JP2011149589A - Ice-making machine - Google Patents

Ice-making machine Download PDF

Info

Publication number
JP2011149589A
JP2011149589A JP2010009952A JP2010009952A JP2011149589A JP 2011149589 A JP2011149589 A JP 2011149589A JP 2010009952 A JP2010009952 A JP 2010009952A JP 2010009952 A JP2010009952 A JP 2010009952A JP 2011149589 A JP2011149589 A JP 2011149589A
Authority
JP
Japan
Prior art keywords
ice making
ice
refrigerant
evaporation
evaporation tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010009952A
Other languages
Japanese (ja)
Inventor
Naoki Yamaguchi
尚樹 山口
Mika Suzuki
美加 鈴木
Daisuke Takayanagi
大輔 高柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Electric Appliances Co Ltd
Original Assignee
Toshiba Electric Appliances Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Electric Appliances Co Ltd filed Critical Toshiba Electric Appliances Co Ltd
Priority to JP2010009952A priority Critical patent/JP2011149589A/en
Publication of JP2011149589A publication Critical patent/JP2011149589A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ice-making machine capable of securely preventing leakage of a refrigerant from an evaporation tube and of improving ice-making efficiency. <P>SOLUTION: The evaporation tube 18 of a cooling circuit where a refrigerant circulates has a seamless structure, to prevent leakage of the refrigerant from the evaporation tube 18. A plurality of ice-making projections 19 are provided individually, and are directly bonded to the outer face of the evaporation tube 18, respectively. By achieving good thermal conductivity between the evaporation tube 18 and the ice-making projections 19, ice-making efficiency is improved. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、氷を製造する製氷機に関する。   The present invention relates to an ice making machine that produces ice.

従来、氷を製造する製氷機においては、冷媒が循環される冷凍サイクルによって構成される冷却回路と、上面に冷却回路の蒸発管が配置されるプレート本体およびこのプレート本体の下面から突出された複数の製氷突起(マンドレル)を有する製氷プレートと、この製氷プレートの下方に配置されて製氷水を貯留する容器を備えた、いわゆるバッチ式と呼ばれる製氷機がある(例えば、特許文献1参照。)。   Conventionally, in an ice making machine for producing ice, a cooling circuit constituted by a refrigeration cycle in which refrigerant is circulated, a plate body on which an evaporation pipe of the cooling circuit is arranged on the upper surface, and a plurality of protrusions protruding from the lower surface of the plate body There is a so-called batch type ice making machine provided with an ice making plate having an ice making protrusion (mandrel) and a container for storing ice making water disposed below the ice making plate (see, for example, Patent Document 1).

この製氷機の製氷プレートは、一般に、アルミダイキャスト製で、プレート本体および複数の製氷突起が一体に形成されている。   The ice making plate of this ice making machine is generally made of aluminum die cast, and a plate body and a plurality of ice making protrusions are integrally formed.

そして、この製氷機では、製氷時において、冷却回路の運転により冷媒を蒸発器に循環させて製氷プレート全体つまりプレート本体および各製氷突起を冷却し、製氷プレートの下方に配置された容器の製氷水中に浸漬されている各製氷突起の周りに氷を成長させ、また、氷が一定の大きさまで成長したら製氷を中止し、製氷プレートの下方から容器を移動させ、冷却回路のサイクル切り換えによって冷却回路から冷媒のホットガスを蒸発管に供給して製氷プレート全体つまりプレート本体および各製氷突起を加熱し、各製氷突起に接触している氷の表面を溶かし、各製氷突起から氷を離脱させて下方へ排出するようにしている。したがって、製氷と離氷とを交互に繰り返しながら、氷を製造している。   In the ice making machine, during ice making, the cooling circuit is operated to circulate the refrigerant to the evaporator to cool the entire ice making plate, that is, the plate body and each ice making protrusion, and the ice making water in a container disposed below the ice making plate is used. Ice is grown around each ice-making protrusion immersed in the ice, and when the ice grows to a certain size, the ice-making is stopped, the container is moved from the bottom of the ice-making plate, and the cooling circuit is switched from the cooling circuit by switching the cycle. Supply the hot gas of the refrigerant to the evaporation pipe to heat the whole ice making plate, that is, the plate body and each ice making protrusion, melt the surface of the ice in contact with each ice making protrusion, detach the ice from each ice making protrusion, and move downward It is trying to discharge. Therefore, ice is produced while repeating ice making and de-icing alternately.

また、蒸発管の長手方向に沿って複数の孔をあけ、この蒸発管の各孔に中空状の製氷突起を直接接続し、蒸発管内の冷媒が製氷突起内を流れるようにすることにより、製氷効率を向上させるようにした製氷機がある(例えば、特許文献2参照。)。   Also, by making a plurality of holes along the longitudinal direction of the evaporation pipe, and connecting a hollow ice-making projection directly to each hole of the evaporation pipe so that the refrigerant in the evaporation pipe flows through the ice-making projection, There is an ice making machine that improves efficiency (for example, see Patent Document 2).

特開2004−309105号公報(第2−5頁、図1−7)Japanese Patent Laying-Open No. 2004-309105 (page 2-5, FIG. 1-7) 特開2008−64450号公報(第5−7頁、図1−7)JP 2008-64450 A (page 5-7, FIG. 1-7)

しかしながら、製氷プレートを用いた製氷機では、蒸発管と各製氷突起との間に熱容量の大きなプレート本体が介在するため、蒸発管と製氷突起との間での熱伝導性が低下し、単位時間当たりの製氷量が比較的少なくなり、製氷効率が悪かった。   However, in an ice making machine using an ice making plate, since the plate body having a large heat capacity is interposed between the evaporation tube and each ice making projection, the thermal conductivity between the evaporation tube and the ice making projection decreases, and unit time The ice making amount per hit was relatively small, and the ice making efficiency was poor.

さらに、製氷効率が悪い理由として、製氷プレートがアルミダイキャスト製であることもあり、そのため、アルミダイキャストに比べて熱伝導性がよい例えば銅などで製氷プレートを形成することも考えられるが、この場合、製氷プレートのコストが高く製造性も低下することになり、しかも、上述のように蒸発管と各製氷突起との間に熱容量の大きなプレート本体が介在することから、十分な製氷効率の向上が望めない。   Furthermore, the reason for the low ice-making efficiency is that the ice-making plate is made of aluminum die-cast, and therefore, it may be possible to form the ice-making plate with, for example, copper, which has better thermal conductivity than aluminum die-casting, In this case, the cost of the ice making plate is high and manufacturability is also reduced, and since the plate body having a large heat capacity is interposed between the evaporation tube and each ice making projection as described above, sufficient ice making efficiency is achieved. I cannot expect improvement.

また、蒸発管に孔をあけて製氷突起を直接接続し、冷媒が製氷突起内を流れるようにした製氷機では、製氷効率が向上するものの、蒸発管と各製氷突起との接続部分における接続不良や劣化によって冷媒が外部に漏れるおそれがある。特に、ノンフロン化に伴う代替冷媒として、例えばイソブタンなどの可燃性ガスを使用する場合があるが、このような可燃性ガスの漏れは確実に防止しなければならない。   In addition, ice making machines that have a hole in the evaporation pipe and are directly connected to the ice making projections to allow the refrigerant to flow through the ice making projections improve the ice making efficiency, but the connection between the evaporation tube and each ice making projection is poor. Otherwise, the refrigerant may leak to the outside due to deterioration. In particular, there is a case where a flammable gas such as isobutane is used as an alternative refrigerant accompanying non-fluorocarbon, but such a leakage of the flammable gas must be surely prevented.

本発明は、このような点に鑑みなされたもので、蒸発管からの冷媒の漏れを確実に防止できるとともに製氷効率を向上できる製氷機を提供することを目的とする。   The present invention has been made in view of these points, and an object of the present invention is to provide an ice making machine that can reliably prevent leakage of refrigerant from the evaporation pipe and improve ice making efficiency.

請求項1記載の製氷機は、製氷水を貯留する容器と、シームレス構造の蒸発管を有し、冷媒が循環する冷却回路と、それぞれ個別に設けられて前記蒸発管の外面に直接取り付けられ、前記容器の製氷水中に浸漬されるとともに前記蒸発管から冷媒が流れることなく前記蒸発管の外面との熱伝導によって製氷する複数の製氷素子とを具備しているものである。   The ice making machine according to claim 1 has a container for storing ice making water, a seamless structure of an evaporation pipe, a cooling circuit through which a refrigerant circulates, and is individually provided and directly attached to the outer surface of the evaporation pipe, A plurality of ice making elements that are immersed in the ice making water of the container and that make ice by heat conduction with the outer surface of the evaporation tube without flowing refrigerant from the evaporation tube.

請求項2記載の製氷機は、請求項1記載の製氷機において、前記製氷素子の材質は、銅であるものである。   The ice making machine according to claim 2 is the ice making machine according to claim 1, wherein a material of the ice making element is copper.

請求項3記載の製氷機は、請求項1または2記載の製氷機において、前記製氷素子は、筒形で、前記蒸発管に対して反対側の先端が開放されているものである。   An ice making machine according to a third aspect is the ice making machine according to the first or second aspect, wherein the ice making element has a cylindrical shape, and a tip opposite to the evaporation tube is open.

請求項1記載の製氷機によれば、シームレス構造の蒸発管に、それぞれ個別に設けられている複数の製氷素子を直接取り付けた構造であるため、蒸発管からの冷媒の漏れを確実に防止できるとともに、蒸発管と製氷素子との熱伝導性を向上できて製氷効率を向上できる。   According to the ice making machine of the first aspect, since the plurality of ice making elements provided individually are directly attached to the seamless structure of the evaporation pipe, it is possible to reliably prevent the leakage of the refrigerant from the evaporation pipe. At the same time, the thermal conductivity between the evaporator tube and the ice making element can be improved, and the ice making efficiency can be improved.

請求項2記載の製氷機によれば、請求項1記載の製氷機の効果に加えて、蒸発管に、それぞれ個別に設けられている複数の製氷素子を直接取り付ける構造とすることにより、比較的低コストで製氷素子の材質として熱伝導性に優れた銅を採用することができ、製氷効率もより向上できる。   According to the ice making machine of claim 2, in addition to the effect of the ice making machine of claim 1, a structure in which a plurality of individually made ice making elements are directly attached to the evaporation pipe, Copper having excellent thermal conductivity can be adopted as a material for the ice making element at low cost, and ice making efficiency can be further improved.

請求項3記載の製氷機によれば、請求項1または2記載の製氷機の効果に加えて、製氷素子を筒形とし、その先端を開放しているため、製氷素子の外側に加えて内側にも製氷することができ、例えば製氷素子の内部が密閉空間である場合のようにその密閉空間の空気の収縮および膨張の影響を製氷素子が受けるのを防止できる。   According to the ice making machine of the third aspect, in addition to the effect of the ice making machine of the first or second aspect, the ice making element has a cylindrical shape and its tip is open, so that the inside of the ice making element is added to the outside. Ice making can also be performed, and for example, the ice making element can be prevented from being affected by the contraction and expansion of air in the sealed space as in the case where the inside of the ice making element is a sealed space.

本発明の第1の実施の形態を示す製氷機の断面図である。It is sectional drawing of the ice making machine which shows the 1st Embodiment of this invention. 同上製氷機の斜視図である。It is a perspective view of an ice making machine same as the above. 同上製氷機の冷却回路の回路図である。It is a circuit diagram of the cooling circuit of the ice making machine same as the above. 本発明の第2の実施の形態を示す製氷機の断面図である。It is sectional drawing of the ice making machine which shows the 2nd Embodiment of this invention. 本発明の第3の実施の形態を示す製氷機の断面図である。It is sectional drawing of the ice making machine which shows the 3rd Embodiment of this invention.

以下、本発明の実施の形態を、図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1ないし図3に第1の実施の形態を示す。   1 to 3 show a first embodiment.

図3に示すように、製氷機11は、製氷を行う製氷部12、およびこの製氷部12を冷却または加熱する冷却回路(冷凍回路)13を備えている。   As shown in FIG. 3, the ice making machine 11 includes an ice making unit 12 that performs ice making, and a cooling circuit (refrigeration circuit) 13 that cools or heats the ice making unit 12.

図1および図2に製氷部12の構成を示す。製氷部12は、製氷水w(図2には図示を省略している)を貯留する容器(トレイ)15、この容器15に貯留された製氷水wを冷却して製氷する製氷ユニット16、容器15を製氷ユニット16の下側に組み合わせる製氷位置と製氷ユニット16の下側から退避させる退避位置とに移動させる図示しない移動ユニット、および容器15に製氷水wを供給する図示しない製氷水供給ユニットなどを備えている。   1 and 2 show the configuration of the ice making unit 12. The ice making unit 12 includes a container (tray) 15 that stores ice making water w (not shown in FIG. 2), an ice making unit 16 that cools the ice making water w stored in the container 15 and makes ice, and a container An unillustrated moving unit that moves 15 to an ice making position that combines 15 under the ice making unit 16 and a retreat position that retracts from the underside of the ice making unit 16, an unillustrated ice making water supply unit that supplies ice making water w to the container 15, It has.

容器15は、上面を開放した長方形のトレイ状に形成され、製氷水wを貯留可能とされている。   The container 15 is formed in a rectangular tray shape having an open upper surface, and can store ice-making water w.

また、製氷ユニット16は、冷却回路13の蒸発器を構成するものであり、冷却回路13の冷媒が循環する蒸発管18、およびこの蒸発管18の下面側の外面に直接取り付けられた複数の製氷素子としての製氷突起(マンドレル)19を備えている。   The ice making unit 16 constitutes an evaporator of the cooling circuit 13, and includes a plurality of ice making units directly attached to the evaporation pipe 18 through which the refrigerant of the cooling circuit 13 circulates and the outer surface of the lower face side of the evaporation pipe 18. An ice-making protrusion (mandrel) 19 as an element is provided.

蒸発管18は、熱伝導性に優れた材料である例えば銅によって孔やつなぎ目がない円筒状に形成されたシームレス管が用いられ、容器15の上面外形部より内側の範囲内に収まるように略U字形に曲げ加工されている。なお、蒸発管18は、図示しない支持部材によって、水平に配置されるように支持されている。   The evaporation tube 18 is a material having excellent thermal conductivity, for example, a seamless tube formed in a cylindrical shape with no holes or joints using copper, and is generally disposed so as to be within the range inside the upper surface outer shape portion of the container 15. It is bent into a U shape. The evaporation pipe 18 is supported by a support member (not shown) so as to be arranged horizontally.

製氷突起19は、熱伝導性に優れた材料である例えば銅によってそれぞれ個別に形成されたもので、中実の円柱状の棒材で、一端に蒸発管18の外面に沿って接合可能とする曲面状の取付面20が形成され、他端である先端が離氷を容易にするための球面状に形成されている。製氷突起19の取付面20は、蒸発管18の下面側の外面に対して、直接、接合されるとともに、ろう付けや熱伝導性を有する接着剤などによって接着されている。そのため、製氷突起19は、蒸発管18から冷媒が流れなくても、蒸発管18の外面との熱伝導性を向上できるように構成されている。   The ice making protrusions 19 are individually formed of copper, which is a material having excellent thermal conductivity, and are solid cylindrical rods that can be joined to one end along the outer surface of the evaporation tube 18. A curved mounting surface 20 is formed, and the tip which is the other end is formed in a spherical shape for facilitating ice removal. The attachment surface 20 of the ice making projection 19 is directly bonded to the outer surface on the lower surface side of the evaporation tube 18, and is bonded by an adhesive having brazing or thermal conductivity. Therefore, the ice making protrusion 19 is configured to improve the thermal conductivity with the outer surface of the evaporation pipe 18 even if the refrigerant does not flow from the evaporation pipe 18.

次に、図3に示すように、冷却回路13は、圧縮機31、凝縮機32、製氷部12の製氷ユニット16に配置された蒸発管18である蒸発器33、およびアキュムレータ34を含む冷凍サイクルによって構成されている。   Next, as shown in FIG. 3, the cooling circuit 13 includes a compressor 31, a condenser 32, an evaporator 33 that is an evaporator tube 18 disposed in the ice making unit 16 of the ice making unit 12, and an accumulator 34. It is constituted by.

凝縮機32と蒸発器33との間に第1のバルブ35が配置され、圧縮機31と凝縮機32との間と第1のバルブ35と蒸発器33との間とが配管36で接続されているとともに、この配管36に第2のバルブ37が配置されている。そして、製氷時には、第1のバルブ35が開、第2のバルブ37が閉とされて、図3に実線矢印で示すように、圧縮機31で圧縮されて凝縮機32で凝縮された高圧の冷媒が蒸発器33に流れて蒸発することにより冷却し、また、離氷時には、第1のバルブ35が閉、第2のバルブ37が開とされて、図3に破線矢印で示すように、圧縮機31で圧縮された高温の冷媒つまりホットガスが蒸発器33に流れて加熱する。したがって、各バルブ35,37および配管36が、製氷時と離氷時とに応じて冷媒の流れを切り換える切換部38として構成されている。   A first valve 35 is disposed between the condenser 32 and the evaporator 33, and a pipe 36 connects between the compressor 31 and the condenser 32 and between the first valve 35 and the evaporator 33. In addition, a second valve 37 is disposed in the pipe 36. At the time of ice making, the first valve 35 is opened and the second valve 37 is closed. As shown by the solid line arrow in FIG. As the refrigerant flows into the evaporator 33 and evaporates, the refrigerant is cooled, and at the time of deicing, the first valve 35 is closed and the second valve 37 is opened. A high-temperature refrigerant, that is, hot gas compressed by the compressor 31, flows into the evaporator 33 and heats it. Accordingly, the valves 35 and 37 and the pipe 36 are configured as a switching unit 38 that switches the flow of the refrigerant according to ice making and ice removing.

次に、製氷機11の動作について説明する。   Next, the operation of the ice making machine 11 will be described.

製氷時には、製氷水供給ユニットにより、容器15に予め設定された所定量の製氷水wを供給し、また、移動ユニットにより、容器15を製氷ユニット16の下側に組み合わせ、製氷ユニット16の各製氷突起19を容器15の製氷水w中に浸漬させる。   During ice making, an ice making water supply unit supplies a predetermined amount of ice making water w set in advance to the container 15, and the moving unit combines the container 15 below the ice making unit 16, and makes each ice making unit 16 ice making The protrusion 19 is immersed in the ice making water w of the container 15.

冷却回路13の第1のバルブ35を開、第2のバルブ37を閉として、圧縮機31を運転することにより、圧縮機31で圧縮されて凝縮機32で凝縮された高圧の冷媒が蒸発器33の蒸発管18に流れて蒸発し、蒸発管18および各製氷突起19を冷却する。   When the first valve 35 of the cooling circuit 13 is opened and the second valve 37 is closed and the compressor 31 is operated, the high-pressure refrigerant compressed by the compressor 31 and condensed by the condenser 32 is evaporated. It flows to the 33 evaporation pipes 18 and evaporates, and the evaporation pipes 18 and the respective ice making projections 19 are cooled.

各製氷突起19を通じて製氷水wが冷却され、各製氷突起19の表面に氷iが着氷されていく。   The ice making water w is cooled through each ice making protrusion 19, and ice i is icing on the surface of each ice making protrusion 19.

このとき、蒸発管18内の冷媒が各製氷突起19に流れることはないが、蒸発管18の外面に各製氷突起19が直接、接着されているため、蒸発管18と製氷突起19との熱伝導性が良好で、製氷突起19が効率よく冷却される。そのため、各製氷突起19の表面に所定量あるいは所定厚の氷iを製氷するのに要する製氷時間を短縮できる。   At this time, the refrigerant in the evaporation pipe 18 does not flow to each ice making projection 19, but since each ice making projection 19 is directly bonded to the outer surface of the evaporation pipe 18, the heat of the evaporation pipe 18 and the ice making projection 19 is Conductivity is good, and the ice making protrusion 19 is efficiently cooled. Therefore, it is possible to shorten the ice making time required for making a predetermined amount or thickness of ice i on the surface of each ice making protrusion 19.

また、各製氷突起19の表面に所定量あるいは所定厚の氷iが着氷して製氷が完了したら、離氷に切り換えて実施する。   Further, when ice making of a predetermined amount or thickness reaches the surface of each ice making protrusion 19 and the ice making is completed, switching to deicing is performed.

この離氷時には、まず、移動ユニットにより、容器15を製氷ユニット16の下側から退避させる。   At the time of this ice removal, first, the container 15 is retracted from the lower side of the ice making unit 16 by the moving unit.

続いて、冷却回路13の第1のバルブ35を閉、第2のバルブ37を開として、図3に破線矢印で示すように、圧縮機31で圧縮された高温の冷媒つまりホットガスを蒸発器33の蒸発管18に送り込み、蒸発管18および各製氷突起19を加熱する。   Subsequently, the first valve 35 and the second valve 37 of the cooling circuit 13 are closed and the second valve 37 is opened. As shown by the broken line arrow in FIG. It feeds into the 33 evaporation pipes 18, and the evaporation pipe 18 and each ice making protrusion 19 are heated.

各製氷突起19が温度上昇することにより、各製氷突起19の表面に接している氷iの表面が溶け、各製氷突起19から氷iが離氷して落下し、図示しない氷貯留部に貯留される。   As the ice making protrusions 19 rise in temperature, the surface of the ice i in contact with the surface of each ice making protrusion 19 is melted, and the ice i is deiced and dropped from each ice making protrusion 19 and stored in an ice storage section (not shown). Is done.

このとき、蒸発管18内の冷媒が各製氷突起19に流れることはないが、蒸発管18の外面に各製氷突起19が直接、接着されているため、蒸発管18と製氷突起19との熱伝導性が良好で、製氷突起19が効率よく加熱される。そのため、各製氷突起19から氷iを離氷させるのに要する離氷時間を短縮できる。   At this time, the refrigerant in the evaporation pipe 18 does not flow to each ice making projection 19, but since each ice making projection 19 is directly bonded to the outer surface of the evaporation pipe 18, the heat of the evaporation pipe 18 and the ice making projection 19 is Conductivity is good, and the ice making protrusion 19 is efficiently heated. For this reason, it is possible to shorten the time required for icing the ice i from each ice making projection 19.

したがって、製氷機11全体としては、製氷から離氷までの1サイクルの時間を短縮して、単位時間当たりの製氷量を増加でき、製氷機11の能力を向上できる。   Therefore, the ice making machine 11 as a whole can shorten the time of one cycle from ice making to ice removal, increase the ice making amount per unit time, and improve the ability of the ice making machine 11.

しかも、シームレス構造の蒸発管18を用いるため、蒸発管18からの冷媒の漏れを確実に防止できる。特に、ノンフロン化に伴う代替冷媒として、例えばイソブタンなどの可燃性ガスを使用する場合があるが、このような可燃性ガスの漏れは確実に防止できる。   Moreover, since the seamless structure of the evaporation pipe 18 is used, leakage of the refrigerant from the evaporation pipe 18 can be reliably prevented. In particular, as an alternative refrigerant associated with non-fluorocarbons, for example, a combustible gas such as isobutane may be used. However, such a leakage of the combustible gas can be reliably prevented.

さらに、蒸発管18がシームレス構造であっても、この蒸発管18に、それぞれ個別に設けられている製氷突起19を直接、接着した構造とするため、従来のように製氷プレートを介在させる場合に比べて、蒸発管18と製氷突起19との熱伝導性を向上できて製氷効率を向上できる。   Furthermore, even if the evaporation pipe 18 has a seamless structure, the ice making projections 19 provided individually are directly bonded to the evaporation pipe 18, so that an ice making plate is interposed as in the past. In comparison, the thermal conductivity between the evaporation pipe 18 and the ice making projection 19 can be improved, and the ice making efficiency can be improved.

さらに、製氷突起19をそれぞれ個別に形成することができ、従来のように製氷プレートと一体に形成する場合に比べて、比較的低コストで製氷突起19の材質として熱伝導性に優れた銅を採用することができ、製氷効率もより向上できる。   Furthermore, the ice making protrusions 19 can be formed individually, and copper having excellent thermal conductivity as the material of the ice making protrusions 19 can be formed at a relatively low cost compared to the case where the ice making protrusions 19 are formed integrally with the ice making plate as in the past. The ice making efficiency can be further improved.

次に、図4に第2の実施の形態を示す。   Next, FIG. 4 shows a second embodiment.

製氷突起19は、絞り加工によって一端が開口されるとともに他端である先端が閉塞された筒形に形成され、一端の開口縁部に蒸発管18に直接、接着される取付面20が形成されている。   The ice making projection 19 is formed in a cylindrical shape having one end opened by drawing and the other end closed, and a mounting surface 20 directly bonded to the evaporation pipe 18 is formed at the opening edge of one end. ing.

この場合、製氷突起19が筒状であるため、材料の使用量を削減でき、材質に銅を用いても安価にできる。   In this case, since the ice making protrusions 19 are cylindrical, the amount of material used can be reduced, and even if copper is used as the material, the cost can be reduced.

なお、製氷突起19の一端側には、製氷突起19の内側空間を外側と連通させて大気開放する空気抜き用の図示しない孔が設けてもよい。この場合、例えば製氷突起19の内部が密閉空間である場合のように、製氷突起19の冷却、加熱によってその密閉空間の空気の収縮および膨張の影響を製氷突起19が受けて破損するのを防止できる。   Note that a hole (not shown) for venting air that opens the atmosphere by communicating the inner space of the ice making protrusion 19 with the outside may be provided on one end side of the ice making protrusion 19. In this case, for example, as in the case where the inside of the ice making projection 19 is a sealed space, the ice making projection 19 is prevented from being damaged by the cooling and heating of the ice making projection 19 due to the contraction and expansion of the air in the sealed space. it can.

次に、図5に第3の実施の形態を示す。   Next, FIG. 5 shows a third embodiment.

製氷突起19は、両端が開口した円筒状に形成され、一端の開口縁部に蒸発管18に直接、接着される取付面20が形成されている。なお、製氷突起19の一端側には、製氷突起19を製氷水w中に浸透させた際に、製氷突起19の内側の空気を外部に逃して、製氷突起19の内側に製氷水wが入るようにするために、空気抜き用の図示しない孔が設けられている。   The ice making projection 19 is formed in a cylindrical shape with both ends opened, and an attachment surface 20 is formed on the opening edge of one end to be directly bonded to the evaporation tube 18. Note that when the ice making protrusion 19 is infiltrated into the ice making water w on one end side of the ice making protrusion 19, the air inside the ice making protrusion 19 is released to the outside, and the ice making water w enters the inside of the ice making protrusion 19. In order to do so, a hole (not shown) for venting air is provided.

この場合、製氷突起19を筒形とし、その先端を開放しているため、製氷突起19の外側に加えて内側にも製氷することができ、内側にできる空間が小さい氷iを製氷できる。さらに、例えば製氷突起19の内部が密閉空間である場合のように、製氷突起19の冷却、加熱によってその密閉空間の空気の収縮および膨張の影響を製氷突起19が受けて破損するのを防止できる。   In this case, since the ice making protrusion 19 has a cylindrical shape and the tip thereof is open, ice can be made not only on the outside of the ice making protrusion 19 but also on the inside, and ice i with a small space inside can be made. Further, for example, as in the case where the inside of the ice making projection 19 is a sealed space, it is possible to prevent the ice making projection 19 from being damaged by cooling and heating of the ice making projection 19 due to the contraction and expansion of the air in the sealed space. .

なお、容器15には、製氷水wを貯留する複数の凹部を設け、これら各凹部内の製氷水w中に各製氷突起19を浸漬させて製氷するようにしてもよい。   The container 15 may be provided with a plurality of recesses for storing the ice making water w, and the ice making projections 19 may be immersed in the ice making water w in each of the recesses for ice making.

11 製氷機
13 冷却回路
15 容器
18 蒸発管
19 製氷素子としての製氷突起
w 製氷水
11 Ice machine
13 Cooling circuit
15 containers
18 Evaporating tube
19 Ice making process as ice making element w Ice making water

Claims (3)

製氷水を貯留する容器と、
シームレス構造の蒸発管を有し、冷媒が循環する冷却回路と、
それぞれ個別に設けられて前記蒸発管の外面に直接取り付けられ、前記容器の製氷水中に浸漬されるとともに前記蒸発管から冷媒が流れることなく前記蒸発管の外面との熱伝導によって製氷する複数の製氷素子と
を具備していることを特徴とする製氷機。
A container for storing ice making water;
A cooling circuit having a seamless structure of the evaporation pipe and circulating refrigerant;
A plurality of ice making units that are individually provided and directly attached to the outer surface of the evaporation tube, are immersed in the ice making water of the container, and make ice by heat conduction with the outer surface of the evaporation tube without flowing refrigerant from the evaporation tube. An ice making machine comprising: an element.
前記製氷素子の材質は、銅である
ことを特徴とする請求項1記載の製氷機。
The ice maker according to claim 1, wherein the material of the ice making element is copper.
前記製氷素子は、筒形で、前記蒸発管に対して反対側の先端が開放されている
ことを特徴とする請求項1または2記載の製氷機。
The ice making machine according to claim 1 or 2, wherein the ice making element has a cylindrical shape, and an end opposite to the evaporation pipe is open.
JP2010009952A 2010-01-20 2010-01-20 Ice-making machine Pending JP2011149589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010009952A JP2011149589A (en) 2010-01-20 2010-01-20 Ice-making machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010009952A JP2011149589A (en) 2010-01-20 2010-01-20 Ice-making machine

Publications (1)

Publication Number Publication Date
JP2011149589A true JP2011149589A (en) 2011-08-04

Family

ID=44536737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010009952A Pending JP2011149589A (en) 2010-01-20 2010-01-20 Ice-making machine

Country Status (1)

Country Link
JP (1) JP2011149589A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150019117A (en) * 2013-08-12 2015-02-25 엘지전자 주식회사 Water purifier with a ice making means
CN110595087A (en) * 2019-10-17 2019-12-20 谢天宇 Hot rod ice making, cold storage and application system
CN113108521A (en) * 2019-12-25 2021-07-13 青岛海尔电冰箱有限公司 Ice maker and refrigerator having the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119171U (en) * 1982-02-05 1983-08-13 株式会社パテイネ商会 ice rink refrigeration equipment cooler
JPH04123827A (en) * 1990-09-10 1992-04-23 Hitachi Cable Ltd Method and device for manufacturing ice heat accumulating coil
JPH04506858A (en) * 1989-07-21 1992-11-26 シムケンズ,マルセラス,シー.,ピー.,エル. Method and device for making ice cubes
JPH1047824A (en) * 1996-08-05 1998-02-20 Hoshizaki Electric Co Ltd Ice making portion of ice machine
JP2004218982A (en) * 2003-01-16 2004-08-05 Hoshizaki Electric Co Ltd Automatic ice maker
JP2004309105A (en) * 2003-04-01 2004-11-04 Samsung Kwangju Electronics Co Ltd Ice making plate for ice making machine
JP2008064450A (en) * 2006-09-06 2008-03-21 Korea Nakajo Kk Generating tube for icemaker

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119171U (en) * 1982-02-05 1983-08-13 株式会社パテイネ商会 ice rink refrigeration equipment cooler
JPH04506858A (en) * 1989-07-21 1992-11-26 シムケンズ,マルセラス,シー.,ピー.,エル. Method and device for making ice cubes
JPH04123827A (en) * 1990-09-10 1992-04-23 Hitachi Cable Ltd Method and device for manufacturing ice heat accumulating coil
JPH1047824A (en) * 1996-08-05 1998-02-20 Hoshizaki Electric Co Ltd Ice making portion of ice machine
JP2004218982A (en) * 2003-01-16 2004-08-05 Hoshizaki Electric Co Ltd Automatic ice maker
JP2004309105A (en) * 2003-04-01 2004-11-04 Samsung Kwangju Electronics Co Ltd Ice making plate for ice making machine
JP2008064450A (en) * 2006-09-06 2008-03-21 Korea Nakajo Kk Generating tube for icemaker

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150019117A (en) * 2013-08-12 2015-02-25 엘지전자 주식회사 Water purifier with a ice making means
KR101602236B1 (en) 2013-08-12 2016-03-10 엘지전자 주식회사 Water purifier with a ice making means
CN110595087A (en) * 2019-10-17 2019-12-20 谢天宇 Hot rod ice making, cold storage and application system
CN113108521A (en) * 2019-12-25 2021-07-13 青岛海尔电冰箱有限公司 Ice maker and refrigerator having the same
CN113108521B (en) * 2019-12-25 2023-09-19 青岛海尔电冰箱有限公司 Ice maker and refrigerator having the same

Similar Documents

Publication Publication Date Title
US8596084B2 (en) Icemaker with reversible thermosiphon
KR101798553B1 (en) Ice maker for refrigerator and refrigerator comprising the same
US10890371B2 (en) Freezing refrigerator
KR102493237B1 (en) Defrosting device and refrigerator having the same
KR20160046714A (en) Defrosting device and refrigerator having the same
EP2397799B1 (en) Refrigerator
US10618373B2 (en) Heat exchanger
JP2010038516A (en) Refrigerator-freezer and cooling storage
JP2011149589A (en) Ice-making machine
EP3193108B1 (en) Refrigerator
JP6484709B2 (en) Defrosting device and refrigerator provided with the same
JP2015135217A (en) Heat exchanger, chiller using the same, and refrigerator truck or refrigerator box
KR100814687B1 (en) Ice maker having thermoelectric element
JP2020133933A (en) Defrosting device and refrigerator including the same
KR101648669B1 (en) Ice and cold water maker using thermoelectric element
JP2011149590A (en) Ice-making machine
KR20160010143A (en) Defrost system for Freezer
JP2018063058A (en) Refrigerator and control method for the same
JP6912673B2 (en) Defrost system
JP2011112267A (en) Refrigeration unit for container
JP2012122652A (en) Refrigerator
EP3757484A1 (en) Refrigerator appliance
JP2011196652A (en) Ice making machine
JP2011058732A (en) Ice making machine
WO2023210200A1 (en) Cooler

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140226