JP2004308098A - Method for producing carbon fiber sheet - Google Patents

Method for producing carbon fiber sheet Download PDF

Info

Publication number
JP2004308098A
JP2004308098A JP2004088794A JP2004088794A JP2004308098A JP 2004308098 A JP2004308098 A JP 2004308098A JP 2004088794 A JP2004088794 A JP 2004088794A JP 2004088794 A JP2004088794 A JP 2004088794A JP 2004308098 A JP2004308098 A JP 2004308098A
Authority
JP
Japan
Prior art keywords
fiber sheet
carbon fiber
producing
sheet according
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004088794A
Other languages
Japanese (ja)
Other versions
JP4345538B2 (en
Inventor
Shinya Isoi
伸也 礒井
Mikio Inoue
幹夫 井上
Takashi Senda
崇史 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004088794A priority Critical patent/JP4345538B2/en
Publication of JP2004308098A publication Critical patent/JP2004308098A/en
Application granted granted Critical
Publication of JP4345538B2 publication Critical patent/JP4345538B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for continuously producing a dense carbon fiber sheet, capable of preventing the sheet from being deteriorated in compression characteristics and decreased in resistance to permeation of gases. <P>SOLUTION: This method for producing the carbon fiber sheet comprises continuously baking a precursor fiber sheet in a heating furnace, while conveying the sheet therein, so as to produce the sheet having a thickness of 0.1-0.25 mm and a bulk density of 0.3-0.7 g/cm<SP>3</SP>, wherein the precursor sheet prior to baking is continuously heated and pressurized by hot plates or molds arranged parallel to each other, while intermittently conveying the sheet. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、炭素繊維の織物、不織布、紙等のシートを製造する方法に関する。   The present invention relates to a method for producing a sheet of carbon fiber woven fabric, nonwoven fabric, paper and the like.

炭素繊維の織物、不織布、紙等のシートは、CFRP(炭素繊維強化プラスチック)の成形や、コンクリート構造物の補修・補強や、電波吸収体、燃料電池の電極等、多種多用な用途に利用されている。   Sheets such as carbon fiber woven fabric, non-woven fabric, and paper are used for a wide variety of applications such as molding CFRP (carbon fiber reinforced plastic), repairing and reinforcing concrete structures, radio wave absorbers, and fuel cell electrodes. ing.

ところで、炭素繊維は、よく知られているように、たとえばアクリル繊維等の原料繊維(プリカーサ)を200〜400℃程度の比較的低温の酸化性雰囲気中で焼成して耐炎化した後(耐炎化繊維とした後)、1,000℃以上の高温の不活性雰囲気中で焼成して炭化することによって作られている。炭素繊維シートは、そのようにして作られた炭素繊維を織糸として製織あるいは不織布化すればよいのであるが、炭素繊維は脆く、また、毛羽立ちやすいので、製織や不織布化操作はなかなか難しい。また、原料繊維や耐炎化繊維を1本1本焼成するのは非効率でもあるので、原料繊維や耐炎化繊維をあらかじめ織物や不織布としておき、それを焼成して炭素繊維シートとすることも行われている(たとえば、特許文献1参照)。   By the way, as is well known, for example, a raw material fiber (precursor) such as an acrylic fiber is fired in a relatively low-temperature oxidizing atmosphere of about 200 to 400 ° C. to be flame-resistant (flame-resistance). After the fibers are formed), they are fired and carbonized in an inert atmosphere at a high temperature of 1,000 ° C. or more. The carbon fiber sheet may be woven or made into a non-woven fabric using the carbon fiber thus produced as a woven yarn. However, since the carbon fiber is brittle and easily fluffed, the weaving and non-woven fabric operation is very difficult. In addition, since it is inefficient to fire the raw material fibers and the oxidized fibers one by one, the raw fibers and the oxidized fibers are made into a woven fabric or a nonwoven fabric in advance, and then baked into a carbon fiber sheet. (For example, see Patent Document 1).

しかるに、原料繊維を糸条かさ密度の高い織物や不織布の形態で耐炎化処理に供すると、耐炎化処理は発熱反応を伴う処理であることから織物あるいは不織布に蓄熱が起こり、安定した温度制御が極めて難しくなって得られる炭素繊維シートに品質のむらが起きやすい。また、耐炎化織物や不織布を炭化処理する場合、これらの耐炎化繊維布帛は炭化収縮をすることからポーラス状となりやすく、用途によっては性能が十分に発揮できない場合がある。たとえば、それを固体高分子型燃料電池の電極基材(以下ガス拡散層)として用いた場合、圧縮率や圧縮残留歪みといった圧縮特性の悪化、あるいは気体透過抵抗の低下などにより、電池特性を大きく低下させてしまう。そのため、前駆体繊維シートである耐炎化繊維布帛を焼成前に緻密化するのが好ましいとされているが(たとえば、特許文献2参照)、連続シートを効率良く緻密化する具体的な手段は提案されておらず、ホットプレスやカレンダーロールによる圧縮処理が示されるにとどまっている。さらに、特許文献2の方法では、炭素繊維シートの厚さは0.15〜10mmが好ましいとされており、ホットプレスの場合10〜100(より好ましくは15〜90)MPaの圧力を必要とする。そのため、1回のプレスで1m2の圧縮処理を行おうとすると、107〜108N(約103〜104tf)の加圧力が必要となり、大規模なプレスシステムを用いるか、生産効率を落とし1回当たりの処理面積を小さくする必要が生じる。また、カレンダーロールによる圧縮処理は、局所的な圧縮力が働くため単繊維の破壊あるいは扁平化が生じ、焼成後の炭素繊維シートが脆くなりやすいという問題がある。
特公昭61−11323号公報 特開2002−194650号公報
However, when the raw fiber is subjected to the oxidization treatment in the form of a woven or nonwoven fabric having a high yarn bulk density, heat is generated in the woven or nonwoven fabric because the oxidization treatment is a treatment involving an exothermic reaction, and stable temperature control is achieved. The resulting carbon fiber sheet is extremely difficult and tends to have uneven quality. When carbonizing oxidized woven fabric or non-woven fabric, these oxidized fiber fabrics tend to be porous because of shrinkage due to carbonization, and the performance may not be sufficiently exhibited depending on the application. For example, when it is used as an electrode substrate (hereinafter referred to as a gas diffusion layer) of a polymer electrolyte fuel cell, cell characteristics are greatly increased due to deterioration of compression characteristics such as compression ratio and compression residual strain, or reduction of gas permeation resistance. Lower it. Therefore, it is said that it is preferable to densify the flame-resistant fiber cloth which is the precursor fiber sheet before firing (for example, see Patent Document 2), but a specific means for efficiently densifying the continuous sheet is proposed. However, only the compression treatment by hot press or calender roll is shown. Further, in the method of Patent Document 2, it is considered that the thickness of the carbon fiber sheet is preferably 0.15 to 10 mm, and a pressure of 10 to 100 (more preferably 15 to 90) MPa is required in the case of hot pressing. . Therefore, if a compression process of 1 m 2 is performed by one press, a pressing force of 10 7 to 10 8 N (about 10 3 to 10 4 tf) is required, and a large-scale press system is used or the production efficiency is reduced. And it is necessary to reduce the processing area per operation. Further, the compression treatment using a calender roll has a problem that a single fiber is broken or flattened due to a local compression force, and the carbon fiber sheet after firing tends to be brittle.
Japanese Patent Publication No. 61-11323 JP-A-2002-194650

本発明の目的は、従来の技術の上述した問題点を解決し、圧縮特性の悪化や気体透過抵抗の低下を抑制できる緻密な炭素繊維シートの製造方法を提供するにある。   An object of the present invention is to solve the above-mentioned problems of the conventional technology and to provide a method for producing a dense carbon fiber sheet capable of suppressing deterioration of compression characteristics and reduction of gas permeation resistance.

上記目的を達成するために、本発明は、以下の構成を採用する。すなわち、
(1)前駆体繊維シートを加熱炉中を連続的に搬送しながら焼成して、厚さが0.1〜0.25mm、かさ密度が0.3〜0.7g/cm3の炭素繊維シートを製造する方法において、焼成前の前駆体繊維シートを、間欠的に搬送しながら互いに平行な熱板で連続加熱加圧することを特徴とする炭素繊維シートの製造方法。
In order to achieve the above object, the present invention employs the following configuration. That is,
(1) A carbon fiber sheet having a thickness of 0.1 to 0.25 mm and a bulk density of 0.3 to 0.7 g / cm 3 by firing the precursor fiber sheet while continuously transporting it in a heating furnace. Wherein the precursor fiber sheet before firing is continuously heated and pressed by hot plates parallel to each other while being intermittently conveyed.

(2)互いに平行な熱板の搬送方向の有効加圧長をLP、間欠的に搬送する際の前駆体繊維シートの送り量をLFとするとき、LF/LPが0.04〜1.5であることを特徴とする(1)に記載の炭素繊維シートの製造方法。 (2) When the effective pressing length in the transport direction of the hot plate parallel to each other is L P and the feed amount of the precursor fiber sheet during intermittent transport is L F , L F / L P is 0.04. The method for producing a carbon fiber sheet according to (1), wherein the number is from 1.5 to 1.5.

(3)互いに平行な熱板の搬送方向の有効加圧長をLP、間欠的に搬送する際の前駆体繊維シートの送り量をLFとするとき、LF/LPが0.1〜0.98であることを特徴とする(1)に記載の炭素繊維シートの製造方法。 (3) When the effective pressing length in the conveying direction of the hot plates parallel to each other is L P and the feed amount of the precursor fiber sheet during intermittent conveyance is L F , L F / L P is 0.1. (1) The method for producing a carbon fiber sheet according to (1), wherein

(4)互いに平行な熱板の温度が140〜300℃、加圧力が0.1〜40MPaであることを特徴とする(1)〜(3)のいずれかに記載の炭素繊維シートの製造方法。   (4) The method for producing a carbon fiber sheet according to any one of (1) to (3), wherein the temperature of the hot plate parallel to each other is 140 to 300 ° C. and the pressure is 0.1 to 40 MPa. .

(5)互いに平行な熱板で連続加熱加圧する前に、少なくとも一組以上のカレンダーロールによって予備加熱加圧することを特徴とする(1)〜(4)のいずれかに記載の炭素繊維シートの製造方法。   (5) The carbon fiber sheet according to any one of (1) to (4), wherein preheating and pressing is performed by at least one set of calender rolls before continuous heating and pressing with the hot plates parallel to each other. Production method.

(6)前駆体繊維シートを加熱炉中を連続的に搬送しながら焼成して、厚さが0.1〜0.25mm、かさ密度が0.3〜0.7g/cm3の炭素繊維シートを製造する方法において、焼成前の前駆体繊維シートを、間欠的に搬送しながら金型で連続加熱加圧することを特徴とする炭素繊維シートの製造方法。 (6) The precursor fiber sheet is fired while being continuously conveyed in a heating furnace, and has a thickness of 0.1 to 0.25 mm and a bulk density of 0.3 to 0.7 g / cm 3. Wherein the precursor fiber sheet before firing is continuously heated and pressed by a mold while intermittently being conveyed.

