JP2004308118A - Aseismic structure and aseismic damper - Google Patents

Aseismic structure and aseismic damper Download PDF

Info

Publication number
JP2004308118A
JP2004308118A JP2003098858A JP2003098858A JP2004308118A JP 2004308118 A JP2004308118 A JP 2004308118A JP 2003098858 A JP2003098858 A JP 2003098858A JP 2003098858 A JP2003098858 A JP 2003098858A JP 2004308118 A JP2004308118 A JP 2004308118A
Authority
JP
Japan
Prior art keywords
damper
steel plate
steel plates
column
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003098858A
Other languages
Japanese (ja)
Other versions
JP4277176B2 (en
Inventor
Yutaka Nakamura
豊 中村
Toshiyuki Shioya
俊幸 塩屋
Tetsuya Hanzawa
徹也 半澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2003098858A priority Critical patent/JP4277176B2/en
Publication of JP2004308118A publication Critical patent/JP2004308118A/en
Application granted granted Critical
Publication of JP4277176B2 publication Critical patent/JP4277176B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aseismic structure and an aseismic damper, which prevent damage to a column capital part by preventing an end of a steel material for a damper arm part from being connected to the column capital. <P>SOLUTION: The aseismic structure is constituted by supporting an upper mounted structure 1 with a beam 5 by a column 2 fitted with the aseismic damper; an upper end 4 of a damper part 3, which is constituted by making a plurality of slender steel plates and a plurality of rectangular steel plates alternately face one another and by sandwiching a viscoelastic material layer between the respective steel plates, is mounted on the beam 5 of the structure 1; and a lower end 6 is mounted on the intermediate part of the column 2. This enables effective utilization of a space without closing an interlayer opening part of the structure while preventing the damage to the capital part, and makes an effective seismic response control function exerted even on bending deformation of the structure. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、制震構造物と制震ダンパーに関し、特に、上載構造物の梁に接合している柱の頭部における損傷を防止できる制震構造物と制震ダンパーに関する。
【0002】
【従来の技術】
構造物の地震や風に対する応答を低減するために、構造物に種々のタイプのダンパー(エネルギー吸収機構)を付加する制震工法が採用されており、その中でも、粘弾性系の制震ダンパーは、アクリル系ゴム、ゴムアスファルト系ゴム、高減衰ゴム等を粘弾性材料として用いながら、粘弾性体の剪断変形に対する粘性抵抗力を利用するものであり、小変形時からエネルギー吸収による付加減衰効果を発揮することで知られている。
【0003】
しかるに、従来の粘弾性系の制震ダンパーは、粘弾性体を内蔵したダンパーを高架下の柱や梁の間にブレース(筋交い)の状態で設置しているために、構造物の開口部分がブレース等で塞がれて空間の有効利用を妨げたり、柱脚の曲げ変形に対して制震効果が発揮され難いために、鉄道高架橋の場合には柱脚に所定の強度を確保するのに地中梁を設置する必要があり、工期の長期化と建設コストの高騰を余儀なくさせていた。
【0004】
そこで、柱頭設置型制震ダンパーとして高減衰ゴムを採用した粘弾性体と鋼板を複数層重ね合せたダンパー部とダンパー腕部鋼材から構成し、腕部鋼材の端部を柱頭に結合すると共にダンパー部を柱の中間部分に固定されるように取り付けることで、地震によって柱が変形すると、柱頭と柱中間部の間を繋ぐように固定されたダンパーに柱の変形を伝達させてダンパー部の粘弾性体にせん断変形が生じさせることでエネルギー吸収を起こさせて、構造部の応答を低減する提案もなされており、構造物の層間の開口部分を塞ぐことなく空間の有効利用を図りながら構造物の曲げ変形に対しても効果的な制震機能を発揮している。(例えば、特許文献1参照)
【0005】
本提案による制震ダンパー40は、図6に示すように、並列に向かい合う3枚の細長状鋼板41、41’、41”と並列に向かい合う矩形状鋼板42、42’、42”、42”’とを交互に交差する状態に重層配置しながら、細長状鋼板と矩形状鋼板との各交差間に位置する重層部分に粘弾性体43の層を挟み込んで構成して構造物の柱45に沿わせて装備しており、細長状鋼板の先端部44を柱45の柱頭46に固定すれると共に矩形状鋼板を柱頭46から柱長の1/3〜1/2に相当する範囲の位置に固定することで、高架下の柱や梁の間にブレース(筋交い)の設置を回避して構造物の空間利用を図っている。
【0006】
【特許文献1】
特開2001−57661号公報(「段落番号」0051〜「段落番号」0052、図10)
【0007】
しかるに、地震の際に塑性率6を越えるのは、図7が示しているように柱頭と上梁の接合部であることから、柱頭および柱脚に甚大な損傷を集中して発生することになって、高架橋等では、上層梁と柱頭の間にコンクリートの破壊や柱鉄筋の抜け出し等による被害が発生することになる。
【0008】
従って、上記提案の柱頭設置型制震ダンパーにおいては、柱の変形を防止する効果はあるが柱頭部分に集中して発生する被害を防止することに難点のあることが明らかになってきた。
【0009】
【発明が解決しようとする課題】
本発明は、以上の状況に鑑みて柱頭部分に集中的に発生する被害を防止するために提案するものであり、ダンパー腕部鋼材の端部を柱頭に結合することを止めることで柱頭部における損傷を防止する制震構造物と制震ダンパーを提供している。
【0010】
【課題を解決するための手段】
請求項1に記載の発明である制震構造物は、梁を備える上載構造物を制震ダンパーの取り付けられた柱で支持して成る制震構造物において、複数の細長状鋼板と矩形状鋼板とを交互に対峙させると共に各鋼板の間に粘弾性体層を挟み込んで構成するダンパー部の上端を上載構造物の梁に取り付け、下端を柱の中間部に取り付けて構成することを特徴としており、柱頭部における損傷を防止しながら構造物の層間の開口部分を塞ぐことなく空間の有効利用を図り、構造物の曲げ変形に対しても効果的な制震機能を発揮させている。
【0011】
請求項2に記載の発明である制震構造物は、請求項1に記載の制震構造物において、ダンパー部の上端に各鋼板のせん断面に直行する取付部を形成することを特徴としており、上記機能に加えて、上載構造物の梁に対する取り付けを容易にしている。
【0012】
請求項3に記載の発明である制震構造物は、請求項1又は2に記載の制震構造物において、ダンパー部の上端に鋼板面と直行する補強鋼板を備えることを特徴としており、上記機能に加えて、ダンパー部の上端を上載構造物の梁に対して堅固に取り付けている。
【0013】
請求項4に記載の発明である制震構造物は、請求項1乃至3のいずれかに記載の制震構造物において、上載構造物の梁に両側から挟み込むダンパー装着部を備えることを特徴としており、上記機能に加えて、上載構造物の梁にダンパー部の上端を堅固に取り付けている。
【0014】
請求項5に記載の発明である制震構造物は、請求項1乃至4のいずれかに記載の制震構造物において、ダンパー部を取り付ける柱の中間部に帯状鋼板を巻回することを特徴としており、上記機能に加えて、柱に対するダンパーの取り付けを容易にしている。
【0015】
又、本発明による制震ダンパーは、複数の細長状鋼板と矩形状鋼板とを交互に対峙させると共に各鋼板の間に粘弾性体層を挟み込んでダンパー部を構成し、細長状鋼板の上端に各鋼板のせん断面に直行する取付部を形成して成り、細長状鋼板の上端に鋼板面と直行する補強鋼板を備えることを特徴としており、上載構造物の梁に対するダンパー部の取り付けを容易にして構造物の層間の開口部分を塞ぐことなく空間の有効利用を図りながら構造物の曲げ変形に対しても効果的な制震機能を発揮させると共に柱頭部における損傷を防止している。
【0016】
【発明の実施の形態】
本発明による制震構造物は、梁を備える上載構造物を制震ダンパーの取り付けられた柱で支持して成る制震構造物において、複数の細長状鋼板と矩形状鋼板とを交互に対峙させると共に各鋼板の間に粘弾性体層を挟み込んで構成するダンパー部の上端を上載構造物の梁に取り付け、下端を柱の中間部に取り付けることを基本にして、ダンパー部の上端に各鋼板のせん断面に直行する取付部や鋼板面と直行する補強鋼板を備え、上載構造物の梁に両側から挟み込むダンパー装着部を備えると共にダンパー部を取り付ける柱の中間部に帯状鋼板を巻回することを特徴としている。
以下に、本発明による制震構造物の実施の形態を図面に基づいて詳細に説明する。
【0017】
図1に示す実施の形態は、上載構造物としての鉄道高架橋1とそれを支持している柱である橋脚2との間に制震ダンパー3を設置した例である。本実施の形態では、制震ダンパー3の上端4を高架橋1の梁5に取り付けると共にその下端6を橋脚2の中間部に固定することで、構造物の層間の開口部分を塞ぐことなく、構造物の曲げ変形に対しても効果的な制震機能を発揮させており、加えて、鉄道高架橋1は、橋脚2の柱頭7の損傷を防止することで高架橋の地中梁を無くすることも可能にして、工期短縮と建設コストの削減も図っている。
【0018】
尚、本発明による制震構造物は、梁と柱を有する構造物であれば土木構造物、建築構造物を含めどのような構造物にも適用することが可能であり、超高層建物、鉄道高架橋の橋脚の他にも歩道橋、高架道路、ペデストリアンデッキ等の構造物に対しても、柱頭の損傷を発生させずに有効な制震効果を付与させることが可能である。
【0019】
そして、図2は、制震ダンパー3を設置するために鉄道高架橋1の梁5とこれを支持する橋脚2とに配置する構成部材を示している。
