JP2004311283A - Positive electrode lattice of lead-acid battery, and lead-acid battery using it - Google Patents

Positive electrode lattice of lead-acid battery, and lead-acid battery using it Download PDF

Info

Publication number
JP2004311283A
JP2004311283A JP2003105094A JP2003105094A JP2004311283A JP 2004311283 A JP2004311283 A JP 2004311283A JP 2003105094 A JP2003105094 A JP 2003105094A JP 2003105094 A JP2003105094 A JP 2003105094A JP 2004311283 A JP2004311283 A JP 2004311283A
Authority
JP
Japan
Prior art keywords
positive electrode
lead
lattice
bone
upper frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003105094A
Other languages
Japanese (ja)
Other versions
JP4461697B2 (en
Inventor
Michio Kurematsu
道男 榑松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003105094A priority Critical patent/JP4461697B2/en
Publication of JP2004311283A publication Critical patent/JP2004311283A/en
Application granted granted Critical
Publication of JP4461697B2 publication Critical patent/JP4461697B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode plate lattice excellent in corrosion resistance and to provide a lead-acid battery having an excellent life characteristic by solving problems of lattice deformation generated in corrosion of a positive electrode and life degradation due to active material dropout. <P>SOLUTION: This positive electrode lattice body 100 for this lead acid battery is manufactured by an expansion method. A tilting part decreasing height (h) as it approaches an end of an expansion mesh from a current collecting ear part is formed from the current collecting ear part 102 of an upper frame bone 101 to the end of the expansion mesh 103 in an electrode plate width center line direction; and when it is assumed that an angle formed by the extension line of the upper end of the tilting part and the extension line of the lower end of the upper frame bone, and an angle formed by a lattice bone tilting upward from an arbitrary intersecting point of the lattice bones and a lattice bone tilting downward therefrom in a unit block are θ<SB>1</SB>and θ<SB>2</SB>, respectively, θ<SB>2</SB>is set to 60°-70°, and θ<SB>1</SB>is set below 2°. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、鉛蓄電池の特に正極格子体に関するものである。
【0002】
【従来の技術】
鉛蓄電池の極板は鉛もしくは鉛合金の格子体に活物質を充填した構成を有している。この格子体としては溶融鉛を鋳型中で凝固させた鋳造格子体や圧延鉛合金シートにスリットを千鳥状に形成し、このスリットを展開したエキスパンド格子体が用いられている。エキスパンド格子体は格子体を薄型化でき、生産性に優れることから、広く用いられている。
【0003】
このエキスパンド格子体500は図5に示したようにエキスパンド網目502と一体に下枠骨503と上枠骨504が形成されており、この上枠骨504に集電耳部505を備えている。このようなエキスパンド格子体501は鋳造格子とは異なり、左右両側部に枠骨を有しておらず、さらには格子中骨形状の自由度が低いことから、集電効率の面で鋳造格子体と比較して不利であり、格子体による電圧降下もより大きく、電池の放電電圧を低下させる一因となっていた。
【0004】
さらにエキスパンド格子体500を正極に用いた場合、エキスパンド格子体500は酸化腐食を受け、枠骨を有していない2辺の延長方向、すなわち、図5の矢印A方向へ伸びる。そして伸びたエキスパンド格子体500は負極と短絡し、急激に電池の容量が低下するという問題があった。
【0005】
これらの格子体による電圧低下を抑制し、かつ腐食による伸びを抑制するため、従来から上枠骨、特に上枠骨の集電部分を太くあるいは大きくすることが有効であることが知られている(例えば、特許文献1参照)。
【0006】
また、集電耳に補強部を設けるとともに、格子体が伸びた状態で発生する上枠骨の屈曲点位置を規定しているものもある(例えば、特許文献2参照)。この特許文献2では格子体が伸びた場合に上枠骨の変形を屈曲点で優先的に発生させ、この屈曲点の位置を負極棚下に設けることによって、上枠骨が変形しても、負極端と接触短絡しない構造とするものである。
【0007】
一方、エキスパンド網目の桝目の形状としては様々なものが検討されてきた。
その中で展開寸法を長くすることは格子骨506同士が為す角度θの増加にともなってエキスパンド後の高さ寸法Tが増加するため、相対的に正極格子体500を軽量化することができる。ところが角度θが増加して60°を超えると正極格子体500が腐食した場合の伸び量dは急激に増大することがわかってきた。
