JP2004308454A - パティキュレートフィルタの故障検知装置及びエンジンの排気ガス浄化装置 - Google Patents

パティキュレートフィルタの故障検知装置及びエンジンの排気ガス浄化装置 Download PDF

Info

Publication number
JP2004308454A
JP2004308454A JP2003099655A JP2003099655A JP2004308454A JP 2004308454 A JP2004308454 A JP 2004308454A JP 2003099655 A JP2003099655 A JP 2003099655A JP 2003099655 A JP2003099655 A JP 2003099655A JP 2004308454 A JP2004308454 A JP 2004308454A
Authority
JP
Japan
Prior art keywords
particulate filter
exhaust gas
failure
change amount
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003099655A
Other languages
English (en)
Other versions
JP4062153B2 (ja
Inventor
Akira Shirakawa
暁 白河
Hiroyuki Itoyama
浩之 糸山
Manabu Miura
学 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003099655A priority Critical patent/JP4062153B2/ja
Publication of JP2004308454A publication Critical patent/JP2004308454A/ja
Application granted granted Critical
Publication of JP4062153B2 publication Critical patent/JP4062153B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

【課題】パティキュレートフィルタの故障を正確に、かつその発生後早期に検知する。
【解決手段】パティキュレートフィルタの下流における排気ガス状態量の非定常変化の大きさを検出し、これと所定値との比較によりパティキュレートフィルタの故障を検知する。1つの形態では、排気ガス状態量としてパティキュレートフィルタの下流における排気ガス圧力Pexhoutを検出し、その脈動振幅Pexhoutampを算出する。そして、脈動振幅Pexhoutampが所定値を上回るときに故障が生じたものと判断する。
【選択図】 図11