鉄道高架橋1の梁5には、ダンパー装着部9を配置している。ダンパー装着部9は、梁5に制震ダンパー3の上端4を取り付ける際に応力の伝達を円滑に行うために、梁5に対応させながらその両側面を挟み込むように鋼板を装備しながら、制震ダンパー3の上端4と接合する側に螺着用のねじ穴10を設けるものであり、力の移動が梁5の下面のみに集中しないように構成している。
【0020】
又、橋脚2には、帯状鋼板11を固定している。帯状鋼板11の巻回位置は、柱長の1/3〜1/2に相当する範囲であり、帯状鋼板11に制震ダンパー3の下端6を螺着させることが出来るようにねじ穴12を設けて、橋脚2への制震ダンパー3の固定を容易にしている。
【0021】
梁5とダンパー装着部9、橋脚2と帯状鋼板11の結合は、相互間に発生する隙間に無収縮モルタルもしくは樹脂を注入することで橋軸方向の揺れの影響を無くしており、ダンパー装着部9と帯状鋼板11に制震ダンパー3を設置するには、通常のボルトによる螺着固定を基本にしている。
【0022】
次ぎに、本発明による制震ダンパーについて説明する。
本発明による制震ダンパーは、複数の細長状鋼板と矩形状鋼板とを交互に対峙させると共に、各鋼板の間に粘弾性体層を挟み込んでダンパー部を構成し、細長状鋼板の上端に各鋼板のせん断面に直行する取付部を形成して成り、細長状鋼板の上端に鋼板面と直行する補強鋼板を備えることを特徴としている。
以下に、本発明による制震ダンパーの実施形態を図面に基づいて詳細に説明する。
【0023】
制震ダンパー20は、図3(a)を(b)−(b)矢視した図3(b)の断面図に示すように、並列に向かい合う3枚の細長状鋼板21、21’、21”と、これと同様に並列に向かい合う矩形状鋼板22、22’、22”、22”’とを交互に交差する状態に重層配置しながら、細長状鋼板と矩形状鋼板との各交差間に位置する重層部分に粘弾性体23の層をそれぞれに挟み込んで構成されている。
【0024】
細長状鋼板は、図3(a)の斜視図が示すように粘弾性体23の層から突出させている長い先端部24を形成しており、先端部24には、その形状を鉄道高架橋1の梁5に設けたダンパー装着部9に螺着し易いように各細長状鋼板のせん断面に直行させて取付部25を形成すると共に、曲げ剛性を強化するためにその鋼板厚を大にすることが考慮されている。
尚、取付部25は、細長状鋼板21、21’、21”との結合を強化するためには、図示のように側面に補強部材26を設けることも可能である。
【0025】
又、矩形状鋼板22、22’、22”、22”’の橋脚等への取り付けは、細長状鋼板21、21’、21”が粘弾性体23の層を介して相互に自由に移動できるように、矩形状鋼板22、22’、22”、22”’の外周部において橋脚等に結合されるものであり、鋼板の間に挟み込む粘弾性体23としては、従来例と同様にアクリル系ゴム、ゴムアスファルト系ゴム、高減衰ゴムなど公知の粘弾性材料を薄板状にしたものが用いられ、必要に応じて接着剤等により鋼板の間に挟持されている。
【0026】
図4に示す制震ダンパー30は、本発明による制震ダンパーの他の実施形態であるが、細長状鋼板21、21’、21”と矩形状鋼板22、22’、22”、22”’及び粘弾性体23から構成されるダンパー部分は、上記実施の形態と同様である。
【0027】
しかして、制震ダンパー30は、その先端部31に形成する取付部32と細長状鋼板21、21’、21”との結合を強化するために、補強部材33、33を両側面に設けると同時に取付部32の中央部分にも補強部材33’を配置すると共に、さらに、これらの補強部材33、33’を強化するためにその間に細長状鋼板と平行な補強部材34、34’と35、35’が配置されている。
【0028】
本発明による制震ダンパーは、以上の各実施形態のように構成されることで、上載構造物の梁に対するダンパー部の取り付けを容易にして、構造物の層間の開口部分を塞ぐことなく空間の有効利用を図りながら、構造物の曲げ変形に対しても効果的な制震機能を発揮させると共に柱頭部における損傷を防止している。
【0029】
尚、上記各実施の形態では、制震ダンパーを単独な形態として説明したが、制震ダンパー20、30の取付部25、32にダンパー装着部9を予め一体に装備しておいたり、制震ダンパー3の下端6に帯状鋼板11に相当する鋼板を予め一体に装備しておくことで、現場での工事量を少なくすることも施工が可能な限り考慮されるところである。
【0030】
そして、本発明による制震構造物と制震ダンパーの検証結果を図5に確認している。
【0031】
本検証は、地震応答解析によって鉄道高架橋の柱の塑性率を確認したものであり、小要素に分割した柱の各要素についてその塑性率を弾性限界に対する最大応答値の比として表示している。
【0032】
従って、変形が大きい場合にその数字は大きくなるが、図7に示した従来例では、制震ダンパーが設けられずに地中梁を備えている場合に塑性率が6を越えていたが、これに比較して、本発明による制震構造物と制震ダンパーの場合は、地中梁が無い場合であっても、塑性率は、図示のように柱頭部分全体で3程度とほぼ均等な数値を示しており、鉄道高架橋の上梁と柱頭との接合部に集中して発生する損傷を抑制して軽微な損傷に留まるように機能することを確認できる。
【0033】
以上の検証でも明らかにされたように、本発明による制震構造物と制震ダンパーは、以上の各実施形態のように構成されることで、上載構造物の梁に対するダンパー部の取り付けを容易にして、構造物の層間の開口部分を塞ぐことなく空間の有効利用を図りながら、構造物の曲げ変形に対しても効果的な制震機能を発揮させると共に柱頭部における損傷を防止しているものである。
【0034】
以上、本発明を実施の形態に基づいて詳細に説明してきたが、本発明による制震構造物と制震ダンパーは、上記実施の形態に何ら限定されるものでなく、構造物としては、梁と柱を有する構造物であれば土木構造物、建築構造物を含めどのような構造物にも適用することが可能であり、超高層建物、鉄道高架橋の橋脚の他にも歩道橋、高架道路、ペデストリアンデッキ等の構造物にも適用可能であり、制震ダンパーの形態も特に限定されるものでないように、本発明の趣旨を逸脱しない範囲において種々の変更が可能であることは当然のことである。
【0035】
【発明の効果】
請求項1に記載の制震構造物は、梁を備える上載構造物を制震ダンパーの取り付けられた柱で支持して成る制震構造物において、複数の細長状鋼板と矩形状鋼板とを交互に対峙させると共に各鋼板の間に粘弾性体層を挟み込んで構成するダンパー部の上端を上載構造物の梁に取り付け、下端を柱の中間部に取り付けて構成することを特徴としているので、以下の具体的な効果を発揮しながら工期の短縮とコストの低減を図れる効果を奏している。
【0036】
▲1▼ 柱頭部における損傷を防止できる。
▲2▼ 構造物の層間の開口部分を塞ぐことなく空間の有効利用を図れる。
▲3▼ 構造物の曲げ変形に対しても効果的な制震機能を発揮できる。
▲4▼ 既存構造物の耐震補強にも適用できる。
【0037】
請求項2に記載の制震構造物は、請求項1に記載の制震構造物において、ダンパー部の上端に各鋼板のせん断面に直行する取付部を形成することを特徴としているので、上記効果に加えて、上載構造物の梁に対する取り付けを容易にできる効果を奏している。
【0038】
請求項3に記載の制震構造物は、請求項1又は2に記載の制震構造物において、ダンパー部の上端に鋼板面と直行する補強鋼板を備えることを特徴としているので、上記効果に加えて、ダンパー部の上端を上載構造物の梁に対して堅固に取り付けできる効果を奏している。
【0039】
請求項4に記載の制震構造物は、請求項1乃至3のいずれかに記載の制震構造物において、上載構造物の梁に両側から挟み込むダンパー装着部を備えることを特徴としているので、上記効果に加えて、上載構造物の梁にダンパー部の上端を堅固に取り付けできる効果を奏している。
【0040】
請求項5に記載の制震構造物は、請求項1乃至4のいずれかに記載の制震構造物において、ダンパー部を取り付ける柱の中間部に帯状鋼板を巻回することを特徴としているので、上記効果に加えて、柱に対するダンパーの取り付けを容易にできる効果を奏している。
【0041】
又、本発明による制震ダンパーは、複数の細長状鋼板と矩形状鋼板とを交互に対峙させると共に各鋼板の間に粘弾性体層を挟み込んでダンパー部を構成し、細長状鋼板の上端に各鋼板のせん断面に直行する取付部を形成して成り、細長状鋼板の上端に鋼板面と直行する補強鋼板を備えることを特徴としているので、上載構造物の梁に対するダンパー部の取り付けを容易にして、構造物の層間の開口部分を塞ぐことなく空間の有効利用を図りながら、構造物の曲げ変形に対しても効果的な制震機能を発揮させると共に、柱頭部における損傷を防止できる効果を奏している。
【図面の簡単な説明】
【図1】本発明による制震構造物の実施の形態を示す斜視図
【図2】本発明による制震構造物のダンパー装着部と帯状鋼板とを示す実施の形態図
【図3】本発明による制震ダンパーの実施形態図
【図4】本発明による制震ダンパーの他の実施形態図
【図5】本発明による制震構造物の検証図
【図6】従来の制震構造物図
【図7】従来の制震構造物における塑性率図
【符号の説明】
1 高架橋、 2 橋脚、 3、20、30、40 制震ダンパー、
4 上端、 5 梁、 6 下端、 7、46 柱頭、
9 ダンパー装着部、 10、12 ねじ穴、 11 帯状鋼板、
21、41、21’、41’、21”、41” 細長状鋼板、
22、22’、22”、22”’ 矩形状鋼板、 23、43 粘弾性体、
24、31、44 先端部、 25、32 取付部、
33、33’、34、34’、35、35’補強部材、
42、42’、42”、42”’ 矩形状鋼板、 45 柱、
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vibration control structure and a vibration control damper, and more particularly to a vibration control structure and a vibration control damper capable of preventing damage to a head of a column joined to a beam of an upper structure.
[0002]
[Prior art]
In order to reduce the response of structures to earthquakes and winds, various types of dampers (energy absorbing mechanisms) are added to the structures to control the vibration. Among them, visco-elastic dampers are used. It uses the viscous resistance of a viscoelastic body against shear deformation while using acrylic rubber, rubber asphalt rubber, high damping rubber, etc. as a viscoelastic material. It is known to exert.
[0003]
However, conventional viscoelastic dampers have a built-in viscoelastic damper installed between columns and beams under elevated tracks in braces, so that the opening of the structure is Because it is blocked by braces, etc. and hinders effective use of space, and it is difficult to exert the seismic control effect against bending deformation of the column base, in the case of a railway viaduct, it is necessary to secure a predetermined strength to the column base. It was necessary to install underground beams, which necessitated a longer construction period and higher construction costs.