角度θを小さくした場合には伸び量dを小さく抑制できるが、高さ寸法Tが短くなり、結果として正極格子体500の重量が増加し、電池を軽量化する上で障害となっていた。
【0008】
【特許文献1】
特開昭60−30057号公報
【特許文献2】
特開平8−203533号公報
【0009】
【発明が解決しようとする課題】
本発明は前記したような鉛蓄電池の正極に用いるエキスパンド格子体において、格子体の軽量化を目的として図1における格子骨が為す角度θが60°を超えた場合に急激に増加する格子体の腐食時に発生する変形と活物質脱落を抑制するものであり、この正極格子体を用いることによって、優れた寿命特性を備えた鉛蓄電池を提供するものである。
【0010】
【課題を解決するための手段】
前記した課題を解決するために、本発明の請求項1に係る発明は、鉛合金シートを網状に展開して成るエキスパンド網目を備え、このエキスパンド網目に接して設けた上枠骨に集電部を備えるとともに、前記集電部を前記エキスパンド網目の中心線から偏芯して設けた鉛蓄電池の格子体であって、前記上枠骨の前記集電耳から前記中心線方向に前記エキスパンド網目端部にかけて前記集電耳部から前記エキスパンド網目端部に近接するにしたがい高さ寸法(h)を減少させた傾斜部を設け、前記傾斜部の上端の延長線と上枠骨の下端部の延長線とが為す角をθ、前記エキスパンド網目を構成する単位桝目において、格子骨と格子骨の任意の交点部から上方に傾斜した格子骨と下方に傾斜した格子骨との為す角度をθとしたときに、前記θを60°〜75°とするとともに、θを2°以上としたことを特徴とする鉛蓄電池の正極格子体を示すものである。
【0011】
また、本発明の請求項2に係る発明は、請求項1の鉛蓄電池の正極格子体において、鉛合金シート中のSn濃度が1.2質量%以上、2.0質量%以下であることを特徴とするものである。
【0012】
また、本発明の請求項3に係る発明は、請求項1もしくは2の構成を備えた正極格子体に活物質を充填した正極板を用いた鉛蓄電池を示すものである。
【0013】
そして、本発明の請求項4に係る発明は、請求項3の鉛蓄電池において、負極板を収納した袋状セパレータと正極板とを積層した極板群を備えた鉛蓄電池を示すものである。
【0014】
【発明の実施の形態】
本発明の実施の形態による鉛蓄電池の正極格子を図面を用いて説明する。
【0015】
本発明による鉛蓄電池の正極格子体100は図1に示したように、集電耳部102を一体に設けた上枠骨101を有している。そして上枠骨101には活物質(図示せず)を充填するためのエキスパンド網目103を一体に設け、さらにこのエキスパンド網目103には極板底部に対応する下枠骨104を有している。
【0016】
エキスパンド網目103はPb−Ca−Sn合金といった鉛合金シートに千鳥状のスリットを形成し、このスリットを展開することにより形成される。集電耳部102はエキスパンド網目103の幅方向の中心線Lから偏芯して設けられている。
【0017】
上枠骨101の集電耳部102から中心線L方向にエキスパンド網目103の端部までの部分には、集電耳部102からエキスパンド網目103の端部に近接するに従い高さ寸法(h)を減少させていく傾斜部105を有している。この傾斜部105の上端の延長線Mと上枠骨101の下端の延長線Nとのなす角度をθを2°以上とする。さらに図2に示したように、エキスパンド網目103の任意の交点107に対して上方に傾斜した格子骨106aと下方に傾斜した格子骨106bとの為す角度をθを60°以上とする。この角度θは大きくする程、格子高さTが増大するため、格子体を軽量化することができるが75°を超えて大きくした場合、交点部107での亀裂が発生するため、75°以下とすることが好ましい。
【0018】
また、角度θは6°〜7°の領域で格子の変形量は殆ど変化しないこと、またこの角度を大きくすると格子重量が増大する他、負極ストラップとの距離が短くなるため7°以下とすることが好ましい。
【0019】
その後、正極格子100に活物質(図示せず)を充填し、熟成乾燥して正極板とし、この正極板を用いることによって本発明の鉛蓄電池を得ることができる。
【0020】
上記の本発明の構成を用いることによって正極格子100が腐食しても上枠骨の変形とこれによる正極−負極間の短絡および正極活物質の脱落による寿命低下を抑制することができる。
【0021】
また、本発明の構成では正極活物質の脱落を抑制できるため、従来、脱落活物質を保持するために正極板を袋状セパレータに収納していた構成に代えて、負極板を袋状セパレータに収納した構成を採用することができる。これにより正極板を袋状セパレータに収納する構成において正極板による酸化によって発生していた袋状セパレータ底部の破損という問題を回避できる。
【0022】
したがって、本発明では負極板を袋状セパレータに収納した構成をとれば、正極活物質の脱落抑制と、袋状セパレータの底部破損抑制を両立して達成することができる上で最も好ましい。
【0023】
さらに、本発明の正極格子100を構成する鉛合金の組成としてSn濃度が1.20質量%以上である、Pb−Ca−Sn合金を用いることが好ましい。なお、本発明ではCaの濃度を規定するものではないが、エキスパンド加工時の加工性を考慮してCa濃度を0.04質量%〜0.10質量%の範囲とする。
【0024】
また、本発明ではSn濃度の上限値を規定するものではないが、Caと同様、Sn濃度の増加によって、エキスパンド網目に亀裂や切断が生じるため、Sn濃度の上限を2.0質量%以下とすることが好ましい。
【0025】
正極格子100に用いるPb−Ca−Sn合金中のSn濃度を1.20質量%以上とすることにより、Pb−Ca−Sn合金の耐食性は向上し、正極格子の腐食進行を抑制でき、その分、鉛蓄電池を長寿命化できる点で有利である。ところがPb−Ca−Sn合金の引張り強度も向上するので、正極格子が腐食を受けた場合には正極格子への応力は増加する。前記した特許文献2のように、変形の屈曲点をある点に設定した場合、この屈曲点に応力が集中する。Sn濃度が1.20質量%以上のPb−Ca−Sn合金ではSn濃度が1.2質量%未満のものに比較して、この集中した応力値が急激に増大する。これにより、正極格子体の変形は急激に進行し、突然容量が低下して、電池が使用不能となる。
【0026】
本発明の構成では上記のようなSn濃度のPb−Ca−Sn合金を使用した場合でも上枠骨に加わる応力を分散させることにより、上枠骨の急激な変形を抑制することができる。
【0027】
【実施例】
次に、本発明の実施例を説明する。
【0028】
▲1▼実施例1
Pb−0.05質量%Ca−1.8質量%Sn合金の圧延シートを用いてロータリーエキスパンド法によりエキスパンド網目を作成した。次にエキスパンド網目に活物質を充填し、打抜加工して単一の極板とした後、熟成乾燥をおこなって、未化成の正極板とした。
【0029】
本実施例においては、前記した本発明の実施の形態の正極格子のθおよびθを変化させることにより、本発明例の正極格子体と比較例の正極格子体を作成した。そしてこれらの正極板を用いて表1に示す80D26型(JIS D5301)の始動用鉛蓄電池を作成した。なお、本実施例では負極板を微孔性ポリエチレンシートで作成された袋状セパレータに収納し、正極板と組み合わせて極板群を作成した。
【0030】
【表1】