Description

【0001】
【発明の属する技術分野】
本発明は、パティキュレートフィルタの故障検知装置に関し、詳細には、パティキュレートフィルタにフィルタエレメントの割れやその目封じの抜けといった故障が生じたことを検知するための技術に関する。
【0002】
【従来の技術】
パティキュレートフィルタとして、セラミック等をハニカム状モノリスに成形するとともに、蜂の巣状の通路の入口側及び出口側で交互に目封じを設けてフィルタエレメントを構成し、これをケースに内蔵させたものが知られている。パティキュレートフィルタは、流入した排気ガスがフィルタエレメントの通路を隔てる壁部を通過する際に粒子状物質(以下「パティキュレート」という。)を捕集し、これを排気ガスから除去するものである。そして、このようなパティキュレートフィルタにフィルタエレメントの割れ等の故障が生じたことを検知する機能を持たせたエンジンの排気ガス浄化装置として、次のようなものが知られている。すなわち、エンジンの排気通路に排気ガス中のパティキュレートを捕集させるパティキュレートフィルタを介装するとともに、排気還流(以下「EGR」という。)通路にEGRガスの流量を調節するためのEGR弁を介装し、吸入空気量を目標値に近付けるようにEGR弁開度をフィードバック制御するものにおいて、EGR弁開度をフィードバック制御している際にEGR弁開度がある規定値を超えたときは、パティキュレートフィルタに故障が生じたものとして、これを検知するのである(下記特許文献1)。
【0003】
【特許文献1】
特開2001−207828号公報(段落番号0008)
【0004】
【発明が解決しようとする課題】
しかしながら、このものには、次のような問題がある。すなわち、上記の装置によるパティキュレートフィルタの故障検知は、パティキュレートフィルタにフィルタエレメントの割れ等の故障が生じると、パティキュレートフィルタ前後における圧損が低下して吸排気系間に生じる差圧が小さくなるため、EGRガスの流量を一定に保つために必要とされるEGR弁開度が正常時よりも大きくなることに基づくものである。ここで、パティキュレートフィルタ前後における圧損は、パティキュレートフィルタに堆積しているパティキュレートの量が少ないときと、これよりも多くのパティキュレートが堆積しているがパティキュレートフィルタに故障が生じているときとで同一の低い値をとる場合がある。従って、両者のいずれの場合であるかを判別するため、エンジンの運転状態によるものに加えて、正常及び故障の判断のしきい値をパティキュレートの堆積状況に応じて変更することが必要となる。一方、そのようにしきい値を変更しない場合は、故障検知を行う時期をパティキュレートの堆積状況との関係で制限することが必要となり、故障検知を行う頻度が低下するため、現に故障が生じているのにこれが検知されないことが考えられる。
【0005】
このような実状に鑑み、本発明は、パティキュレートフィルタにフィルタエレメントの割れ等の故障が生じた場合は、正常時と比較して、パティキュレートフィルタの上流における排気ガス状態量の非定常変化がその下流により大きく伝わるという技術的知見に基づき、パティキュレートの堆積状況によらず、常に、あるいは適時に故障を検知することのできるパティキュレートフィルタの故障検知装置、及びそのような機能を持たせたエンジンの排気ガス浄化装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
このため、本発明では、パティキュレートフィルタの下流における排気ガス状態量の非定常変化の度合いを検出し、これが正常を示す規定範囲を外れたときにパティキュレートフィルタに故障が生じたものと判断される構成を採用する。
【0007】
本発明に係るパティキュレートフィルタの故障検知装置は、パティキュレートフィルタの下流における排気ガス状態量の非定常変化の大きさを非定常変化量として検出する非定常変化量検出手段と、前記排気ガス状態量の非定常変化の大きさに関して、パティキュレートフィルタの正常及び故障の判断のしきい値となる基準変化量を設定する基準変化量設定手段と、検出された非定常変化量が基準変化量により定められる規定範囲を外れたときにパティキュレートフィルタに故障が生じたものと判断する故障検知手段と、を含んで構成される。
【0008】
このように、パティキュレートフィルタの下流における排気ガス状態量の非定常変化の度合いからパティキュレートフィルタの故障が検知される構成を採用することで、パティキュレートフィルタに多量のパティキュレートが堆積している場合であっても、またパティキュレートが殆ど堆積していない場合であっても、パティキュレートの堆積状況との関係でしきい値である基準変化量を変更することなく故障を検知することが可能となる。
【0009】
本発明に係るエンジンの排気ガス浄化装置は、エンジンの排気通路に介装され、そのエンジンから排出された排気ガス中のパティキュレートを捕集するパティキュレートフィルタと、このパティキュレートフィルタの故障を検知する上記の装置と、を含んで構成される。
【0010】
【発明の実施の形態】
以下に図面を参照して、本発明の実施の形態について説明する。
図1は、本発明の第1の実施形態に係る直噴ディーゼルエンジン(以下「エンジン」という。)1の構成図である。
【0011】
エンジン1において、吸気通路11の導入部には、吸入空気中の粉塵を除去するためのエアクリーナ12が取り付けられている。エアクリーナ12の下流には、吸入空気量を測定するためのエアフローメータ13が設置されている。エアクリーナ12及びエアフローメータ13を通過した吸入空気は、コレクタ14に流入し、マニホールド部で各気筒に分配される。
【0012】
エンジン本体において、インジェクタ21は、気筒毎に燃焼室上部略中央に臨ませてシリンダヘッドに固定されている。エンジン1の燃料系は、コモンレール22を含んで構成され、燃料ポンプ23により圧送された燃料が、コモンレール22から規定圧力で各インジェクタ21に供給される。インジェクタ21は、後述する電子制御ユニット(以下「ECU」という。)からの燃料噴射制御信号により作動する。インジェクタ21による燃料噴射は、複数回に分けて行われ、インジェクタ21は、エンジン1のトルクを制御するためのメイン噴射以外に、発生するパティキュレートを減少させるためのパイロット噴射、及び後述するディーゼルパティキュレートフィルタ32を再生させる際に排気ガス温度を上昇させるためのポスト噴射を行う。
【0013】
一方、排気通路31において、マニホールド部の下流には、パティキュレートフィルタとしてのディーゼルパティキュレートフィルタ32が設置されている。排気ガス中のパティキュレートは、ディーゼルパティキュレートフィルタ32を通過する際にこれに内蔵されている多孔質のフィルタエレメント321により捕集され、排気ガスから除去される。また、排気通路31と吸気通路11(ここでは、コレクタ14)とがEGRのためのEGR管41により接続されるとともに、EGR管41にEGR弁42が介装されている。EGR弁42がECU61からのEGR制御信号により作動することで、開度に応じた適量の排気ガスが吸気通路11に還流される。
【0014】
以上のように構成されるエンジン1の排気ガス浄化装置は、ディーゼルパティキュレートフィルタ32と、その故障検知装置としての機能を備えるECU61及び各種センサとを含んで構成される。
【0015】
図2は、本実施形態に係るパティキュレートフィルタの故障検知装置の構成図である。
エンジン1において、ディーゼルパティキュレートフィルタ32の下流には、排気通路31の一部となるテールパイプ311が接続されており、テールパイプ311には、その内部における排気ガス圧力Pexhoutを検出するための圧力センサ51が設置されている。圧力センサ51からの排気ガス圧力検出信号は、ECU61に入力される。ECU61には、これ以外にも、エンジン1の運転状態を示す信号としてエアフローメータ13からの吸入空気量検出信号、アクセル開度センサ52からのアクセル開度検出信号及びクランク角センサ53からのクランク角位置検出信号(これに基づいてエンジン回転数Neが算出される。)が入力される。ECU61は、入力した信号に基づいてディーゼルパティキュレートフィルタ32が正常な状態にあるか、あるいはこれに故障が生じているかを判断し、故障が生じている場合は、車室内に設置された運転者に対する故障警告灯71を点灯させる。
【0016】
図3は、ECU61のうちディーゼルパティキュレートフィルタ32の故障検知に関する部分の構成図である。
ECU61は、排気ガス圧力検出信号として、排気ガス圧力Pexhoutの大きさ応じた値の電圧vPexhoutを入力する。圧力換算部101は、電圧vPexhoutを入力し、図4に示すテーブルによりこれを排気ガス圧力Pexhoutに換算する。平均圧力演算部102は、図5に示すように構成され、排気ガス圧力Pexhoutを入力し、これに基づいてディーゼルパティキュレートフィルタ32の下流における排気ガス圧力の平均値Pexhoutaveを算出する。すなわち、平均圧力演算部102は、新たに入力した排気ガス圧力Pexhoutの前回に算出した排気ガス圧力Pexhout−1に対する重み付けを設定し、下式(1)により両者を平均化して、平均排気ガス圧力Pexhoutaveを算出する。なお、重み付けを定める係数x1は、0よりも大きく、かつ1以下の値に設定される。算出された平均排気ガス圧力Pexhoutaveは、ディーゼルパティキュレートフィルタ32を再生すべき時期の判断のための別のルーチン等で用いられる。ディーゼルパティキュレートフィルタ32の再生時期は、ディーゼルパティキュレートフィルタ32の上流に設置された圧力センサにより(図示せず)検出された上流側排気ガス圧力と、平均排気ガス圧力Pexhoutaveとの差から判断される。
【0017】
Pexhoutave=Pexhout×x1+Pexhout−1×(1−x1) ・・・(1)
脈動振幅演算部103は、最大及び最小圧力演算部104と減算部とを含んで構成され、ディーゼルパティキュレートフィルタ32の下流における排気ガス圧力Pexhoutの脈動振幅Pexhoutampを算出する。最大及び最小圧力演算部104は、図6に示すように構成され、故障検知ルーチンの演算周期と設定されたバッファZ−1の数とに応じて定まる時間内での排気ガス圧力の最大値Pexhoutmax及び最小値Pexhoutminを算出する。バッファZ−1の数は、演算周期や気筒数等との関係で適当なものが設定され、たとえば演算周期が10msecであり、5つのバッファZ−1が設定された場合は、100msecの間での最大値及び最小値が算出されることになる。そして、減算部によりこれらの差Pexhoutmax−Pexhoutminを算出し、これを脈動振幅(「非定常変化量」に相当する。)Pexhoutampとして後述する比較部105に出力する。
【0018】
一方、単位換算部106は、目標燃料噴射量(アクセル開度に応じた値に設定される。)Qfとシリンダへの流入空気量Qcとの和を1シリンダ、かつ1ストローク当たりの量として入力し、次式(2)によりこれを単位時間当たりの量に換算し、排気ガス流量Qexhとして出力する。なお、単位換算のための係数をKとする。
【0019】
Qexh=(Qc+Qf)×Ne/K ・・・(2)
基準変化量設定部107は、排気ガス流量Qexhを入力し、図7に示すテーブルにより故障判断のしきい値としての基準変化量の基本値AmpSLBを算出する。このテーブルは、一定量の排気ガス流量Qexhの増大に対して与えられる基本値AmpSLBの増大分が、排気ガス流量Qexhが大きいときほど大きくなるように、排気ガス流量Qexhの増大に対して基本値AmpSLBが2次的な変化で増大するように設定されている。補正値設定部108は、エンジン回転数Ne及び目標燃料噴射量Qfを入力し、図8に示すテーブルにより基本値AmpSLBに対する補正値AmpSLCを算出する。補正値AmpSLCは、エンジン回転数Neが大きく、かつ目標燃料噴射量Qfが大きいときほど大きな値に設定される。そして、加算部により基準変化量の基本値AmpSLB及び補正値AmpSLCの和を算出し、これを基準変化量AmpSLとして比較部105に出力する。
【0020】
比較部105は、脈動振幅Pexhoutamp及び基準変化量AmpSLを入力し、これらを比較して、PexhoutampがAmpSLよりも大きいときに故障検知フラグFdpfに1を、PexhoutampがAmpSL以下であるときにこれに0を代入する。故障判断部109は、図9に示すように構成され、新たに入力した故障検知フラグFdpfの前回に算出した故障検知指数I−1に対する重み付けを設定するとともに、下式(3)により両者を平均化し、これを故障検知指数Iに設定する。なお、重み付けを定める係数x2は、0よりも大きく、かつ1以下の値に設定される。そして、故障検知指数Iと定数C(0<C<1)とを比較し、IがCよりも大きいときに最終的な故障検知フラグFdpfに1を、IがC以下であるときにこれに0を代入する。ECU61は、故障検知フラグFdpfが最終的に1に設定されたときに故障警告灯71を点灯させる。
【0021】
I=Fdpf×x2+I−1×(1−x2) ・・・(3)
本実施形態に関して、圧力センサ51、圧力換算部101及び脈動振幅演算部103(最大及び最小圧力演算部104及び減算部を含んで構成される。)が非定常変化量検出手段を、基準変化量設定部107、補正値設定部108及びこれらの下流の加算部が基準変化量設定手段を、比較部105及び故障判断部109が故障検知手段を構成する。
【0022】
次に、本実施形態に係るパティキュレートフィルタの故障検知装置の動作を説明する。
図10は、正常時におけるディーゼルパティキュレートフィルタ32のフィルタエレメント321の状態(a)と、ECU61により検知される故障時におけるフィルタエレメント321の状態(b),(c)とを示している。本実施形態では、フィルタエレメント321に(b)に示すような隔壁の割れAが生じたことによる故障や、(c)に示すような目封じ322の抜けBが生じたことによる故障が検知される。
【0023】
図11は、正常時及び故障時にディーゼルパティキュレートフィルタ32の上流で検出される排気ガス圧力Pexhinの波形と、下流で検出される排気ガス圧力Pexhoutの波形とを示している。正常時のものを(a)に、故障時のものを(b),(c)に示し、故障の程度に応じて部分故障時(b)と完全故障時(c)とに分けて示している。正常時には、ディーゼルパティキュレートフィルタ32の上流における排気ガス圧力Pexhinの脈動は、排気ガスがフィルタエレメント321を通過する際に充分に減衰するため、下流で検出される排気ガス圧力Pexhoutは、Pexhoutamp1で示すように脈動振幅が小さい。
【0024】