[0004]
Therefore, a damper part made of a viscoelastic body made of high damping rubber and steel plates and a damper arm part steel material are used as a capital damper with a damper installed, and the ends of the arm steel material are connected to the capital and the damper is used. When the column is deformed due to an earthquake, the column is transmitted to the damper fixed so as to connect between the capital and the middle of the column, so that the column is fixed to the middle part of the column. Proposals have also been made to reduce the response of the structural part by causing energy absorption by causing shear deformation in the elastic body, and to effectively utilize the space without blocking the opening between the layers of the structure. It also exhibits an effective vibration control function against bending deformation. (For example, see Patent Document 1)
[0005]
As shown in FIG. 6, the vibration damper 40 according to the present proposal has three elongated steel plates 41, 41 ', 41 "facing in parallel and rectangular steel plates 42, 42', 42", 42 "'facing in parallel. Are alternately intersected with each other, and a layer of the viscoelastic body 43 is sandwiched between the layers located between the intersections of the elongated steel plate and the rectangular steel plate. The tip 44 of the elongated steel plate is fixed to the capital 46 of the column 45, and the rectangular steel plate is fixed at a position corresponding to 1/3 to 1/2 of the column length from the capital 46. By doing so, installation of braces (brace) between columns and beams under the overpass is avoided, and space utilization of the structure is aimed at.
[0006]
[Patent Document 1]
JP 2001-57661 A (“paragraph number” 0051 to “paragraph number” 0052, FIG. 10)
[0007]
However, as shown in Fig. 7, since the portion where the plasticity exceeds 6 during the earthquake is the joint between the capital and the upper beam, significant damage is concentrated on the capital and the pedestal. In the case of viaducts, etc., damage is caused between the upper beams and the capitals due to destruction of concrete and removal of column reinforcing bars.
[0008]
Therefore, it has become clear that the proposed capital damping damper, which has the effect of preventing the deformation of the column, has a problem in preventing the damage which is concentrated on the capital.
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and proposes to prevent damage that occurs intensively at the capital, in which the end of the steel material of the damper arm is stopped from being coupled to the capital, and thereby the capital at the capital is prevented. We provide damping structures and damping dampers to prevent damage.
[0010]
[Means for Solving the Problems]
The vibration control structure according to claim 1 is a vibration control structure in which an upper structure having a beam is supported by a column to which a vibration control damper is attached, wherein a plurality of elongated steel plates and a rectangular steel plate are provided. And the upper end of the damper part, which is constructed by sandwiching a viscoelastic layer between each steel plate, is attached to the beam of the upper structure, and the lower end is attached to the middle part of the pillar. In addition, the effective use of the space without blocking the opening between the layers of the structure while preventing damage to the capital is achieved, and the effective vibration control function against the bending deformation of the structure is exhibited.
[0011]
The vibration damping structure according to the second aspect of the present invention is characterized in that, in the vibration damping structure according to the first aspect, an attachment portion is formed at an upper end of the damper portion so as to be perpendicular to a shear surface of each steel plate. In addition to the above functions, the mounting of the upper structure to the beam is facilitated.
[0012]
The vibration damping structure according to the third aspect of the present invention is the vibration damping structure according to the first or second aspect, further comprising a reinforcing steel plate perpendicular to a steel plate surface at an upper end of the damper portion. In addition to the function, the upper end of the damper portion is firmly attached to the beam of the upper structure.
[0013]
A vibration control structure according to a fourth aspect of the present invention is the vibration control structure according to any one of the first to third aspects, further comprising a damper mounting portion sandwiching the beam of the upper structure from both sides. In addition to the above functions, the upper end of the damper portion is firmly attached to the beam of the upper structure.
[0014]
A vibration control structure according to a fifth aspect of the present invention is the vibration control structure according to any one of the first to fourth aspects, wherein a band-shaped steel plate is wound around an intermediate portion of a column to which a damper portion is attached. In addition to the above functions, the attachment of the damper to the pillar is facilitated.
[0015]
