JP2004309105A - Ice making plate for ice making machine - Google Patents

Ice making plate for ice making machine Download PDF

Info

Publication number
JP2004309105A
JP2004309105A JP2003197327A JP2003197327A JP2004309105A JP 2004309105 A JP2004309105 A JP 2004309105A JP 2003197327 A JP2003197327 A JP 2003197327A JP 2003197327 A JP2003197327 A JP 2003197327A JP 2004309105 A JP2004309105 A JP 2004309105A
Authority
JP
Japan
Prior art keywords
ice making
making plate
ice
plate
connection part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003197327A
Other languages
Japanese (ja)
Inventor
Oh-Bok Kim
五 福 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Gwangju Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Gwangju Electronics Co Ltd filed Critical Samsung Gwangju Electronics Co Ltd
Publication of JP2004309105A publication Critical patent/JP2004309105A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/04Producing ice by using stationary moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/14Water supply

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ice making plate for an ice making machine for improving the cooling efficiency of the ice making machine while giving quick heat balance between ice protrusions during driving the ice making machine to produce ice having the same size with the ice making protrusions. <P>SOLUTION: The ice making plate for the ice making machine comprises an ice making plate body joined to an evaporation pipe so as to be cooled during driving a cooling system provided on an ice making machine body and the plurality of ice making protrusions provided on the lower face of the ice making plate so as to be soaked in ice making water stored in a tray during producing ice. The ice making plate body includes a first connection part for connecting the ice making protrusions arranged neighboring each other along the direction of the main axis of the evaporation pipe, a second connection part for connecting the ice making protrusions arranged neighboring each other perpendicularly to the direction of the main axis of the evaporation pipe, and a third connection part for connecting the first and second connection parts to each other. The third connection part is formed thinner than the first and second connection parts. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は製氷機に係り、さらに詳しくは製氷水を冷却させ氷を生成させる製氷プレートに関する。
【0002】
【従来の技術】
通常、製氷機は製氷機本体の内外部から供給された製氷水を冷却させ氷を生成させる装置であって、図1には通常の製氷機の一例が示されている。
【0003】
図1を参照するに、従来の製氷機100は製氷機本体110と、冷却システムと、製氷ユニット130及び氷貯蔵庫120を含む。冷却システムは圧縮機190と、凝縮機(図示せず)、蒸発管180を含み、その駆動時蒸発管180の周囲を冷却させることにより製氷ユニット130で氷を生成させる。氷貯蔵庫120は製氷ユニット130で生成された後その製氷ユニット130から排出される氷を貯蔵するためのものである。
【0004】
図2を参照するに、製氷ユニット130は製氷プレート140と、トレー160を含む。未説明符号170はトレー160を保持するベースフレーム170であり、175は製氷突起150による氷製造完了時氷の排出がトレー160により妨害されないようトレー160を回動させるための回転モータである。
【0005】
トレー160は製氷機本体110の内外部から供給される製氷水を貯留し、後述する製氷プレート140の下部に配置される。
【0006】
製氷プレート140は凝縮機(図示せず)と圧縮機190それぞれに両端が連結され冷却システムの一部を担う蒸発管180上に設けられ氷貯蔵庫120の上部に配置され、その下面には複数の製氷突起150が設けられる。このような構成を有する製氷プレート140は冷却システムの駆動時蒸発管180により冷却されると同時に、製氷突起150がトレー160に貯留された製氷水に浸漬されるように氷を生成させる。この際、通常に製氷プレート140と蒸発管180の結合は半田185(図3)のような別の結合手段によってなされる。
【0007】
ところが、このように構成された従来の製氷ユニット130は、蒸発管180が製氷プレート140の全部分及び製氷突起150を同時に冷却させるべきであるため蒸発管180の冷却効率が低下する問題点がある。また、蒸発管180による製氷プレート140の冷却時その製氷プレート140の上面に発生される露により蒸発管180の冷却効率がさらに低下する問題点がある。
【0008】
前述した問題点を解決するため、従来は製氷突起150が設置されていない製氷プレート140の残り部分の全てに排出孔(図示せず)を形成させる方法を使った(特許文献1参照)。
【0009】
しかし、このような方法を使用する場合、製氷プレート140の体積を縮め、冷却システムの駆動時製氷プレート140の上面に発生される露が除去されるのに十分な効果を奏でられるが、製氷突起150の冷却が蒸発管180と、その蒸発管180の主軸方向及びその主軸方向に垂直方向に製氷突起150を連結する製氷プレート140の一部分によってだけなされる。これにより、蒸発管180の上流側と下流側それぞれに配置される製氷突起150間に温度が同一になる、言わば熱平衡が遅く取れることにより製氷突起150により生成される氷それぞれのサイズを同一に形成できない問題点がある。
【0010】
【特許文献1】
日本国実用新案登録第2568321号公報
【0011】
【発明が解決しようとする課題】
本発明は前述した問題点を解決するために案出されたもので、その目的はその体積が縮まって製氷機の冷却効率を増大させると同時に、各製氷突起の熱平衡が容易に取れるようその構造が改善された製氷機の製氷プレートを提供するところにある。
【0012】
【課題を解決するための手段】
前述した目的を達成するための本発明に係る製氷機の製氷プレートは、製氷機本体に設けられた冷却システムの駆動時冷却されるよう蒸発管に結合される製氷プレート本体と、前記製氷プレート本体の冷却時氷を生成させるようトレーに貯留された製氷水に浸漬されるよう前記製氷プレートの下面に設けられる複数の製氷突起とを含み、前記製氷プレート本体は、前記蒸発管の主軸方向に沿って相互隣接して配置される前記製氷突起を連結する第1連結部と、前記蒸発管の主軸方向について垂直方向に沿って相互隣接して配置される前記製氷突起を連結する第2連結部と、前記第1及び第2連結部を連結する第3連結部とを含み、前記第1連結部と、第2連結部及び第3連結部それぞれは相異なる厚さで形成されることを特徴とする。
【0013】
本発明の望ましい実施例によれば、前記第3連結部は前記第1及び第2連結部より薄厚を有することが望ましい。
【0014】
ここで、前記第1及び第2連結部は実質的に同一な厚さを有することが望ましく、前記第1及び第2連結部の厚さは実質的に前記第3連結部の厚さの二倍であることがさらに望ましい。
【0015】
一方、前記製氷突起は前記製氷プレートと一体に形成されることが望ましい。そして、前記蒸発管は前記製氷プレートにプレス圧着されることにより前記製氷プレートと結合されることが望ましい。
【0016】
また、前記第3連結部には、前記氷の製造時冷却される製氷プレート本体の上面に発生する露が排出されるよう少くとも一つ以上の貫通孔が貫通形成されることがさらに望ましい。
【0017】
【発明の実施の形態】
以下、添付した図面に基づき本発明の望ましい実施例を詳述する。参考に、本発明の実施例を説明する前、図1ないし図3に示しかつ説明された従来の製氷機の構成要素と同一な構成及び機能を有する製氷機の構成要素については従来と同一な参照番号を付し、その詳細な説明は省略する。
【0018】
図4及び図5を参照するに、本発明の望ましい実施例による製氷機100(図1参照)は蒸発管180と製氷プレート240とを含む。
【0019】
蒸発管180は製氷機本体110(図1参照)の内部に設けられた冷却システムの一部を担うようその両端が圧縮機190(図1参照)と凝縮機(図示せず)それぞれに連結され、冷却システムの駆動時その蒸発管180の内部を循環する冷媒の冷気により周辺を冷却させる。
【0020】
製氷プレート240は製氷プレート本体241と製氷突起250を含む。製氷プレート本体241は蒸発管180に結合され蒸発管180の冷却時冷却される。そして、製氷突起250は製氷プレート本体241の下部に複数に設けられ製氷プレート本体241の冷却時冷却されると同時に、トレー160(図1参照)に貯留された製氷水に浸漬され氷を生成させる。
【0021】
製氷プレート本体241は蒸発管180から冷気吸収が容易になるよう銅(Cu)のような熱伝導度が良好な金属材質で成形されることが望ましく、製氷突起250はその製氷プレート本体241の成形時一体形成され製氷プレート240の熱伝導効率を低下させないようにすることが望ましい。
【0022】
そして、蒸発管180は製氷プレート本体241の上面に蒸発管180の形成された装着溝241a(図6参照)にプレス圧着されることが望ましい。これによれば、製氷プレート本体241と蒸発管180の結合のために使用された従来の半田185(図3参照)による熱損失が防止できる。また、前述したプレス圧着により製氷プレート240の装着溝241aのエッジに沿って製氷プレート240の上面が隆起され蒸発管180の外周面の一部を包む突起241b(図6参照)により、蒸発管180の外周面と製氷プレート本体241の接触面積が広まるので、蒸発管180による冷却効率がアップされうる。
【0023】
一方、製氷プレート本体241はその製氷プレート本体241の長手方向、すなわち蒸発管180の主軸方向X1、X2、X3に沿って相互隣接して配置される製氷突起250を連結する第1連結部243と、蒸発管180の主軸方向X1、X2、X3に垂直方向に沿って相互隣接して配置される製氷突起250を連結する第2連結部244と、第1及び第2連結部243、244を連結するよう第1及び第2連結部243、244の間に配置される第3連結部245を含む。
【0024】
図6及び図7に示した通り、本実施例における製氷プレート本体241は第1連結部243と、第2連結部244及び第3連結部245それぞれの厚さt1、t2、t3が相違に形成される。特に、第3連結部245は第1及び第2連結部243、244よりさらに薄厚t3で形成され、第1及び第2連結部243、244は相互同一な厚さt1、t2で形成される。この際、第3連結部245の一部分には製氷プレート240の冷却時その上面に生成され冷却効率を低下させる露を排出するために少くとも一つ以上の通孔249(図4参照)が貫通形成されることが望ましい。このような通孔249の設置個数及び形状は蒸発管180による冷気伝達効率に基づき多様に変形できる。このような製氷プレート240の構成は必ずしも本実施例に限定されない。すなわち、第3連結部245の厚さが第1及び第2連結部243、244の厚さより小さく形成されれば、第1連結部243と、第2連結部244及び第3連結部245それぞれを多様な厚さで形成させうることは勿論である。
【0025】
このような製氷プレート240の構成によれば、蒸発管180の上流側から蒸発管180の下流側に伝達される冷気が第3連結部245を冷却させるために不要に使用されることを最小化できる。すなわち、第3連結部245の体積が従来より小さくなり、その第3連結部245を冷却させるために所要される冷気の量が従来に少くなる。これにより、前述したように保存される冷気が蒸発管180の上流側に配置される製氷突起250a(図4参照)から蒸発管180の下流側に配置された製氷突起250b(図4参照)に第1及び第2連結部243、244を通してさらに多量伝達できるようになる。従って、製氷プレート240の冷却時製氷突起250a、250bそれぞれの温度が実質的に同一になる熱平衡がさらに迅速に成り立って、冷却システムの駆動による氷の生成時各製氷突起250a、250bに生成される氷が相異なるサイズに形成されることを抑えることができる。
【0026】
一方、製氷突起250a、250b間の熱平衡は従来のように第3連結部245に排出孔(図示せず)が形成される場合、本発明に係る製氷プレート240を使用する時より遅くなる。これは、第3連結部245による第1及び第2連結部243及び244への冷気伝達が従来の排出孔(図示せず)により源泉的に封鎖されることにより発生する。これを解決するため、本発明では第3連結部245を第1及び第2連結部243、244より薄く形成させ、その第1及び第2連結部243、244の厚さt1、t2の半分に該当する厚さt3で形成させる、これによれば、前述したように第3連結部245の冷却による冷気損失を最小化できると同時に、第3連結部245による第1及び第2連結部243、244相互間の熱伝達を一層良好に行なえる。
【0027】
【発明の効果】
以上述べた通り、本発明によれば製氷プレートの一部区間の厚さを従来より薄く形成させることにより、各製氷突起間の熱平衡が迅速に取れる。
【0028】
これにより、各製氷突起に生成される氷それぞれのサイズが相違に形成されることを抑えられ、製氷プレートの不要な部分を冷却させることから発生する冷却システムの効率低下を防止することができる。
【0029】
以上、本発明を本発明の原理を例示するための望ましい実施例について示しかつ説明したが、本発明はそのように示しかつ説明されたそのままの構成及び作用に限られることではない。かえって、特許請求の範囲の思想及び範疇を逸脱せず本発明に対する多様な変更及び修正が可能であることを当業者はよく理解できろう。従って、そのような全ての適切な変更及び修正及び均等物も本発明の権利範囲に属することと見做されるべきである。
【図面の簡単な説明】
【図1】従来の製氷機の構造を概略的に示す斜視図である。
【図2】図1の製氷ユニットを抜粋してその構造を概略的に示す分離斜視図である。
【図3】図2のI−I線に沿って製氷プレートの断面を示す断面図である。
【図4】本発明の望ましい実施例による製氷プレートの上面を示す斜視図である。
【図5】図4の製氷プレートの下面を示す斜視図である。
【図6】図4のII−II線に沿って製氷プレートの断面をそれぞれ示す断面図である。
【図7】図4のIII−III線に沿って製氷プレートの断面をそれぞれ示す断面図である。
【符号の説明】
100 製氷機
110 製氷機本体
130 製氷ユニット
160 トレー
180 蒸発管
185 半田
240 製氷プレート
241 製氷プレート本体
241a 装着溝
241b 突起
243 第1連結部
244 第2連結部
245 第3連結部
249 通孔
250、250a、250b 製氷突起
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ice making machine, and more particularly, to an ice making plate for cooling ice making water to produce ice.
[0002]
[Prior art]
Usually, an ice maker is a device that cools ice making water supplied from inside and outside of the ice maker body to generate ice, and FIG. 1 shows an example of a normal ice maker.
[0003]
Referring to FIG. 1, a conventional ice maker 100 includes an ice maker main body 110, a cooling system, an ice maker unit 130, and an ice storage 120. The cooling system includes a compressor 190, a condenser (not shown), and an evaporator tube 180, and cools the periphery of the evaporator tube 180 to generate ice in the ice making unit 130 when the evaporator is driven. The ice storage 120 is for storing ice generated by the ice making unit 130 and discharged from the ice making unit 130.
[0004]
Referring to FIG. 2, the ice making unit 130 includes an ice making plate 140 and a tray 160. Reference numeral 170 denotes a base frame that holds the tray 160. Reference numeral 175 denotes a rotation motor that rotates the tray 160 so that the ice is not obstructed by the tray 160 when ice production by the ice making projection 150 is completed.
[0005]
The tray 160 stores ice making water supplied from inside and outside of the ice making machine main body 110, and is arranged below the ice making plate 140 described later.
[0006]
The ice making plate 140 is connected to a condenser (not shown) and a compressor 190 at both ends thereof, is provided on an evaporating tube 180 serving as a part of a cooling system, and is disposed on an upper part of the ice storage 120. An ice making projection 150 is provided. The ice making plate 140 having such a configuration is cooled by the evaporating tube 180 when the cooling system is driven, and at the same time, ice is generated such that the ice making projections 150 are immersed in the ice making water stored in the tray 160. At this time, the connection between the ice making plate 140 and the evaporating tube 180 is usually made by another connecting means such as solder 185 (FIG. 3).
[0007]
However, the conventional ice making unit 130 configured as above has a problem that the cooling efficiency of the evaporating tube 180 is reduced because the evaporating tube 180 must simultaneously cool the entire portion of the ice making plate 140 and the ice making projections 150. . Further, when the ice making plate 140 is cooled by the evaporating tube 180, there is a problem that the cooling efficiency of the evaporating tube 180 is further reduced by the dew generated on the upper surface of the ice making plate 140.
[0008]
In order to solve the above-described problem, a method of forming a discharge hole (not shown) in the entire remaining portion of the ice making plate 140 where the ice making projection 150 is not installed has been used (see Patent Document 1).
[0009]
However, when such a method is used, the volume of the ice making plate 140 is reduced, and a sufficient effect is obtained to remove dew generated on the upper surface of the ice making plate 140 when the cooling system is driven. Cooling of 150 is provided only by the evaporator tube 180 and a portion of the ice making plate 140 that connects the ice making projections 150 in the direction of the main axis of the evaporator tube 180 and perpendicular to the main axis. Thereby, the temperature becomes the same between the ice making projections 150 disposed on the upstream side and the downstream side of the evaporating tube 180, that is, the size of each of the ices generated by the ice making projections 150 is made the same by slowing down the thermal equilibrium. There is a problem that cannot be done.
[0010]
[Patent Document 1]
Japanese Utility Model Registration No. 2568321
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention has been devised to solve the above-described problems, and its purpose is to reduce the volume and increase the cooling efficiency of an ice making machine, and at the same time, to make the structure such that the thermal balance of each ice making projection can be easily achieved. To provide an improved ice making machine ice making plate.
[0012]
[Means for Solving the Problems]
An ice making plate for an ice making machine according to the present invention for achieving the above-mentioned object includes an ice making plate body connected to an evaporating tube to be cooled when a cooling system provided in the ice making machine is driven, and the ice making plate body A plurality of ice making projections provided on the lower surface of the ice making plate so as to be immersed in ice making water stored in a tray so as to generate ice when cooling the ice making plate main body along a main axis direction of the evaporation tube. A first connecting portion connecting the ice making protrusions arranged adjacent to each other, and a second connecting portion connecting the ice making protrusions arranged adjacent to each other along a direction perpendicular to the main axis direction of the evaporating tube. And a third connecting part connecting the first and second connecting parts, wherein the first connecting part, the second connecting part and the third connecting part are formed to have different thicknesses. I do.
[0013]
According to a preferred embodiment of the present invention, it is preferable that the third connection part has a smaller thickness than the first and second connection parts.
[0014]
Here, it is preferable that the first and second connecting portions have substantially the same thickness, and the thickness of the first and second connecting portions is substantially equal to the thickness of the third connecting portion. More preferably, it is twice.
[0015]
Meanwhile, it is preferable that the ice making projection is formed integrally with the ice making plate. Preferably, the evaporating tube is connected to the ice making plate by press-pressing the ice making plate.
[0016]
It is further preferable that at least one or more through-holes are formed in the third connection part so that dew generated on the upper surface of the ice making plate body cooled during the manufacture of the ice is discharged.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. For reference, before describing an embodiment of the present invention, components of an ice maker having the same configurations and functions as those of the conventional ice maker shown and described in FIGS. Reference numerals are given, and the detailed description is omitted.
[0018]
4 and 5, an ice making machine 100 (see FIG. 1) according to a preferred embodiment of the present invention includes an evaporating tube 180 and an ice making plate 240.
[0019]
Both ends of the evaporator tube 180 are connected to a compressor 190 (see FIG. 1) and a condenser (not shown), respectively, so as to play a part of a cooling system provided inside the ice making machine main body 110 (see FIG. 1). When the cooling system is driven, the surroundings are cooled by the cool air of the refrigerant circulating inside the evaporating pipe 180.
[0020]
The ice making plate 240 includes an ice making plate main body 241 and an ice making projection 250. The ice making plate main body 241 is connected to the evaporating tube 180 and is cooled when the evaporating tube 180 is cooled. A plurality of ice making projections 250 are provided below the ice making plate body 241 to be cooled when the ice making plate body 241 is cooled, and at the same time, are immersed in ice making water stored in the tray 160 (see FIG. 1) to generate ice. .
[0021]
The ice making plate main body 241 is desirably formed of a metal material having good thermal conductivity such as copper (Cu) so that cold air can be easily absorbed from the evaporating tube 180. The ice making projection 250 is formed of the ice making plate main body 241. It is desirable that the heat transfer efficiency of the ice making plate 240 is not reduced.
[0022]
The evaporating tube 180 is desirably press-pressed to a mounting groove 241a (see FIG. 6) in which the evaporating tube 180 is formed on the upper surface of the ice making plate main body 241. According to this, heat loss due to the conventional solder 185 (see FIG. 3) used for coupling the ice making plate main body 241 and the evaporating tube 180 can be prevented. Further, the upper surface of the ice making plate 240 is raised along the edge of the mounting groove 241a of the ice making plate 240 by the above-described press-pressing, and the projection 241b (see FIG. The contact area between the outer peripheral surface of the ice making plate body 241 and the outer peripheral surface of the ice making plate body 241 is increased, so that the cooling efficiency of the evaporating tube 180 can be improved.
[0023]
On the other hand, the ice making plate main body 241 includes a first connecting portion 243 connecting the ice making projections 250 arranged adjacent to each other along the longitudinal direction of the ice making plate main body 241, that is, along the main axis directions X1, X2, X3 of the evaporating tube 180. A second connecting portion 244 connecting the ice making projections 250 arranged adjacent to each other along a direction perpendicular to the main axis directions X1, X2, X3 of the evaporating tube 180, and connecting the first and second connecting portions 243, 244. And a third connecting portion 245 disposed between the first and second connecting portions 243 and 244.
[0024]
As shown in FIGS. 6 and 7, the ice making plate main body 241 in the present embodiment is formed such that the first connecting portion 243 and the thicknesses t1, t2, and t3 of the second connecting portion 244 and the third connecting portion 245 are different. Is done. In particular, the third connection part 245 is formed to have a smaller thickness t3 than the first and second connection parts 243 and 244, and the first and second connection parts 243 and 244 are formed to have the same thickness t1 and t2. At this time, at least one or more through-holes 249 (see FIG. 4) penetrate through a part of the third connecting portion 245 to discharge dew generated on the upper surface of the ice making plate 240 when cooling the ice making plate 240 and lowering the cooling efficiency. Preferably, it is formed. The number and shape of the through holes 249 may be variously changed based on the efficiency of transmitting cold air by the evaporating tube 180. The configuration of such an ice making plate 240 is not necessarily limited to the present embodiment. That is, if the thickness of the third connection part 245 is smaller than the thicknesses of the first and second connection parts 243 and 244, the first connection part 243, the second connection part 244 and the third connection part 245 are respectively formed. Of course, it can be formed in various thicknesses.
[0025]
According to the configuration of the ice making plate 240, the cool air transmitted from the upstream side of the evaporating tube 180 to the downstream side of the evaporating tube 180 is minimized from being unnecessaryly used to cool the third connection portion 245. it can. That is, the volume of the third connecting portion 245 is smaller than that of the related art, and the amount of cool air required for cooling the third connecting portion 245 is smaller than that of the related art. As a result, the cold air stored as described above is transferred from the ice making projection 250a (see FIG. 4) disposed upstream of the evaporating tube 180 to the ice making projection 250b (see FIG. 4) disposed downstream of the evaporating tube 180. A larger amount of light can be transmitted through the first and second connection parts 243 and 244. Therefore, the thermal equilibrium at which the temperatures of the ice making projections 250a and 250b become substantially the same when the ice making plate 240 is cooled is more quickly established, and the ice making projections 250a and 250b are generated when the ice is generated by driving the cooling system. Ice can be prevented from being formed in different sizes.
[0026]
On the other hand, the thermal equilibrium between the ice making protrusions 250a and 250b is slower when the discharge hole (not shown) is formed in the third connection part 245 as in the related art than when the ice making plate 240 according to the present invention is used. This occurs because the cold air transmission to the first and second connection portions 243 and 244 by the third connection portion 245 is blocked at the source by a conventional exhaust hole (not shown). In order to solve this, in the present invention, the third connecting portion 245 is formed to be thinner than the first and second connecting portions 243, 244, and the thickness of the first and second connecting portions 243, 244 is reduced to half of the thickness t1, t2. According to this, the cooling air loss due to the cooling of the third connection part 245 can be minimized, and the first and second connection parts 243 by the third connection part 245 can be minimized. The heat transfer between the 244 is better.
[0027]
【The invention's effect】
As described above, according to the present invention, by making the thickness of a part of the ice making plate thinner than before, the thermal equilibrium between the ice making projections can be quickly obtained.
[0028]
Thereby, it is possible to prevent the sizes of the ice pieces formed on the respective ice making projections from being formed differently, and it is possible to prevent a decrease in efficiency of the cooling system caused by cooling an unnecessary portion of the ice making plate.
[0029]
While the invention has been shown and described with reference to preferred embodiments for illustrating the principles of the invention, the invention is not limited to the exact construction and operation so shown and described. On the contrary, those skilled in the art will appreciate that various changes and modifications can be made to the present invention without departing from the spirit and scope of the appended claims. Accordingly, all such suitable changes and modifications and equivalents should be considered to be within the scope of the present invention.
[Brief description of the drawings]
FIG. 1 is a perspective view schematically showing a structure of a conventional ice making machine.
FIG. 2 is an exploded perspective view schematically showing the structure of the ice making unit of FIG. 1;
FIG. 3 is a sectional view showing a section of the ice making plate along a line II in FIG. 2;
FIG. 4 is a perspective view showing an upper surface of an ice making plate according to a preferred embodiment of the present invention;
FIG. 5 is a perspective view showing a lower surface of the ice making plate of FIG. 4;
6 is a cross-sectional view showing a cross section of the ice making plate along a line II-II in FIG. 4;
FIG. 7 is a cross-sectional view showing a cross section of the ice making plate along a line III-III in FIG. 4;
[Explanation of symbols]
100 ice making machine 110 ice making machine main body 130 ice making unit 160 tray 180 evaporating tube 185 solder 240 ice making plate 241 ice making plate main body 241a mounting groove 241b projection 243 first connecting portion 244 second connecting portion 245 third connecting portion 249 through holes 250, 250a , 250b ice projection

Claims (7)

蒸発管に結合され製氷機の駆動時冷却される製氷プレート本体と、前記製氷プレート本体の冷却時トレーに貯留された製氷水に浸漬されるよう前記製氷プレートの下面に設けられる複数の製氷突起を含む製氷機の製氷プレートにおいて、
前記製氷プレート本体は、前記蒸発管の主軸方向に沿って相互隣接して配置される前記製氷突起を連結する第1連結部と、
前記蒸発管の主軸方向について垂直方向に沿って相互隣接して配置される前記製氷突起を連結する第2連結部と、
前記第1及び第2連結部を連結する第3連結部とを含み、
前記第1連結部及び第2連結部と、第3連結部それぞれは相異なる厚さで形成されることを特徴とする製氷機の製氷プレート。
An ice making plate body coupled to the evaporating tube and cooled when the ice making machine is driven, and a plurality of ice making projections provided on the lower surface of the ice making plate so as to be immersed in ice making water stored in a tray when the ice making plate body is cooled. In the ice making plate of the ice machine including
A first connecting portion connecting the ice making projections arranged adjacent to each other along a main axis direction of the evaporating tube;
A second connecting portion that connects the ice making projections that are arranged adjacent to each other along a vertical direction with respect to a main axis direction of the evaporating tube;
A third connecting portion connecting the first and second connecting portions,
An ice making plate for an ice maker, wherein the first connection part, the second connection part, and the third connection part have different thicknesses.
前記第3連結部は前記第1及び第2連結部より薄厚を有することを特徴とする請求項1に記載の製氷機の製氷プレート。The ice making plate of claim 1, wherein the third connecting portion has a smaller thickness than the first and second connecting portions. 前記第1及び第2連結部は実質的に同一な厚さを有することを特徴とする請求項2に記載の製氷機の製氷プレート。3. The ice making plate of claim 2, wherein the first and second connecting portions have substantially the same thickness. 前記第1及び第2連結部の厚さは実質的に前記第3連結部の厚さの2倍であることを特徴とする請求項3に記載の製氷機の製氷プレート。4. The ice making plate of claim 3, wherein the thickness of the first and second connecting portions is substantially twice the thickness of the third connecting portion. 前記製氷突起は前記製氷プレートと一体に形成されることを特徴とする請求項1に記載の製氷機の製氷プレート。The ice making plate according to claim 1, wherein the ice making projection is formed integrally with the ice making plate. 前記蒸発管は前記製氷プレートにプレス圧着されることにより前記製氷プレートと結合されることを特徴とする請求項1に記載の製氷機の製氷プレート。The ice making plate according to claim 1, wherein the evaporating tube is connected to the ice making plate by press-pressing the ice making plate. 前記第3連結部には、
前記氷の製造時冷却される製氷プレート本体の上面に発生される露が排出されるよう少くとも一つ以上の貫通孔が貫通形成されることを特徴とする請求項1に記載の製氷機の製氷プレート。
In the third connecting portion,
2. The ice making machine according to claim 1, wherein at least one or more through holes are formed so as to discharge dew generated on an upper surface of the ice making plate body which is cooled when the ice is manufactured. Ice making plate.
JP2003197327A 2003-04-01 2003-07-15 Ice making plate for ice making machine Withdrawn JP2004309105A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030020353A KR20040085605A (en) 2003-04-01 2003-04-01 Freezing plate for ice making device

Publications (1)

Publication Number Publication Date
JP2004309105A true JP2004309105A (en) 2004-11-04

Family

ID=33475954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003197327A Withdrawn JP2004309105A (en) 2003-04-01 2003-07-15 Ice making plate for ice making machine

Country Status (2)

Country Link
JP (1) JP2004309105A (en)
KR (1) KR20040085605A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149590A (en) * 2010-01-20 2011-08-04 Toshiba Electric Appliance Co Ltd Ice-making machine
JP2011149589A (en) * 2010-01-20 2011-08-04 Toshiba Electric Appliance Co Ltd Ice-making machine
KR101266445B1 (en) * 2011-06-28 2013-05-22 코리아나까조 주식회사 Soak protrusion of ice making unit
JP7458054B2 (en) 2019-12-09 2024-03-29 アクア株式会社 Ice maker and refrigerator with ice maker
JP7469789B2 (en) 2019-12-25 2024-04-17 アクア株式会社 Ice maker and refrigerator equipped with ice maker
JP7483241B2 (en) 2019-12-05 2024-05-15 アクア株式会社 Ice maker and refrigerator equipped with ice maker

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102165248B1 (en) 2012-06-29 2020-10-13 코웨이 주식회사 Ice maker
KR101826606B1 (en) 2016-12-07 2018-02-07 주식회사 디알텍 Icemaker's driving cam cabable to rotate forced and driving method by the same
KR101855672B1 (en) * 2017-02-22 2018-05-09 (주) 에타 Manufacturing device and manufacturing method of ice making apparatus, and ice making apparatus using the this
KR20180100752A (en) 2017-03-02 2018-09-12 주식회사 대창 Heating module and ice maker, bidet, water purifier, refrigerator
KR20190044404A (en) 2017-10-20 2019-04-30 주식회사 대창 Ice maker module and refrigerator including the same
KR20190044405A (en) 2017-10-20 2019-04-30 주식회사 대창 Ice maker module and refrigerator including the same
KR102345716B1 (en) * 2018-11-23 2021-12-31 주식회사 아이스트로 Evaporator for ice maker
KR20200121025A (en) 2019-04-15 2020-10-23 주식회사 대창 Ice maker module and refrigerator including the same
JP7392981B2 (en) * 2019-12-25 2023-12-06 アクア株式会社 Ice maker and refrigerator with ice maker

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149590A (en) * 2010-01-20 2011-08-04 Toshiba Electric Appliance Co Ltd Ice-making machine
JP2011149589A (en) * 2010-01-20 2011-08-04 Toshiba Electric Appliance Co Ltd Ice-making machine
KR101266445B1 (en) * 2011-06-28 2013-05-22 코리아나까조 주식회사 Soak protrusion of ice making unit
JP7483241B2 (en) 2019-12-05 2024-05-15 アクア株式会社 Ice maker and refrigerator equipped with ice maker
JP7458054B2 (en) 2019-12-09 2024-03-29 アクア株式会社 Ice maker and refrigerator with ice maker
JP7469789B2 (en) 2019-12-25 2024-04-17 アクア株式会社 Ice maker and refrigerator equipped with ice maker

Also Published As

Publication number Publication date
KR20040085605A (en) 2004-10-08

Similar Documents

Publication Publication Date Title
JP2004309105A (en) Ice making plate for ice making machine
JP2005214617A (en) Refrigerator having cross flow fan
JP2007298260A (en) Heat exchanger
JPH10332192A (en) Indoor machine of air conditioner
EP1549898A1 (en) Heat exchanger for refrigerator and method for anufacturing refrigerant tube of the same
JP4542552B2 (en) Heat exchanger
JP2007139278A (en) Heat exchanger, and cold instrument using it
JP2003139478A (en) Heat exchanger
JP2004028393A (en) Heat exchanger
JP2001059689A (en) Tube for heat exchanger
JP2007183061A (en) Showcase
JPH08166181A (en) Heat exchanger
JP2003148834A (en) Refrigerant evaporator
JPS5850217Y2 (en) Evaporator
JP2002235936A (en) Outdoor machine for air conditioner
KR200296895Y1 (en) Cooling fin structure for heat exchanger tube
JP2005257104A (en) Integrated heat exchanger
KR100635811B1 (en) Evaporator and manufacturing method thereof
JP2010196948A (en) Refrigerator
KR100545576B1 (en) Tube of heat exchanger
JP2003294384A (en) Finned heat exchanger for air conditioner
JP2000018870A (en) Heat exchanger for efficiently draining condensed water
JP2000292048A (en) Heat conveying circuit
JP2003269875A (en) Counter flow heat exchanger with integrated fins and tubes
JP2003240412A (en) Refrigerator

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050127