(7)金型の搬送方向の有効加圧長をLP、間欠的に搬送する際の前駆体繊維シートの送り量をLFとするとき、LF/LPが0.04〜1.5であることを特徴とする(6)に記載の炭素繊維シートの製造方法。 (7) Assuming that the effective press length in the conveying direction of the mold is L P and the feed amount of the precursor fiber sheet during intermittent conveyance is L F , L F / L P is 0.04 to 1. 5. The method for producing a carbon fiber sheet according to (6), wherein

(8)金型の温度が140〜300℃、加圧力が0.1〜40MPaであることを特徴とする(6)または(7)に記載の炭素繊維シートの製造方法。   (8) The method for producing a carbon fiber sheet according to (6) or (7), wherein the temperature of the mold is 140 to 300 ° C and the pressure is 0.1 to 40 MPa.

(9)金型で連続加熱加圧する前に、少なくとも一組以上のカレンダーロールによって予備加熱加圧することを特徴とする(6)〜(8)のいずれかに記載の炭素繊維シートの製造方法。   (9) The method for producing a carbon fiber sheet according to any one of (6) to (8), wherein preheating and pressing is performed by at least one set of calender rolls before continuous heating and pressing with a mold.

(10)前駆体繊維シートとして、耐炎化繊維布帛を用いることを特徴とする(1)〜(9)のいずれかに記載の炭素繊維シートの製造方法。   (10) The method for producing a carbon fiber sheet according to any one of (1) to (9), wherein an oxidized fiber cloth is used as the precursor fiber sheet.

(11)耐炎化繊維布帛として、織物、不織布または紙を用いることを特徴とする(10)に記載の炭素繊維シートの製造方法。   (11) The method for producing a carbon fiber sheet according to (10), wherein a woven fabric, a nonwoven fabric, or paper is used as the flame-resistant fiber fabric.

(12)前駆体繊維シートとして、炭素繊維をバインダで結着してなる紙を用いることを特徴とする(1)〜(9)のいずれかに記載の炭素繊維シートの製造方法。   (12) The method for producing a carbon fiber sheet according to any one of (1) to (9), wherein a paper obtained by binding carbon fibers with a binder is used as the precursor fiber sheet.

(13)炭素繊維として、平均繊維径が5〜20μmの範囲内のものを用いることを特徴とする(12)に記載の炭素繊維シートの製造方法。   (13) The method for producing a carbon fiber sheet according to (12), wherein a carbon fiber having an average fiber diameter in a range of 5 to 20 μm is used.

(14)炭素繊維の平均繊維長として、3〜20mmの範囲内のものを用いることを特徴とする(12)または(13)に記載の炭素繊維シートの製造方法。   (14) The method for producing a carbon fiber sheet according to (12) or (13), wherein a carbon fiber having an average fiber length in a range of 3 to 20 mm is used.

(15)樹脂を含浸した前駆体繊維シートを用いることを特徴とする(10)〜(14)のいずれかに記載の炭素繊維シートの製造方法。   (15) The method for producing a carbon fiber sheet according to any one of (10) to (14), wherein a precursor fiber sheet impregnated with a resin is used.

(16)前駆体繊維シートに含浸させる樹脂として、熱硬化性樹脂を用いることを特徴とする(15)に記載の炭素繊維シートの製造方法。   (16) The method for producing a carbon fiber sheet according to (15), wherein a thermosetting resin is used as the resin impregnated in the precursor fiber sheet.

(17)熱硬化性樹脂として、フェノール樹脂を用いることを特徴とする(16)に記載の多孔質炭素基材の製造方法。   (17) The method for producing a porous carbon substrate according to (16), wherein a phenol resin is used as the thermosetting resin.

(18)含浸する樹脂として、合成の際に金属触媒もしくはアルカリ触媒を使用しないフェノール樹脂を用いることを特徴とする(15)〜(17)のいずれかに記載の炭素繊維シートの製造方法。   (18) The method for producing a carbon fiber sheet according to any one of (15) to (17), wherein a phenol resin that does not use a metal catalyst or an alkali catalyst during synthesis is used as the resin to be impregnated.

(19)前駆体繊維シートに炭素質粉末を含ませることを特徴とする(1)〜(18)のいずれかに記載の炭素繊維シートの製造方法。   (19) The method for producing a carbon fiber sheet according to any one of (1) to (18), wherein the precursor fiber sheet contains carbonaceous powder.

(20)炭素質粉末の粒径として、0.01〜10μmの範囲内のものを用いることを特徴とする(19に記載の炭素繊維シートの製造方法。   (20) The method for producing a carbon fiber sheet according to (19), wherein a particle diameter of the carbonaceous powder is in a range of 0.01 to 10 μm.

(21)炭素質粉末として、黒鉛またはカーボンブラックを用いることを特徴とする(19)または(20)に記載の炭素繊維シートの製造方法。   (21) The method for producing a carbon fiber sheet according to (19) or (20), wherein graphite or carbon black is used as the carbonaceous powder.

(22)(1)〜(21)のいずれかに記載の方法によって製造されてなることを特徴とする炭素繊維シート。   (22) A carbon fiber sheet produced by the method according to any one of (1) to (21).

(23)(1)〜(21)のいずれかに記載の方法によって製造されてなることを特徴とする固体高分子型燃料電池用ガス拡散層。   (23) A gas diffusion layer for a polymer electrolyte fuel cell, manufactured by the method according to any one of (1) to (21).

本発明は、前駆体繊維シートを加熱炉中を連続的に搬送しながら焼成して炭素繊維シートを製造する方法において、焼成前の前駆体繊維シートを、間欠的に搬送しながら互いに平行な熱板、もしくは金型で連続加熱加圧するので、実施例と比較例との対比からも明らかなように、圧縮特性の悪化や気体透過抵抗の低下を抑制できる緻密な炭素繊維シートを連続的に得ることができる。   The present invention relates to a method of manufacturing a carbon fiber sheet by firing a precursor fiber sheet while continuously transporting the same in a heating furnace, wherein the precursor fiber sheet before firing is intermittently transported while being intermittently transported. Since it is continuously heated and pressed by a plate or a mold, as is clear from the comparison between the example and the comparative example, a dense carbon fiber sheet capable of suppressing the deterioration of the compression characteristics and the gas permeation resistance is continuously obtained. be able to.

本発明の炭素繊維シートの製造方法は、前記したように、前駆体繊維シートを加熱炉中を連続的に搬送しながら焼成して、厚さが0.1〜0.25mm、かさ密度が0.3〜0.7g/cm3の炭素繊維シートを製造する方法において、焼成前の前駆体繊維シートを、間欠的に搬送しながら互いに平行な熱板、もしくは金型で連続加熱加圧することを特徴とするものである。 As described above, in the method for producing a carbon fiber sheet of the present invention, the precursor fiber sheet is fired while being continuously conveyed in a heating furnace to have a thickness of 0.1 to 0.25 mm and a bulk density of 0. In the method for producing a carbon fiber sheet of 0.3 to 0.7 g / cm 3 , the precursor fiber sheet before firing is continuously heated and pressed by a hot plate or a mold parallel to each other while being intermittently conveyed. It is a feature.

前駆体繊維シートを間欠的に搬送しながら、すなわち、前駆体繊維シートの加圧と送りを交互に繰り返しながら、加熱加圧処理するのは、搬送方向に連続体である長尺の前駆体繊維シートを、枚葉状にすることなく連続的に緻密化するためである。   The heating and pressurizing treatment is performed intermittently while the precursor fiber sheet is conveyed, that is, while alternately repeating the pressurizing and feeding of the precursor fiber sheet, the long precursor fiber which is a continuous body in the conveying direction. This is because the sheet is continuously densified without being made into a sheet shape.

本発明における「連続加熱加圧」とは、この、連続体である長尺の前駆体繊維シートを、枚葉状にすることなく連続的に緻密化することを指し、長尺の前駆体繊維シートの一部に加熱加圧されていない部分を含んでいてもよい。例えば、後述のシート表面を三次元形状にパターン加工する場合には、連続体である長尺の前駆体繊維シート上に三次元形状のパターンがフィルムのコマのように並ぶが、このコマとコマの間、すなわちそれぞれのパターン間は加熱加圧されていなくてもよい。   "Continuous heating and pressurization" in the present invention refers to continuous densification of the continuous precursor fiber sheet, which is a continuous body, without forming a single sheet, and the long precursor fiber sheet. May include a part that is not heated and pressurized. For example, when a sheet surface described later is patterned into a three-dimensional shape, a three-dimensional pattern is lined up like a film frame on a continuous precursor fiber sheet that is long. , Ie, between the patterns, it is not necessary to apply heat and pressure.

前駆体繊維シートを間欠的に搬送しながら、互いに平行な熱板、もしくは金型で連続加熱加圧する際、搬送方向の有効加圧長をLP、間欠的に搬送する際の前駆体繊維シートの送り量をLFとするとき、LF/LPは、0.04〜1.5が好ましく、0.1〜0.98がより好ましい。実質的に二次元平面とする場合には0.04〜0.45とするのが最も好ましい。LF/LPが0.04よりも小さいと、加熱加圧による緻密化効果をより平均化することができるため平面度を向上、すなわち搬送方向の厚さバラツキを低減できるが、処理時間における、プレスの開閉、前駆体繊維シートの送りに要する時間比率が増大し、生産効率が悪くなる。また、LF/LPが1.5を越えると、緻密化される部分に比べ緻密化されない部分の比率が大きくなるため材料ロスとなる部分が増え生産効率が悪くなる。この場合において、LF/LPの範囲を縮小した0.1未満では、上記効果に加えて面盤サイズが1〜1.5m四方、すなわちLPが1〜1.5m程度となるプレス設備を用いる際に、送り量LF、加熱加圧時間等とのバランスが良くなり、0.98を越えると、本発明が目的とする実質的に二次元平面とする場合の均一な緻密化効果の他、シート表面を三次元形状にパターン加工する効果が付加される。すなわち、凹凸パターンを有する金型を用い、LF/LPを1〜1.5とすることによってシート表面を三次元形状にパターン加工することもできる。これは、例えば本発明のいずれかに記載の方法によって製造されてなる固体高分子型燃料電池用ガス拡散層において、ガス流路内でガス透過性を変化させたい場合に有効である。 When the precursor fiber sheet is intermittently conveyed and the continuous heating and pressurization is performed by a hot plate or a mold parallel to each other, the effective press length in the conveyance direction is L P , and the precursor fiber sheet when intermittently conveyed when the feed amount and L F, L F / L P is preferably from 0.04 to 1.5, 0.1 to 0.98 is more preferable. In the case of a substantially two-dimensional plane, it is most preferably 0.04 to 0.45. When L F / L P is less than 0.04, the densification effect by heating and pressing can be more averaged, so that the flatness can be improved, that is, the thickness variation in the transport direction can be reduced. In addition, the time ratio required for opening and closing the press and feeding the precursor fiber sheet increases, and the production efficiency deteriorates. On the other hand, when L F / L P exceeds 1.5, the ratio of the undensified portion becomes larger than the densified portion, so that the portion where the material is lost increases and the production efficiency deteriorates. In this case, if the range of L F / L P is reduced to less than 0.1, in addition to the above-mentioned effects, the press equipment is required to have a face plate size of 1 to 1.5 m square, ie, L P of about 1 to 1.5 m. When using, the balance between the feed amount L F , the heating and pressurizing time, etc. is improved, and if it exceeds 0.98, the uniform densification effect in the case of a substantially two-dimensional plane intended by the present invention is obtained. In addition, the effect of patterning the sheet surface into a three-dimensional shape is added. That is, the surface of the sheet can be patterned into a three-dimensional shape by using a mold having an uneven pattern and setting L F / L P to 1 to 1.5. This is effective, for example, when it is desired to change the gas permeability in the gas flow path in the gas diffusion layer for a polymer electrolyte fuel cell manufactured by the method according to any of the present invention.

ここで、有効加圧長とは、前駆体繊維シートが熱板、もしくは金型と接し、加熱加圧される部分の長さをいう。また、送り量とは、プレスを開いた際に搬送方向に送り出す(または引き取る)前駆体繊維シートの1回当たりの搬送量をいう。   Here, the effective pressurized length refers to the length of a portion where the precursor fiber sheet is in contact with a hot plate or a mold and is heated and pressed. The term “feed amount” refers to the amount of the precursor fiber sheet that is sent (or taken off) in the transfer direction when the press is opened per transfer.

互いに平行な熱板、もしくは金型での加熱加圧条件は、用いる前駆体繊維シートの組成により異なるが、例えば前駆体繊維シートとして、アクリル耐炎化繊維布帛を用いた場合、温度140〜300℃、面圧0.1〜40MPaで0.2〜15分加熱加圧すればよい。   The heating and pressing conditions in a hot plate or a mold parallel to each other vary depending on the composition of the precursor fiber sheet to be used. For example, when an acrylic flame-resistant fiber cloth is used as the precursor fiber sheet, the temperature is 140 to 300 ° C. The heating and pressurization may be performed at a surface pressure of 0.1 to 40 MPa for 0.2 to 15 minutes.

互いに平行な熱板とは、熱板の前駆体繊維シートに接する面を搬送方向に5等分、搬送方向と直角方向に5等分、計25区画に等分した各区画の中央に配した鉛片を加熱加圧変形させた時、少なくとも13区画中の変形後の鉛片の厚さの最大値と最小値の差が1mm以下であるものをいう。また、熱板の材質は炭素鋼などの一般鋼材をはじめとする金属が好ましいが、耐熱プラスチック、ゴムなどを用いることもできる。両方の熱板の材質は同じであっても良いが、違うものを用いることもできる。例えば、片方の熱板をステンレス製とし、もう片方の熱板をシリコンゴム製としてもよい。この場合の平行度は、あらかじめ厚さが既知の鋼材を熱板として用いて測定し、別途測定したステンレス、あるいはシリコンゴム製の熱板の厚さに置き換えることによって算出する。   The hot plates parallel to each other were arranged at the center of each of the 25 sections, the surface in contact with the precursor fiber sheet of the hot plate divided into five equal parts in the transport direction and five equal parts in the direction perpendicular to the transport direction. When the lead piece is deformed under heat and pressure, the difference between the maximum value and the minimum value of the thickness of the deformed lead piece in at least 13 sections is 1 mm or less. Further, the material of the hot plate is preferably a metal such as a general steel material such as carbon steel, but a heat-resistant plastic, rubber or the like can also be used. The material of both hot plates may be the same, but different ones may be used. For example, one hot plate may be made of stainless steel, and the other hot plate may be made of silicon rubber. In this case, the parallelism is calculated by measuring a steel plate having a known thickness in advance as a hot plate and substituting the thickness with a separately measured hot plate made of stainless steel or silicon rubber.

また、金型には必要なパターンの凹凸や傾斜部を設けることができる。こうすることによって、加熱加圧後の前駆体繊維シートの厚さを部位毎に変化させることができるため、例えば本発明のいずれかに記載の方法によって製造されてなる固体高分子型燃料電池用ガス拡散層において、ガス流路内でガス透過性を変化させることができるようになる。   In addition, the mold can be provided with necessary pattern irregularities and inclined portions. By doing so, the thickness of the precursor fiber sheet after heating and pressurizing can be changed for each part, for example, for a polymer electrolyte fuel cell manufactured by the method according to any one of the present invention. In the gas diffusion layer, the gas permeability can be changed in the gas flow path.

次に、前駆体繊維シートとして、耐炎化繊維布帛を用いる場合の加熱加圧条件について述べる。   Next, the heating and pressing conditions in the case of using a flame-resistant fiber fabric as the precursor fiber sheet will be described.

互いに平行な熱板、もしくは金型での加熱加圧における、より好ましい処理温度は160〜300℃、さらに好ましくは170〜230℃である。温度が低すぎる場合、加熱加圧による前駆体繊維シートの緻密化効果が不十分で、特に140℃未満ではその効果が小さい。温度が高すぎる場合、空気中では前駆体繊維シートであるアクリル耐炎化繊維布帛の酸化が進行し、強度低下などの問題を起こす。さらに高温のため設備維持や工程管理が難しくなる。   A more preferable treatment temperature in the heating and pressurization with a hot plate or a mold parallel to each other is 160 to 300 ° C, more preferably 170 to 230 ° C. If the temperature is too low, the effect of densification of the precursor fiber sheet by heating and pressing is insufficient, and if the temperature is less than 140 ° C., the effect is small. If the temperature is too high, the oxidation of the acrylic fiber oxidized fiber fabric, which is the precursor fiber sheet, proceeds in air, causing problems such as a decrease in strength. Furthermore, equipment maintenance and process management become difficult due to the high temperature.

面圧は、好ましくは2〜25MPa、より好ましくは3〜15MPa、さらに好ましくは4〜8MPaである。圧力が低いと前駆体繊維シートの緻密化効果が不十分である。圧力が高いと前駆体繊維シートを曲げたときに繊維の座屈ないしは繊維間の剥離によると思われる線状の模様が発生する他、焼成後の炭素繊維シートの気体透過性が低下して燃料電池のガス拡散層として良好な特性を発揮できなくなる。また、加圧面であるプレス面や離型紙に接着する等の問題が起こる。さらに、プレス設備も25MPaで1m2を加圧するためには2550tfの加圧力が必要となり、大規模なプレスシステムを用いるか、生産効率を落とし1回当たりの処理面積を小さくする必要が生じる。 The surface pressure is preferably 2 to 25 MPa, more preferably 3 to 15 MPa, and still more preferably 4 to 8 MPa. If the pressure is low, the effect of densifying the precursor fiber sheet is insufficient. If the pressure is high, when the precursor fiber sheet is bent, a linear pattern likely to be caused by buckling of fibers or separation between fibers occurs, and the gas permeability of the fired carbon fiber sheet decreases, and Good characteristics cannot be exhibited as a gas diffusion layer of a battery. In addition, problems such as adhesion to a press surface, which is a pressing surface, and release paper occur. Further, the press equipment also requires a pressing force of 2550 tf in order to press 1 m 2 at 25 MPa, and it is necessary to use a large-scale press system or to reduce the production efficiency and reduce the processing area per operation.

加熱加圧時間は好ましくは1.5〜10分、さらに好ましくは3.5〜6分である。加熱加圧時間が短いと加熱加圧による緻密化効果が十分得られない。また、6分を超える加熱加圧を行っても、それ以上の緻密化効果の増大はあまり期待できない。   The heating and pressurizing time is preferably 1.5 to 10 minutes, more preferably 3.5 to 6 minutes. If the heating and pressurizing time is short, the effect of densification by heating and pressurizing cannot be sufficiently obtained. Further, even if the heating and pressurization is performed for more than 6 minutes, a further increase in the densification effect cannot be expected much.

また、熱板、もしくは金型での加熱加圧前に、カレンダーロールによる予備圧縮処理を行うと、熱板、もしくは金型での加圧力を低減させても同様の緻密化効果を得ることができ、プレス設備の簡素化あるいは1回当たりの処理面積の増大が可能となるため好ましい。   In addition, if a preliminary compression process is performed by a calender roll before heating and pressing with a hot plate or a mold, the same densification effect can be obtained even if the pressing force with the hot plate or the mold is reduced. This is preferable because the press equipment can be simplified or the processing area per operation can be increased.

この場合、処理温度は、カレンダーロール、熱板、もしくは金型での加圧いずれも前述の通りであるが、カレンダーロールにおける加圧力は、5〜200kN/mが好ましく、より好ましくは10〜100kN/m、さらに好ましくは20〜70kN/mである。圧力が低いと加圧による前駆体繊維シートの緻密化効果が不十分であり、圧力が高いと、カレンダーロールでは局所的な圧縮力が働くため単繊維の破壊あるいは扁平化が生じ、焼成後の炭素繊維シートが脆くなる。熱板、もしくは金型による加圧力はカレンダーロールを併用することにより低減させることができ、併用する場合の熱板、もしくは金型による圧力は、好ましくは0.2〜8MPa、より好ましくは0.3〜2MPaである。圧力が低過ぎると前駆体繊維シートの緻密化効果が不十分である。圧力が高すぎると焼成後の炭素繊維シートの気体透過性が低下して燃料電池のガス拡散層として十分な特性が発揮できなくなる。さらに、高圧となるほど大規模なプレスシステムを用いるか、生産効率を落とし1回当たりの処理面積を小さくする必要が生じる。   In this case, the treatment temperature is the same as described above for the pressurization with a calender roll, a hot plate, or a mold, but the pressing force on the calender roll is preferably 5 to 200 kN / m, more preferably 10 to 100 kN. / M, more preferably 20 to 70 kN / m. If the pressure is low, the effect of densification of the precursor fiber sheet by pressurization is insufficient, and if the pressure is high, the local compression force acts on the calender roll, which causes breakage or flattening of the single fiber, and after firing. The carbon fiber sheet becomes brittle. The pressing force by a hot plate or a mold can be reduced by using a calendar roll together, and the pressure by the hot plate or the mold when used together is preferably 0.2 to 8 MPa, more preferably 0.1 to 8 MPa. 3 to 2 MPa. If the pressure is too low, the effect of densifying the precursor fiber sheet is insufficient. If the pressure is too high, the gas permeability of the fired carbon fiber sheet will decrease, and sufficient characteristics as a gas diffusion layer of the fuel cell will not be exhibited. Further, it is necessary to use a large-scale press system as the pressure increases, or to reduce the production efficiency and reduce the processing area per operation.

このように焼成前の前駆体繊維シートを、間欠的に搬送しながら互いに平行な熱板、もしくは金型で連続加熱加圧することで、いままで好ましいとされてきたが具体的な手段がなかった焼成前の連続緻密化を可能とすることができる。   As described above, the precursor fiber sheet before firing is continuously heated and pressed by a hot plate parallel to each other or a mold while intermittently being conveyed, but it has been considered preferable until now, but there is no specific means. Continuous densification before firing can be enabled.

前駆体繊維としては、上述の耐炎化繊維、例えば、アクリル繊維を耐炎化してなるアクリル耐炎化繊維の他に、レーヨン繊維、フェノール繊維、不融化ピッチ繊維等の各種合成繊維を単独あるいは組み合わせて用いることができるが、特に、強度や弾性率といった諸特性に優れた炭素繊維、ひいては炭素繊維シートが得られるアクリル耐炎化繊維であるのが好ましい。   As the precursor fiber, the above-mentioned flame-resistant fiber, for example, in addition to acrylic flame-resistant fiber obtained by flame-resistant acrylic fiber, rayon fiber, phenol fiber, various synthetic fibers such as infusible pitch fiber are used alone or in combination. However, it is particularly preferable to use carbon fiber excellent in various properties such as strength and elastic modulus, and acrylic oxidized fiber from which a carbon fiber sheet can be obtained.

そのような前駆体繊維からなるシートとしては、織物、不織布、紙等の耐炎化繊維布帛を用いることができる。   As a sheet made of such precursor fibers, an oxidized fiber fabric such as a woven fabric, a nonwoven fabric, and a paper can be used.

さらに、前駆体繊維シートとしては、炭素繊維のチョップド糸(短繊維)等をフェノール樹脂、PVA樹脂等のバインダで結着してなる紙を用いることもできる。   Further, as the precursor fiber sheet, paper formed by binding chopped carbon fiber (short fibers) or the like with a binder such as a phenol resin or a PVA resin can also be used.

前駆体繊維シートとして、炭素繊維をバインダで結着してなる紙を用いる場合には、炭素繊維の繊維の長さは3〜20mmとすることが好ましく、5〜15mmとするのが、炭素繊維を分散させ抄紙して前駆体繊維シートを得る際に、炭素繊維の分散性を向上させるためにさらに好ましい。炭素繊維の繊維径は4〜20μmとすることが好ましく、4〜13μmとすることが、特に4〜10μmとすることが好適な細孔径を得るためより好ましい。   When a paper made of carbon fibers bound with a binder is used as the precursor fiber sheet, the carbon fiber preferably has a length of 3 to 20 mm, and more preferably 5 to 15 mm. Is more preferable in order to improve the dispersibility of carbon fibers when dispersing and making paper to obtain a precursor fiber sheet. The carbon fiber preferably has a fiber diameter of 4 to 20 μm, more preferably 4 to 13 μm, and more preferably 4 to 10 μm, in order to obtain a suitable pore diameter.

炭素繊維の平均繊維径は、基材の5,000倍の電子顕微鏡による繊維の断面写真から任意の10本の炭素繊維を選択してその繊維径を測定し、その単純平均値として求める。横断面の形状が円形でない、たとえば楕円径である場合には、長径と短径の平均値を繊維径とする。   The average fiber diameter of the carbon fibers is determined as a simple average value by selecting any 10 carbon fibers from a cross-sectional photograph of the fibers by an electron microscope at a magnification of 5,000 and measuring the fiber diameter. If the cross-sectional shape is not circular, for example, an elliptical diameter, the average value of the major axis and the minor axis is defined as the fiber diameter.

また、炭素繊維の平均繊維長は、前駆体繊維シートを大気中にて600℃で加熱し、炭素繊維を残してそれ以外のバインダ等を焼き飛ばすことによって得られた任意の30本の炭素繊維について5倍の光学顕微鏡写真を撮影し、写真から各炭素繊維の長さを測定し、その単純平均値として求める。   The average fiber length of the carbon fibers is determined by heating the precursor fiber sheet at 600 ° C. in the air and burning off any other binder or the like while leaving the carbon fibers. , A 5 × optical microscope photograph is taken, the length of each carbon fiber is measured from the photograph, and the result is determined as a simple average value.

これらの前駆体繊維シートには、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ポリイミド樹脂、メラミン樹脂等の熱硬化性樹脂や、アクリル樹脂、ポリ塩化ビニリデン樹脂、ポリテトラフルオロエチレン樹脂等の熱可塑性樹脂が含浸、あるいは繊維状のものとして含まれていてもよい。特に、前駆体繊維シートとして、炭素繊維をバインダで結着してなる紙を用いる場合には、炭化後も炭素繊維同士を結着させるために、炭化後の樹脂炭化物量の多い樹脂を前駆体繊維シートに含浸しておくことが好ましい。   These precursor fiber sheets include thermosetting resins such as epoxy resins, unsaturated polyester resins, phenolic resins, polyimide resins, and melamine resins, and thermoplastic resins such as acrylic resins, polyvinylidene chloride resins, and polytetrafluoroethylene resins. The resin may be impregnated or contained as a fibrous material. In particular, when using a paper made of carbon fibers bound with a binder as a precursor fiber sheet, a resin having a large amount of resin carbide after the carbonization is used to bind the carbon fibers even after carbonization. It is preferable to impregnate the fiber sheet.

熱硬化性樹脂を用いる場合には、炭化後の樹脂炭化物量が多いため曲げ強度が高く、厚さ方向の導電性が高くなるフェノール樹脂を用いることがより好ましい。   When a thermosetting resin is used, it is more preferable to use a phenol resin having a high bending strength and a high conductivity in the thickness direction because the amount of the resin carbide after carbonization is large.

フェノール樹脂は合成の際に金属触媒やアルカリ触媒を用いていないものを使用するのが好ましい。フェノール樹脂には合成の際に酸触媒を用いるノボラック型フェノール樹脂、アルカリ触媒を用いるアルカリレゾール型フェノール樹脂、アンモニア触媒を用いるアンモニアレゾール型フェノール樹脂等がある。フェノール樹脂中に中にナトリウムやカルシウムなどのイオンが存在すると、これらの金属イオンが固体高分子型電解質膜のプロトン伝導性の低下を引き起こし電池性能が低下するという問題がある。そこで、フェノール樹脂としてはアンモニアレゾール型フェノール樹脂Rやノボラック型フェノール樹脂Nを用いることができ、両者の混合物を用いるのが曲げ強度向上のために好ましい。   It is preferable to use a phenol resin that does not use a metal catalyst or an alkali catalyst during the synthesis. Examples of the phenol resin include a novolak type phenol resin using an acid catalyst in the synthesis, an alkali resol type phenol resin using an alkali catalyst, and an ammonia resol type phenol resin using an ammonia catalyst. When ions such as sodium and calcium are present in the phenolic resin, these metal ions cause a decrease in proton conductivity of the polymer electrolyte membrane, which causes a problem that battery performance is reduced. Therefore, as the phenol resin, an ammonia resol-type phenol resin R or a novolak-type phenol resin N can be used, and it is preferable to use a mixture of both to improve bending strength.

その混合比率は、Rが多くなりすぎると曲げ強さが低くなり、厚さ方向の電気抵抗が高くなること、Nが多くなり過ぎると後の加熱工程に置いて混合樹脂が充分固くならず扱いにくくなること、また樹脂の炭素化時に残る炭素分が少なくなってしまうことなどから、R:N=2:1〜1:3がより好ましく、さらに好ましくは、R:N=3:2〜1:2とする。   The mixing ratio is such that if R is too large, the bending strength will be low and the electrical resistance in the thickness direction will be high, and if N is too large, the mixed resin will not be sufficiently hardened in the subsequent heating step and will be handled. R: N = 2: 1 to 1: 3 is more preferable, and R: N = 3: 2 to 1 is more preferable, because it is difficult to reduce the carbon content during the carbonization of the resin. : 2.

フェノール樹脂100重量部に対して後述の炭素質粉末は300重量部以下が好ましく、200重量部以下がより好ましく、150重量部以下がさらに好ましい。樹脂に対して炭素質粉末が多すぎると、樹脂炭化物が炭素繊維、炭素質粉末を充分に結着できず、炭素質粉末の粉落ちなどの問題が起こる。   The carbonaceous powder described below is preferably 300 parts by weight or less, more preferably 200 parts by weight or less, and even more preferably 150 parts by weight or less, based on 100 parts by weight of the phenol resin. If the amount of the carbonaceous powder is too large with respect to the resin, the resin carbide cannot sufficiently bind the carbon fiber and the carbonaceous powder, and problems such as falling off of the carbonaceous powder occur.

前駆体繊維シートに樹脂を含浸する場合、樹脂は未硬化または未固化の状態であってもよいが、未硬化または未固化の場合は本発明の圧縮処理、すなわち加熱加圧と同時に硬化または固化させておくのが好ましい。含浸、あるいは繊維状のものとして含む樹脂が未硬化または未固化の場合には、本発明の互いに平行な熱板、もしくは金型での加熱加圧における面圧は、加熱加圧中の樹脂流出を防ぐため、好ましくは0.1〜3MPa、より好ましくは0.2〜2.0MPaである。平行な熱板、もしくは金型の温度、およびこれらによる加熱加圧時間は、用いる樹脂の硬化特性(熱的性質)によって適宜選択すれば良い。   When impregnating the precursor fiber sheet with the resin, the resin may be in an uncured or unsolidified state, but in the case of uncured or unsolidified, the compression treatment of the present invention, that is, curing or solidifying at the same time as heating and pressing. It is preferable to keep it. When the resin impregnated or contained as a fibrous material is uncured or unsolidified, the surface pressure in heating and pressing with a hot plate or a mold parallel to each other according to the present invention is caused by resin outflow during heating and pressing. In order to prevent this, the pressure is preferably 0.1 to 3 MPa, more preferably 0.2 to 2.0 MPa. The temperature of the parallel hot plate or the mold and the time of heating and pressurization by these may be appropriately selected depending on the curing characteristics (thermal properties) of the resin used.

また、前駆体繊維シートには炭素質粉末を含ませたものを用いるのが好ましい。炭素質粉末を含むことにより、基材自体の導電性が向上し、また、樹脂炭化物のひび割れを軽減するため撥水処理による導電性低下を抑制することができる。炭素質粉末としては、カーボンブラック、黒鉛粉、膨張黒鉛、炭素質ミルド繊維等などが好ましく、カーボンブラックや黒鉛粉を用いるのがさらに好ましい。最も好ましいのは黒鉛粉である。   Further, it is preferable to use a precursor fiber sheet containing carbonaceous powder. By including the carbonaceous powder, the conductivity of the base material itself is improved, and a decrease in conductivity due to a water-repellent treatment can be suppressed in order to reduce cracking of the resin carbide. As the carbonaceous powder, carbon black, graphite powder, expanded graphite, carbonaceous milled fiber, and the like are preferable, and carbon black and graphite powder are more preferable. Most preferred is graphite powder.

この炭素質粉末は重量分率で1〜60%の範囲内にあることが好ましく、10〜55%の範囲内にあることがより好ましく、20〜50%の範囲内にあることがさらに好ましい。最も好ましい範囲は15〜35%である。炭素質粉末が1%よりも少ないと導電性が低くなる。60%を超える場合には密度が高くなり好適な細孔径が得られず、電池特性が低くなる。上記炭素質粉末を含むことで厚さ方向の導電性を向上させることができる。また、樹脂の炭化時に昇温速度が速い場合には樹脂部分にひび割れが起こり、厚さ方向の導電性の低下、曲げ強度の低下を引き起こす問題があるが、炭素質粉末を含むことで昇温速度が速い場合の樹脂のひび割れを防ぐことができる。かかる効果を得るには炭素質粉末の粒径は、0.01〜10μm程度であることが好ましく、0.01〜7μmとすることがより好ましく、0.01〜5μmとすることが、基材の曲げ強度向上や、好適な細孔径を得るためにさらに好ましい。   This carbonaceous powder preferably has a weight fraction in the range of 1 to 60%, more preferably in the range of 10 to 55%, and still more preferably in the range of 20 to 50%. The most preferred range is 15-35%. If the amount of the carbonaceous powder is less than 1%, the conductivity will be low. If it exceeds 60%, the density becomes high, and a suitable pore size cannot be obtained, and the battery characteristics become low. By including the carbonaceous powder, the conductivity in the thickness direction can be improved. If the rate of temperature rise is high during carbonization of the resin, cracks may occur in the resin part, causing a decrease in conductivity in the thickness direction and a decrease in bending strength. When the speed is high, cracking of the resin can be prevented. To obtain such an effect, the particle size of the carbonaceous powder is preferably about 0.01 to 10 μm, more preferably 0.01 to 7 μm, and more preferably 0.01 to 5 μm. It is further preferable to improve the bending strength of the steel and obtain a suitable pore diameter.

炭素質粉末の粒径は、炭素繊維シートを製造する際に添加する炭素質粉末の動的光散乱測定を行い、求めた粒径分布の数平均粒径とする。   The particle size of the carbonaceous powder is determined as the number average particle size of the obtained particle size distribution by performing dynamic light scattering measurement of the carbonaceous powder added when manufacturing the carbon fiber sheet.

これらより、前駆体繊維シートとして、炭素繊維をバインダで結着してなる紙を用いる場合には、炭素繊維100重量部に対して熱硬化性樹脂20〜300重量部、炭素質粉末1〜200重量部の範囲内にあることが好ましく、熱硬化性樹脂30〜250重量部、炭素質粉末10〜160重量部の範囲内にあることがより好ましく、熱硬化性樹脂40〜200重量部、炭素質粉末20〜120重量部の範囲内にあることがさらに好ましい。熱硬化性樹脂が少なくなりすぎると、焼成後の炭素繊維シートが厚くなりすぎ、厚さ方向の導電性が低下するため好ましくない。熱硬化性樹脂が多くなりすぎると、多孔質炭素板基材の密度が高く、細孔径が小さくなりすぎ、燃料電池のガス拡散体として用いたときの水の排水性が悪くなり、電池性能が低下するため好ましくない。炭素質粉末が少なくなりすぎると導電性向上の効果が得られないため好ましくない。多くなりすぎると熱硬化性樹脂の場合と同様に密度が高く、細孔径が小さくなり過ぎ好ましくない。また、炭素質粉末を多く入れることはコストの面から見ても好ましくない。   From these, when using paper formed by binding carbon fibers with a binder as a precursor fiber sheet, 20 to 300 parts by weight of thermosetting resin and 100 to 200 parts by weight of carbonaceous powder are used for 100 parts by weight of carbon fibers. Preferably in the range of 30 to 250 parts by weight of the thermosetting resin, more preferably in the range of 10 to 160 parts by weight of the carbonaceous powder, and 40 to 200 parts by weight of the thermosetting resin. More preferably, the content is within the range of 20 to 120 parts by weight. If the amount of the thermosetting resin is too small, the carbon fiber sheet after firing becomes too thick, and the conductivity in the thickness direction decreases, which is not preferable. If the amount of the thermosetting resin is too large, the density of the porous carbon plate base material is too high, the pore size is too small, and the drainage of water when used as a gas diffuser for a fuel cell is poor, and the cell performance is poor. It is not preferable because it lowers. If the amount of the carbonaceous powder is too small, the effect of improving the conductivity cannot be obtained, which is not preferable. If the amount is too large, the density becomes high and the pore diameter becomes too small as in the case of the thermosetting resin, which is not preferable. Also, it is not preferable to add a large amount of carbonaceous powder from the viewpoint of cost.

以下、図面に示す実施例に基づいて本発明をさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail based on embodiments shown in the drawings.

図1〜図4は、本発明の方法を実施している一例を示すもので、カレンダーロールによる予備圧縮工程(図1)、互いに平行な熱板による圧縮行程(図2)、前炭化炉、炭化炉による炭化工程(図3および図4)から構成される。なお、図中矢印はシートの進行方向を示す。   1 to 4 show an example of implementing the method of the present invention, in which a pre-compression step using calender rolls (FIG. 1), a compression step using hot plates parallel to each other (FIG. 2), a pre-carbonization furnace, It consists of a carbonization step (FIGS. 3 and 4) using a carbonization furnace. Note that the arrow in the drawing indicates the traveling direction of the sheet.

(予備圧縮工程)
巻出し機2から巻き出された前駆体繊維シート1は、カレンダーロール3によって予備圧縮された後、巻取り機4で必要長ロール状に巻取られた後、次工程である圧縮工程に送られる。
(Preliminary compression process)
The precursor fiber sheet 1 unwound from the unwinder 2 is pre-compressed by the calender roll 3, then wound up into a required length roll by the winder 4, and then sent to the next compression step. Can be

(圧縮行程)
巻出し機6から巻き出された予備圧縮処理された前駆体繊維シート5は、互いに平行な熱板7を有するホットプレス8に導入される。熱板7は140〜300℃に保たれていて、予備圧縮処理された前駆体繊維シート5はホットプレス8で加圧されている間に圧縮処理(緻密化)される。所定時間圧縮処理された後、ホットプレス8は開放され、その間に巻取り機9によって圧縮処理された前駆体繊維シートが巻取られると同時に、巻出し機6から新たな予備圧縮処理された前駆体繊維シート5が巻き出される。圧縮処理(緻密化)、開放(巻取り、巻出し)を交互に行い、巻取り機9での巻取り長が必要長に達した後、次工程である炭化工程に送られる。
(Compression process)
The pre-compressed precursor fiber sheet 5 unwound from the unwinder 6 is introduced into a hot press 8 having hot plates 7 parallel to each other. The hot plate 7 is kept at 140 to 300 ° C., and the pre-compressed precursor fiber sheet 5 is compressed (densified) while being pressed by the hot press 8. After being compressed for a predetermined time, the hot press 8 is opened, and in the meantime, the precursor fiber sheet compressed by the winding machine 9 is wound, and at the same time, a new pre-compressed precursor is unwound from the unwinding machine 6. The body fiber sheet 5 is unwound. After the compression process (densification) and the release (winding and unwinding) are alternately performed, the winding length of the winding machine 9 reaches the required length, and then the film is sent to the next process, the carbonization process.

(炭化工程)
圧縮処理された前駆体繊維シート10は、巻出し機11から巻き出された後、搬送ロール12によって運ばれ、無端コンベヤベルト13によって加熱炉14内に導入される。加熱炉14内は、300〜1,200℃程度の不活性ガス雰囲気下に保たれていて、圧縮処理された前駆体繊維シート10は、無端コンベヤベルト13によって無緊張下に搬送されている間に前炭化処理される。
(Carburizing process)
After being unwound from the unwinding machine 11, the precursor fiber sheet 10 subjected to the compression treatment is conveyed by the transport rolls 12 and introduced into the heating furnace 14 by the endless conveyor belt 13. The inside of the heating furnace 14 is kept under an inert gas atmosphere of about 300 to 1,200 ° C., and the compressed precursor fiber sheet 10 is transported under tensionless by the endless conveyor belt 13. Is pre-carbonized.

前炭化処理された前駆体繊維シートは、次いで搬送ロール15、無端コンベヤベルト16によって次の加熱炉17内に導入される。加熱炉17も加熱炉14と同様に構成されているが、雰囲気は1,200〜3,000℃程度の不活性ガス雰囲気下に保たれていて、前炭化処理された前駆体繊維シート10は、無端コンベヤベルト16によって無緊張下に搬送されている間に炭化処理され、炭素繊維シート18となる。炭素繊維シート18は、搬送ロール19によって、たとえば巻取り機20に搬送される。   The pre-carbonized precursor fiber sheet is then introduced into the next heating furnace 17 by the transport roll 15 and the endless conveyor belt 16. The heating furnace 17 is also configured in the same manner as the heating furnace 14, but the atmosphere is maintained under an inert gas atmosphere of about 1,200 to 3,000 ° C., and the pre-carbonized precursor fiber sheet 10 The carbon fiber sheet 18 is carbonized while being conveyed under tension by the endless conveyor belt 16. The carbon fiber sheet 18 is transported by a transport roll 19 to, for example, a winder 20.

ここで、加熱炉内における前駆体繊維シートは、図4に示すように炉床21の上を引摺ることもできる。この場合、炉床21は加熱炉内の雰囲気温度に耐えるもの、例えば黒鉛やセラミックスなどを用いることができる。   Here, the precursor fiber sheet in the heating furnace can be dragged on the hearth 21 as shown in FIG. In this case, the hearth 21 can be made of a material that can withstand the ambient temperature in the heating furnace, such as graphite or ceramics.

上記においては、カレンダーロールでの予備圧縮工程、互いに平行な熱板での圧縮行程、前炭化炉、炭化炉での炭化工程をそれぞれ独立して行っているが、これは、各工程を独立させることによって、それぞれの工程に適した加工速度で処理を行うことができ、設備規模の最適化が行いやすくなるためである。しかしながら本発明はこれに限られたものではなく、それぞれの工程で巻取らずに連続して行ってもよい。さらにカレンダーロールによる予備圧縮工程は、たとえば織物や不織布、紙である前駆体繊維シートの場合は、製織、不織布化、抄紙工程で行っても良い。   In the above, the pre-compression step with a calender roll, the compression step with a hot plate parallel to each other, the pre-carbonization furnace, the carbonization step in the carbonization furnace are performed independently, but this makes each step independent. This is because the processing can be performed at a processing speed suitable for each step, and the facility scale can be easily optimized. However, the present invention is not limited to this, and may be performed continuously without winding in each step. Further, in the case of a precursor fiber sheet such as a woven fabric, a nonwoven fabric, or paper, the preliminary compression process using a calender roll may be performed in a weaving process, a nonwoven fabric process, and a papermaking process.

本発明は、厚さが0.1〜0.25mm、かさ密度が0.3〜0.7g/cm3程度の比較的薄い炭素繊維シートを得る場合に特に好適である。また、本発明により得られる炭素繊維シートは、上述したようないろいろな用途に用いることができるが、圧縮率や圧縮残留歪みなどの圧縮特性や気体透過性が電池特性に大きな影響を与える固体高分子型燃料電池のガス拡散層として特に好適である。 The present invention is particularly suitable for obtaining a relatively thin carbon fiber sheet having a thickness of about 0.1 to 0.25 mm and a bulk density of about 0.3 to 0.7 g / cm 3 . The carbon fiber sheet obtained according to the present invention can be used for various applications as described above. However, compression properties such as compressibility and compression set and gas permeability have a large effect on battery characteristics. It is particularly suitable as a gas diffusion layer for a molecular fuel cell.

炭素繊維シートの厚さは、炭素繊維シートを平滑な台上に置き、直径5mmの円形平面圧子を有するマイクロメーターを用い、面圧0.15MPa付与時の厚さを測定する。測定数は5とし、その平均値を厚さとする。   The thickness of the carbon fiber sheet is measured by placing the carbon fiber sheet on a smooth table, using a micrometer having a circular flat indenter having a diameter of 5 mm, and applying a surface pressure of 0.15 MPa. The number of measurements is 5, and the average value is the thickness.

かさ密度は、0.01m2 (100cm2 )に切り出した炭素繊維シートの重さを、その切り出した面積および上記方法で測定された厚さで割って算出する。その際、炭素繊維シートの重さはJIS L 0105に記載の「標準状態」に準じて測定する。測定数は5とし、その平均値をかさ密度とする。 The bulk density is calculated by dividing the weight of the carbon fiber sheet cut to 0.01 m 2 (100 cm 2 ) by the cut area and the thickness measured by the above method. At that time, the weight of the carbon fiber sheet is measured according to the “standard state” described in JIS L 0105. The number of measurements is 5, and the average value is the bulk density.

なお、上記厚さおよびかさ密度の測定における試験片の採取方法は、JIS L 0105に記載の「試料及び試験片の採取及び準備」に基づいて測定したものである。   The method of collecting a test piece in the measurement of the thickness and the bulk density was measured based on “Sampling and preparation of sample and test piece” described in JIS L 0105.

以下、実施例および比較例を記載する。なお、実施例および比較例に記載したデータは、次の方法を用いて測定した。   Hereinafter, Examples and Comparative Examples will be described. The data described in Examples and Comparative Examples were measured using the following method.

(圧縮による厚み変化)
平滑な台上に炭素繊維シートを置き、直径5mmの円形平面圧子を有するマイクロメーターを用い、面圧0.15MPa付与時の厚さを測定、さらに荷重を増やして面圧1.0MPa付与時の厚さを測定、面圧0.15MPaと面圧1.0MPaでの厚さの差を圧縮による厚み変化とした。圧縮による厚み変化は、固体高分子型燃料電池用ガス拡散層の圧縮特性を示す一指標で、小さいほど優れており、0.15mm以下であることが好ましく、より好ましくは0.10mm以下、さらに好ましくは0.08mm以下である。圧縮による厚み変化が大きいと不織布表面へのカーボン層の塗布が難しくなる。さらに、燃料電池の電極拡散層に用いた際にセパレータのガス流路を埋めてしまう、燃料電池の厚みが一定になりにくく燃料電池の締め付け圧が経時的に低下する等の問題を引き起こしてしまう。
(Thickness change due to compression)
Place the carbon fiber sheet on a smooth table, measure the thickness at the time of applying a surface pressure of 0.15 MPa using a micrometer having a circular flat indenter having a diameter of 5 mm, further increase the load, and apply the surface pressure of 1.0 MPa. The thickness was measured, and the difference between the thickness at a surface pressure of 0.15 MPa and the thickness at a surface pressure of 1.0 MPa was defined as a change in thickness due to compression. The change in thickness due to compression is an index indicating the compression characteristics of the gas diffusion layer for a polymer electrolyte fuel cell, and the smaller the better, the better, preferably 0.15 mm or less, more preferably 0.10 mm or less, Preferably it is 0.08 mm or less. If the change in thickness due to compression is large, it becomes difficult to apply the carbon layer to the surface of the nonwoven fabric. Furthermore, when used for the electrode diffusion layer of the fuel cell, the gas flow path of the separator is buried, and the thickness of the fuel cell is hardly made constant, and the tightening pressure of the fuel cell is reduced with time. .

(引張強さ)
幅15mmの炭素繊維シートを、スパン長30mmでオートグラフAG−10TA(島津製作所社製)に取り付けた引張試験治具で把持し、速度2〜4mm/分で破断するまで引張り、最大荷重を幅で割って算出した。引張強さは、固体高分子型燃料電池用ガス拡散層の機械的性質を示す一指標で、引張強さが低いと炭素繊維シートにカーボン層塗布や触媒層や電解質膜との接合等の高次加工を行う際の張力で壊れてしまうため0.7kN/m以上であることが好ましく、より好ましくは1.0kN/m以上、さらに好ましくは1.2kN/m以上である。引張強さは少なくとも1方向が上記値を満たしていれば良く、連続した長尺のシートの場合、長手方向の引張強さが上記値を満たしていればよい。
(Tensile strength)
A carbon fiber sheet having a width of 15 mm is gripped with a tensile test jig attached to an Autograph AG-10TA (manufactured by Shimadzu Corporation) at a span length of 30 mm, and pulled at a speed of 2 to 4 mm / min until it breaks. Divided by. Tensile strength is an index that indicates the mechanical properties of the gas diffusion layer for polymer electrolyte fuel cells.If the tensile strength is low, the tensile strength of the carbon fiber sheet, such as the application of the carbon layer or the bonding with the catalyst layer or electrolyte membrane, is high. It is preferably 0.7 kN / m or more, more preferably 1.0 kN / m or more, and still more preferably 1.2 kN / m or more, since it is broken by the tension at the time of performing the next processing. The tensile strength only needs to satisfy the above value in at least one direction, and in the case of a continuous long sheet, the tensile strength in the longitudinal direction should satisfy the above value.

(空気透過時の差圧)
炭素繊維シートの厚さ方向に14cm3/(cm2・sec)=14cm/secの空気を透過させたときの、炭素繊維シートを挟んで空気の上流側と下流側の圧力差を差圧として測定した。空気透過時の差圧は、固体高分子型燃料電池用ガス拡散層の気体透過性を示す一指標で、10〜100Paであることが好ましく、より好ましくは20〜80Pa、さらに好ましくは30〜70Paである。差圧が大き過ぎる場合、すなわち気体透過抵抗が大きすぎる場合、空気や水素および水の透過性が低く、水詰まりも起こりやすいため電池電圧が低くなる。差圧が小さ過ぎる場合、すなわち気体透過抵抗が小さすぎる場合、水分が排出されやすく、あるいは乾燥しやすくなるために、膜が乾燥して、電気抵抗が高くなり電池電圧が低くなる。
(Differential pressure during air permeation)
When the air of 14 cm 3 / (cm 2 · sec) = 14 cm / sec is transmitted in the thickness direction of the carbon fiber sheet, the pressure difference between the upstream side and the downstream side of the air across the carbon fiber sheet is defined as a differential pressure. It was measured. The differential pressure at the time of air permeation is an index indicating the gas permeability of the gas diffusion layer for a polymer electrolyte fuel cell, and is preferably 10 to 100 Pa, more preferably 20 to 80 Pa, and still more preferably 30 to 70 Pa. It is. If the differential pressure is too large, that is, if the gas permeation resistance is too large, the permeability of air, hydrogen, and water is low, and water clogging is likely to occur, resulting in a low battery voltage. When the differential pressure is too small, that is, when the gas permeation resistance is too small, the water is easily discharged or dried, so that the membrane is dried, the electric resistance is increased, and the battery voltage is decreased.

(燃料電池電圧)
炭素繊維シートをPTFE水性ディスパージョンに浸漬後引き上げて乾燥して、PTFEを20%付着させ、その炭素繊維シート上にカーボンブラックとPTFEの混合物を塗布し380℃で熱処理してカーボン層付き炭素繊維シートを作成した。カーボンブラックとPTFE混合物の比率は8:2、付着量は約2mg/cm2である。一方、Nafion112(E.I.du Pont de Nemours and Company製)の両面に触媒である白金担持カーボンとNafionの混合物を付着させた膜−触媒シートを用意した。触媒である白金の担持量は約0.5mg/cm2である。膜−触媒シートをカーボン層を内側に向けた2枚のカーボン層付き不織布で挟んで130℃、3MPaで加熱加圧して一体化し、膜−電極接合体(MEA)を得た。このMEAを溝付きセパレータに挟んで常法により電池特性を測定した。電池温度は70℃、水素ガス加湿温度は80℃、空気ガス加湿温度は60℃で、ガス圧力は大気圧である。0.7A/cm2における水素利用率は70%、空気利用率は40%である。電圧は高い方が優れている。
(Fuel cell voltage)
The carbon fiber sheet is immersed in the aqueous PTFE dispersion, then pulled up and dried, 20% of PTFE is adhered, a mixture of carbon black and PTFE is applied on the carbon fiber sheet, and the mixture is heat-treated at 380 ° C. Created a sheet. The ratio of the carbon black to the PTFE mixture is 8: 2, and the amount of adhesion is about 2 mg / cm 2. On the other hand, a membrane-catalyst sheet was prepared in which a mixture of platinum-supporting carbon as a catalyst and Nafion was attached to both surfaces of Nafion 112 (manufactured by EI du Pont de Nemours and Company). The supported amount of platinum as a catalyst is about 0.5 mg / cm 2 . The membrane-catalyst sheet was sandwiched between two nonwoven fabrics with a carbon layer with the carbon layer facing inward, and heated and pressed at 130 ° C. and 3 MPa to be integrated to obtain a membrane-electrode assembly (MEA). This MEA was sandwiched between grooved separators, and battery characteristics were measured by a conventional method. The battery temperature was 70 ° C, the hydrogen gas humidification temperature was 80 ° C, the air gas humidification temperature was 60 ° C, and the gas pressure was atmospheric pressure. At 0.7 A / cm 2, the hydrogen utilization rate is 70%, and the air utilization rate is 40%. The higher the voltage, the better.

(実施例1〜2)
前駆体繊維シートとして、比重1.41g/cm3のアクリル耐炎化繊維を捲縮処理後51mmにカットし、カード加工後、水流交絡により、幅600mm、長さ150mのアクリル耐炎化繊維不織布を得た。アクリル耐炎化繊維不織布の目付は130g/m2であった。
(Examples 1 and 2)
As a precursor fiber sheet, an acrylic flame-resistant fiber having a specific gravity of 1.41 g / cm 3 was cut into 51 mm after crimping, processed into a card, and subjected to hydroentanglement to obtain an acrylic flame-resistant fiber nonwoven fabric having a width of 600 mm and a length of 150 m. Was. The basis weight of the acrylic flame-resistant fiber nonwoven fabric was 130 g / m 2 .

このアクリル耐炎化繊維不織布を温度200℃、線圧49kN/m、速度2m/分でカレンダーロール3で予備圧縮した。さらに株式会社カワジリ社製100tプレス8に熱板7が互いに平行となるようセットし、熱板温度230℃、面圧0.39および4.9MPaの2水準で、プレスの開閉を繰り返しながら前駆体繊維シートを間欠的に搬送しつつ、同じ箇所がのべ5分間加熱加圧されるよう圧縮処理した。この際、熱板の有効加圧長LPは300mmで、間欠的に搬送する際の前駆体繊維シートの送り量LFを60mmとし、LF/LP=0.2とした。すなわち、1分間の加熱加圧、型開き、前駆体繊維シートの送り(60mm)、を繰り返すことによって圧縮処理を行った。 This acrylic flame-resistant nonwoven fabric was pre-compressed with a calender roll 3 at a temperature of 200 ° C., a linear pressure of 49 kN / m and a speed of 2 m / min. Further, a hot plate 7 was set on a 100 t press 8 manufactured by Kawajiri Co., Ltd. so as to be parallel to each other, and the precursor was repeatedly opened and closed at two levels of a hot plate temperature of 230 ° C., a surface pressure of 0.39 and 4.9 MPa. While the fiber sheet was intermittently conveyed, a compression treatment was performed so that the same portion was heated and pressed for a total of 5 minutes. In this case, the effective pressure圧長L P is 300mm of the hot plate, the feed amount L F of the precursor fiber sheet at the time of transporting intermittently and 60 mm, and a L F / L P = 0.2. That is, the compression treatment was performed by repeating heating and pressing for 1 minute, opening the mold, and feeding the precursor fiber sheet (60 mm).

こうして得られた圧縮処理された前駆体繊維シートに、図3に示すように加熱炉14と加熱炉17とを直列に配置し、窒素ガス雰囲気中にて最高温度が650℃の前炭化処理と最高温度が1,950℃の炭化処理とを施し(2段階焼成)、炭素繊維シートたる炭素繊維不織布を得た。加熱炉14と加熱炉17における、不活性(窒素ガス)雰囲気が保たれている部分の長さは、それぞれ6.8mおよび6.7mで、加熱炉14での前炭化処理における前駆体繊維シートの搬送のための無端コンベヤベルト13には、SUS310S製の通気性を有するコンパウンドバランスドベルトを用い、加熱炉17での炭化処理における前駆体繊維シートの搬送のための無端コンベヤベルト16には、厚み方向に通気性を有する炭素繊維織物ベルトを用いた。また、搬送速度は0.2m/分とし、搬送ロール12、搬送ロール15、搬送ロール19を制御して、無端コンベヤベルト13、16上に前駆体繊維シートを載せる際に前駆体繊維シートと無端コンベヤベルトとの間で滑りを生じないようにした。   A heating furnace 14 and a heating furnace 17 are arranged in series on the compressed precursor fiber sheet thus obtained, as shown in FIG. 3, and subjected to a pre-carbonization treatment at a maximum temperature of 650 ° C. in a nitrogen gas atmosphere. A carbonization treatment at a maximum temperature of 1,950 ° C. was performed (two-stage firing) to obtain a carbon fiber nonwoven fabric as a carbon fiber sheet. The lengths of the portions of the heating furnace 14 and the heating furnace 17 where the inert (nitrogen gas) atmosphere is maintained are 6.8 m and 6.7 m, respectively, and are the precursor fiber sheets in the pre-carbonization treatment in the heating furnace 14. The endless conveyor belt 13 for the transfer of the precursor fiber sheet in the carbonization processing in the heating furnace 17 is used for the endless conveyor belt 13 for the transfer of the SUS310S made of air-permeable compound balanced belt, A carbon fiber woven belt having air permeability in the thickness direction was used. The transport speed is 0.2 m / min, and the transport roll 12, the transport roll 15, and the transport roll 19 are controlled to place the precursor fiber sheet on the endless conveyor belts 13, 16 when the precursor fiber sheet is placed on the endless conveyor belts 13, 16. No slippage occurred with the conveyor belt.

得られた炭素繊維シートの厚さ、かさ密度、圧縮による厚み変化、引張強さ、空気透過時の差圧、および実施例1の燃料電池電圧を表1に示す。   Table 1 shows the thickness, bulk density, thickness change due to compression, tensile strength, differential pressure during air permeation, and the fuel cell voltage of Example 1 of the obtained carbon fiber sheet.

以上の結果は、本発明によれば、固体高分子型燃料電池の電池特性の低下を招くような、圧縮特性の悪化や気体透過抵抗の低下を抑制できる緻密な炭素繊維シートを得ることができることを示している。   The above results show that, according to the present invention, it is possible to obtain a dense carbon fiber sheet that can suppress the deterioration of compression characteristics and the decrease of gas permeation resistance, which cause the deterioration of cell characteristics of a polymer electrolyte fuel cell. Is shown.

(実施例3〜4)
カレンダーロールによる予備圧縮をせず、互いに平行な熱板での加圧力を4.9、9.8MPaとした以外は実施例1と同様の方法で炭素繊維シートを得た。得られた炭素繊維シートの厚さ、かさ密度、圧縮による厚み変化、引張強さ、空気透過時の差圧、燃料電池電圧を表1に示す。
(Examples 3 and 4)
A carbon fiber sheet was obtained in the same manner as in Example 1 except that the pre-compression by a calender roll was not performed, and the pressure applied by a hot plate parallel to each other was set to 4.9 and 9.8 MPa. Table 1 shows the thickness, bulk density, change in thickness due to compression, tensile strength, differential pressure during air permeation, and fuel cell voltage of the obtained carbon fiber sheet.

(実施例5)
前駆体繊維シートとして、東レ株式会社製ポリアクリロニトリル系炭素繊維“トレカ”T300(平均繊維径:7μm)を長さ12mmに切断し、それを水中に分散させ、金網上に抄造し、さらにそれをポリビニルアルコールの水溶液に浸漬し、引き上げて乾燥し、炭素単繊維100重量部に対してバインダであるポリビニルアルコールが約30重量%付着した炭素繊維紙を得た。
(Example 5)
As a precursor fiber sheet, a polyacrylonitrile-based carbon fiber “Torayca” T300 (average fiber diameter: 7 μm) manufactured by Toray Industries, Inc. is cut to a length of 12 mm, dispersed in water, and formed on a wire mesh. It was immersed in an aqueous solution of polyvinyl alcohol, pulled up and dried to obtain a carbon fiber paper having about 30% by weight of polyvinyl alcohol as a binder adhered to 100 parts by weight of carbon single fiber.

次に、レゾール型フェノール樹脂と同重量部のノボラック型フェノール樹脂を含む混合樹脂の6重量%メタノール溶液に樹脂100重量部に対して鱗片状黒鉛(平均粒径5μm)75重量部を均一に分散させた液に、上記炭素繊維紙を浸漬し、引き上げて炭素繊維100重量部に対して混合樹脂を100重量部、鱗片状黒鉛25重量部付着させた。   Next, 75 parts by weight of flake graphite (average particle size: 5 μm) is uniformly dispersed in 100 parts by weight of a resin in a 6% by weight methanol solution of a mixed resin containing the same amount of novolak type phenol resin as the resole type phenol resin. The carbon fiber paper was immersed in the liquid thus obtained, pulled up, and 100 parts by weight of the mixed resin and 25 parts by weight of flake graphite were adhered to 100 parts by weight of the carbon fiber.

さらに、前記フェノール樹脂および鱗片状黒鉛を含む前駆体繊維シートを、プレスの開閉を繰り返しながら間欠的に搬送しつつ、互いに平行な熱板で、同じ箇所がのべ6分間加熱加圧されるよう圧縮処理した。この際、熱板温度170℃、面圧0.74MPa、熱板の有効加圧長LP1200mmで、間欠的に搬送する際の前駆体繊維シートの送り量LF100mmとし、LF/LP=0.08とした。すなわち、30秒の加熱加圧、型開き、前駆体繊維シートの送り(100mm)、を繰り返すことによって圧縮処理を行い、ロール状に巻き取った。 Further, the precursor fiber sheet containing the phenolic resin and flaky graphite is intermittently conveyed while repeating opening and closing of the press, and the same portion is heated and pressed for a total of 6 minutes by hot plates parallel to each other. Compressed. At this time, hot plate temperature 170 ° C., surface pressure 0.74 MPa, the effective pressurizing圧長L P 1200 mm of the hot plate, and the precursor fiber sheet feed amount L F 100 mm of the time of transporting intermittently, L F / L P was set to 0.08. That is, compression processing was performed by repeating heating and pressing for 30 seconds, opening of the mold, and feeding (100 mm) of the precursor fiber sheet, followed by winding into a roll.

さらに、図3に示すように加熱炉14と加熱炉17とを直列に配置し、窒素ガス雰囲気中にて最高温度が650℃の前炭化処理と最高温度が1,950℃の炭化処理とを施し(2段階焼成)、炭素繊維シートを得た。前駆体繊維シートの搬送速度は0.5m/分とし、加熱炉14内では0.2m/分で移動する無端コンベヤベルト13(SUS310S製コンパウンドバランスドベルト)上を、加熱炉17内では無端コンベヤベルト16を取り外した炉床(黒鉛製)上を引摺りながら焼成した。   Further, as shown in FIG. 3, the heating furnace 14 and the heating furnace 17 are arranged in series, and a pre-carbonization treatment at a maximum temperature of 650 ° C. and a carbonization treatment at a maximum temperature of 1,950 ° C. are performed in a nitrogen gas atmosphere. (Two-stage firing) to obtain a carbon fiber sheet. The conveying speed of the precursor fiber sheet is 0.5 m / min. The endless conveyor belt 13 (SUS310S compound balanced belt) moving at 0.2 m / min in the heating furnace 14 and the endless conveyor in the heating furnace 17. Firing was performed while dragging on the hearth (made of graphite) from which the belt 16 was removed.

得られた炭素繊維シートの厚さ、かさ密度、圧縮による厚み変化、引張強さ、空気透過時の差圧、燃料電池電圧を表1に示す。   Table 1 shows the thickness, bulk density, change in thickness due to compression, tensile strength, differential pressure during air permeation, and fuel cell voltage of the obtained carbon fiber sheet.

(比較例1)
カレンダーロールによる予備圧縮および、互いに平行な熱板での圧縮を行わない以外は実施例1と同様の方法で炭素繊維シートを得た。得られた炭素繊維シートの厚さ、かさ密度、圧縮による厚み変化、引張強さ、空気透過時の差圧、燃料電池電圧を表1に示す。
(Comparative Example 1)
A carbon fiber sheet was obtained in the same manner as in Example 1 except that preliminary compression by a calender roll and compression by a hot plate parallel to each other were not performed. Table 1 shows the thickness, bulk density, change in thickness due to compression, tensile strength, differential pressure during air permeation, and fuel cell voltage of the obtained carbon fiber sheet.