Further, the vibration damper according to the present invention is configured such that a plurality of elongated steel plates and a rectangular steel plate are alternately opposed to each other, and a viscoelastic layer is interposed between the steel plates to form a damper portion, and the upper end of the elongated steel plate is provided. It is formed by forming a mounting part perpendicular to the shear surface of each steel plate, and is characterized by having a reinforcing steel plate perpendicular to the steel plate surface at the upper end of the elongated steel plate, making it easy to attach the damper part to the beam of the overhanging structure. By effectively utilizing the space without blocking the opening between the layers of the structure, the structure exerts an effective vibration control function against the bending deformation of the structure and prevents damage to the capital.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
In a vibration control structure according to the present invention, a plurality of elongated steel plates and a rectangular steel plate are alternately opposed to each other in a vibration control structure in which an upper structure having a beam is supported by a column to which a vibration damper is attached. At the same time, the upper end of the damper part, which is constructed by sandwiching the viscoelastic layer between the steel plates, is attached to the beam of the upper structure, and the lower end is attached to the middle part of the column. Equipped with a mounting part perpendicular to the shear plane and a reinforcing steel plate perpendicular to the steel plate surface, a damper mounting part sandwiched between the beams of the upper structure from both sides, and winding a strip-shaped steel sheet around the middle part of the column where the damper part is mounted Features.
Hereinafter, an embodiment of a vibration control structure according to the present invention will be described in detail with reference to the drawings.
[0017]
The embodiment shown in FIG. 1 is an example in which a vibration damper 3 is installed between a railway viaduct 1 as an overhead structure and a pier 2 which is a pillar supporting the railway viaduct. In the present embodiment, the upper end 4 of the damping damper 3 is attached to the beam 5 of the viaduct 1 and the lower end 6 is fixed to the intermediate portion of the pier 2, so that the opening between the layers of the structure is not closed. It also exerts an effective vibration control function against bending deformation of objects, and in addition, the railway viaduct 1 can eliminate underground beams of viaducts by preventing damage to the capital 7 of the pier 2 It is also possible to shorten the construction period and reduce construction costs.
[0018]
Incidentally, seismic damping structure according to the present invention, civil engineering structures as long as structures with beams and columns, it is possible to be applied to any structure, including the building structure, high-rise buildings, railroad In addition to viaduct piers, it is possible to impart an effective seismic control effect to structures such as pedestrian bridges, elevated roads, and pedestrian decks without causing damage to the capitals.
[0019]
FIG. 2 shows components that are arranged on the beam 5 of the railway viaduct 1 and the pier 2 that supports the beam 5 in order to install the damping damper 3.
On the beam 5 of the railway viaduct 1, a damper mounting portion 9 is arranged. In order to smoothly transmit stress when attaching the upper end 4 of the vibration damper 3 to the beam 5, the damper mounting portion 9 is equipped with a steel plate so as to sandwich both sides thereof while corresponding to the beam 5. A screw hole 10 to be screwed is provided on the side joined to the upper end 4 of the vibration damper 3, so that the movement of the force is not concentrated only on the lower surface of the beam 5.
[0020]
A strip-shaped steel plate 11 is fixed to the pier 2. The winding position of the strip-shaped steel plate 11 is in a range corresponding to 1 / to の of the column length, and the screw hole 12 is formed so that the lower end 6 of the vibration damper 3 can be screwed to the strip-shaped steel plate 11. This facilitates the fixing of the vibration damper 3 to the pier 2.
[0021]
The connection between the beam 5 and the damper mounting portion 9, and the bridge pier 2 and the strip-shaped steel plate 11 eliminate the influence of shaking in the bridge axis direction by injecting non-shrinkable mortar or resin into a gap generated therebetween. In order to install the damping damper 3 on the steel plate 9 and the strip-shaped steel plate 11, it is basically screwed and fixed with ordinary bolts.
[0022]
Next, the vibration damper according to the present invention will be described.
The vibration damper according to the present invention is configured such that a plurality of elongated steel plates and rectangular steel plates are alternately opposed to each other, and a viscoelastic layer is sandwiched between the steel plates to form a damper portion. It is characterized in that it is formed by forming a mounting portion perpendicular to the shearing surface of the steel plate, and is provided with a reinforcing steel plate perpendicular to the steel plate surface at the upper end of the elongated steel plate.
Hereinafter, an embodiment of a vibration damper according to the present invention will be described in detail with reference to the drawings.
[0023]
The vibration damper 20 includes three elongated steel plates 21, 21 ′, 21 facing in parallel as shown in the cross-sectional view of FIG. And rectangular steel plates 22, 22 ′, 22 ″, 22 ′ ″ facing each other in parallel in a similar manner, and are alternately layered in a state of intersecting each other, and between each intersection of the elongated steel plate and the rectangular steel plate. The layer of the viscoelastic body 23 is sandwiched between the located multilayer portions.
[0024]
As shown in the perspective view of FIG. 3 (a), the elongated steel plate has a long distal end portion 24 protruding from the layer of the viscoelastic body 23, and the distal end portion 24 has the shape of the railway viaduct 1. In order to be easily screwed to the damper mounting portion 9 provided on the beam 5, the mounting portion 25 is formed by being perpendicular to the shear surface of each elongated steel plate, and the thickness of the steel plate is increased to enhance bending rigidity. That is taken into account.
In addition, in order to strengthen the connection with the elongated steel plates 21, 21 ', 21 ", the mounting portion 25 may be provided with a reinforcing member 26 on the side surface as shown in the figure.
[0025]
Further, when the rectangular steel plates 22, 22 ', 22 ", 22"' are attached to a pier or the like, the elongated steel plates 21, 21 ', 21 "can freely move mutually via the layer of the viscoelastic body 23. As described above, the outer peripheral portions of the rectangular steel plates 22, 22 ', 22 ", 22"' are connected to a pier or the like. Known viscoelastic materials such as rubber, rubber asphalt rubber, and high attenuation rubber are used in the form of a thin plate, and are sandwiched between steel plates by an adhesive or the like as necessary.
[0026]
The damping damper 30 shown in FIG. 4 is another embodiment of the damping damper according to the present invention. The damping damper 30 is an elongated steel plate 21, 21 ′, 21 ″ and a rectangular steel plate 22, 22 ′, 22 ″, 22 ″ ″. The damper portion composed of the viscoelastic body 23 is the same as in the above embodiment.
[0027]
When the vibration damper 30 is provided with reinforcing members 33, 33 on both side surfaces thereof in order to strengthen the connection between the mounting portion 32 formed at the distal end portion 31 thereof and the elongated steel plates 21, 21 ′, 21 ″. At the same time, a reinforcing member 33 'is arranged at the central portion of the mounting portion 32, and furthermore, reinforcing members 34, 34' and 35, which are parallel to the elongated steel plate therebetween, for strengthening the reinforcing members 33, 33 '. 35 'are arranged.
[0028]
The damping damper according to the present invention is configured as in each of the above embodiments, thereby facilitating the attachment of the damper portion to the beam of the overlying structure, and forming a space without blocking the opening between the layers of the structure. While effectively utilizing the structure, it also exerts an effective vibration control function against bending deformation of the structure and prevents damage to the capital.
[0029]
In each of the above embodiments, the vibration damper has been described as a single form. However, the damper mounting portions 9 of the mounting portions 25 and 32 of the vibration dampers 20 and 30 may be integrally provided in advance. By equipping the lower end 6 of the damper 3 with a steel plate corresponding to the strip-shaped steel plate 11 in advance, it is possible to reduce the amount of work at the site as much as possible.
[0030]
FIG. 5 shows verification results of the vibration control structure and the vibration control damper according to the present invention.
[0031]
In this verification, the plasticity of the column of the railway viaduct was confirmed by seismic response analysis, and the plasticity of each element of the column divided into small elements is displayed as the ratio of the maximum response value to the elastic limit.
[0032]
Therefore, the number increases when the deformation is large, but in the conventional example shown in FIG. 7, the plasticity exceeds 6 when the underground beam is provided without the damping damper, In contrast, in the case of the damping structure and the damping damper according to the present invention, the plasticity is substantially equal to about 3 over the entire capital, as shown in the figure, even when there is no underground beam. Numerical values are shown, and it can be confirmed that it functions to suppress damage that occurs at the joint between the upper beam and the capital of the railway viaduct, and to limit the damage to minor damage.
[0033]
As is clear from the above verification, the damping structure and the damping damper according to the present invention are configured as in each of the above embodiments, so that the damper portion can be easily attached to the beam of the upper structure. In order to effectively utilize the space without blocking the opening between the layers of the structure, it also exerts an effective vibration control function against bending deformation of the structure and prevents damage to the capital. Things.
