Same as 1. In FIGS. 12A to 12C, the gas introduction part 94 and the exhaust part 95 are used only in the meaning of symbolically indicating a rough place where they are disposed. 12A to 12C, the specific arrangement of nozzles and exhaust ports can be made more complicated as illustrated in FIG. 10, for example.
(第3の変形例)
 図12Aは、ガス導入部94を処理容器2の天井部11に設け、排気部95を処理容器2の側壁部12に設けた態様である。この第3の変形例では、仮にマイクロ波放射モジュール80のマイクロ波透過板81で膜剥がれなどのパーティクルが発生しても、処理容器2の天井部11から処理ガスが導入され、側壁部12に設けた排気部95から排気されるガスの流れによって、ウエハWの表面にパーティクルを付着しにくくすることができる。また、ガスの排気を処理容器2の側壁部12から行うため、排気部95がウエハWの直上に存在しないことにより、ウエハWの表面へパーティクルが落下する確率を低減できる。
(Third Modification)
FIG. 12A is a mode in which the gas introduction part 94 is provided in the ceiling part 11 of the processing container 2 and the exhaust part 95 is provided in the side wall part 12 of the processing container 2. In the third modification, even if particles such as film peeling occur on the microwave transmission plate 81 of the microwave radiation module 80, the processing gas is introduced from the ceiling portion 11 of the processing container 2, and the side wall portion 12 is introduced. The flow of gas exhausted from the provided exhaust unit 95 can make it difficult for particles to adhere to the surface of the wafer W. Further, since the gas is exhausted from the side wall portion 12 of the processing container 2, the probability that the particles fall onto the surface of the wafer W can be reduced because the exhaust portion 95 does not exist immediately above the wafer W.
(第4の変形例)
 図12Bは、ガス導入部94を処理容器2の側壁部12に設け、排気部95を処理容器2の天井部11に設けた態様である。第4の変形例では、処理容器2の天井部11からガスの排気を行うが、天井部11における排気部95の配置の自由度が高いため、例えばウエハWの直上位置を外して排気口を設けることができる。これにより、パーティクルの落下によるウエハWの汚染を低減できる。
(Fourth modification)
FIG. 12B is a mode in which the gas introduction part 94 is provided in the side wall part 12 of the processing container 2 and the exhaust part 95 is provided in the ceiling part 11 of the processing container 2. In the fourth modified example, gas is exhausted from the ceiling part 11 of the processing container 2. However, since the degree of freedom of arrangement of the exhaust part 95 in the ceiling part 11 is high, for example, the position directly above the wafer W is removed and the exhaust port is opened. Can be provided. Thereby, contamination of the wafer W due to falling particles can be reduced.
(第5の変形例)
 図12Cは、ガス導入部94Aを処理容器2の天井部11に、ガス導入部94Bを処理容器2の側壁部12に設け、排気部95を処理容器2の底壁部13に設けた態様である。第5の変形例では、ガス導入部94Aから、ある種類のガスを導入し、ガス導入部94Bから、ガス導入部94Aから導入するガスと同種もしくは別の種類のガスを導入することができる。本変形例は、複数のガスを同時に使用するプロセスに有効である。また、ガスの排気を処理容器2の底壁部13から行うため、排気部95がウエハWの直上に存在しないことにより、ウエハWの表面へパーティクルが落下する確率を低減できる。
(Fifth modification)
FIG. 12C shows a mode in which the gas introduction part 94A is provided in the ceiling part 11 of the processing container 2, the gas introduction part 94B is provided in the side wall part 12 of the processing container 2, and the exhaust part 95 is provided in the bottom wall part 13 of the processing container 2. is there. In the fifth modification, a certain type of gas can be introduced from the gas introduction unit 94A, and a gas of the same type or a different type from the gas introduced from the gas introduction unit 94A can be introduced from the gas introduction unit 94B. This modification is effective for a process using a plurality of gases simultaneously. In addition, since the gas is exhausted from the bottom wall portion 13 of the processing container 2, the probability that the particles fall onto the surface of the wafer W can be reduced because the exhaust portion 95 does not exist immediately above the wafer W.
 図12A~図12Cに示すように、処理容器2の底壁部13にマイクロ波導入機構を設けたことにより、天井部11や側壁部12から、種々の組み合わせでガスの導入と排気を行うことが可能になる。図12A~図12Cの第3~第5の変形例に挙げたガスの導入・排気の態様は、あくまでも例示であり、また、各変形例の組み合わせも可能である。 As shown in FIGS. 12A to 12C, by introducing a microwave introduction mechanism to the bottom wall portion 13 of the processing vessel 2, gas can be introduced and exhausted from the ceiling portion 11 and the side wall portion 12 in various combinations. Is possible. The modes of gas introduction / exhaustion listed in the third to fifth modifications of FIGS. 12A to 12C are merely examples, and combinations of these modifications are possible.
 さらに、本実施の形態のプラズマ処理装置では、装置設計の自由度が大幅に向上しているため、ガス導入・排気の機構のほかに、処理容器2の天井部11に種々の機構を設けることができる。例えば、天井部11には、ウエハWの膜厚をモニタする計測器、処理容器2内のプラズマの状態をモニタする計測器など、種々の機構を配備することも可能になる。 Further, in the plasma processing apparatus of the present embodiment, since the degree of freedom in apparatus design is greatly improved, various mechanisms are provided on the ceiling portion 11 of the processing container 2 in addition to the gas introduction / exhaust mechanism. Can do. For example, various mechanisms such as a measuring instrument for monitoring the film thickness of the wafer W and a measuring instrument for monitoring the state of plasma in the processing container 2 can be provided on the ceiling portion 11.
[第2の実施の形態]
 次に、図13及び図14を参照して、本発明の第2の実施の形態に係るプラズマ処理装置について説明する。図13は、本実施の形態におけるプラズマ処理装置1Aの概略の構成を示す断面図であり、第1の実施の形態の図1に対応する図である。図14は、本実施の形態のマイクロ波導入装置5Aのマイクロ波出力部50Aとアンテナモジュール61の構成を示す説明図であり、第1の実施の形態の図3にほぼ対応する図である。
[Second Embodiment]
Next, a plasma processing apparatus according to the second embodiment of the present invention will be described with reference to FIGS. FIG. 13 is a cross-sectional view showing a schematic configuration of the plasma processing apparatus 1A in the present embodiment, and corresponds to FIG. 1 of the first embodiment. FIG. 14 is an explanatory diagram showing configurations of the microwave output unit 50A and the antenna module 61 of the microwave introduction device 5A of the present embodiment, and is a diagram that substantially corresponds to FIG. 3 of the first embodiment.
 第1の実施の形態のプラズマ処理装置1では、マイクロ波導入装置5のマイクロ波出力部50に分配器54を設け、マイクロ波を複数のアンテナモジュール61に分配してから複数のマイクロ波放射モジュール80へ供給する構成とした。これに対し、第2の実施の形態のプラズマ処理装置1Aでは、複数のマイクロ波導入装置5Aを設け、一つのアンテナモジュール61から、一つのマイクロ波放射モジュール80へマイクロ波を供給する。本実施の形態に係るプラズマ処理装置1Aにおける他の構成は、第1の実施の形態に係るプラズマ処理装置1と同じであるため、図13、図14において、図1、図3と同じ構成には同一の符号を付して説明を省略する。なお、本実施の形態では、図14に示すアンテナモジュール61のアンプ部62の構成をさらに簡素化してもよい。 In the plasma processing apparatus 1 according to the first embodiment, a distributor 54 is provided in the microwave output unit 50 of the microwave introduction apparatus 5, and the microwaves are distributed to the plurality of antenna modules 61 and then the plurality of microwave radiation modules. 80 to supply. On the other hand, in the plasma processing apparatus 1A of the second embodiment, a plurality of microwave introduction apparatuses 5A are provided, and microwaves are supplied from one antenna module 61 to one microwave radiation module 80. Other configurations of the plasma processing apparatus 1A according to the present embodiment are the same as those of the plasma processing apparatus 1 according to the first embodiment, and therefore, in FIGS. 13 and 14, the configurations are the same as those in FIGS. Are denoted by the same reference numerals and description thereof is omitted. In the present embodiment, the configuration of the amplifier section 62 of the antenna module 61 shown in FIG. 14 may be further simplified.
 図13及び図14に示したように、本実施の形態のプラズマ処理装置1Aでは、マイクロ波導入装置5Aのマイクロ波出力部50Aに分配器を設けていない。そして、マイクロ波導入装置5Aでは、一つのマイクロ波出力部50Aから、一つのアンテナモジュール61を介して、一つのマイクロ波放射モジュール80へマイクロ波を供給する構成とした。このように、プラズマ処理装置1Aでは、複数のマイクロ波導入装置5Aを独立して設けることにより、各マイクロ波放射モジュール80から放射されるマイクロ波のパワーや周波数を独立して制御することが容易になる。従って、処理容器2内でマイクロ波放射モジュール80から放射されるマイクロ波によって発生するプラズマの密度を、個々のマイクロ波放射モジュール80毎に局所的に制御しやすい。また、本実施の形態のプラズマ処理装置1Aは、例えば、複数の被処理体を同一の処理容器内で同時に処理する場合などにも利用できる。 As shown in FIGS. 13 and 14, in the plasma processing apparatus 1A of the present embodiment, a distributor is not provided in the microwave output unit 50A of the microwave introduction apparatus 5A. The microwave introduction device 5A is configured to supply microwaves from one microwave output unit 50A to one microwave radiation module 80 via one antenna module 61. As described above, in the plasma processing apparatus 1A, it is easy to independently control the power and frequency of the microwaves radiated from each microwave radiation module 80 by providing the plurality of microwave introduction apparatuses 5A independently. become. Therefore, the density of plasma generated by the microwaves radiated from the microwave radiation module 80 in the processing container 2 can be easily controlled locally for each individual microwave radiation module 80. In addition, the plasma processing apparatus 1A of the present embodiment can be used, for example, when a plurality of objects to be processed are simultaneously processed in the same processing container.
 本実施の形態におけるその他の構成、作用および効果は、第1の実施の形態と同様である。なお、本実施の形態のプラズマ処理装置1Aの変形例として、複数のマイクロ波導入装置5Aにおいて、マイクロ波放射モジュール80を共通化することも可能である。 Other configurations, operations, and effects in the present embodiment are the same as those in the first embodiment. As a modification of the plasma processing apparatus 1A of the present embodiment, the microwave radiation module 80 can be shared in the plurality of microwave introduction apparatuses 5A.
[第3の実施の形態]
 次に、図15及び図16を参照して、本発明の第3の実施の形態に係るプラズマ処理装置について説明する。図15は、本実施の形態におけるプラズマ処理装置1Bの概略の構成を示す断面図であり、第1の実施の形態の図1に対応する図である。図16は、本実施の形態のプラズマ処理装置1Bのマイクロ波導入部63とマイクロ波放射モジュール80を含む要部を拡大して示す断面図であり、第1の実施の形態の図4にほぼ対応する図である。
[Third Embodiment]
Next, with reference to FIG.15 and FIG.16, the plasma processing apparatus which concerns on the 3rd Embodiment of this invention is demonstrated. FIG. 15 is a cross-sectional view showing a schematic configuration of plasma processing apparatus 1B in the present embodiment, and corresponds to FIG. 1 of the first embodiment. FIG. 16 is an enlarged cross-sectional view showing a main part including the microwave introduction part 63 and the microwave radiation module 80 of the plasma processing apparatus 1B of the present embodiment, which is substantially the same as FIG. 4 of the first embodiment. It is a corresponding figure.
 本実施の形態のプラズマ処理装置1Bでは、載置部17の周囲の底壁部13に、直流電圧印加部としてのDC印加部83と、このDC印加部83に電気的に接続された可変直流電源85と、を設けた。すなわち、プラズマ処理装置1Bは、ウエハWを収容する処理容器2と、処理容器2の内部においてウエハWを載置する載置部17と、処理容器2内にガスを供給するガス供給機構3と、処理容器2内を減圧排気する排気装置4と、処理容器2内にプラズマを生成させるためのマイクロ波を発生させると共に、処理容器2内にマイクロ波を導入するマイクロ波導入装置5と、載置部17とマイクロ波放射モジュール80との間において底壁部13に設けられたDC印加部83と、これらプラズマ処理装置1Bの各構成部を制御する制御部8とを備えている。本実施の形態のプラズマ処理装置1Bにおける他の構成は、第1の実施の形態に係るプラズマ処理装置1と同じであるため、図15、図16において、図1、図4と同じ構成には同一の符号を付して説明を省略する。 In the plasma processing apparatus 1 </ b> B of the present embodiment, a DC application unit 83 as a DC voltage application unit and a variable direct current electrically connected to the DC application unit 83 are provided on the bottom wall 13 around the mounting unit 17. And a power supply 85. That is, the plasma processing apparatus 1B includes a processing container 2 that accommodates the wafer W, a placement unit 17 that places the wafer W inside the processing container 2, and a gas supply mechanism 3 that supplies gas into the processing container 2. An exhaust apparatus 4 for evacuating the inside of the processing container 2; a microwave introducing apparatus 5 for generating a microwave for generating plasma in the processing container 2 and introducing a microwave into the processing container 2; A DC application unit 83 provided on the bottom wall 13 between the mounting unit 17 and the microwave radiation module 80, and a control unit 8 that controls each component of the plasma processing apparatus 1B are provided. Since the other configuration of the plasma processing apparatus 1B of the present embodiment is the same as that of the plasma processing apparatus 1 according to the first embodiment, in FIGS. 15 and 16, the same configuration as that of FIGS. The same reference numerals are given and description thereof is omitted.
 DC印加部83は、例えば金属などの導電性材料からなり、載置部17を囲むとともに、マイクロ波放射モジュール80と載置部17との間に介在するように、例えば環状に設けられている。DC印加部83は、その上面が処理容器2内に露出するようにして底壁部13に埋設されている。底壁部13とDC印加部83との間は、絶縁材84が設けられて絶縁され、接地電位の底壁部13に対して電気的にフローティングの状態となっている。可変直流電源85は、図示しないスイッチ部によりオン/オフの切り換えができるように構成され、DC印加部83に対し、例えば負の直流電圧を印加する。 The DC application unit 83 is made of, for example, a conductive material such as metal, surrounds the mounting unit 17, and is provided, for example, in an annular shape so as to be interposed between the microwave radiation module 80 and the mounting unit 17. . The DC application unit 83 is embedded in the bottom wall portion 13 so that the upper surface thereof is exposed in the processing container 2. An insulating material 84 is provided between the bottom wall portion 13 and the DC application portion 83 to be insulated, and is in an electrically floating state with respect to the bottom wall portion 13 at the ground potential. The variable DC power supply 85 is configured to be turned on / off by a switch unit (not shown), and applies a negative DC voltage to the DC application unit 83, for example.
 本実施の形態のプラズマ処理装置1Bでは、可変直流電源85から、DC印加部83へ直流電圧を印加することにより、マイクロ波透過板81からのマイクロ波をウエハWの方向へ伝搬させやすくすることができる。マイクロ波透過板81のマイクロ波放射面81aから放射されたマイクロ波は、図16において太矢印で示すように、マイクロ波透過板81とウエハWとの間に露出している金属表面(底壁部13及びDC印加部83におけるウエハWの周囲の内表面S’)を表面波モードで伝搬する。このように金属表面を伝搬する表面波は、プラズマと金属表面との間に存在するシース(図示せず)によりガイドされる。すなわち、シース内に存在する誘電率が低い低電子密度の層とプラズマとの間を表面波が伝搬する。本実施の形態では、載置領域17aの周辺にDC印加部83を設け、可変直流電源85から例えば負電圧を印加することによって、シース厚を拡大させることが可能となる。シース厚を拡大することによって、シースに沿って表面波をウエハWの近傍まで効率よく導くことができる。このように、DC印加部83を設け、そこに直流電圧を印加することによって、シース厚を調節し、表面波モードのマイクロ波の伝搬効率を高めることができる。 In the plasma processing apparatus 1B of the present embodiment, the microwave from the microwave transmission plate 81 is easily propagated in the direction of the wafer W by applying a DC voltage from the variable DC power supply 85 to the DC applying unit 83. Can do. The microwave radiated from the microwave radiation surface 81a of the microwave transmission plate 81 is a metal surface (bottom wall) exposed between the microwave transmission plate 81 and the wafer W as shown by a thick arrow in FIG. The inner surface S ′ around the wafer W in the part 13 and the DC application part 83 propagates in the surface wave mode. Thus, the surface wave propagating on the metal surface is guided by a sheath (not shown) existing between the plasma and the metal surface. That is, the surface wave propagates between the low electron density layer having a low dielectric constant present in the sheath and the plasma. In the present embodiment, it is possible to increase the sheath thickness by providing a DC applying unit 83 around the placement region 17a and applying a negative voltage from the variable DC power supply 85, for example. By enlarging the sheath thickness, the surface wave can be efficiently guided to the vicinity of the wafer W along the sheath. In this way, by providing the DC application unit 83 and applying a DC voltage thereto, the sheath thickness can be adjusted, and the propagation efficiency of the microwave in the surface wave mode can be increased.
 本実施の形態におけるその他の構成、作用および効果は、第1の実施の形態と同様である。なお、本実施の形態のように、載置部17の周囲の底壁部13にDC印加部83を設ける構成は、第2の実施の形態(図13参照)のプラズマ処理装置1Aにも適用可能である。 Other configurations, operations, and effects in the present embodiment are the same as those in the first embodiment. Note that, as in the present embodiment, the configuration in which the DC application unit 83 is provided on the bottom wall portion 13 around the placement unit 17 is also applied to the plasma processing apparatus 1A of the second embodiment (see FIG. 13). Is possible.
[第4の実施の形態]
 次に、図17を参照して、本発明の第4の実施の形態に係るプラズマ処理装置について説明する。図17は、本実施の形態におけるプラズマ処理装置1Cの概略の構成を示す断面図であり、第1の実施の形態の図1に対応する図である。
[Fourth Embodiment]
Next, a plasma processing apparatus according to the fourth embodiment of the present invention will be described with reference to FIG. FIG. 17 is a cross-sectional view showing a schematic configuration of a plasma processing apparatus 1C according to the present embodiment, and corresponds to FIG. 1 of the first embodiment.
 第1~第3の実施の形態では、マイクロ波放射モジュール80の全体が、処理容器2内に収容される構成としたが、本実施の形態では、マイクロ波放射モジュール80の大部分が、処理容器2の外側にはみ出た格好で装着されている。すなわち、プラズマ処理装置1Cは、ウエハWを収容する処理容器2と、処理容器2の内部においてウエハWを載置する載置部17と、処理容器2内にガスを供給するガス供給機構3と、処理容器2内を減圧排気する排気装置4と、処理容器2内にプラズマを生成させるためのマイクロ波を発生させると共に、処理容器2内にマイクロ波を導入するマイクロ波導入装置5と、これらプラズマ処理装置1Cの各構成部を制御する制御部8とを備えている。そして、本実施の形態のプラズマ処理装置1Cでは、マイクロ波導入装置5のマイクロ波放射モジュール80を側壁部12の下端に外側から装着した。より具体的には、図17に示すように、プラズマ処理装置1Cでは、マイクロ波放射モジュール80のカバー部材82が側壁部12の下端に接し、アンテナモジュール61のマイクロ波導入部63の本体容器66が底壁部13の側端に接するように、マイクロ波導入装置5を配備した。そして、マイクロ波放射モジュール80のカバー部材82の外周側は、処理容器2の外部空間に露出している。なお、マイクロ波放射モジュール80のカバー部材82の上面と側壁部12の下端との当接部分は、図示しないシール部材が配備されて気密性が保持されている。また、マイクロ波導入部63の本体容器66と底壁部13の側端との当接部分も、図示しないシール部材が配備されて気密性が保持されている。 In the first to third embodiments, the whole microwave radiation module 80 is configured to be accommodated in the processing container 2, but in the present embodiment, most of the microwave radiation module 80 is processed. The container 2 is mounted on the outside of the container 2. That is, the plasma processing apparatus 1 </ b> C includes a processing container 2 that accommodates the wafer W, a placement unit 17 that places the wafer W inside the processing container 2, and a gas supply mechanism 3 that supplies gas into the processing container 2. An exhaust device 4 for evacuating the inside of the processing vessel 2, a microwave for generating plasma in the processing vessel 2, and a microwave introducing device 5 for introducing the microwave into the processing vessel 2, And a control unit 8 that controls each component of the plasma processing apparatus 1C. In the plasma processing apparatus 1 </ b> C of the present embodiment, the microwave radiation module 80 of the microwave introduction device 5 is attached to the lower end of the side wall portion 12 from the outside. More specifically, as shown in FIG. 17, in the plasma processing apparatus 1 </ b> C, the cover member 82 of the microwave radiation module 80 is in contact with the lower end of the side wall portion 12, and the main body container 66 of the microwave introduction portion 63 of the antenna module 61. The microwave introduction device 5 is disposed so that the side wall is in contact with the side end of the bottom wall portion 13. The outer peripheral side of the cover member 82 of the microwave radiation module 80 is exposed to the external space of the processing container 2. Note that a sealing member (not shown) is provided at the contact portion between the upper surface of the cover member 82 of the microwave radiation module 80 and the lower end of the side wall portion 12 to maintain airtightness. Further, a sealing member (not shown) is also provided at the abutting portion between the main body container 66 of the microwave introduction portion 63 and the side end of the bottom wall portion 13 to maintain airtightness.