Figure 2004311283
【0031】
これらの電池を40℃雰囲気中で14.8Vの定電圧で4週間連続充電し、充電終了後に電池を分解して、図3に示したように、正極格子300の上枠骨301の上方向への枠骨変形量(d)を測定した。そしてそれぞれの電池について求めた枠骨変形量(d)の比較例の電池3の枠骨変形量(d3)に対する百分率を骨変形量比(d´)として表1に示した。
【0032】
表1に示した結果から、θ1が2°〜7°、θ2が60°〜75°の範囲内で枠骨変形量比および極板湾曲量比変形量比を同時に極めて低く抑制できることがわかる。
【0033】
▲2▼実施例2
次に実施例1の表1に示した電池8および電池18に関して鉛合金シート中のSn濃度と、袋状セパレータに収納する極板の極性を変化させた電池を作成した。これらの電池を表2に示す。
【0034】
【表2】
Figure 2004311283
【0035】
これら表2に示した電池について充電と放電とを繰返して行う寿命サイクル試験を行った。試験条件は充電を40℃雰囲気中で14.8Vの定電圧充電を1週間、放電を25℃雰囲気中で300Aで5秒間の定電流放電とした。これらの充電と放電を繰返して行い、放電5秒目の電圧が7.2Vまで低下した時点を寿命サイクル数とした。これらの寿命試験の結果を図4に示す。
【0036】
図4に示した結果から、正極格子に用いたPb−Ca−Sn合金中のSn濃度が1.20質量%以上の領域では比較例の電池は急激に寿命低下している。一方、本発明例の電池ではSnが1.20質量%以上であっても良好な寿命特性を示す。中でも負極板を袋状セパレータに収納した本発明例の電池では極めて優れた寿命特性を示した。
【0037】
比較例の電池でSn濃度を1.20質量%以上としたものは正極格子の上枠骨の変形が一箇所に集中し、その点で上枠骨が折り曲がった状態となっていた。一方、本発明例ではこのようなSn濃度であっても上枠骨の変形は一箇所に集中せず、変形が分散していた。また、Sn濃度を1.20質量%未満に低下させていくにしたがい、上枠骨が一箇所で集中的に折れ曲がる変形から上枠骨全体が変形する状態に変化した。また、Sn濃度低下にしたがい、寿命サイクル数自体も低下した。したがって、本発明のよればSn濃度が1.20質量%以上の領域においても極めて良好な寿命特性を得ることができる。
【0038】
また、特に本発明では正極格子の変形抑制により、脱落活物質量も抑制できるので、従来のような正極板を袋状セパレータに収納する必要がない。したがって、正極板を袋状セパレータに収納した時の問題点、すなわち、袋状セパレータの底部の破損による正極−負極間の短絡という問題を回避できる。
【0039】
【発明の効果】
以上、説明してきたように本発明の構成によれば、腐食時に発生する格子変形と活物質脱落による電池寿命の低下という課題を解決し、長寿命な鉛蓄電池を提供できることから、工業上、極めて有用である。
【図面の簡単な説明】
【図1】本発明による正極格子体を示す図
【図2】エキスパンド網目を示す図
【図3】上枠骨の変形量測定位置を示す図
【図4】寿命試験結果を示す図
【図5】従来のエキスパンド格子体を示す図
【符号の説明】
100 正極格子体
101 上枠骨
102 集電耳部
103 エキスパンド網目
104 下枠骨
105 傾斜部
106 格子骨
106a 上方に傾斜した格子骨
106b 下方に傾斜した格子骨
107 交点部
201 エキスパンド網目
202 切断線
300 正極格子
301 上枠骨
500 エキスパンド格子体
501 上枠骨
502 エキスパンド網目
503 下枠骨
504 上枠骨
505 集電耳部
506 格子骨
L (エキスパンド網目103の)中心線
M (傾斜部105の上端の)延長線
N (上枠骨101の下端の)延長線[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lead storage battery, particularly to a positive electrode grid.
[0002]
[Prior art]
The electrode plate of the lead storage battery has a configuration in which a grid of lead or a lead alloy is filled with an active material. As the lattice body, an expanded lattice body in which slits are formed in a zigzag pattern on a cast lattice body or a rolled lead alloy sheet obtained by solidifying molten lead in a mold and the slits are developed. Expanded lattices are widely used because they can reduce the thickness of the lattice and are excellent in productivity.
[0003]
As shown in FIG. 5, the expanded lattice body 500 has a lower frame bone 503 and an upper frame bone 504 formed integrally with the expanded mesh 502, and the upper frame bone 504 is provided with a current collecting ear 505. Unlike the cast grid, such an expanded grid 501 does not have frame bones on both left and right sides, and further has a low degree of freedom in the shape of a bone in the grid. However, the voltage drop due to the grid body is larger, which is one of the causes of lowering the discharge voltage of the battery.
[0004]
Further, when the expanded lattice body 500 is used as a positive electrode, the expanded lattice body 500 is subjected to oxidative corrosion and extends in the extending direction of two sides having no frame bone, that is, in the direction of arrow A in FIG. Then, there is a problem that the expanded expanded grid body 500 is short-circuited to the negative electrode, and the capacity of the battery is rapidly reduced.
[0005]
It is conventionally known that it is effective to make the current collecting part of the upper frame bone, particularly the upper frame bone thicker or larger, in order to suppress the voltage drop due to these lattice bodies and suppress the elongation due to corrosion. (For example, see Patent Document 1).
[0006]
In addition, there is a method in which a reinforcing portion is provided on a current collecting ear and a bending point position of an upper frame bone generated when the lattice body is extended is defined (for example, see Patent Document 2). In Patent Document 2, when the lattice body is elongated, the deformation of the upper frame bone is preferentially generated at the bending point, and the position of the bending point is provided below the negative electrode shelf, so that even if the upper frame bone is deformed, the negative The structure does not cause a contact short circuit with an extreme.
[0007]
On the other hand, various shapes of the expanded mesh have been studied.
Increasing the developed dimension among them increases the height T after the expansion as the angle θ between the lattice bones 506 increases, so that the weight of the positive electrode lattice body 500 can be relatively reduced. However, it has been found that when the angle θ increases and exceeds 60 °, the amount of elongation d when the positive electrode grid body 500 is corroded rapidly increases.
When the angle θ is reduced, the amount of elongation d can be suppressed small, but the height dimension T is shortened, and as a result, the weight of the positive electrode grid body 500 is increased, which is an obstacle to reducing the weight of the battery.
[0008]
[Patent Document 1]
JP-A-60-30057 [Patent Document 2]
JP-A-8-203533
[Problems to be solved by the invention]
The present invention relates to an expanded grid used for the positive electrode of a lead-acid battery as described above, in which the grid increases rapidly when the angle θ formed by the grid bone in FIG. 1 exceeds 60 ° in order to reduce the weight of the grid. The purpose of the present invention is to provide a lead-acid battery having excellent life characteristics by using the positive electrode grid to suppress deformation and active material falling off during corrosion.
[0010]
[Means for Solving the Problems]
In order to solve the above-described problem, the invention according to claim 1 of the present invention includes an expanded mesh formed by expanding a lead alloy sheet into a net shape, and a current collector is provided on an upper frame bone provided in contact with the expanded mesh. And a grid body of a lead storage battery in which the current collector is provided eccentrically from the center line of the expanded mesh, wherein the end of the expanded mesh is arranged in the direction of the center line from the current collecting ear of the upper frame bone. And an inclined portion having a reduced height dimension (h) as it approaches the end of the expanded mesh from the collecting ear portion to the portion, and an extension line of the upper end of the inclined portion and an extension of a lower end portion of the upper frame bone. The angle between the line and the line is θ 1 , and the angle between the lattice bone inclined upward and the lattice bone inclined downward from an arbitrary intersection of the lattice bone and the lattice bone in a unit cell constituting the expanded mesh is θ 2. And the above θ With two of the 60 ° to 75 °, shows a positive electrode grid of a lead-acid battery, characterized in that the theta 1 and 2 ° or more.
[0011]
According to a second aspect of the present invention, in the positive electrode grid of the lead storage battery according to the first aspect, the Sn concentration in the lead alloy sheet is 1.2% by mass or more and 2.0% by mass or less. It is a feature.
[0012]
The invention according to claim 3 of the present invention is directed to a lead-acid battery using a positive electrode plate having the structure according to claim 1 or 2 and having a positive electrode plate filled with an active material.
[0013]
According to a fourth aspect of the present invention, there is provided the lead-acid battery according to the third aspect, further comprising an electrode group in which a bag-like separator accommodating the negative electrode plate and a positive electrode plate are stacked.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
A positive electrode grid of a lead storage battery according to an embodiment of the present invention will be described with reference to the drawings.
[0015]
As shown in FIG. 1, the positive electrode grid body 100 of the lead-acid battery according to the present invention has an upper frame bone 101 integrally provided with a current collecting ear 102. The upper frame bone 101 is provided integrally with an expanded mesh 103 for filling an active material (not shown), and the expanded mesh 103 has a lower frame bone 104 corresponding to the bottom of the electrode plate.
[0016]
The expanded mesh 103 is formed by forming a zigzag slit in a lead alloy sheet such as a Pb-Ca-Sn alloy and expanding the slit. The collecting ear 102 is provided eccentrically from the center line L in the width direction of the expanded mesh 103.
[0017]
The height from the collecting ear 102 to the end of the expanded mesh 103 in the portion from the collecting ear 102 to the end of the expanded mesh 103 in the center line L direction is closer to the height from the collecting ear 102 to the end of the expanded mesh 103 (h). Is provided. The angle between the extended line N of the lower end of the upper end of the extension line M and the upper frame bone 101 of the inclined portion 105 to the theta 1 and 2 ° or more. Further, as shown in FIG. 2, the angle θ 2 between the lattice bone 106a inclined upward and the lattice bone 106b inclined downward with respect to an arbitrary intersection 107 of the expanded mesh 103 is set to 60 ° or more. As this angle theta 2 is large, the grating height T increases, if it is possible to reduce the weight of the grid was increased beyond 75 °, since the crack at the intersection portion 107 is generated, 75 ° It is preferable to set the following.
[0018]
In addition, the angle θ 1 is such that the lattice deformation hardly changes in the range of 6 ° to 7 °. Increasing this angle increases the weight of the lattice and shortens the distance from the negative electrode strap to 7 ° or less. Is preferred.