[0034]
As described above, the present invention has been described in detail based on the embodiment. However, the damping structure and the damping damper according to the present invention are not limited to the above-described embodiment at all. civil engineering structures if the structure having a pillar and, in any such structures, including building structures it is possible to apply, ultra-high-rise building, in addition to pedestrian bridge also of the piers of the railway viaduct, flyover, Naturally, various changes can be made without departing from the spirit of the present invention so that the present invention can be applied to structures such as pedestrian decks and the form of the vibration damper is not particularly limited. is there.
[0035]
【The invention's effect】
The vibration damping structure according to claim 1, wherein a plurality of elongated steel plates and rectangular steel plates are alternately provided in a vibration damping structure in which an overlying structure having a beam is supported by a column to which a vibration damper is attached. It is characterized in that the upper end of the damper part, which is constructed by sandwiching a viscoelastic layer between each steel plate, is attached to the beam of the upper structure, and the lower end is attached to the middle part of the column, This has the effect of shortening the construction period and reducing the cost while exhibiting the specific effects of (1).
[0036]
(1) Damage to the capital can be prevented.
{Circle around (2)} The space can be effectively used without blocking the opening between the layers of the structure.
(3) An effective vibration control function can be exerted against bending deformation of structures.
(4) Applicable to seismic reinforcement of existing structures.
[0037]
The vibration damping structure according to claim 2 is characterized in that, in the vibration damping structure according to claim 1, an attachment portion that is perpendicular to a shear surface of each steel plate is formed at an upper end of the damper portion. In addition to the effect, there is an effect that the mounting of the upper structure to the beam can be facilitated.
[0038]
The vibration damping structure according to claim 3 is characterized in that the vibration damping structure according to claim 1 or 2 is provided with a reinforcing steel plate perpendicular to the steel plate surface at the upper end of the damper portion. In addition, there is an effect that the upper end of the damper portion can be firmly attached to the beam of the upper structure.
[0039]
The vibration damping structure according to claim 4 is characterized in that, in the vibration damping structure according to any one of claims 1 to 3, a damper mounting portion sandwiching the beam of the mounting structure from both sides is provided. In addition to the above effects, there is an effect that the upper end of the damper portion can be firmly attached to the beam of the upper structure.
[0040]
The vibration damping structure according to claim 5 is characterized in that, in the vibration damping structure according to any one of claims 1 to 4, a belt-shaped steel plate is wound around an intermediate portion of a column to which a damper portion is attached. In addition to the above effects, the present invention has an effect that the damper can be easily attached to the pillar.
[0041]
Further, the vibration damper according to the present invention is configured such that a plurality of elongated steel plates and a rectangular steel plate are alternately opposed to each other, and a viscoelastic layer is interposed between the steel plates to form a damper portion, and the upper end of the elongated steel plate is provided. Attached to the shear plane of each steel plate, and formed with a reinforcing steel plate perpendicular to the steel plate surface at the upper end of the elongated steel plate, so that it is easy to attach the damper part to the beam of the upper structure In addition, while effectively utilizing the space without blocking the openings between the layers of the structure, it also exerts an effective vibration damping function against bending deformation of the structure and prevents damage to the capital. Is playing.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of a vibration control structure according to the present invention; FIG. 2 is an embodiment view showing a damper mounting portion and a strip steel plate of the vibration control structure according to the present invention; FIG. FIG. 4 is a diagram of another embodiment of a vibration damper according to the present invention. FIG. 5 is a verification diagram of a vibration damping structure according to the present invention. FIG. 6 is a diagram of a conventional vibration damping structure. Fig. 7 Plasticity diagram of a conventional damping structure [Explanation of symbols]
1 viaduct, 2 piers, 3, 20, 30, 40 dampers,
4 top, 5 beams, 6 bottom, 7, 46 stigma,
9 Damper mounting part, 10, 12 screw hole, 11 strip steel plate,
21, 41, 21 ', 41', 21 ", 41" slender steel plate,
22, 22 ', 22 ", 22"' rectangular steel plate, 23, 43 viscoelastic body,
24, 31, 44 Tip, 25, 32 Mounting,
33, 33 ', 34, 34', 35, 35 'reinforcing members,
42, 42 ', 42 ", 42"' rectangular steel plate, 45 columns,

Claims (7)

梁を備える上載構造物を制震ダンパーの取り付けられた柱で支持して成る制震構造物であって、複数の細長状鋼板と矩形状鋼板とを交互に対峙させると共に各鋼板の間に粘弾性体層を挟み込んで構成するダンパー部の上端を上載構造物の梁に取り付け、下端を柱の中間部に取り付けて構成することを特徴とする制震構造物。A seismic control structure consisting of an overlying structure with beams supported by columns with damping dampers. A plurality of elongated steel plates and rectangular steel plates are alternately opposed to each other, and the A damping structure having an upper end of a damper portion sandwiching an elastic layer and attached to a beam of an upper structure, and a lower end attached to an intermediate portion of a pillar. ダンパー部の上端が、各鋼板のせん断面に直行する取付部を形成して構成されることを特徴とする請求項1に記載の制震構造物。The damping structure according to claim 1, wherein an upper end of the damper portion is formed by forming a mounting portion that is perpendicular to a shear surface of each steel plate. ダンパー部の上端が、鋼板面と直行する補強鋼板を備えて構成されることを特徴とする請求項1又は2に記載の制震構造物。3. The vibration control structure according to claim 1, wherein an upper end of the damper portion is provided with a reinforcing steel plate orthogonal to a steel plate surface. 4. 上載構造物の梁が、両側から挟み込むダンパー装着部を備えて構成されることを特徴とする請求項1乃至3のいずれかに記載の制震構造物。The vibration control structure according to any one of claims 1 to 3, wherein the beam of the upper structure is provided with a damper mounting portion sandwiched from both sides. 柱が、ダンパー部を取り付ける中間部に帯状鋼板を巻回して構成されることを特徴とする請求項1乃至4のいずれかに記載の制震構造物。The vibration control structure according to any one of claims 1 to 4, wherein the column is formed by winding a belt-shaped steel plate around an intermediate portion to which the damper portion is attached. 複数の細長状鋼板と矩形状鋼板とを交互に対峙させると共に各鋼板の間に粘弾性体層を挟み込んでダンパー部を構成し、細長状鋼板の上端に各鋼板のせん断面に直行する取付部を形成して成る制震ダンパー。A plurality of elongated steel plates and rectangular steel plates are alternately opposed to each other, and a viscoelastic layer is sandwiched between the steel plates to form a damper part. A vibration damper formed by forming 細長状鋼板の上端が、鋼板面と直行する補強鋼板を備えて構成されることを特徴とする請求項6に記載の制震ダンパー。The damper according to claim 6, wherein an upper end of the elongated steel plate is provided with a reinforcing steel plate perpendicular to the steel plate surface.
JP2003098858A 2003-04-02 2003-04-02 Damping structure Expired - Fee Related JP4277176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003098858A JP4277176B2 (en) 2003-04-02 2003-04-02 Damping structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003098858A JP4277176B2 (en) 2003-04-02 2003-04-02 Damping structure