フィルタエレメント321に割れや目封じの抜け等が生じて部分故障に至ると、排気ガスの一部は、フィルタエレメント321の隔壁を介さずに、割れ等により生じた隙間を介してディーゼルパティキュレートフィルタ32を通過するようになる。このため、ディーゼルパティキュレートフィルタ32の上流における排気ガス圧力Pexhinの脈動が下流に伝わるようになり、排気ガス圧力Pexhoutの脈動振幅は、Pexhoutamp2で示すように大きくなる。ECU61は、脈動振幅演算部103及び比較部105により基準変化量AmpSLよりも大きい脈動振幅Pexhputampが検出されたときにディーゼルパティキュレートフィルタ32に故障が生じたものと判断し、故障警告灯71を点灯させる。運転者は、故障警告灯71の点灯により故障発生後の早い時期にディーゼルパティキュレートフィルタ32を交換するなどの措置を採ることができる。
【0025】
図12は、ディーゼルパティキュレートフィルタ32に堆積しているパティキュレートの量(以下「パティキュレート堆積量」という。)PMと、フィルタエレメント321の等価有効面積Areaとの関係を、正常時及び故障時について示している。正常時及び故障時のいずれにおいても、等価有効面積Areaは、パティキュレート堆積量PMの増大に伴って減少する。しかしながら、正常時と部分故障時との間で同じ値のパティキュレート堆積量PM1に対する等価有効面積Areaにそれ程大きな差が生じることはなく、ディーゼルパティキュレートフィルタ32前後における圧損は、それ程大きくは低下しない(図11のΔPdpf1,ΔPdpf2)。従って、ディーゼルパティキュレートフィルタ32の故障をディーゼルパティキュレートフィルタ32前後における圧損の大きさの変化から検知しようとする一般的な方法を採用する場合は、等価有効面積Areaがさらに大きく低下する完全故障時まで故障が発生したことを検知することができず、たとえ検知したとしてもそれまでに多量のパティキュレートが大気中に放出されることになる。本実施形態では、ディーゼルパティキュレートフィルタ32の下流における排気ガス圧力Pexhoutの脈動振幅Pexhoutampの大きさから故障を検知する構成を採用したことで、完全故障に至る前に故障を検知することができる。
【0026】
また、同じ大きさの等価有効面積Areaは、パティキュレート堆積量PMが多い正常時と、パティキュレート堆積量PMがこれよりも少ない故障時とで同一の値Area1をとり得る。従って、ディーゼルパティキュレートフィルタ32前後における圧損による方法では、両者のいずれの場合であるかを判別することができず、判別を可能とするには、正常及び故障の判断のしきい値をパティキュレート堆積量PMに応じて変更することが必要となる。本実施形態では、下流側排気ガス圧力の脈動振幅Pexhoutampの大きさから故障を検知する構成を採用したことで、基準変化量AmpSLをパティキュレート堆積量PMに応じて変更することなく故障を検知することができる。
【0027】
なお、等価有効面積Areaは、排気ガスの流量及び密度をQexh,ρとし、ディーゼルパティキュレートフィルタ32前後の差圧をΔPdpfとすると、下式(4)で表される。
【0028】
Area=Qexh/√(2ρ×ΔPdpf) ・・・(4)
図13は、ディーゼルパティキュレートフィルタ32に一定量のパティキュレートを流入させたときに形成されるディーゼルパティキュレートフィルタ32前後の差圧(以下「フィルタ前後差圧」という。)ΔPdpfと、フィルタエレメント321により捕集されずにディーゼルパティキュレートフィルタ32を通過したパティキュレートの量(以下「パティキュレート吹抜量」という。)Qpmとを正常時、部分故障時及び完全故障時について示している。正常時には、フィルタエレメント321により殆どのパティキュレートが捕集され、大きなフィルタ前後差圧ΔPdpf1が形成される。一方、部分故障時には、正常時と比較してフィルタ前後差圧ΔPdpfにそれ程大きな変化は現れないが、パティキュレート吹抜量Qpmは数倍に増大する。従って、ディーゼルパティキュレートフィルタ32に故障が生じたときは、早期にこれを検知することが重要となる。本実施形態では、前述のように故障を早期に検知し、多量のパティキュレートが大気中に放出されることを防止することができる。
【0029】
図14は、ディーゼルパティキュレートフィルタ32の下流における圧力脈動の大きさ(排気ガス圧力の脈動振幅Pexhoutampとして検出される。)と、パティキュレート吹抜量Qpmとの関係を示している。パティキュレート吹抜量Qpmは、圧力脈動が大きいときほど多くなる。ここで、パティキュレート吹抜量Qpmは、ディーゼルパティキュレートフィルタ32の故障が進行するほど増大するものであるので、圧力脈動の大きさに基づいてディーゼルパティキュレートフィルタ32の故障の程度を判断し、基準変化量AmpSLとの比較により故障を検知することができる。
【0030】
本実施形態により得られる効果をまとめると次のようである。
第1に、ディーゼルパティキュレートフィルタ32の下流における排気ガス状態量の非定常変化の大きさとして、ディーゼルパティキュレートフィルタ32の下流における排気ガス圧力の脈動振幅Pexhoutampを検出し、これと基準変化量AmpSLとの比較によりディーゼルパティキュレートフィルタ32の故障を検知することとした。これにより、基準変化量AmpSLをパティキュレート堆積量PMに応じて変更せずとも的確に故障を検知することが可能となる。
【0031】
第2に、下流側排気ガス圧力の脈動振幅Pexhoutampの大きさから故障を検知することとした。これにより、ディーゼルパティキュレートフィルタ32の故障を早期に、すなわち、正常時と比較してフィルタ前後差圧ΔPdpfにそれ程大きな差が現れない部分故障の段階で検知することが可能となる。
【0032】
以下に、本発明の他の実施形態について説明する。
図15は、第2の実施形態に係るパティキュレートフィルタの故障検知装置の構成図である。
【0033】
本実施形態では、排気通路31において、ディーゼルパティキュレートフィルタ32前後の差圧ΔPdpfを検出するための差圧センサ55が設置されており、その検出信号は、ECU611に入力される。これ以外にECU611に入力される信号として、エアフローメータ13からの吸入空気量検出信号、アクセル開度センサ52からのアクセル開度検出信号及びクランク角センサ53からのクランク角位置検出信号が含まれる。ECU611は、入力した信号に基づいてディーゼルパティキュレートフィルタ32に故障が生じたことを検知すると、故障警告灯71を点灯させる。
【0034】
図16は、ECU611のうちディーゼルパティキュレートフィルタ32の故障検知に関する部分の構成図である。
故障検知装置の構成は、全体的には第1の実施形態に係るものと同様である。両者の相違は、本実施形態では、ディーゼルパティキュレートフィルタ32前後の差圧ΔPdpfに相当する電圧vΔPdpfが入力され、脈動振幅演算部203において、換算後の差圧ΔPdpfの最大値及び最小値の差が算出され、これが脈動振幅(「非定常変化量」に相当する。)ΔPdpfampとして出力される点にある。これに伴い、比較部205では、脈動振幅ΔPdpfampが基準変化量AmpSLよりも小さいときに故障が発生したものと判断され、故障検知フラグFdpfに1が代入されることになる。なお、ここで設定される基準変化量AmpSLは、第1の実施形態に係るものと値自体は異なるが、排気ガス流量Qexhとの関係は同様であり、排気ガス流量Qexhの増大に対して基本値AmpSLBを2次的に増大させて設定される。
【0035】
本実施形態によれば、第1の実施形態に関して述べた第1及び第2の効果に加えて、次のような効果を得ることができる。すなわち、ディーゼルパティキュレートフィルタ32前後の差圧ΔPdpfを検出し、非定常変化量としてその脈動振幅ΔPdpfampを検出することとしたので、差圧ΔPdpfの定常成分として、たとえば(1)式と同様な演算により差圧ΔPdpfの平均値ΔPdpfaveを算出し、これをディーゼルパティキュレートフィルタ32の再生時期の判断にそのまま用いることができる。
【0036】
次に、第3の実施形態について説明する。
本実施形態では、ディーゼルパティキュレートフィルタ32の下流における排気ガス圧力Pexhoutのサンプリング周期を、エンジン排気脈動周期の半分以下の長さに設定する。図17は、脈動基本周波数fと、要求されるサンプリング周波数fs及びサンプリング周期Tsとの関係を示している。たとえばエンジン1の気筒数が4であり、ディーゼルパティキュレートフィルタ32の故障検知時に予測される最高回転数が4800rpmである場合を想定すると、脈動基本周波数fは、下式(5)により160Hzとなる。なお、気筒数をZとし、エンジン回転数をNeとする。
【0037】
f=Z×(Ne/60)×(1/2) ・・・(5)
また、160Hzの脈動基本周波数fに対してエンジン排気脈動周期の半分の長さの周期を与えるサンプリング周波数fsは、160Hzの2倍の320Hzであるから、要求されるサンプリング周期Tsは、その逆数である3.1msとなる。従って、Z=4、かつNe=4800とした場合は、サンプリング周期を3.1ms以下に設定すればよい。
【0038】
本実施形態によれば、排気ガス圧力Pexhoutのサンプリング周期をエンジン排気脈動周期の半分以下の長さに設定したので、排気ガス圧力Pexhoutの脈動に関する情報を理論的に失うことなく(Shannon’s Sampling Theorem)高周波ノイズの影響を回避し、故障の誤検知を防止することができる。
【0039】
次に、第4の実施形態について説明する。
本実施形態では、エンジン回転数Neに応じた大きさのフィルタ時定数x3を設定し、圧力センサ51から入力した電圧vPexhoutにこのフィルタ時定数x3によるフィルタリングを施したものが排気ガス圧力Pexhoutに換算されるように構成する。すなわち、図18に示すフィルタを圧力換算部101に組み込み、下式(6)により電圧vPexhoutにフィルタリングを施す。フィルタ時定数x3は、図19に示すテーブルから検索され、エンジン回転数Neが高いときほど大きな値に設定される。
【0040】
vPexhout=vPexhout×x3+vPexhout−1×(1−x3) ・・・(6)
本実施形態によれば、次のような効果を得ることができる。すなわち、圧力センサ51から入力した電圧vPexhoutにフィルタリングを施すこととし、その際に用いるフィルタ時定数x3をエンジン回転数Neが高いときほど大きな値に設定することとした。これにより、エンジン1の高回転時には、排気ガス圧力Pexhoutの変化に対する検出応答性を確保することができる一方、低回転時には、フィルタを強くかけて高周波ノイズの影響による故障の誤検出を防止することができる。なお、ここではフィルタリングの機能をソフトウェアにより実現する場合を例に説明したが、同様の機能をハードウェアにより実現することも可能である。
【0041】
次に、第5の実施形態について説明する。
本実施形態では、ECU61の基盤上に図20に示すバンドパスフィルタ301を設置し、圧力センサ51から入力した電圧vPexhoutから低周波及び高周波ノイズを除去したものを圧力換算部101に入力する。バンドパスフィルタ301は、多重帰還型バンドパスフィルタとして構成し、入力部302を圧力センサ51に、出力部303をECU61のAD変換ポートに接続する。フィルタのカットオフ周波数f0は、図17のサンプリング周波数、すなわち、エンジン排気脈動周期の半分以下の長さの周期を与える周波数に設定し、コンデンサ容量C及び各抵抗値R1,R2,R5は、下式(7)〜(9)により設定する。
【0042】
f0=(1/2πC)×√{(1/R5)×(1/R1+1/R2)} ・・・(7)
Q=(1/2)×√{R5×(1/R1+1/R2)} ・・・(8)
A=R5/2R1 ・・・(9)
本実施形態に関して、圧力センサ51、バンドパスフィルタ301、圧力換算部101及び脈動振幅演算部103が非定常変化量検出部を構成する。
【0043】
本実施形態によれば、高周波ノイズに加えて、電源の電圧変動やグランドの浮きといった低周波ノイズを除去することもできるため、より的確に故障を検知することができる。
【0044】
なお、第3〜5の実施形態では、ディーゼルパティキュレートフィルタ32の下流における排気ガス圧力Pexhoutを検出する圧力センサ51を備えるものを例に説明した。しかしながら、フィルタ前後差圧ΔPdpfを検出する差圧センサ55を備えるものにおいて、サンプリング周期をエンジン排気脈動周期の半分以下の長さに設定し、エンジン回転数に応じた大きさのフィルタ時定数によるフィルタリングを施し、あるいはバンドパスフィルタを設置しても、それぞれの構成に応じた上記の効果を得ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係るディーゼルエンジンの構成
【図2】同上実施形態に係るパティキュレートフィルタの故障検知装置の構成
【図3】同上故障検知装置としてのECUの構成
【図4】圧力センサからの出力と排気ガス圧力との関係
【図5】平均圧力演算部の構成
【図6】最大及び最小圧力演算部の構成
【図7】排気ガス流量と基準変化量の基本値との関係
【図8】エンジン回転数及び目標燃料噴射量と基準変化量の補正値との関係
【図9】故障判断部の構成
【図10】正常時と故障時とにおけるディーゼルパティキュレートフィルタのフィルタエレメントの状態
【図11】ディーゼルパティキュレートフィルタの下流における圧力脈動の故障による変化
【図12】ディーゼルパティキュレートフィルタの等価有効面積の故障による変化
【図13】フィルタ前後差圧及びパティキュレート吹抜量の故障による変化
【図14】ディーゼルパティキュレートフィルタの下流における圧力脈動とパティキュレート吹抜量との関係
【図15】本発明の第2の実施形態に係るパティキュレートフィルタの故障検知装置の構成
【図16】同上故障検知装置としてのECUの構成
【図17】本発明の第3の実施形態に係る排気ガス状態量のサンプリング周期の設定
【図18】本発明の第4の実施形態に係る圧力換算部の構成
【図19】フィルタ時定数の設定
【図20】本発明の第5の実施形態に係るバンドパスフィルタの構成
【符号の説明】
1…ディーゼルエンジン、11…吸気通路、12…エアクリーナ、13…エアフローメータ、14…コレクタ、21…インジェクタ、31…排気通路、311…テールパイプ、32…パティキュレートフィルタとしてのディーゼルパティキュレートフィルタ、321…フィルタエレメント、41…EGR管、42…EGR弁、51…圧力センサ、55…差圧センサ、61,611…電子制御ユニット、71…故障警告灯、301…バンドパスフィルタ、A…フィルタエレメントの割れ、B…フィルタエレメントの目封じの抜け。

Claims (9)

  1. 排気ガス中のパティキュレートを捕集させるパティキュレートフィルタの故障を検知する装置であって、
    パティキュレートフィルタの下流における排気ガス状態量の非定常変化の大きさを非定常変化量として検出する非定常変化量検出手段と、
    前記排気ガス状態量の非定常変化の大きさに関して、パティキュレートフィルタの正常及び故障の判断のしきい値となる基準変化量を設定する基準変化量設定手段と、
    検出された非定常変化量が基準変化量により定められる規定範囲を外れたときにパティキュレートフィルタに故障が生じたものと判断する故障検知手段と、を含んで構成されるパティキュレートフィルタの故障検知装置。
  2. 非定常変化量検出手段は、パティレートフィルタの下流における排気ガス圧力を検出する手段を含んで構成され、非定常変化量としてこの手段により検出された排気ガス圧力の非定常変化の大きさを検出し、
    故障検知手段は、検出された非定常変化量が基準変化量を上回ったときにパティキュレートフィルタに故障が生じたものと判断する請求項1に記載のパティキュレートフィルタの故障検知装置。
  3. 非定常変化量検出手段は、パティキュレートフィルタ前後の差圧を検出する手段を含んで構成され、非定常変化量としてこの手段により検出された差圧の非定常変化の大きさを検出し、
    故障検知手段は、検出された非定常変化量が基準変化量を下回ったときにパティキュレートフィルタに故障が生じたものと判断する請求項1に記載のパティキュレートフィルタの故障検知装置。
  4. エンジンの排気通路に介装され、そのエンジンから排出された排気ガス中のパティキュレートを捕集するパティキュレートフィルタと、
    このパティキュレートフィルタの故障を検知する請求項1〜3のいずれかに記載の装置と、を含んで構成されるエンジンの排気ガス浄化装置。
  5. 非定常変化量検出手段は、エンジン排気脈動周期の半分以下の長さの周期で排気ガス状態量を検出してその非定常変化量を検出する請求項4に記載のエンジンの排気ガス浄化装置。
  6. 非定常変化量検出手段は、エンジン回転数に応じた大きさのフィルタ時定数を設定し、新たに検出した排気ガス状態量をこのフィルタ時定数によりフィルタリングしたものを排気ガス状態量とする請求項4又は5に記載のエンジンの排気ガス浄化装置。
  7. 非定常変化量検出手段は、バンドパスフィルタを含んで構成され、所定の周波数成分を除去した後の排気ガス状態量からその非定常変化量を検出する請求項4〜6のいずれかに記載のエンジンの排気ガス浄化装置。
  8. 故障検知手段がパティキュレートフィルタに故障が生じたものと判断したのを受けてエンジンの操作者に対応を促す手段を更に含んで構成される請求項4〜7のいずれかに記載のエンジンの排気ガス浄化装置。
  9. 排気ガス中のパティキュレートを捕集させるパティキュレートフィルタの故障を検知する装置であって、
    パティキュレートフィルタの下流における排気ガス状態量の非定常変化の度合いを検出し、これが正常を示す規定範囲を外れたときにパティキュレートフィルタに故障が生じたものと判断するパティキュレートフィルタの故障検知装置。
JP2003099655A 2003-04-02 2003-04-02 パティキュレートフィルタの故障検知装置及びエンジンの排気ガス浄化装置 Expired - Fee Related JP4062153B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003099655A JP4062153B2 (ja) 2003-04-02 2003-04-02 パティキュレートフィルタの故障検知装置及びエンジンの排気ガス浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003099655A JP4062153B2 (ja) 2003-04-02 2003-04-02 パティキュレートフィルタの故障検知装置及びエンジンの排気ガス浄化装置

Publications (2)

Publication Number Publication Date
JP2004308454A true JP2004308454A (ja) 2004-11-04
JP4062153B2 JP4062153B2 (ja) 2008-03-19

Family

ID=33464034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003099655A Expired - Fee Related JP4062153B2 (ja) 2003-04-02 2003-04-02 パティキュレートフィルタの故障検知装置及びエンジンの排気ガス浄化装置

Country Status (1)

Country Link
JP (1) JP4062153B2 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092755A (ja) * 2005-09-28 2007-04-12 Ford Global Technologies Llc 排出ガス再循環装置を持つエンジンの制御装置及び制御方法
WO2007142359A1 (ja) 2006-06-07 2007-12-13 Toyota Jidosha Kabushiki Kaisha Pmトラッパの故障検出システム
WO2007145382A1 (ja) 2006-06-16 2007-12-21 Toyota Jidosha Kabushiki Kaisha Pmトラッパの故障検出システム
FR2936836A1 (fr) * 2008-10-02 2010-04-09 Renault Sas Filtre a particules de vehicule automobile.
US7721528B2 (en) 2005-03-07 2010-05-25 Honda Motor Co., Ltd. Exhaust gas purifying apparatus for internal combustion engine
US20120180458A1 (en) * 2010-05-17 2012-07-19 Toyota Jidosha Kabushiki Kaisha Abnormality detection apparatus for particulate filter
JP2013047670A (ja) * 2011-06-27 2013-03-07 Delphi Technologies Inc 粒子状物質センサのための粒子状物質検出方法
DE102014215659A1 (de) * 2014-08-07 2016-02-11 Volkswagen Aktiengesellschaft Verfahren zur Zustandsüberwachung eines Partikelfilters, Abgasanlage und Messvorrichtung
DE102014019642A1 (de) * 2014-12-31 2016-06-30 Audi Ag Verfahren zum Betreiben einer Abgasreinigungseinrichtung sowie entsprechende Abgasreinigungseinrichtung
DE102017223162A1 (de) * 2017-12-19 2019-06-19 Continental Automotive Gmbh Verfahren und Vorrichtung zur Diagnose eines im Abgastrakt eines mit Kraftstoff-Direkteinspritzung betriebenen Benzinmotors angeordneten Partikelfilters
CN112443371A (zh) * 2019-08-28 2021-03-05 丰田自动车株式会社 发动机装置
US11333056B2 (en) 2019-07-15 2022-05-17 Fca Us Llc Gasoline particulate filter brick detection techniques

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006010497B4 (de) * 2005-03-07 2013-04-11 Honda Motor Co., Ltd. Abgasreinigungsvorrichtung für einen Verbrennungsmotor
US7721528B2 (en) 2005-03-07 2010-05-25 Honda Motor Co., Ltd. Exhaust gas purifying apparatus for internal combustion engine
JP4688770B2 (ja) * 2005-09-28 2011-05-25 フォード グローバル テクノロジーズ、リミテッド ライアビリティ カンパニー 排出ガス再循環装置を持つエンジンの制御装置及び制御方法
JP2007092755A (ja) * 2005-09-28 2007-04-12 Ford Global Technologies Llc 排出ガス再循環装置を持つエンジンの制御装置及び制御方法
WO2007142359A1 (ja) 2006-06-07 2007-12-13 Toyota Jidosha Kabushiki Kaisha Pmトラッパの故障検出システム
JP2007327392A (ja) * 2006-06-07 2007-12-20 Toyota Motor Corp Pmトラッパの故障検出システム
US8495861B2 (en) 2006-06-07 2013-07-30 Toyota Jidosha Kabushiki Kaisha Fault detection system for PM trapper
JP4506724B2 (ja) * 2006-06-07 2010-07-21 トヨタ自動車株式会社 Pmトラッパの故障検出システム
WO2007145382A1 (ja) 2006-06-16 2007-12-21 Toyota Jidosha Kabushiki Kaisha Pmトラッパの故障検出システム
CN101466922B (zh) * 2006-06-16 2011-01-12 丰田自动车株式会社 Pm捕集器的故障检测系统
FR2936836A1 (fr) * 2008-10-02 2010-04-09 Renault Sas Filtre a particules de vehicule automobile.
US20120180458A1 (en) * 2010-05-17 2012-07-19 Toyota Jidosha Kabushiki Kaisha Abnormality detection apparatus for particulate filter
US8745968B2 (en) * 2010-05-17 2014-06-10 Toyota Jidosha Kabushiki Kaisha Abnormality detection apparatus for particulate filter
JP2013047670A (ja) * 2011-06-27 2013-03-07 Delphi Technologies Inc 粒子状物質センサのための粒子状物質検出方法
DE102014215659A1 (de) * 2014-08-07 2016-02-11 Volkswagen Aktiengesellschaft Verfahren zur Zustandsüberwachung eines Partikelfilters, Abgasanlage und Messvorrichtung
DE102014019642A1 (de) * 2014-12-31 2016-06-30 Audi Ag Verfahren zum Betreiben einer Abgasreinigungseinrichtung sowie entsprechende Abgasreinigungseinrichtung
US9719399B2 (en) 2014-12-31 2017-08-01 Audi Ag Method of operating an exhaust emission control device, and corresponding exhaust emission control device
DE102017223162A1 (de) * 2017-12-19 2019-06-19 Continental Automotive Gmbh Verfahren und Vorrichtung zur Diagnose eines im Abgastrakt eines mit Kraftstoff-Direkteinspritzung betriebenen Benzinmotors angeordneten Partikelfilters
DE102017223162B4 (de) * 2017-12-19 2021-02-18 Vitesco Technologies GmbH Verfahren und Vorrichtung zur Diagnose eines im Abgastrakt eines mit Kraftstoff-Direkteinspritzung betriebenen Benzinmotors angeordneten Partikelfilters
US11333056B2 (en) 2019-07-15 2022-05-17 Fca Us Llc Gasoline particulate filter brick detection techniques
CN112443371A (zh) * 2019-08-28 2021-03-05 丰田自动车株式会社 发动机装置

Also Published As

Publication number Publication date
JP4062153B2 (ja) 2008-03-19

Similar Documents

Publication Publication Date Title
JP3801135B2 (ja) エンジンの排気ガス浄化装置
US7396389B2 (en) Abnormality detection apparatus for exhaust gas purification apparatus for internal combustion engine
JP4048993B2 (ja) エンジンの排気浄化装置
EP1741892B1 (en) Particulate accumulation
US7264642B2 (en) Exhaust gas cleaning apparatus
US7357822B2 (en) Filter control apparatus
JP4430704B2 (ja) 内燃機関の排気浄化装置
US7458206B2 (en) Exhaust gas purification system of internal combustion engine
WO2010073511A1 (ja) 排気浄化装置の再生不良診断方法
US7318341B2 (en) Method and device for monitoring a signal
JP2005344619A (ja) 内燃機関の排気浄化装置
JP4062153B2 (ja) パティキュレートフィルタの故障検知装置及びエンジンの排気ガス浄化装置
JP6358101B2 (ja) 異常診断装置
JP2009191694A (ja) 内燃機関の排気浄化装置
CN105089759A (zh) 用于对排气净化设备的组件的拆除进行诊断的方法和装置
JP2004270522A (ja) エンジンの排気浄化装置
JP4270175B2 (ja) パティキュレート堆積量推定装置
WO2013073326A1 (ja) Dpfのpm堆積量推定装置
US7784275B2 (en) Optimization of hydrocarbon injection during diesel particulate filter (DPF) regeneration
JP4226007B2 (ja) 内燃機関に用いられる排ガス浄化装置および該排ガス浄化装置を運転するための方法
JP3908204B2 (ja) フィルタ制御装置
JP4572762B2 (ja) エンジンの排気浄化装置
JP2017048798A (ja) Dpfのpm堆積量推定方法
JP2015007386A (ja) 異常検出装置
JP2008231951A (ja) エンジンの排気温度推定装置及びエンジンの排気浄化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071217

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees