JP2004309203A - Rotary encoder - Google Patents

Rotary encoder Download PDF

Info

Publication number
JP2004309203A
JP2004309203A JP2003100004A JP2003100004A JP2004309203A JP 2004309203 A JP2004309203 A JP 2004309203A JP 2003100004 A JP2003100004 A JP 2003100004A JP 2003100004 A JP2003100004 A JP 2003100004A JP 2004309203 A JP2004309203 A JP 2004309203A
Authority
JP
Japan
Prior art keywords
emitting element
voltage
light emitting
data
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003100004A
Other languages
Japanese (ja)
Inventor
Hirozo Tagami
博三 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003100004A priority Critical patent/JP2004309203A/en
Publication of JP2004309203A publication Critical patent/JP2004309203A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Transform (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary encoder for discriminating the presence or absence of the operation failure of a light-emitting element immediately after power is charged even without rotation. <P>SOLUTION: The rotary encoder comprises a load resistor 31 connected to an operating voltage source, and the light-emitting element 32, and the operating current of the light-emitting element 32 is determined by the value of the load resistor 31. A first voltage detector 33 is set to an operating lower-limit value. When the forward voltage of the light-emitting element 32 is equal to or more than a first specific voltage, and less than the first specific voltage, "H" and "L" are outputted, respectively. Conversely, a second voltage detector 34 is set to an operation upper-limit value. When the forward voltage of the light-emitting element 32 is equal to or more than a second specific voltage, and less than the second specific value, "H" and "L" are outputted, respectively. A logic circuit 35 outputs "L" (normal) and "H"(abnormal) as a light-emitting element operation flag when the forward voltage in the light-emitting element 32 is equal to or more than an operation lower-limit value and less than an operation upper-limit value, and the others, respectively, according to the output of the first and second voltage detectors 33, 34. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、双方向シリアル通信手段により回転体の回転位置情報を伝達するロータリーエンコーダに関するものである。
【0002】
【従来の技術】
近年、モータ保守の容易さからACサーボモータの需要が増加しており、ACサーボモータに組込まれて使用される位置検出器として信号線を少なくしたシリアル通信タイプのロータリーエンコーダが増加している。
【0003】
このような中、発光素子の発光量が温度などの外的要因で変動しても受光素子の受光量をフィードバックして所定の受光量に自動的に補正し、信頼性の高いロータリーエンコーダを得るものが知られている(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開2000−193492号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来の構成は、発光量が変動する場合の補正には効果的であるが、受光量は角度位置によっても変動するため、受光量の最大値と最小値を把握するには軸を回転させる必要がある。
【0006】
これは、ロータリーエンコーダの電源を投入しただけでは、受光量の検出ができないことを表わしており、仮に発光素子に異常があっても一旦回転させなければ異常が検出できず、課題があった。
【0007】
本発明は上記従来の課題を解決するもので、回転させなくても電源投入の直後に発光素子の動作異常の有無を判別できるロータリーエンコーダを提供することを目的とする。
【0008】
【課題を解決するための手段】
上記の課題を解決するために本発明のロータリーエンコーダは、モータの回転に応じて回転位置データを出力する原信号部と、原信号部の発光素子の順方向電圧を測定し所定の電圧範囲内であるかを判別して発光素子の動作状態を検出するステータス検出部と、外部からのデータ送信要求信号であるシリアル信号を受信すると前記原信号部とステータス検出部のデータをシリアルデータに変換し出力するデータ通信部とを備えたものである。
【0009】
この構成によって、エンコーダの電源投入直後で回転軸が静止状態であっても発光素子の動作異常(発光素子動作過電流による順方向電圧降下大、発光素子動作電流不足による順方向電圧降下小、発光素子動作部の配線オープン故障などの異常)を容易に検出することができる。
【0010】
【発明の実施の形態】
上記の課題を解決するために請求項1に記載のロータリーエンコーダは、モータの回転に応じて回転位置データを出力する原信号部と、原信号部の発光素子の順方向電圧を測定し所定の電圧範囲内であるかを判別して発光素子の動作状態を検出するステータス検出部と、外部からのデータ送信要求信号であるシリアル信号を受信すると前記原信号部とステータス検出部のデータをシリアルデータに変換し出力するデータ通信部とを備えたものである。
【0011】
また、請求項2あるいは請求項3に記載のロータリーエンコーダは、ステータス検出部において、発光素子の順方向電圧をアナログ−デジタル変換器で検出し、デジタル変換された値が所定の範囲内であるかを論理処理で判定する。あるいは、発光素子の順方向電圧を動作下限値に設定された第1の電圧比較器と動作上限値に設定された第2の電圧比較器で比較し、第1の電圧比較器と第2の電圧比較器の出力論理値(HまたはL)に応じて発光素子の動作状態を検出するものである。
【0012】
このように、エンコーダの電源投入時に、発光素子の順方向電圧を測定し、所定値と比較することで発光素子の動作異常の有無を検出することができる。
【0013】
【実施例】
以下、本発明の実施例について、図面を参照して説明する。
【0014】
図1において、原信号部11は、モータの回転に応じて回転位置データを出力する。ステータス検出部12は、原信号部11の発光素子の順方向電圧を測定し電圧異常の有無を検出する。データ通信部13は、外部からのデータ送信要求信号であるシリアル信号を受信し、原信号部11とステータス検出部12のデータをシリアルデータに変換し出力する。
【0015】
図2は原信号部11の動作を説明するもので、1回転360°内の絶対位置をmbitの分解能でCCW回転時単調増加、CW回転時単調減少の0から2−1のデータである1回転データとモータの回転回数でありCCW回転時増加変化、CW回転時減少変化となる多回転データを出力する。
【0016】
図3は原信号部11の一部である発光素子駆動回路部と、ステータス検出部12の構成例である。
【0017】
発光素子駆動回路部は、動作電圧源に接続した負荷抵抗器31と発光素子(LED)32で構成され、負荷抵抗器31の値によって発光素子32の動作電流を決める。ステータス検出部12は、第1の電圧検出器33、第2の電圧検出器34および論理回路35で構成される。
【0018】
第1の電圧検出器33は、動作下限値に設定され、発光素子32の順方向電圧が第1の所定電圧以上であれば“H”を、未満であれば“L”を出力する。一方、第2の電圧検出器34は、動作上限値に設定され、発光素子32の順方向電圧が第2の所定電圧以上であれば“H”を、未満であれば“L”を出力する。
【0019】
論理回路35は、第1の電圧検出器33および第2の電圧検出器34の出力に応じて、発光素子32の順方向電圧が動作下限値以上かつ動作上限値未満であれば発光素子動作フラグとして“L”(正常)を出力し、それ以外は“H”(異常)を出力する。
【0020】
ここで、第1の電圧検出器33および第2の電圧検出器34には、所定の電圧値に対して“H”もしくは“L”を出力する市販の電圧検出ICや基準電圧源とコンパレータICとを組み合わせたウィンドウコンパレータやアナログ−デジタル変換器などを用いることができる。
【0021】
図4は発光素子(LED)の動作電流と順方向電圧との関係を示すものであり、LEDの動作電流が大きくなるほど順方向電圧も大きくなる特性をもつ。
【0022】
図5はデータ通信部の構成例であり、双方向性バス51は、外部とのシリアルデータの送信・受信の切替えを行うラインドライバレシーバからなる。受信器52は、外部からのデータ送信要求信号であるシリアル信号を受信し正常受信完了後に送信開始信号を出力する。送信器53は、送信開始信号により原信号部とステータス検出部からのデータと、これらのデータより生成された通信誤り検出データとをシリアルデータに変換する。
【0023】
図6はシリアルデータ(信号)の構成例であり、サーボアンプに相当する外部からエンコーダへの要求信号であるRX信号にはデータ送信要求を示すコマンド部で構成され、一方エンコーダから外部への送信信号であるTX信号にはエンコーダで受信した前記コマンド部と送信データ部とコマンド部と送信データ部より生成された送信用誤り検出データ部より構成される。
【0024】
以下、図面を参照しながら詳細な動作の説明を行う。
【0025】
図4において、発光素子(LED)の正常な動作電流の範囲をI1以上I2未満とすると、発光素子の順方向電圧はV1以上V2未満となる。
【0026】
ここで、図3の発光素子駆動回路がオープン状態で故障した場合、発光素子32に電流が流れず、オープンの位置によって、発光素子の順方向電圧はV1未満もしくはV2以上となる。
【0027】
また、発光素子駆動回路の負荷抵抗器31の値が変化した場合、例えば、抵抗値が大きく変化(発光素子32の電流=小)もしくは小さく変化(発光素子32の電流=大)した場合も同様にして発光素子32の順方向電圧はV1未満もしくはV2以上となる。
【0028】
さらに、経年変化により劣化して発光素子の順方向電圧が変化しても同様にして発光素子動作の異常を検知できる。
【0029】
いうまでもなく異常の有無の検知は、ロータリーエンコーダの回転の有無に関わらず検知することができる。
【0030】
以上のようにロータリーエンコーダに使用する発光素子もしくは発光素子駆動回路に異常が発生した場合、位置や回転の有無に関わらず発光素子動作の異常を検出するとともにこの異常を上位システムへシリアルデータにて伝達することができる。
【0031】
【発明の効果】
上記の実施例から明らかなように請求項1から請求項3に記載の発明によれば、発光素子の順方向電圧を測定することで、エンコーダの回転動作を伴うことなくエンコーダ電源をONした時点で異常を検出できるためシステムの早期緊急停止が実現でき、信頼性の高いモータ駆動システムを提供できる。
【図面の簡単な説明】
【図1】本発明のロータリーエンコーダ要部のブロック図
【図2】本発明の原信号部データの説明図
【図3】本発明の実施例における原信号部の一部とステータス検出部のブロック図
【図4】本発明における発光素子の動作説明図
【図5】本発明の実施例におけるデータ通信部のブロック図
【図6】本発明の実施例におけるシリアルデータの構成を説明する図
【符号の説明】
11 原信号部
12 ステータス検出部
13 データ通信部
31 負荷抵抗器
32 発光素子
33 第1の電圧検出器
34 第2の電圧検出器
35 論理回路
51 双方向性バス
52 受信器
53 送信器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rotary encoder that transmits rotational position information of a rotator by bidirectional serial communication means.
[0002]
[Prior art]
In recent years, demand for AC servomotors has increased due to ease of motor maintenance, and serial communication type rotary encoders having fewer signal lines as position detectors incorporated in AC servomotors have been increasing.
[0003]
Under such circumstances, even if the light emission amount of the light emitting element fluctuates due to an external factor such as temperature, the light reception amount of the light receiving element is fed back and automatically corrected to a predetermined light reception amount to obtain a highly reliable rotary encoder. Some are known (for example, see Patent Document 1).
[0004]
[Patent Document 1]
JP 2000-193492 A [0005]
[Problems to be solved by the invention]
However, the above-described conventional configuration is effective for correction when the light emission amount fluctuates. However, since the light reception amount also fluctuates depending on the angular position, the axis for grasping the maximum value and the minimum value of the light reception amount is important. Need to rotate.
[0006]
This means that it is impossible to detect the amount of received light only by turning on the power of the rotary encoder. Even if the light emitting element has an abnormality, the abnormality cannot be detected unless the light emitting element is once rotated.
[0007]
An object of the present invention is to solve the above-mentioned conventional problem, and an object of the present invention is to provide a rotary encoder that can determine whether or not there is an operation abnormality of a light emitting element immediately after power-on without rotating.
[0008]
[Means for Solving the Problems]
In order to solve the above problem, a rotary encoder according to the present invention measures a forward voltage of a light emitting element of an original signal section that outputs rotational position data according to rotation of a motor, and a light emitting element of the original signal section within a predetermined voltage range. And a status detection unit for detecting the operating state of the light emitting element by determining whether the serial signal is a data transmission request signal from the outside, and converts the data of the original signal unit and the status detection unit into serial data. And a data communication unit for outputting.
[0009]
With this configuration, even when the rotary shaft is in a stationary state immediately after turning on the power of the encoder, abnormal operation of the light emitting element (a large forward voltage drop due to a light emitting element operating overcurrent, a small forward voltage drop due to a shortage of the light emitting element operating current, light emission) An abnormality such as a wiring open failure of the element operation section) can be easily detected.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to solve the above problem, a rotary encoder according to claim 1 measures an original signal unit that outputs rotational position data in accordance with rotation of a motor, and measures a forward voltage of a light emitting element of the original signal unit to obtain a predetermined signal. A status detection unit that determines whether the voltage is within a voltage range and detects an operation state of the light emitting element, and when receiving a serial signal that is a data transmission request signal from the outside, converts the data of the original signal unit and the status detection unit into serial data. And a data communication unit that converts the data into an output.
[0011]
Also, in the rotary encoder according to claim 2 or 3, in the status detection unit, the forward voltage of the light emitting element is detected by the analog-to-digital converter, and the digitally converted value is within a predetermined range. Is determined by logical processing. Alternatively, the forward voltage of the light emitting element is compared by the first voltage comparator set to the operation lower limit and the second voltage comparator set to the operation upper limit, and the first voltage comparator and the second voltage comparator are set to the second voltage comparator. The operation state of the light emitting element is detected according to the output logic value (H or L) of the voltage comparator.
[0012]
In this way, when the power of the encoder is turned on, the forward voltage of the light emitting element is measured and compared with a predetermined value, so that the presence or absence of an abnormal operation of the light emitting element can be detected.
[0013]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0014]
In FIG. 1, an original signal unit 11 outputs rotation position data according to rotation of a motor. The status detection unit 12 measures the forward voltage of the light emitting element of the original signal unit 11 and detects whether there is a voltage abnormality. The data communication unit 13 receives a serial signal as a data transmission request signal from the outside, converts the data of the original signal unit 11 and the status detection unit 12 into serial data, and outputs the serial data.
[0015]
FIG. 2 illustrates the operation of the original signal unit 11 and is data of 0 to 2 m -1 in which the absolute position within 360 ° per rotation is monotonically increased at CCW rotation and monotonically decreased at CW rotation at mbit resolution. One rotation data and the number of rotations of the motor, multi-rotation data which is an increase change during CCW rotation and a decrease change during CW rotation are output.
[0016]
FIG. 3 is a configuration example of a light emitting element drive circuit unit that is a part of the original signal unit 11 and a status detection unit 12.
[0017]
The light emitting element drive circuit section includes a load resistor 31 and a light emitting element (LED) 32 connected to an operating voltage source, and determines the operating current of the light emitting element 32 according to the value of the load resistor 31. The status detection unit 12 includes a first voltage detector 33, a second voltage detector 34, and a logic circuit 35.
[0018]
The first voltage detector 33 is set to the operation lower limit, and outputs “H” when the forward voltage of the light emitting element 32 is equal to or higher than the first predetermined voltage, and outputs “L” when the forward voltage is lower than the first predetermined voltage. On the other hand, the second voltage detector 34 is set to the operation upper limit value, and outputs “H” when the forward voltage of the light emitting element 32 is equal to or higher than the second predetermined voltage, and outputs “L” when the forward voltage is lower than the second predetermined voltage. .
[0019]
The logic circuit 35 determines a light emitting element operation flag if the forward voltage of the light emitting element 32 is equal to or more than the lower limit of operation and less than the upper limit of operation in accordance with the outputs of the first voltage detector 33 and the second voltage detector 34. Is output as "L" (normal), and otherwise "H" (abnormal).
[0020]
Here, the first voltage detector 33 and the second voltage detector 34 include a commercially available voltage detection IC that outputs “H” or “L” for a predetermined voltage value, a reference voltage source, and a comparator IC. , A window comparator, an analog-digital converter, or the like, which combines the above.
[0021]
FIG. 4 shows the relationship between the operating current of the light emitting element (LED) and the forward voltage. The characteristic is that the forward voltage increases as the operating current of the LED increases.
[0022]
FIG. 5 shows an example of the configuration of the data communication unit. The bidirectional bus 51 includes a line driver receiver for switching between transmission and reception of serial data with the outside. The receiver 52 receives a serial signal as a data transmission request signal from the outside, and outputs a transmission start signal after normal reception is completed. The transmitter 53 converts the data from the original signal section and the status detection section and the communication error detection data generated from these data into serial data by the transmission start signal.
[0023]
FIG. 6 shows a configuration example of serial data (signal). An RX signal corresponding to a servo amplifier, which is a request signal from the outside to the encoder, includes a command portion indicating a data transmission request. The TX signal, which is a signal, includes the command part, the transmission data part, the command part, and the transmission error detection data part generated from the transmission data part received by the encoder.
[0024]
Hereinafter, detailed operations will be described with reference to the drawings.
[0025]
In FIG. 4, when the normal operating current range of the light emitting element (LED) is not less than I1 and less than I2, the forward voltage of the light emitting element is not less than V1 and less than V2.
[0026]
Here, when the light emitting element drive circuit in FIG. 3 fails in the open state, no current flows to the light emitting element 32, and the forward voltage of the light emitting element becomes less than V1 or more than V2 depending on the open position.
[0027]
The same applies when the value of the load resistor 31 of the light emitting element drive circuit changes, for example, when the resistance value changes greatly (current of the light emitting element 32 = small) or changes small (current of the light emitting element 32 = large). Thus, the forward voltage of the light emitting element 32 is lower than V1 or higher than V2.
[0028]
Furthermore, even if the forward voltage of the light emitting element changes due to deterioration over time, an abnormality in the operation of the light emitting element can be similarly detected.
[0029]
Needless to say, the presence / absence of the abnormality can be detected regardless of the presence / absence of rotation of the rotary encoder.
[0030]
As described above, if an error occurs in the light emitting element or light emitting element drive circuit used for the rotary encoder, the abnormality of the light emitting element operation is detected regardless of the position or rotation, and this abnormality is sent to the host system by serial data. Can be transmitted.
[0031]
【The invention's effect】
As is apparent from the above embodiments, according to the inventions of claims 1 to 3, the forward voltage of the light emitting element is measured, and the time when the encoder power supply is turned on without involving the rotation operation of the encoder is measured. Therefore, an emergency stop of the system can be realized early, and a highly reliable motor drive system can be provided.
[Brief description of the drawings]
FIG. 1 is a block diagram of a main part of a rotary encoder of the present invention. FIG. 2 is an explanatory diagram of original signal part data of the present invention. FIG. 3 is a block diagram of a part of an original signal part and a status detector in an embodiment of the present invention. FIG. 4 is an explanatory diagram of the operation of the light emitting element in the present invention. FIG. 5 is a block diagram of a data communication unit in the embodiment of the present invention. FIG. 6 is a diagram for explaining the configuration of serial data in the embodiment of the present invention. Description]
Reference Signs List 11 original signal section 12 status detection section 13 data communication section 31 load resistor 32 light emitting element 33 first voltage detector 34 second voltage detector 35 logic circuit 51 bidirectional bus 52 receiver 53 transmitter

Claims (3)

モータの回転に応じて回転位置データを出力する原信号部と、原信号部の発光素子の順方向電圧を測定し所定の電圧範囲内であるかを判別して発光素子の動作状態を検出するステータス検出部と、外部からのデータ送信要求信号であるシリアル信号を受信すると前記原信号部とステータス検出部のデータをシリアルデータに変換し出力するデータ通信部とを備えたロータリーエンコーダ。The operation state of the light emitting element is detected by measuring the forward voltage of the light emitting element of the original signal part that outputs the rotational position data according to the rotation of the motor and determining whether the voltage is within a predetermined voltage range. A rotary encoder comprising: a status detection unit; and a data communication unit that, when receiving a serial signal as an external data transmission request signal, converts the data of the original signal unit and the status detection unit into serial data and outputs the serial data. ステータス検出部において、発光素子の順方向電圧をアナログ−デジタル変換器で検出し、デジタル変換された値が所定の範囲内であるかを論理処理で判定する請求項1記載のロータリーエンコーダ。2. The rotary encoder according to claim 1, wherein the status detector detects a forward voltage of the light emitting element by an analog-to-digital converter, and determines by logic processing whether the digitally converted value is within a predetermined range. ステータス検出部において、発光素子の順方向電圧を動作下限値に設定された第1の電圧比較器と動作上限値に設定された第2の電圧比較器で比較し、第1の電圧比較器と第2の電圧比較器の出力論理値(HまたはL)に応じて発光素子の動作状態を検出する請求項1記載のロータリーエンコーダ。In the status detection unit, the forward voltage of the light emitting element is compared by a first voltage comparator set to an operation lower limit value and a second voltage comparator set to an operation upper limit value. 2. The rotary encoder according to claim 1, wherein an operation state of the light emitting element is detected according to an output logic value (H or L) of the second voltage comparator.
JP2003100004A 2003-04-03 2003-04-03 Rotary encoder Pending JP2004309203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003100004A JP2004309203A (en) 2003-04-03 2003-04-03 Rotary encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003100004A JP2004309203A (en) 2003-04-03 2003-04-03 Rotary encoder

Publications (1)

Publication Number Publication Date
JP2004309203A true JP2004309203A (en) 2004-11-04

Family

ID=33464260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003100004A Pending JP2004309203A (en) 2003-04-03 2003-04-03 Rotary encoder

Country Status (1)

Country Link
JP (1) JP2004309203A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241514A (en) * 2007-03-28 2008-10-09 Matsushita Electric Ind Co Ltd Optical encoder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241514A (en) * 2007-03-28 2008-10-09 Matsushita Electric Ind Co Ltd Optical encoder

Similar Documents

Publication Publication Date Title
US7471080B2 (en) Magnetic absolute encoder
EP1602991B1 (en) Method of detecting abnormality of R/D converter
JP4779572B2 (en) Temperature detection circuit and temperature detection method
WO2020137858A1 (en) Vehicle-mounted equipment control device
US10274944B2 (en) Motor control system, control method, encoder, and motor controller
JP2004309203A (en) Rotary encoder
JP2008203175A (en) Rotary encoder
JP6641920B2 (en) Power converter
US11400876B2 (en) Sensor information output apparatus and vehicle control apparatus
JP4240607B2 (en) Resolver disconnection detection circuit
US20050104749A1 (en) Encoder
JP2003315099A (en) Multirotation encoder
JP5043639B2 (en) Rotary encoder
JP4419225B2 (en) Rotary encoder
US20240069077A1 (en) Re-configurable sensor device and method for reconfiguring a sensor device using a pulse modulated signal
JP2019158577A (en) Absolute encoder failure detection device
US20020072877A1 (en) Position measuring device and method for the start-up of a position measuring device
KR101967314B1 (en) Input signal diagnosis circuit and input signal diagnosis apparatus comprising the same
JP3564550B2 (en) Pulse encoder connection failure detection circuit
JP2526814B2 (en) Data transmission system
US20230305048A1 (en) Diverse sensor measurement with analog and digital output
JPH11325957A (en) Absolute code adapter
KR20080090866A (en) Method and control apparatus for checking fail of position sensor for motor and performing fail-safe
JP2009156840A (en) Rotary encoder
JP2008151519A (en) Abnormality detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050907

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407