Publications (2)

Publication Number Publication Date
JP2004308118A true JP2004308118A (en) 2004-11-04
JP4277176B2 JP4277176B2 (en) 2009-06-10

Family

ID=33463473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003098858A Expired - Fee Related JP4277176B2 (en) 2003-04-02 2003-04-02 Damping structure

Country Status (1)

Country Link
JP (1) JP4277176B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281081A (en) * 2008-05-23 2009-12-03 Sankyo Oilless Industry Inc Mounting structure of damping device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281081A (en) * 2008-05-23 2009-12-03 Sankyo Oilless Industry Inc Mounting structure of damping device

Also Published As

Publication number Publication date
JP4277176B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
EP1948878B1 (en) Structure with increased damping by means of fork configuration dampers
JP4631280B2 (en) Seismic control pier
JP2000129933A (en) Earthquake resistant columnar structure, and earthquake resistant method of columnar structure
WO2020192124A1 (en) Fully fabricated frame structure system
JP2003239220A (en) Vibration control elevated structure
JP3664611B2 (en) Seismic structure of wooden buildings
JP2583801B2 (en) Vibration suppression device for buildings
JP2001323964A (en) Vibration control damper and vibration control bridge
JP3667123B2 (en) Seismic reinforcement structure for wooden houses
JP3931944B2 (en) Damping damper and its installation structure
JPH10220062A (en) Vibration damping structure for building
JPH08284114A (en) Response control device for bridge
KR100540929B1 (en) Girder bridge protection apparatus, sacrifice bracing, sacrifice bracing restrainer composing it and reinforcement construction method thereof
JP4242673B2 (en) Damping device and damping structure using the same
JP2003064624A (en) Earthquake resistant reinforcing method of existing reinforced concrete elevated bridge
JP2004308118A (en) Aseismic structure and aseismic damper
JP2520038B2 (en) Seismic isolation steel beam
JP3800519B2 (en) H-steel built-in seismic damper
JP4698054B2 (en) Damping stud and its construction method
JPH10280727A (en) Damping frame by composite type damper and damping method
JPH10280725A (en) Damping skeleton construction
JPH0339575A (en) Vibration control viscoelastic wall
JP4059634B2 (en) Vibration control structure of space frame structure
JP2005188240A (en) Vibration control structure
JP7338023B2 (en) damping damper

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Effective date: 20080408

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090203

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090225

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees