JP2008203175A - Rotary encoder - Google Patents

Rotary encoder Download PDF

Info

Publication number
JP2008203175A
JP2008203175A JP2007041899A JP2007041899A JP2008203175A JP 2008203175 A JP2008203175 A JP 2008203175A JP 2007041899 A JP2007041899 A JP 2007041899A JP 2007041899 A JP2007041899 A JP 2007041899A JP 2008203175 A JP2008203175 A JP 2008203175A
Authority
JP
Japan
Prior art keywords
data
unit
light
emitting element
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007041899A
Other languages
Japanese (ja)
Inventor
Kenji Komai
賢次 古米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007041899A priority Critical patent/JP2008203175A/en
Publication of JP2008203175A publication Critical patent/JP2008203175A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary encoder capable of estimating the remaining lifetime, based on the degree of reduction in the luminous energy in a light-emitting element, by a data request from the outside. <P>SOLUTION: This rotary encoder is provided with a DC component computing part 12 for calculating the DC component of the quantity of light received measured by a photoreception element of an original signal part 11, an A/D conversion part 13 for A/D-converting the value calculated by the DC component computing part 12, a storage part 14 for storing an initial quantity of light received computed by the DC component computing part 12 and the A/D conversion part 13; a status detecting part 15 for comparing the each time measured photoreception quantity with the initial photoreception quantity computed by the DC component computing part 12 and the A/D conversion part 13, to calculate a luminous energy reduction rate; and a data communication part 16 for converting data of the original signal part 11 and the status detecting part 15 into serial data, when a serial signal of a data transmission request signal from the outside is received, followed to be output, and a specified data request signal is input into the data communication part 16 to detect the luminous energy reduction rate, irrespective of the rotation of a motor. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光学式のロータリーエンコーダに関し、特に、電源投入の直後に発光素子の余寿命を推測できるロータリーエンコーダを提供する。   The present invention relates to an optical rotary encoder, and in particular, provides a rotary encoder that can estimate the remaining life of a light emitting element immediately after power-on.

近年、モータ保守の容易さからACサーボモータの需要が増加しており、ACサーボモータに組込まれて使用される位置検出器として信号線を少なくしたシリアル通信タイプのロータリーエンコーダが増加している。   In recent years, the demand for AC servomotors has increased due to the ease of motor maintenance, and serial communication type rotary encoders with fewer signal lines have been increasing as position detectors incorporated in AC servomotors.

このような中、発光素子の発光量が温度などの外的要因で変動しても受光素子の受光量をフィードバックして演算部にて所定の受光量に自動的に補正し、信頼性の高いロータリーエンコーダを得るものが提案されている。   Under such circumstances, even if the light emission amount of the light emitting element fluctuates due to external factors such as temperature, the light reception amount of the light receiving element is fed back and automatically corrected to a predetermined light reception amount by the calculation unit, so that the reliability is high There have been proposals for obtaining a rotary encoder.

このロータリーエンコーダでは、発光量が変動する場合の補正には効果的であるが、受光量は角度位置によっても変動するため、受光量の最大値と最小値を把握するには軸を回転させる必要がある。これは、ロータリーエンコーダの電源を投入しただけでは、受光量の検出ができないことを表わしており、仮に発光素子に異常があっても一旦回転させなければ異常が検出できなかった。   This rotary encoder is effective for correction when the light emission amount fluctuates, but the light reception amount also varies depending on the angular position, so it is necessary to rotate the shaft to grasp the maximum and minimum values of the light reception amount. There is. This indicates that the amount of received light cannot be detected only by turning on the power of the rotary encoder. Even if there is an abnormality in the light emitting element, the abnormality could not be detected unless it is rotated once.

そこで、発光素子の順方向電圧を監視し所定の電圧範囲内であるかを判別して発光素子の動作状態を検出し、外部からのデータ送信要求信号で動作状態をシリアルデータで送信することで発光素子の動作異常(発光素子動作過電流による順方向電圧降下大、発光素子動作電流不足による順方向電圧降下小、発光素子動作部の配線オープン故障などの異常)有無を検出できる、信頼性の高い光学式エンコーダが提案されている(例えば、特許文献1参照)。
特開2004−309203号公報
Therefore, the forward voltage of the light emitting element is monitored to determine whether it is within a predetermined voltage range, the operating state of the light emitting element is detected, and the operating state is transmitted as serial data with an external data transmission request signal. Can detect the presence / absence of abnormal operation of light emitting element (abnormal forward voltage drop due to overcurrent of light emitting element, small forward voltage drop due to insufficient light emitting element operating current, wiring open failure of light emitting element operating part, etc.) A high optical encoder has been proposed (see, for example, Patent Document 1).
JP 2004-309203 A

一方、駆動モータが寿命などで突然停止すると生産ラインの被害が大きくなるため、あらかじめ主要部品の性能劣化の度合いを把握できるようにする必要がある。   On the other hand, if the drive motor suddenly stops due to its life or the like, the damage to the production line will increase, so it is necessary to know in advance the degree of performance deterioration of the main parts.

上述の特許文献の技術を用いれば、ロータリーエンコーダを回転させずに発光素子の異常の有無を検出することができる。しかしながら、一定値との比較であり、ロータリーエンコーダとしての余寿命に相当する発光素子の経時劣化などによる光量低下度合いを検出することができず、寿命予測は困難であった。   If the technique of the above-mentioned patent document is used, the presence or absence of abnormality of the light emitting element can be detected without rotating the rotary encoder. However, this is a comparison with a constant value, and it is difficult to predict the lifetime because the degree of decrease in the amount of light due to deterioration over time of the light emitting element corresponding to the remaining lifetime as a rotary encoder cannot be detected.

本発明は上記従来の課題を解決するものであり、外部からのデータ要求により、発光素子の光量低下の度合いから余寿命の推測が可能なロータリーエンコーダを提供することを目的とする。   The present invention solves the above-described conventional problems, and an object of the present invention is to provide a rotary encoder capable of estimating the remaining life from the degree of decrease in the light amount of a light-emitting element in response to an external data request.

上記課題を解決するために本発明は、モータの回転に応じて回転位置データを出力する原信号部と、原信号部の受光素子にて測定した受光量のDC成分を算出するDC成分演算部と、DC成分演算部にて算出された値をアナログーデジタル変換するA/D変換部と、DC成分演算部およびA/D変換部にて演算された初期受光量を記憶する記憶部と、DC成分演算部およびA/D変換部にて演算された初期受光量と都度測定した受光量を比較し
て発光素子の光量低下率を算出するステータス検出部と、外部からのデータ送信要求信号であるシリアル信号を受信すると前記原信号部とステータス検出部のデータをシリアルデータに変換し出力するデータ通信部とを備え、モータの回転に関係なく、特定のデータ要求信号をデータ通信部に入力して光量低下率を検出することを特徴とするロータリーエンコーダである。
In order to solve the above problems, the present invention provides an original signal unit that outputs rotational position data in accordance with the rotation of a motor, and a DC component calculation unit that calculates a DC component of the amount of received light measured by a light receiving element of the original signal unit. An A / D converter that performs analog-to-digital conversion on the value calculated by the DC component calculator, a storage that stores the initial received light amount calculated by the DC component calculator and the A / D converter, A status detection unit that calculates the light amount reduction rate of the light emitting element by comparing the initial received light amount calculated by the DC component calculation unit and the A / D conversion unit with the received light amount measured each time, and a data transmission request signal from the outside When receiving a certain serial signal, it has a data communication unit that converts the data of the original signal unit and the status detection unit into serial data and outputs it, and inputs a specific data request signal to the data communication unit regardless of the rotation of the motor. A rotary encoder and detects a light amount decrease ratio.

また、モータの回転に応じて回転位置データを出力する原信号部と、原信号部の受光素子の受光量を一定に保つ為に受光量をフィードバックして発光素子の供給電流を制御する発光素子供給電流制御部と、原信号部の発光素子への供給電流量をアナログーデジタル変換するA/D変換部と、A/D変換部にて変換された発光素子への初期電流を記憶する記憶部と、記憶部にて記憶された初期発光素子への供給電流量と都度測定した発光素子への供給電流量を比較して発光素子の光量低下率を算出するステータス検出部と、外部からのデータ送信要求信号であるシリアル信号を受信すると前記原信号部とステータス検出部のデータをシリアルデータに変換し出力するデータ通信部とを備え、モータの回転に関係なく、特定のデータ要求信号をデータ通信部に入力して光量低下率を検出することを特徴とするロータリーエンコーダである。   In addition, an original signal unit that outputs rotational position data according to the rotation of the motor, and a light emitting element that controls the supply current of the light emitting element by feeding back the received light amount in order to keep the received light amount of the light receiving element of the original signal unit constant A supply current control unit, an A / D conversion unit for analog-to-digital conversion of the amount of current supplied to the light emitting element of the original signal unit, and a memory for storing an initial current to the light emitting element converted by the A / D conversion unit A status detector that compares the amount of current supplied to the initial light emitting element stored in the storage unit and the amount of current supplied to the light emitting element measured each time to calculate the light quantity reduction rate of the light emitting element; When receiving a serial signal that is a data transmission request signal, a data communication unit that converts the data of the original signal unit and the status detection unit into serial data and outputs the data, and outputs a specific data request signal regardless of the rotation of the motor. Enter the data communication unit is a rotary encoder and detects a light amount decrease ratio.

本発明のロータリーエンコーダによれば、モータの回転に関係なく、外部から通常と異なる特定のデータ要求するだけで、発光素子の受光量の低下率を把握できるため、余寿命を推測することができる。   According to the rotary encoder of the present invention, since the rate of decrease in the amount of light received by the light emitting element can be grasped only by requesting specific data different from normal, regardless of the rotation of the motor, the remaining life can be estimated. .

同様に、電流比較により受光量の低下を把握して、余寿命を推測することができる。   Similarly, the remaining life can be estimated by grasping the decrease in the amount of received light by current comparison.

これにより、ロータリーエンコーダの余寿命からサーボモータあるいはロータリーエンコーダの交換時期を的確に把握することができ、突然の故障による被害を防止することができる。   Thereby, it is possible to accurately grasp the replacement time of the servo motor or the rotary encoder from the remaining life of the rotary encoder, and it is possible to prevent damage due to a sudden failure.

モータの回転に応じて回転位置データを出力する原信号部と、原信号部の受光素子にて測定した受光量のDC成分を算出するDC成分演算部と、DC成分演算部にて算出された値をアナログーデジタル変換するA/D変換部と、DC成分演算部およびA/D変換部にて演算された初期受光量を記憶する記憶部と、DC成分演算部およびA/D変換部にて演算された初期受光量と都度測定した受光量を比較して発光素子の光量低下率を算出するステータス検出部と、外部からのデータ送信要求信号であるシリアル信号を受信すると前記原信号部とステータス検出部のデータをシリアルデータに変換し出力するデータ通信部とを備え、ロータリーエンコーダに電源を投入後、モータの回転に関係なく、特定のデータ要求信号をデータ通信部に入力して光量低下率を検出する。   Calculated by an original signal unit that outputs rotational position data according to the rotation of the motor, a DC component calculation unit that calculates a DC component of the amount of received light measured by the light receiving element of the original signal unit, and a DC component calculation unit An A / D converter that converts the value from analog to digital, a storage that stores the initial received light amount calculated by the DC component calculator and the A / D converter, a DC component calculator and the A / D converter The status detection unit that calculates the light quantity reduction rate of the light emitting element by comparing the initial received light amount calculated in each case and the received light amount measured each time, and the original signal unit upon receiving a serial signal that is a data transmission request signal from the outside A data communication unit that converts the status detection unit data into serial data and outputs it. After turning on the power to the rotary encoder, a specific data request signal is input to the data communication unit regardless of the motor rotation. Detecting a light amount decrease ratio Te.

以下、本発明の実施例1におけるロータリーエンコーダについて、図面を参照し説明する。   Hereinafter, a rotary encoder according to Embodiment 1 of the present invention will be described with reference to the drawings.

図1において、原信号部11は、モータの回転に応じて回転位置データを出力する。DC成分演算部12は、原信号部11の受光素子にて測定した受光量のDC成分を算出する。A/D変換部13は、DC成分演算部12にて算出された値をアナログーデジタル変換する。   In FIG. 1, the original signal unit 11 outputs rotational position data in accordance with the rotation of the motor. The DC component calculation unit 12 calculates the DC component of the received light amount measured by the light receiving element of the original signal unit 11. The A / D converter 13 performs analog-digital conversion on the value calculated by the DC component calculator 12.

記憶部14は、DC成分演算部およびA/D変換部にて演算された初期受光量を記憶する。ステータス検出部15は、記憶部14にて記憶された初期受光量と都度測定した受光
量を比較して発光素子の光量低下率を検出する。データ通信部16は、外部からのデータ送信要求信号であるシリアル信号を受信し、原信号部11とステータス検出部15のデータをシリアルデータに変換し出力する。
The storage unit 14 stores the initial received light amount calculated by the DC component calculation unit and the A / D conversion unit. The status detection unit 15 compares the initial light reception amount stored in the storage unit 14 with the light reception amount measured each time, and detects the light amount reduction rate of the light emitting element. The data communication unit 16 receives a serial signal that is a data transmission request signal from the outside, converts the data of the original signal unit 11 and the status detection unit 15 into serial data, and outputs the serial data.

図2は原信号部11の動作を説明するもので、1回転360°内の絶対位置をmbitの分解能でCCW回転時単調増加、CW回転時単調減少の0から2−1のデータである1回転データとモータの回転回数でありCCW回転時増加変化、CW回転時減少変化となる多回転データを出力する。 FIG. 2 illustrates the operation of the original signal unit 11 and is data of 0 to 2 m −1 in monotone increase at CCW rotation and monotone decrease at CW rotation at an absolute position within 360 ° of rotation at mbit resolution. One rotation data and the number of rotations of the motor are output, and multi-rotation data which is an increase change during CCW rotation and a decrease change during CW rotation is output.

図3は原信号部の一部とDC成分演算部の構成例である。原信号部は、電流電圧変換抵抗器31a,31bと受光素子32a,32bと、動作電圧源に接続した負荷抵抗器33と発光素子34で構成される。受光素子32aと受光素子32bにて検出される信号は180度の位相差を有している。DC成分演算部12は、増幅器35と抵抗器36a,36b,36cで構成される。   FIG. 3 is a configuration example of a part of the original signal unit and the DC component calculation unit. The original signal section is composed of current-voltage conversion resistors 31a and 31b, light receiving elements 32a and 32b, a load resistor 33 and a light emitting element 34 connected to an operating voltage source. The signals detected by the light receiving element 32a and the light receiving element 32b have a phase difference of 180 degrees. The DC component calculation unit 12 includes an amplifier 35 and resistors 36a, 36b, and 36c.

図4は発光素子34の発光量と受光素子32の受光量との関係を示すものであり、LEDの発光量が増加するのに比例してPDの受光量も増加する特性をもつ。   FIG. 4 shows the relationship between the light emission amount of the light emitting element 34 and the light reception amount of the light receiving element 32, and has a characteristic that the light reception amount of the PD increases in proportion to the increase of the light emission amount of the LED.

図8はデータ通信部の構成例であり、双方向性バス81は、外部とのシリアルデータの送信・受信の切替えを行うラインドライバレシーバからなる。受信器82は、外部からのデータ送信要求信号であるシリアル信号を受信し正常受信完了後に送信開始信号を出力する。送信器83は、送信開始信号により原信号部とステータス検出部からのデータと、これらのデータより生成された通信誤り検出データとをシリアルデータに変換する。   FIG. 8 shows a configuration example of the data communication unit, and the bidirectional bus 81 is composed of a line driver receiver that performs switching between transmission and reception of serial data with the outside. The receiver 82 receives a serial signal which is a data transmission request signal from the outside, and outputs a transmission start signal after normal reception is completed. The transmitter 83 converts data from the original signal unit and the status detection unit and communication error detection data generated from these data into serial data in response to the transmission start signal.

図9はシリアルデータ(信号)の構成例であり、サーボアンプに相当する外部からエンコーダへの要求信号であるRX信号にはデータ送信要求を示すコマンド部で構成され、一方エンコーダから外部への送信信号であるTX信号にはエンコーダで受信した前記コマンド部と送信データ部とコマンド部と送信データ部より生成された送信用誤り検出データ部より構成される。   FIG. 9 shows a configuration example of serial data (signal). The RX signal, which is a request signal from the outside corresponding to the servo amplifier to the encoder, is composed of a command part indicating a data transmission request, while transmission from the encoder to the outside. The TX signal, which is a signal, includes a command part, a transmission data part, a command part, and a transmission error detection data part generated from the transmission data part received by the encoder.

以下に詳細な動作の説明を行う。まず、初期電源投入時に発光素子34から出力される光を受光素子32a,受光素子32bで受け、DC成分演算部12の増幅器35と抵抗器36a,抵抗器36b、抵抗器36cからなる加算回路にてDC成分を演算し、A/D変換部13にてデジタル変換し、記憶部14に記憶させる。   The detailed operation will be described below. First, light output from the light emitting element 34 when the initial power is turned on is received by the light receiving element 32a and the light receiving element 32b, and is added to an adding circuit including the amplifier 35, the resistor 36a, the resistor 36b, and the resistor 36c of the DC component calculation unit 12. Then, the DC component is calculated, digitally converted by the A / D converter 13 and stored in the storage unit 14.

図4において、発光素子34が経時劣化し発光光量が低下した場合、受光素子の受光量が比例して低下するので、記憶部14にて記憶させた初期受光量を、都度測定される受光量とステータス検出部にて比較演算処理することにより発光素子34の光量低下率を算出する事ができる。   In FIG. 4, when the light emitting element 34 deteriorates with time and the amount of emitted light decreases, the amount of light received by the light receiving element decreases in proportion, so the initial amount of received light stored in the storage unit 14 is measured each time. And the status detection unit can calculate the light amount reduction rate of the light emitting element 34.

このように、発光素子の光量低下率の検知は、ロータリーエンコーダの回転の有無に関わらず検知することができる。このため、ロータリーエンコーダに使用する発光素子が経時劣化により光量が低下した場合、外部もしくは原信号部11の回路に異常が発生した場合、位置や回転の有無に関わらず、外部から特定のデータ要求するだけで、発光量の低下の度合いを外部(上位システムなど)へシリアルデータにて伝達することができ、発光素子の余寿命を推測することができる。   As described above, the light amount reduction rate of the light emitting element can be detected regardless of whether the rotary encoder is rotated. For this reason, when the light quantity of the light emitting element used for the rotary encoder decreases due to deterioration over time, when an abnormality occurs in the circuit of the external signal source 11 or when there is a specific data request from the outside regardless of position or rotation. By simply doing this, the degree of decrease in the amount of light emission can be transmitted to the outside (such as a host system) as serial data, and the remaining lifetime of the light emitting element can be estimated.

したがって、ロータリーエンコーダの余寿命からサーボモータあるいはロータリーエンコーダの交換時期を的確に把握することができ、ロータリーエンコーダの故障による設備の被害を防止できる。   Therefore, it is possible to accurately grasp the replacement time of the servo motor or the rotary encoder from the remaining life of the rotary encoder, and it is possible to prevent damage to the equipment due to the failure of the rotary encoder.

以下に本発明の実施例2におけるロータリーエンコーダについて、実施例1と同じ機能については、同じ符号を用いて、説明する。   The same functions as those in the first embodiment will be described below using the same reference numerals for the rotary encoder in the second embodiment of the present invention.

図5において、原信号部11は、モータの回転に応じて回転位置データを出力する。発光素子供給電流制御部51は、原信号部の受光素子の受光量を一定に保つ為に受光量をフィードバックして発光素子の供給電流を制御する。A/D変換部13は、原信号部の発光素子への供給電流量をアナログーデジタル変換する。   In FIG. 5, the original signal unit 11 outputs rotational position data in accordance with the rotation of the motor. The light emitting element supply current control unit 51 controls the supply current of the light emitting element by feeding back the light receiving amount in order to keep the light receiving amount of the light receiving element of the original signal portion constant. The A / D conversion unit 13 performs analog-digital conversion on the amount of current supplied to the light emitting element of the original signal unit.

記憶部14は、A/D変換部にて演算された発光素子への初期供給電流量を記憶する。ステータス検出部15は、記憶部14にて記憶された初期受光量と都度測定した発光素子への供給電流量を比較して発光素子の光量低下率を検出する。データ通信部16は、外部からのデータ送信要求信号であるシリアル信号を受信し、原信号部11とステータス検出部15のデータをシリアルデータに変換し出力する。   The storage unit 14 stores the initial supply current amount to the light emitting element calculated by the A / D conversion unit. The status detection unit 15 compares the initial received light amount stored in the storage unit 14 with the amount of current supplied to the light emitting element measured each time, and detects the light amount reduction rate of the light emitting element. The data communication unit 16 receives a serial signal that is a data transmission request signal from the outside, converts the data of the original signal unit 11 and the status detection unit 15 into serial data, and outputs the serial data.

図6は原信号部の一部と発光素子供給電流制御部の構成例である。原信号部11は、電流電圧変換抵抗器31a,31bと受光素子32a,32bと、動作電圧源に接続した負荷抵抗器33と発光素子34で構成され、発光素子供給電流制御部51は増幅器61a,61bとトランジスタ62と抵抗器63a,63b、63cで構成される。   FIG. 6 is a configuration example of a part of the original signal unit and the light emitting element supply current control unit. The original signal unit 11 includes current-voltage conversion resistors 31a and 31b, light receiving elements 32a and 32b, a load resistor 33 and a light emitting element 34 connected to an operating voltage source, and a light emitting element supply current control unit 51 includes an amplifier 61a. , 61b, transistor 62, and resistors 63a, 63b, 63c.

図7は発光素子34の発光量と発光素子供給電流との関係を示すものであり、LEDの発光量が低下するのに反比例して発光素子供給電流は増加する特性を持っている。   FIG. 7 shows the relationship between the light emission amount of the light emitting element 34 and the light emitting element supply current. The light emission element supply current increases in inverse proportion to the decrease in the light emission amount of the LED.

以下に詳細な動作の説明を行う。まず、初期電源投入時に発光素子34へ供給される電流量を抵抗器33の電圧降下分にて換算する。その値をA/D変換部13にてデジタル変換し、記憶部14に記憶させる。   The detailed operation will be described below. First, the amount of current supplied to the light emitting element 34 when the initial power is turned on is converted by the voltage drop of the resistor 33. The value is digitally converted by the A / D conversion unit 13 and stored in the storage unit 14.

なお、発光素子34に供給される電流は、発光素子供給電流制御部51にて受光素子32a、32bでの受光量から増幅器61aにてDC成分を算出し、増幅器61bにて基準電圧との比較を行うことでトランジスタ62への印加電圧を決定し、受光量が一定となるように発光素子34への供給電流を制御する。   The current supplied to the light emitting element 34 is calculated by the light emitting element supply current control unit 51 based on the amount of light received by the light receiving elements 32a and 32b, by the amplifier 61a, and compared with the reference voltage by the amplifier 61b. The voltage applied to the transistor 62 is determined, and the supply current to the light emitting element 34 is controlled so that the amount of received light is constant.

図4において、発光素子34が経時劣化し発光光量が低下した場合、発光素子への供給電流量が反比例して増加するので、記憶部14にて記憶させた初期供給電流量を、都度測定される供給電流量とステータス検出部にて比較演算処理することにより受光量の光量低下率を算出する事ができる。   In FIG. 4, when the light emitting element 34 deteriorates with time and the amount of emitted light decreases, the amount of current supplied to the light emitting element increases in inverse proportion. Therefore, the initial amount of supplied current stored in the storage unit 14 is measured each time. The light quantity reduction rate of the amount of received light can be calculated by performing comparison calculation processing with the supplied current amount and the status detection unit.

このように、発光素子の光量低下率の検知は、ロータリーエンコーダの回転の有無に関わらず検知することができる。このため、ロータリーエンコーダに使用する発光素子が経時劣化により光量が低下した場合、外部もしくは原信号部11の回路に異常が発生した場合、位置や回転の有無に関わらず、外部から特定のデータ要求をするだけで、発光量の低下の度合いを外部(上位システムなど)へシリアルデータにて伝達することができ、発光素子の余寿命を推測することができる。   As described above, the light amount reduction rate of the light emitting element can be detected regardless of whether the rotary encoder is rotated. For this reason, when the light quantity of the light emitting element used for the rotary encoder decreases due to deterioration over time, when an abnormality occurs in the circuit of the external signal source 11 or when there is a specific data request from the outside regardless of position or rotation. The degree of decrease in the amount of light emission can be transmitted to the outside (such as a host system) with serial data simply by estimating the remaining life of the light emitting element.

したがって、ロータリーエンコーダの余寿命からサーボモータあるいはロータリーエンコーダの交換時期を的確に把握することができ、ロータリーエンコーダの故障による設備の被害を防止できる   Therefore, it is possible to accurately grasp the replacement time of the servo motor or the rotary encoder from the remaining life of the rotary encoder, and it is possible to prevent damage to the equipment due to the failure of the rotary encoder.

本発明のロータリーエンコーダは、モータを回転させなくても発光素子の光量低下の度合いから余寿命を推測できるため、保守点検などに有用である。   The rotary encoder of the present invention is useful for maintenance inspection and the like because the remaining life can be estimated from the degree of light quantity reduction of the light emitting element without rotating the motor.

本発明の実施例1におけるロータリーエンコーダのブロック図1 is a block diagram of a rotary encoder according to a first embodiment of the present invention. 本発明における原信号部データの説明図Explanatory drawing of original signal part data in the present invention 本発明の実施例1におけるDC成分演算部周辺のブロック図1 is a block diagram around a DC component calculation unit in Embodiment 1 of the present invention. 本発明の実施例1における受光素子の動作説明図Operational explanatory diagram of the light receiving element in Example 1 of the present invention 本発明の実施例2におけるロータリーエンコーダのブロック図Block diagram of a rotary encoder in Embodiment 2 of the present invention 本発明の実施例2における発光素子供給電流制御部周辺のブロック図Block diagram around a light emitting element supply current control unit in Example 2 of the present invention 本発明の実施例2における発行素子の動作説明図Explanatory drawing of operation | movement of the issuing element in Example 2 of this invention 本発明におけるデータ通信部のブロック図Block diagram of data communication unit in the present invention 本発明におけるシリアルデータの構成を説明する図The figure explaining the structure of the serial data in this invention

符号の説明Explanation of symbols

11 原信号部
12 DC成分演算部
13 A/D変換部
14 記憶部
15 ステータス検出部
16 データ通信部
31a,31b 電流電圧変換抵抗器
32a,32b 受光素子
33 負荷抵抗器
34 発光素子
35 増幅器
36a,36b、36c 抵抗器
51 発光素子供給電流制御部
61a,61b 増幅器
62 トランジスタ
63a,63b、63c 抵抗器
64 コンデンサ
81 双方向バス
82 受信器
83 送信器
DESCRIPTION OF SYMBOLS 11 Original signal part 12 DC component calculating part 13 A / D conversion part 14 Storage part 15 Status detection part 16 Data communication part 31a, 31b Current-voltage conversion resistor 32a, 32b Light receiving element 33 Load resistor 34 Light emitting element 35 Amplifier 36a, 36b, 36c Resistor 51 Light emitting element supply current control unit 61a, 61b Amplifier 62 Transistor 63a, 63b, 63c Resistor 64 Capacitor 81 Bidirectional bus 82 Receiver 83 Transmitter

Claims (2)

モータの回転に応じて回転位置データを出力する原信号部と、原信号部の受光素子にて測定した受光量のDC成分を算出するDC成分演算部と、DC成分演算部にて算出された値をアナログーデジタル変換するA/D変換部と、DC成分演算部およびA/D変換部にて演算された初期受光量を記憶する記憶部と、DC成分演算部およびA/D変換部にて演算された初期受光量と都度測定した受光量を比較して発光素子の光量低下率を算出するステータス検出部と、外部からのデータ送信要求信号であるシリアル信号を受信すると前記原信号部とステータス検出部のデータをシリアルデータに変換し出力するデータ通信部とを備え、モータの回転に関係なく、特定のデータ要求信号をデータ通信部に入力して光量低下率を検出することを特徴とするロータリーエンコーダ。 Calculated by an original signal unit that outputs rotational position data according to the rotation of the motor, a DC component calculation unit that calculates a DC component of the amount of received light measured by the light receiving element of the original signal unit, and a DC component calculation unit An A / D converter that converts the value from analog to digital, a storage that stores the initial received light amount calculated by the DC component calculator and the A / D converter, a DC component calculator and the A / D converter The status detection unit that calculates the light quantity reduction rate of the light emitting element by comparing the initial received light amount calculated in each case and the received light amount measured each time, and the original signal unit upon receiving a serial signal that is a data transmission request signal from the outside A data communication unit that converts the data of the status detection unit into serial data and outputs the data, and regardless of the rotation of the motor, a specific data request signal is input to the data communication unit to detect the light quantity reduction rate Rotary encoder that. モータの回転に応じて回転位置データを出力する原信号部と、原信号部の受光素子の受光量を一定に保つ為に受光量をフィードバックして発光素子の供給電流を制御する発光素子供給電流制御部と、原信号部の発光素子への供給電流量をアナログーデジタル変換するA/D変換部と、A/D変換部にて変換された発光素子への初期電流を記憶する記憶部と、記憶部にて記憶された初期発光素子への供給電流量と都度測定した発光素子への供給電流量を比較して発光素子の光量低下率を算出するステータス検出部と、外部からのデータ送信要求信号であるシリアル信号を受信すると前記原信号部とステータス検出部のデータをシリアルデータに変換し出力するデータ通信部とを備え、モータの回転に関係なく、特定のデータ要求信号をデータ通信部に入力して光量低下率を検出することを特徴とするロータリーエンコーダ。
An original signal section that outputs rotational position data according to the rotation of the motor, and a light emitting element supply current that controls the supply current of the light emitting element by feeding back the received light amount in order to keep the light receiving amount of the light receiving element of the original signal section constant A control unit, an A / D conversion unit that performs analog-to-digital conversion of the amount of current supplied to the light emitting element of the original signal unit, and a storage unit that stores an initial current to the light emitting element converted by the A / D conversion unit; A status detection unit that compares the amount of current supplied to the initial light emitting element stored in the storage unit and the amount of current supplied to the light emitting element measured each time to calculate the light quantity reduction rate of the light emitting element, and data transmission from the outside When receiving a serial signal, which is a request signal, a data communication unit that converts the data of the original signal unit and the status detection unit into serial data and outputs the data, and passes a specific data request signal through the data regardless of the motor rotation. A rotary encoder, characterized in that by entering a part for detecting a light amount decrease ratio.
JP2007041899A 2007-02-22 2007-02-22 Rotary encoder Pending JP2008203175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007041899A JP2008203175A (en) 2007-02-22 2007-02-22 Rotary encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007041899A JP2008203175A (en) 2007-02-22 2007-02-22 Rotary encoder

Publications (1)

Publication Number Publication Date
JP2008203175A true JP2008203175A (en) 2008-09-04

Family

ID=39780836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007041899A Pending JP2008203175A (en) 2007-02-22 2007-02-22 Rotary encoder

Country Status (1)

Country Link
JP (1) JP2008203175A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071830A (en) * 2008-09-19 2010-04-02 Mitsutoyo Corp Optical encoder
JP2010188532A (en) * 2009-02-16 2010-09-02 Ricoh Co Ltd Image forming apparatus, method of estimating encoder life and program
JP2014035188A (en) * 2012-08-07 2014-02-24 Panasonic Corp Motor position detector
JP2015004559A (en) * 2013-06-20 2015-01-08 パナソニック株式会社 Motor position detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071830A (en) * 2008-09-19 2010-04-02 Mitsutoyo Corp Optical encoder
JP2010188532A (en) * 2009-02-16 2010-09-02 Ricoh Co Ltd Image forming apparatus, method of estimating encoder life and program
JP2014035188A (en) * 2012-08-07 2014-02-24 Panasonic Corp Motor position detector
JP2015004559A (en) * 2013-06-20 2015-01-08 パナソニック株式会社 Motor position detector

Similar Documents

Publication Publication Date Title
US7471080B2 (en) Magnetic absolute encoder
US9020774B2 (en) Encoder system, signal processing method, and transmission signal generation and output device
JP4968069B2 (en) Encoder with abnormality detection device and control system therefor
US9733137B2 (en) Rotational drive device
US20110080160A1 (en) Rotational angle detection device and electric power steering system
US7547875B1 (en) Absolute type encoder apparatus and method for operating the same
JP2008203175A (en) Rotary encoder
US10360784B2 (en) Encoder system having function of detecting abnormality, and method for detecting abnormality of the same
WO2020137858A1 (en) Vehicle-mounted equipment control device
WO2014174614A1 (en) Servo motor and encoder
US20180129196A1 (en) Signal protocol fault detection system and method
EP3343029B1 (en) Error mode management of pitch drives for a wind turbine
JP2009135655A (en) Electronic control device
JP6641920B2 (en) Power converter
US10989573B2 (en) Method and device for correcting angle sensor
JP2011063404A (en) Door control device of elevator
JP2004309203A (en) Rotary encoder
JP5006270B2 (en) Absolute encoder device and its operation method
KR101333862B1 (en) Steering Control Method Considered Motor Characteritic According to Input Voltage and Electronic Control Unit Therefor
JP2019158577A (en) Absolute encoder failure detection device
JP4901579B2 (en) Angle detector
JP5016538B2 (en) A / D conversion apparatus and method
JP2004325166A (en) Rotation angle detection device
JP2009156840A (en) Rotary encoder
JP2007101389A (en) Rotary encoder