[0019]
Thereafter, the positive electrode grid 100 is filled with an active material (not shown), aged and dried to form a positive electrode plate, and the lead-acid battery of the present invention can be obtained by using this positive electrode plate.
[0020]
By using the configuration of the present invention described above, even if the positive electrode grid 100 is corroded, it is possible to suppress the deformation of the upper frame bone, the short circuit between the positive electrode and the negative electrode, and the reduction in the life due to the fall of the positive electrode active material.
[0021]
Further, in the configuration of the present invention, since the falling off of the positive electrode active material can be suppressed, the negative electrode plate is replaced with the bag-shaped separator instead of the conventional configuration in which the positive electrode plate is stored in the bag-shaped separator to hold the dropped active material. The stored configuration can be adopted. Thus, in the configuration in which the positive electrode plate is housed in the bag-shaped separator, the problem of damage to the bottom of the bag-shaped separator caused by oxidation by the positive electrode plate can be avoided.
[0022]
Therefore, in the present invention, the configuration in which the negative electrode plate is housed in the bag-shaped separator is the most preferable because both the suppression of the falling of the positive electrode active material and the suppression of the damage to the bottom of the bag-shaped separator can be achieved.
[0023]
Furthermore, it is preferable to use a Pb-Ca-Sn alloy having a Sn concentration of 1.20% by mass or more as a composition of the lead alloy constituting the positive electrode grid 100 of the present invention. In the present invention, the Ca concentration is not specified, but the Ca concentration is set in the range of 0.04% by mass to 0.10% by mass in consideration of the processability during the expanding process.
[0024]
Further, in the present invention, the upper limit of the Sn concentration is not specified, but as in the case of Ca, an increase in the Sn concentration causes cracks or breaks in the expanded network, so that the upper limit of the Sn concentration is set to 2.0% by mass or less. Is preferred.
[0025]
By setting the Sn concentration in the Pb-Ca-Sn alloy used for the positive electrode grid 100 to 1.20 mass% or more, the corrosion resistance of the Pb-Ca-Sn alloy is improved, and the progress of corrosion of the positive electrode grid can be suppressed. This is advantageous in that the life of the lead storage battery can be extended. However, since the tensile strength of the Pb-Ca-Sn alloy is also improved, the stress on the positive electrode grid increases when the positive electrode grid is corroded. When the bending point of the deformation is set at a certain point as in Patent Document 2 described above, stress concentrates at this bending point. In a Pb-Ca-Sn alloy having a Sn concentration of 1.20% by mass or more, the concentrated stress value increases sharply as compared with a Pb-Ca-Sn alloy having a Sn concentration of less than 1.2% by mass. As a result, the deformation of the positive electrode grid body progresses rapidly, the capacity suddenly decreases, and the battery becomes unusable.
[0026]
In the configuration of the present invention, even when the Pb-Ca-Sn alloy having the Sn concentration as described above is used, the rapid deformation of the upper frame bone can be suppressed by dispersing the stress applied to the upper frame bone.
[0027]
【Example】
Next, examples of the present invention will be described.
[0028]
(1) Example 1
Using a rolled sheet of Pb-0.05% by mass Ca-1.8% by mass Sn alloy, an expanded network was formed by a rotary expanding method. Next, the expanded mesh was filled with an active material and punched to form a single electrode plate, which was then aged and dried to obtain an unformed positive electrode plate.
[0029]
In the present example, the positive electrode lattice of the present invention and the positive electrode lattice of the comparative example were produced by changing θ 1 and θ 2 of the positive electrode lattice of the above-described embodiment of the present invention. Using these positive plates, a lead-acid storage battery of type 80D26 (JIS D5301) shown in Table 1 was prepared. In this example, the negative electrode plate was housed in a bag-shaped separator made of a microporous polyethylene sheet, and was combined with the positive electrode plate to form an electrode plate group.
[0030]
[Table 1]
Figure 2004311283
[0031]
These batteries were continuously charged at a constant voltage of 14.8 V for 4 weeks in a 40 ° C. atmosphere, and after the charging was completed, the batteries were disassembled and, as shown in FIG. The amount of frame bone deformation (d) was measured. Table 1 shows the percentage of the frame bone deformation (d) obtained for each battery with respect to the frame bone deformation (d3) of the battery 3 of the comparative example as a bone deformation ratio (d ').
[0032]
From the results shown in Table 1, it can be seen that the frame bone deformation amount ratio and the electrode plate bending amount ratio deformation amount ratio can be extremely low at the same time when θ1 is in the range of 2 ° to 7 ° and θ2 is in the range of 60 ° to 75 °.
[0033]
(2) Example 2
Next, regarding the batteries 8 and 18 shown in Table 1 of Example 1, batteries in which the Sn concentration in the lead alloy sheet and the polarity of the electrode plate housed in the bag-shaped separator were changed. Table 2 shows these batteries.
[0034]
[Table 2]
Figure 2004311283
[0035]
For the batteries shown in Table 2, a life cycle test in which charging and discharging were repeated was performed. The test conditions were a 14.8 V constant voltage charge in a 40 ° C. atmosphere for one week, and a constant current discharge at 300 A for 5 seconds in a 25 ° C. atmosphere. These charging and discharging were repeatedly performed, and the point in time when the voltage at the 5th second of discharging decreased to 7.2 V was defined as the number of life cycles. FIG. 4 shows the results of these life tests.
[0036]
From the results shown in FIG. 4, in the region where the Sn concentration in the Pb-Ca-Sn alloy used for the positive electrode grid is 1.20% by mass or more, the life of the battery of the comparative example is rapidly reduced. On the other hand, the battery of the present invention example shows good life characteristics even when Sn is 1.20% by mass or more. Among them, the battery of the present invention in which the negative electrode plate was housed in the bag-like separator exhibited extremely excellent life characteristics.
[0037]
In the battery of the comparative example in which the Sn concentration was 1.20% by mass or more, the deformation of the upper frame bone of the positive electrode grid was concentrated at one point, and the upper frame bone was bent at that point. On the other hand, in the example of the present invention, even with such Sn concentration, the deformation of the upper frame bone was not concentrated at one place, and the deformation was dispersed. Further, as the Sn concentration was reduced to less than 1.20% by mass, the state where the upper frame bone was intensively bent at one location changed to a state where the entire upper frame bone was deformed. Further, as the Sn concentration decreased, the number of life cycles itself decreased. Therefore, according to the present invention, extremely good life characteristics can be obtained even in a region where the Sn concentration is 1.20% by mass or more.
[0038]
In particular, in the present invention, since the amount of the falling-off active material can be suppressed by suppressing the deformation of the positive electrode grid, it is not necessary to store the positive electrode plate in the bag-like separator as in the conventional case. Therefore, it is possible to avoid a problem when the positive electrode plate is stored in the bag-shaped separator, that is, a problem of a short circuit between the positive electrode and the negative electrode due to breakage of the bottom of the bag-shaped separator.
[0039]
【The invention's effect】
As described above, according to the configuration of the present invention, it is possible to provide a long-life lead-acid battery by solving the problem of battery life reduction due to lattice deformation and active material falling off at the time of corrosion. Useful.
[Brief description of the drawings]
1 is a view showing a positive electrode grid body according to the present invention; FIG. 2 is a view showing an expanded mesh; FIG. 3 is a view showing a measurement position of an amount of deformation of an upper frame bone; FIG. 4 is a view showing a life test result; FIG. 1 shows a conventional expanded lattice body.
REFERENCE SIGNS LIST 100 Positive grid member 101 Upper frame bone 102 Current collecting ear 103 Expanded mesh 104 Lower frame bone 105 Inclined section 106 Grid bone 106a Grid bone 106b inclined upward Grid lattice 107 inclined downward 107 Intersection 201 Expanded mesh 202 Cutting line 300 Positive lattice 301 Upper frame bone 500 Expanded lattice body 501 Upper frame bone 502 Expanded mesh 503 Lower frame bone 504 Upper frame bone 505 Current collecting ear 506 Grid bone L Center line M (of expanded mesh 103) Upper end of inclined portion 105 ) Extension line N Extension line (at the lower end of upper frame bone 101)

Claims (4)

鉛合金シートを網状に展開して成るエキスパンド網目を備え、このエキスパンド網目に接して設けた上枠骨に集電部を備えるとともに、前記集電耳部を前記エキスパンド網目の中心線から偏芯して設けた鉛蓄電池の格子体であって、前記上枠骨の前記集電耳から前記中心線方向に前記エキスパンド網目端部かけて前記集電耳部から前記エキスパンド網目端部に近接するにしたがい高さ寸法(h)を減少させた傾斜部を設け、前記傾斜部の上端の延長線と上枠骨の下端部の延長線とが為す角をθ、前記エキスパンド網目を構成する単位桝目において、格子骨の任意の交点部から上方に傾斜した格子骨と下方に傾斜した格子骨との為す角度をθとしたときに、前記θを60°〜75°とするとともに、θを2°以上としたことを特徴とする鉛蓄電池の正極格子体。An expanded mesh formed by expanding a lead alloy sheet into a mesh is provided, and a current collector is provided on an upper frame bone provided in contact with the expanded mesh, and the current collecting ear is eccentric from a center line of the expanded mesh. A grid body of a lead-acid storage battery provided in a manner extending from the current collecting ear of the upper frame bone to the expanded mesh end in the center line direction, as approaching from the current collecting ear to the expanded mesh end. An inclined portion having a reduced height dimension (h) is provided, and the angle formed by the extension of the upper end of the inclined portion and the extension of the lower end of the upper frame bone is θ 1 , and in a unit cell constituting the expanded mesh, the angle formed between the lattice bone which is inclined to the lattice bone and lower inclined upwardly from any intersection of the lattice bone when the theta 2, the theta 2 with a 60 ° to 75 °, the theta 1 2 ° or more Positive grid for lead-acid battery. 前記鉛合金シート中のSn濃度が1.2質量%以上、2.0質量%以下であることを特徴とする請求項1に記載の鉛蓄電池の正極格子体。The positive electrode grid body according to claim 1, wherein the Sn concentration in the lead alloy sheet is 1.2% by mass or more and 2.0% by mass or less. 請求項1もしくは2に記載の正極格子体に活物質を充填した正極板を用いたことを特徴とする鉛蓄電池。A lead-acid battery using a positive electrode plate in which the positive electrode grid according to claim 1 or 2 is filled with an active material. 負極板を収納した袋状セパレータと正極板とを積層した極板群を備えた請求項3に記載の鉛蓄電池。The lead-acid battery according to claim 3, further comprising an electrode group in which a bag-like separator accommodating the negative electrode plate and a positive electrode plate are stacked.
JP2003105094A 2003-04-09 2003-04-09 Cathode grid of lead-acid battery and lead-acid battery using the same Expired - Lifetime JP4461697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003105094A JP4461697B2 (en) 2003-04-09 2003-04-09 Cathode grid of lead-acid battery and lead-acid battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003105094A JP4461697B2 (en) 2003-04-09 2003-04-09 Cathode grid of lead-acid battery and lead-acid battery using the same

Publications (2)

Publication Number Publication Date
JP2004311283A true JP2004311283A (en) 2004-11-04
JP4461697B2 JP4461697B2 (en) 2010-05-12

Family

ID=33467710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003105094A Expired - Lifetime JP4461697B2 (en) 2003-04-09 2003-04-09 Cathode grid of lead-acid battery and lead-acid battery using the same

Country Status (1)

Country Link
JP (1) JP4461697B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016126924A (en) * 2015-01-05 2016-07-11 株式会社Gsユアサ Control valve type lead-acid storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016126924A (en) * 2015-01-05 2016-07-11 株式会社Gsユアサ Control valve type lead-acid storage battery

Also Published As

Publication number Publication date
JP4461697B2 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
JP3239556B2 (en) Lead storage battery
JP4374867B2 (en) Lead-acid battery positive grid and lead-acid battery using the same
JP4691962B2 (en) Lead acid battery
JP5521503B2 (en) Lead acid battery
JP2000173575A (en) Lead-acid battery
JP2004311283A (en) Positive electrode lattice of lead-acid battery, and lead-acid battery using it
JP4385441B2 (en) Lead acid battery
JP2560770B2 (en) Expanded grid for lead-acid battery and manufacturing method thereof
JP4092816B2 (en) Lattice body for lead acid battery and method for manufacturing the same
JP2004031041A (en) Grid for lead-acid battery
JP4896392B2 (en) Lead acid battery
JP4385557B2 (en) Expanded grid for battery and lead-acid battery using the same
JP2000340235A (en) Lead-acid battery
JP4224756B2 (en) Lead acid battery
JP4654477B2 (en) Cylindrical sealed lead-acid battery
JP2004127800A (en) Lead-acid battery
JP5025317B2 (en) Lattice substrate for lead acid battery
JP2001243958A (en) Lead storage battery
JP3216220B2 (en) Lead storage battery
JP2003163008A (en) Lead storage battery
JP2004311357A (en) Lead-acid storage battery
JP2003100301A (en) Expand grid body for positive pole and method of manufacturing the same
JP2000348732A (en) Lead-acid battery and manufacture therefor
JP2003132897A (en) Method for manufacturing expand type electrode plate for positive electrode
JP2003157853A (en) Manufacturing method for lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060307

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4461697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term