 本実施の形態では、マイクロ波放射モジュール80の大部分が処理容器2の外側に突出して存在している。このため、処理容器2内の空間に露出するマイクロ波透過板81のマイクロ波放射面81aとカバー部材82の内周面は、処理容器2の側壁部12の内周面と段差なく連続して面一になっている。処理容器2の内径(互いに対向する側壁部12間の距離)は、ウエハWを間に挟んで互いに対向するマイクロ波放射面81a間の距離と一致している。ただし、マイクロ波透過板81のマイクロ波放射面81a及びカバー部材82の内周面の位置は、処理容器2の側壁部12の内周面の位置と、水平方向に必ずしも一致していなくてもよい。本実施の形態のプラズマ処理装置1Cにおける他の構成は、第1の実施の形態に係るプラズマ処理装置1と同じであるため、図17において、図1と同じ構成には同一の符号を付して説明を省略する。 In the present embodiment, most of the microwave radiation module 80 protrudes outside the processing container 2. For this reason, the microwave radiation surface 81a of the microwave transmission plate 81 exposed to the space in the processing container 2 and the inner peripheral surface of the cover member 82 are continuous with the inner peripheral surface of the side wall portion 12 of the processing container 2 without a step. It is the same. The inner diameter of the processing chamber 2 (the distance between the side wall portions 12 facing each other) matches the distance between the microwave radiation surfaces 81a facing each other with the wafer W interposed therebetween. However, the positions of the microwave radiation surface 81a of the microwave transmission plate 81 and the inner peripheral surface of the cover member 82 may not necessarily coincide with the position of the inner peripheral surface of the side wall portion 12 of the processing container 2 in the horizontal direction. Good. Since other configurations in the plasma processing apparatus 1C of the present embodiment are the same as those of the plasma processing apparatus 1 according to the first embodiment, the same reference numerals are given to the same configurations in FIG. 17 as in FIG. The description is omitted.
 本実施の形態のプラズマ処理装置1Cでは、例えば図11に挙げた比較例のプラズマ処理装置501よりも、処理容器の径を大幅に小さくできる。比較例のプラズマ処理装置501では、処理容器502の上部に設けられたマイクロ波導入装置505のマイクロ波透過板573からマイクロ波が導入されて処理容器502の内部でプラズマPが生成する。このとき、処理容器502内のプラズマ密度は、側壁部512の内表面ではほぼゼロになる。ウエハW面内での処理の均一性を考慮すると、載置台521に載置されたウエハW上の全面で必要なプラズマ密度(好ましくは、均一なプラズマ密度)を維持することが必要である。そのためには、図11に示すように、ウエハWの径よりも十分に大きな径を持つプラズマPを処理容器502内で生成させる必要がある。処理容器502内でウエハWの径よりも十分に大きな径を持つプラズマを生成させるためには、ウエハWのエッジと処理容器502の側壁部512との間に十分な間隔をあけておくことが必要となる。つまり、図11に示したように、比較例のプラズマ処理装置501においては、プラズマPの大きさを見込んで、載置台521と処理容器502の側壁部512との間に十分な距離を確保しておく必要がある。 In the plasma processing apparatus 1C of the present embodiment, for example, the diameter of the processing container can be significantly reduced as compared with the plasma processing apparatus 501 of the comparative example shown in FIG. In the plasma processing apparatus 501 of the comparative example, a microwave is introduced from the microwave transmission plate 573 of the microwave introduction apparatus 505 provided on the upper part of the processing container 502, and plasma P is generated inside the processing container 502. At this time, the plasma density in the processing container 502 becomes substantially zero on the inner surface of the side wall portion 512. In consideration of the uniformity of processing within the wafer W surface, it is necessary to maintain a necessary plasma density (preferably a uniform plasma density) on the entire surface of the wafer W placed on the mounting table 521. For that purpose, as shown in FIG. 11, it is necessary to generate plasma P having a diameter sufficiently larger than the diameter of the wafer W in the processing chamber 502. In order to generate plasma having a diameter sufficiently larger than the diameter of the wafer W in the processing container 502, it is necessary to leave a sufficient space between the edge of the wafer W and the side wall portion 512 of the processing container 502. Necessary. That is, as shown in FIG. 11, in the plasma processing apparatus 501 of the comparative example, a sufficient distance is secured between the mounting table 521 and the side wall portion 512 of the processing container 502 in consideration of the size of the plasma P. It is necessary to keep.
 それに対し、本実施の形態のプラズマ処理装置1Cでは、ウエハWの周囲にマイクロ波放射モジュール80を設け、ウエハWのエッジに近い位置からウエハWへ向けて水平方向にマイクロ波を導入することにより、ウエハWの直上部にプラズマを生成させる。このため、処理容器2の側壁部12の位置がウエハWのエッジに近接していても、ウエハW面内での処理の均一性に悪影響を与える懸念はほとんどない。従って、本実施の形態のプラズマ処理装置1Cでは、比較例のプラズマ処理装置501に比べて、処理容器2の内径が小さくてよく、その内部容積を大幅に縮小できる。従って、処理容器2の小型化を図ることができる。また、本実施の形態のプラズマ処理装置1Cでは、比較例のプラズマ処理装置501に比べて処理容器2の内部容積を小さくできるため、処理容器2内での処理ガスのレジデンスタイムを短くすることが可能になり、例えば成膜装置として用いる場合に膜質の向上が期待できる。 On the other hand, in the plasma processing apparatus 1C of the present embodiment, the microwave radiation module 80 is provided around the wafer W, and the microwave is introduced from the position close to the edge of the wafer W toward the wafer W in the horizontal direction. Then, plasma is generated immediately above the wafer W. For this reason, even if the position of the side wall portion 12 of the processing container 2 is close to the edge of the wafer W, there is almost no fear of adversely affecting the uniformity of processing within the wafer W surface. Therefore, in the plasma processing apparatus 1C of the present embodiment, the inner diameter of the processing container 2 may be smaller than that of the plasma processing apparatus 501 of the comparative example, and the internal volume can be greatly reduced. Therefore, the processing container 2 can be downsized. Further, in the plasma processing apparatus 1C of the present embodiment, since the internal volume of the processing container 2 can be reduced as compared with the plasma processing apparatus 501 of the comparative example, the residence time of the processing gas in the processing container 2 can be shortened. For example, when used as a film forming apparatus, an improvement in film quality can be expected.
 また、本実施の形態のプラズマ処理装置1Cでは、マイクロ波放射モジュール80の大部分が処理容器2の外側に置かれているため、例えば第1~第3の実施の形態のプラズマ処理装置1,1A,1Bと比較しても、処理容器2の内部空間の容積をさらに小さくすることが可能になる。 Further, in the plasma processing apparatus 1C of the present embodiment, since most of the microwave radiation module 80 is placed outside the processing container 2, for example, the plasma processing apparatuses 1 and 1 of the first to third embodiments are used. Compared with 1A and 1B, the volume of the internal space of the processing container 2 can be further reduced.
 本実施の形態におけるその他の構成、作用および効果は、第1の実施の形態と同様である。なお、本実施の形態のように、マイクロ波放射モジュール80を側壁部12の下端に装着する構成は、第2の実施の形態(図13参照)のプラズマ処理装置1Aや、第3の実施の形態のプラズマ処理装置1B(図15参照)にも適用可能である。 Other configurations, operations, and effects in the present embodiment are the same as those in the first embodiment. Note that, as in the present embodiment, the configuration in which the microwave radiation module 80 is attached to the lower end of the side wall portion 12 is the same as that of the plasma processing apparatus 1A of the second embodiment (see FIG. 13) or the third embodiment. The present invention can also be applied to the plasma processing apparatus 1B (see FIG. 15).
 なお、本発明は、上記各実施の形態に限定されず、種々の変更が可能である。例えば、本発明のプラズマ処理装置は、半導体ウエハを被処理体とする場合に限らず、例えば太陽電池パネルの基板やフラットパネルディスプレイ用基板を被処理体とするプラズマ処理装置にも適用できる。 The present invention is not limited to the above-described embodiments, and various modifications can be made. For example, the plasma processing apparatus of the present invention is not limited to a case where a semiconductor wafer is used as an object to be processed, and can also be applied to a plasma processing apparatus using, for example, a solar cell panel substrate or a flat panel display substrate as an object to be processed.
 また、真空処理に限らず、大気圧プラズマを利用することもできる。 Also, not only vacuum processing but atmospheric pressure plasma can be used.
 また、上記各実施の形態のプラズマ処理装置では、処理容器2の底壁部13に載置部17を設けたが、処理容器2内に金属製のステージ又は台部を設け、該ステージ又は台部に載置されたウエハWへ向けて、その周囲に高さ位置を合わせて配置したマイクロ波放射モジュールからマイクロ波を放射するようにしてもよい。 Further, in the plasma processing apparatus of each of the above embodiments, the mounting portion 17 is provided on the bottom wall portion 13 of the processing container 2, but a metal stage or base is provided in the processing container 2, and the stage or base is provided. A microwave may be radiated from a microwave radiation module arranged with its height aligned around the wafer W placed on the part.
 また、上記各実施の形態では、処理容器2の天井部11にはマイクロ波導入機構を設けていない。しかし、マイクロ波導入装置5と組み合わせて、処理容器2の天井部11に補助的にマイクロ波導入機構を設けることを妨げるものではない。 In each of the above embodiments, the microwave introduction mechanism is not provided in the ceiling portion 11 of the processing container 2. However, in combination with the microwave introduction device 5, it does not preclude providing a microwave introduction mechanism on the ceiling portion 11 of the processing container 2 as an auxiliary.
 本国際出願は、2011年8月23日に出願された日本国特許出願2011-181478号に基づく優先権を主張するものであり、この出願の全内容をここに援用する。
 
 
 
This international application claims priority based on Japanese Patent Application No. 2011-181478 filed on August 23, 2011, the entire contents of which are incorporated herein by reference.


Claims (17)

  1.  被処理体を収容する処理容器と、
     前記処理容器内で被処理体を載置する載置部と、
     前記処理容器内に処理ガスを供給するガス供給機構と、
     前記処理容器内で前記処理ガスのプラズマを生成させるためのマイクロ波を発生させると共に、前記処理容器内に前記マイクロ波を導入するマイクロ波導入装置と
    を備え、
     前記マイクロ波導入装置は、
     被処理体の周囲に配置され、マイクロ波を透過させて前記処理容器内へ放射する誘電体窓部材と、
     前記誘電体窓部材を介して前記処理容器内に放射されるマイクロ波が被処理体の表面と平行な方向で被処理体へ向かうように規制する導体部材と、
    を含むマイクロ波放射モジュールを有しているプラズマ処理装置。
    A processing container for storing an object to be processed;
    A mounting section for mounting the object to be processed in the processing container;
    A gas supply mechanism for supplying a processing gas into the processing container;
    A microwave introduction device for generating a microwave for generating a plasma of the processing gas in the processing container and for introducing the microwave into the processing container;
    The microwave introduction device is
    A dielectric window member disposed around the object to be processed and transmitting microwaves into the processing container;
    A conductor member for regulating the microwave radiated into the processing container through the dielectric window member so as to be directed to the target object in a direction parallel to the surface of the target object;
    A plasma processing apparatus having a microwave radiation module.
  2.  前記マイクロ波導入装置は、
     マイクロ波を生成すると共に出力するマイクロ波出力部と、
     前記処理容器の下部に外側から装着されて前記マイクロ波出力部から出力されたマイクロ波を前記マイクロ波放射モジュールへ供給する1つ又は複数のアンテナモジュールと、
    をさらに備えている請求項1に記載のプラズマ処理装置。
    The microwave introduction device is
    A microwave output unit for generating and outputting a microwave;
    One or a plurality of antenna modules that are attached to the lower part of the processing container from the outside and supply the microwaves output from the microwave output unit to the microwave radiation module;
    The plasma processing apparatus according to claim 1, further comprising:
  3.  前記誘電体窓部材は、前記処理容器内の空間に露出して被処理体に向けてマイクロ波を放射するマイクロ波放射面を有しており、
     前記導体部材は、前記マイクロ波放射面を除く前記誘電体窓部材の表面を覆うものである請求項1に記載のプラズマ処理装置。
    The dielectric window member has a microwave radiation surface that is exposed to a space in the processing container and emits microwaves toward the object to be processed.
    The plasma processing apparatus according to claim 1, wherein the conductor member covers a surface of the dielectric window member excluding the microwave radiation surface.
  4.  前記マイクロ波放射面は、被処理体のエッジの形状に対応した形状を有している請求項3に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 3, wherein the microwave radiation surface has a shape corresponding to a shape of an edge of an object to be processed.
  5.  被処理体が平面視円形であり、前記マイクロ波放射面が弧状に湾曲した形状を有している請求項4に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 4, wherein the object to be processed has a circular shape in plan view, and the microwave radiation surface has a shape curved in an arc shape.
  6.  被処理体を囲むように、複数の前記マイクロ波放射モジュールを有する請求項2に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 2, comprising a plurality of the microwave radiation modules so as to surround a target object.
  7.  1つの前記マイクロ波放射モジュールに対し、1つ又は複数の前記アンテナモジュールが接続されている請求項6に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 6, wherein one or a plurality of the antenna modules are connected to one microwave radiation module.
  8.  前記アンテナモジュールを少なくとも3つ以上有する請求項6に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 6, comprising at least three antenna modules.
  9.  前記誘電体窓部材の下端が、前記載置部に載置された被処理体の上面の高さ以上の高さ位置に配置されている請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein a lower end of the dielectric window member is disposed at a height position equal to or higher than a height of an upper surface of the object to be processed placed on the placement portion.
  10.  前記ガス供給機構から供給される処理ガスを導入するガス導入部が、前記処理容器の天井部に設けられており、
     前記処理容器内を減圧排気する排気装置に接続する排気口が、前記処理容器の天井部に設けられている請求項1に記載のプラズマ処理装置。
    A gas introduction part for introducing a processing gas supplied from the gas supply mechanism is provided in a ceiling part of the processing container;
    The plasma processing apparatus according to claim 1, wherein an exhaust port connected to an exhaust apparatus for evacuating the inside of the processing container is provided in a ceiling portion of the processing container.
  11.  前記処理容器内を減圧排気する排気装置に接続する排気口が、前記処理容器の側壁部又は底壁部に設けられている請求項1に記載のプラズマ処理装置。 2. The plasma processing apparatus according to claim 1, wherein an exhaust port connected to an exhaust device for evacuating and exhausting the inside of the processing container is provided on a side wall or a bottom wall of the processing container.
  12.  前記載置部は、前記処理容器の底壁部に設けられている請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the placement unit is provided on a bottom wall portion of the processing container.
  13.  前記載置部に高周波電力を供給する高周波電源部を有する請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, further comprising a high frequency power supply unit that supplies high frequency power to the mounting unit.
  14.  前記載置部と前記マイクロ波放射モジュールとの間に、直流電圧が印加される直流電圧印加部を有する請求項1に記載のプラズマ処理装置。 2. The plasma processing apparatus according to claim 1, further comprising a DC voltage application unit to which a DC voltage is applied between the mounting unit and the microwave radiation module.
  15.  プラズマ処理装置を用いて被処理体を処理するプラズマ処理方法であって、
     前記プラズマ処理装置は、被処理体を収容する処理容器と、前記処理容器内で被処理体を載置する載置部と、前記処理容器内に処理ガスを供給するガス供給機構と、前記処理容器内で前記処理ガスのプラズマを生成させるためのマイクロ波を発生させると共に、前記処理容器内に前記マイクロ波を導入するマイクロ波導入装置とを備え、
     前記マイクロ波導入装置は、被処理体の周囲に配置され、マイクロ波を透過させて前記処理容器内へ放射する誘電体窓部材と、前記誘電体窓部材を介して前記処理容器内に放射されるマイクロ波が被処理体の表面と平行な方向で被処理体へ向かうように規制する導体部材と、を含むマイクロ波放射モジュールを有していることを特徴とするプラズマ処理方法。
    A plasma processing method of processing an object to be processed using a plasma processing apparatus,
    The plasma processing apparatus includes a processing container that accommodates an object to be processed, a placement unit that places the object to be processed in the processing container, a gas supply mechanism that supplies a processing gas into the processing container, and the processing A microwave for generating a plasma for generating plasma of the processing gas in a container, and a microwave introduction device for introducing the microwave into the processing container,
    The microwave introducing device is disposed around the object to be processed, transmits a microwave and radiates it into the processing container, and is radiated into the processing container through the dielectric window member. And a conductor member that restricts the microwave to be directed to the object in a direction parallel to the surface of the object to be processed.
  16.  被処理体を収容する処理容器内で処理ガスのプラズマを生成させるためのマイクロ波を発生させると共に、前記処理容器内に前記マイクロ波を導入するマイクロ波導入装置であって、
     被処理体の周囲に配置され、マイクロ波を透過させて前記処理容器内へ放射する誘電体窓部材と、前記誘電体窓部材を介して前記処理容器内に放射されるマイクロ波が被処理体の表面と平行な方向で被処理体へ向かうように規制する導体部材と、を含むマイクロ波放射モジュールを有していることを特徴とするマイクロ波導入装置。
    A microwave introduction device for generating a microwave for generating plasma of a processing gas in a processing container that accommodates an object to be processed, and for introducing the microwave into the processing container,
    A dielectric window member that is disposed around the object to be processed and transmits microwaves into the processing container and microwaves radiated into the processing container through the dielectric window member are processed. A microwave radiation module comprising: a conductor member that regulates toward the object to be processed in a direction parallel to the surface of the substrate.
  17.  マイクロ波を生成すると共に出力するマイクロ波出力部と、前記処理容器の下部に外側から装着されて前記マイクロ波出力部から出力されたマイクロ波を、前記マイクロ波放射モジュールへ供給する1つ又は複数のアンテナモジュールと、をさらに備えている請求項16に記載のマイクロ波導入装置。
     
     
    A microwave output unit that generates and outputs a microwave, and one or a plurality of microwaves that are attached to the lower part of the processing container from the outside and that are output from the microwave output unit are supplied to the microwave radiation module The microwave introduction device according to claim 16, further comprising: an antenna module.

PCT/JP2012/064922 2011-08-23 2012-06-11 Plasma processor, microwave introduction device, and plasma processing method WO2013027470A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-181478 2011-08-23
JP2011181478A JP2013045551A (en) 2011-08-23 2011-08-23 Plasma processing apparatus, microwave introduction device, and plasma processing method

Publications (1)

Publication Number Publication Date
WO2013027470A1 true WO2013027470A1 (en) 2013-02-28

Family

ID=47746225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064922 WO2013027470A1 (en) 2011-08-23 2012-06-11 Plasma processor, microwave introduction device, and plasma processing method

Country Status (3)

Country Link
JP (1) JP2013045551A (en)
TW (1) TW201316845A (en)
WO (1) WO2013027470A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106783498A (en) * 2015-11-20 2017-05-31 塔工程有限公司 The antenna arrangement and substrate processing apparatus of substrate processing apparatus
CN112466736A (en) * 2019-09-09 2021-03-09 东京毅力科创株式会社 Plasma processing apparatus and temperature control method
CN112509900A (en) * 2019-09-13 2021-03-16 东京毅力科创株式会社 Plasma processing apparatus and plasma processing method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6356415B2 (en) * 2013-12-16 2018-07-11 東京エレクトロン株式会社 Microwave plasma source and plasma processing apparatus
KR102619949B1 (en) 2016-05-16 2024-01-03 삼성전자주식회사 antenna, microwave plasma source including the same, and plasma processing apparatus
US10707058B2 (en) * 2017-04-11 2020-07-07 Applied Materials, Inc. Symmetric and irregular shaped plasmas using modular microwave sources
JP6914149B2 (en) * 2017-09-07 2021-08-04 東京エレクトロン株式会社 Plasma processing equipment
US11183369B2 (en) * 2018-12-27 2021-11-23 Industrial Technology Research Institute Focalized microwave plasma reactor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11162956A (en) * 1997-11-25 1999-06-18 Hitachi Ltd Plasma treatment equipment
JP2000174009A (en) * 1998-12-02 2000-06-23 Hitachi Ltd Plasma processing device, semiconductor manufacture device and liquid crystal manufacture device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11162956A (en) * 1997-11-25 1999-06-18 Hitachi Ltd Plasma treatment equipment
JP2000174009A (en) * 1998-12-02 2000-06-23 Hitachi Ltd Plasma processing device, semiconductor manufacture device and liquid crystal manufacture device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106783498A (en) * 2015-11-20 2017-05-31 塔工程有限公司 The antenna arrangement and substrate processing apparatus of substrate processing apparatus
CN106783498B (en) * 2015-11-20 2019-07-05 塔工程有限公司 The antenna arragement construction and substrate processing apparatus of substrate processing apparatus
CN112466736A (en) * 2019-09-09 2021-03-09 东京毅力科创株式会社 Plasma processing apparatus and temperature control method
CN112509900A (en) * 2019-09-13 2021-03-16 东京毅力科创株式会社 Plasma processing apparatus and plasma processing method
CN112509900B (en) * 2019-09-13 2024-05-31 东京毅力科创株式会社 Plasma processing apparatus and plasma processing method

Also Published As

Publication number Publication date
TW201316845A (en) 2013-04-16
JP2013045551A (en) 2013-03-04

Similar Documents

Publication Publication Date Title
JP5893865B2 (en) Plasma processing apparatus and microwave introduction apparatus
WO2013027470A1 (en) Plasma processor, microwave introduction device, and plasma processing method
KR101882609B1 (en) Plasma processing apparatus and plasma processing method
WO2009123198A1 (en) Plasma treatment apparatus
US7897009B2 (en) Plasma processing apparatus
US9991097B2 (en) Plasma processing apparatus
JP2006244891A (en) Microwave plasma processing device
JP5953057B2 (en) Plasma processing method and plasma processing apparatus
JP2018078010A (en) Microwave plasma source and microwave plasma processing device
JP5479013B2 (en) Plasma processing apparatus and slow wave plate used therefor
KR101882608B1 (en) Plasma processing apparatus and plasma processing method
JP5090299B2 (en) Plasma processing apparatus and substrate mounting table
WO2011013633A1 (en) Planar antenna member and plasma processing device equipped with same
JP2009224455A (en) Flat antenna member and plasma processing device with the same
JP5728565B2 (en) Plasma processing apparatus and slow wave plate used therefor
US20220037124A1 (en) Plasma processing apparatus and plasma processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12826231

Country of ref document: EP

Kind code of ref document: A1