(比較例2)
カレンダーロールによる予備圧縮をせず、互いに平行な熱板での加圧力を19.6MPaとした以外は実施例1と同様の方法で炭素繊維シートを得た。なお、この際、加圧力を確保するため、熱板の有効加圧長LPを80mmとし、間欠的に搬送する際の前駆体繊維シートの送り量LFを16mmとし、LF/LP=0.2とした。得られた炭素繊維シートの厚さ、かさ密度、圧縮による厚み変化、引張強さ、空気透過時の差圧、燃料電池電圧を表1に示す。
(Comparative Example 2)
A carbon fiber sheet was obtained in the same manner as in Example 1 except that the pre-compression by a calender roll was not performed and the pressure applied by a hot plate parallel to each other was set to 19.6 MPa. At this time, in order to secure the pressure, the effective pressure圧長L P of the hot plate and 80 mm, a feed amount L F of the precursor fiber sheet at the time of intermittently conveyed and 16 mm, L F / L P = 0.2. Table 1 shows the thickness, bulk density, change in thickness due to compression, tensile strength, differential pressure during air permeation, and fuel cell voltage of the obtained carbon fiber sheet.

(比較例3)
カレンダーロールによる予備圧縮を、温度200℃、線圧は392kN/m、速度2m/分とし、互いに平行な熱板での加熱加圧処理を行わなかった。以下、実施例1と同様の方法で炭素繊維シートを得た。得られた炭素繊維シートの厚さ、かさ密度、圧縮による厚み変化、引張強さ、空気透過時の差圧、燃料電池電圧を表1に示す。
(Comparative Example 3)
The pre-compression using a calender roll was performed at a temperature of 200 ° C., a linear pressure of 392 kN / m, and a speed of 2 m / min. Hereinafter, a carbon fiber sheet was obtained in the same manner as in Example 1. Table 1 shows the thickness, bulk density, change in thickness due to compression, tensile strength, differential pressure during air permeation, and fuel cell voltage of the obtained carbon fiber sheet.

Figure 2004308098
Figure 2004308098

上記表1から、実施例1では圧縮による厚み変化が0.03mm、空気透過時の差圧が44.1Paといずれも最も好ましい領域までシートが緻密化されており、実施例2でも圧縮による厚み変化が0.02mm、空気透過時の差圧が50Paと最も好ましい領域までシートが緻密化されている。これに対して比較例1では圧縮による厚み変化が0.19mmとシートの緻密化が不十分であるから、本発明の炭素繊維シートは本発明の目的とする圧縮特性の悪化や気体透過抵抗の低下を抑制できる緻密な炭素繊維シートの製造方法を提供する点に優れていることが分かる。   From Table 1 above, in Example 1, the sheet was densified to the most preferable areas, with the change in thickness due to compression being 0.03 mm and the differential pressure during air permeation being 44.1 Pa. The sheet is densified to the most preferable region where the change is 0.02 mm and the differential pressure during air transmission is 50 Pa. On the other hand, in Comparative Example 1, the change in thickness due to compression was 0.19 mm, and the sheet was insufficiently densified. Therefore, the carbon fiber sheet of the present invention exhibited poor compression characteristics and low gas permeation resistance. It can be seen that the method is excellent in providing a method for producing a dense carbon fiber sheet capable of suppressing the decrease.

本発明は、固体高分子型燃料電池の電極材料に限らず、各種電極や電波吸収体などにも応用することができるが、その応用範囲が、これらに限られるものではない。   The present invention can be applied not only to the electrode material of the polymer electrolyte fuel cell but also to various electrodes and radio wave absorbers, but the application range is not limited to these.

本発明の実施に用いる炭素繊維シートの製造工程の一形態における予備圧縮工程を示す概略縦断面図である。FIG. 2 is a schematic longitudinal sectional view showing a pre-compression step in one embodiment of a production process of a carbon fiber sheet used for carrying out the present invention. 本発明の実施に用いる炭素繊維シートの製造工程の一形態における圧縮工程を示す概略縦断面図である。FIG. 2 is a schematic longitudinal sectional view showing a compression step in one embodiment of a production process of a carbon fiber sheet used for carrying out the present invention. 本発明の実施に用いる炭素繊維シートの製造工程の一形態における焼成工程を示す概略縦断面図である。FIG. 3 is a schematic longitudinal sectional view showing a firing step in one embodiment of a manufacturing process of a carbon fiber sheet used for carrying out the present invention. 本発明の実施に用いる炭素繊維シートの製造工程の一形態における焼成工程を示す概略縦断面図である。FIG. 3 is a schematic longitudinal sectional view showing a firing step in one embodiment of a manufacturing process of a carbon fiber sheet used for carrying out the present invention.

符号の説明Explanation of reference numerals

1:前駆体繊維シート
2:巻出し機
3:カレンダーロール
4:巻取り機
5:予備圧縮処理された前駆体繊維シート
6:巻出し機
7:熱板
8:ホットプレス
9:巻取り機
10:圧縮処理された前駆体繊維シート
11:巻出し機
12:搬送ロール
13:無端コンベヤベルト
14:前炭化処理用加熱炉
15:搬送ロール
16:無端コンベヤベルト
17:炭化処理用加熱炉
18:炭素繊維シート
19:搬送ロール
20:巻取り機
21:炉床
1: Precursor fiber sheet 2: Unwinder 3: Calender roll 4: Rewinder 5: Precompressed precursor fiber sheet 6: Unwinder 7: Hot plate 8: Hot press 9: Rewinder 10 : Precursor fiber sheet subjected to compression treatment 11: Unwinder 12: Conveying roll 13: Endless conveyor belt 14: Heating furnace for pre-carbonization treatment 15: Conveyance roll 16: Endless conveyor belt 17: Heating furnace for carbonization treatment 18: Carbon Fiber sheet 19: Conveyance roll 20: Winding machine 21: Hearth

Claims (23)

前駆体繊維シートを加熱炉中を連続的に搬送しながら焼成して、厚さが0.1〜0.25mm、かさ密度が0.3〜0.7g/cm3の炭素繊維シートを製造する方法において、焼成前の前駆体繊維シートを、間欠的に搬送しながら互いに平行な熱板で連続加熱加圧することを特徴とする炭素繊維シートの製造方法。 The precursor fiber sheet is fired while being continuously conveyed in a heating furnace to produce a carbon fiber sheet having a thickness of 0.1 to 0.25 mm and a bulk density of 0.3 to 0.7 g / cm 3. A method for producing a carbon fiber sheet, wherein a precursor fiber sheet before firing is continuously heated and pressed by hot plates parallel to each other while being intermittently conveyed. 互いに平行な熱板の搬送方向の有効加圧長をLP、間欠的に搬送する際の前駆体繊維シートの送り量をLFとするとき、LF/LPが0.04〜1.5であることを特徴とする請求項1に記載の炭素繊維シートの製造方法。 Assuming that the effective pressing length in the conveying direction of the hot plates parallel to each other is L P and the feed amount of the precursor fiber sheet during intermittent conveyance is L F , L F / L P is 0.04 to 1.0. The method for producing a carbon fiber sheet according to claim 1, wherein 互いに平行な熱板の搬送方向の有効加圧長をLP、間欠的に搬送する際の前駆体繊維シートの送り量をLFとするとき、LF/LPが0.1〜0.98であることを特徴とする請求項1に記載の炭素繊維シートの製造方法。 When the effective pressing length in the conveying direction of the hot plates parallel to each other is L P and the feed amount of the precursor fiber sheet during intermittent conveyance is L F , L F / L P is 0.1 to 0.1. The method for producing a carbon fiber sheet according to claim 1, wherein the number is 98. 互いに平行な熱板の温度が140〜300℃、加圧力が0.1〜40MPaであることを特徴とする請求項1〜3のいずれかに記載の炭素繊維シートの製造方法。 The method for producing a carbon fiber sheet according to any one of claims 1 to 3, wherein the temperature of the hot plate parallel to each other is 140 to 300 ° C, and the pressing force is 0.1 to 40 MPa. 互いに平行な熱板で連続加熱加圧する前に、少なくとも一組以上のカレンダーロールによって予備加熱加圧することを特徴とする請求項1〜4のいずれかに記載の炭素繊維シートの製造方法。 The method for producing a carbon fiber sheet according to any one of claims 1 to 4, wherein preheating and pressurizing is performed by at least one or more sets of calender rolls before continuous heating and pressurizing with a hot plate parallel to each other. 前駆体繊維シートを加熱炉中を連続的に搬送しながら焼成して、厚さが0.1〜0.25mm、かさ密度が0.3〜0.7g/cm3の炭素繊維シートを製造する方法において、焼成前の前駆体繊維シートを、間欠的に搬送しながら金型で連続加熱加圧することを特徴とする炭素繊維シートの製造方法。 The precursor fiber sheet is fired while being continuously conveyed in a heating furnace to produce a carbon fiber sheet having a thickness of 0.1 to 0.25 mm and a bulk density of 0.3 to 0.7 g / cm 3. A method for producing a carbon fiber sheet, wherein a precursor fiber sheet before firing is continuously heated and pressed by a mold while intermittently being conveyed. 金型の搬送方向の有効加圧長をLP、間欠的に搬送する際の前駆体繊維シートの送り量をLFとするとき、LF/LPが0.04〜1.5であることを特徴とする請求項6に記載の炭素繊維シートの製造方法。 When the effective pressing length in the conveying direction of the mold is L P and the feed amount of the precursor fiber sheet during intermittent conveyance is L F , L F / L P is 0.04 to 1.5. The method for producing a carbon fiber sheet according to claim 6, wherein: 金型の温度が140〜300℃、加圧力が0.1〜40MPaであることを特徴とする請求項6または7に記載の炭素繊維シートの製造方法。 The method for producing a carbon fiber sheet according to claim 6, wherein the temperature of the mold is 140 to 300 ° C. and the pressure is 0.1 to 40 MPa. 金型で連続加熱加圧する前に、少なくとも一組以上のカレンダーロールによって予備加熱加圧することを特徴とする請求項6〜8のいずれかに記載の炭素繊維シートの製造方法。 The method for producing a carbon fiber sheet according to any one of claims 6 to 8, wherein preheating and pressing is performed by at least one set of calender rolls before continuous heating and pressing with a mold. 前駆体繊維シートとして、耐炎化繊維布帛を用いることを特徴とする請求項1〜9のいずれかに記載の炭素繊維シートの製造方法。 The method for producing a carbon fiber sheet according to any one of claims 1 to 9, wherein an oxidized fiber cloth is used as the precursor fiber sheet. 耐炎化繊維布帛として、織物、不織布または紙を用いることを特徴とする請求項10に記載の炭素繊維シートの製造方法。 The method for producing a carbon fiber sheet according to claim 10, wherein a woven fabric, a nonwoven fabric, or paper is used as the flame-resistant fiber fabric. 前駆体繊維シートとして、炭素繊維をバインダで結着してなる紙を用いることを特徴とする請求項1〜9のいずれかに記載の炭素繊維シートの製造方法。 The method for producing a carbon fiber sheet according to any one of claims 1 to 9, wherein a paper obtained by binding carbon fibers with a binder is used as the precursor fiber sheet. 炭素繊維として、平均繊維径が5〜20μmの範囲内のものを用いることを特徴とする請求項12に記載の炭素繊維シートの製造方法。 The method for producing a carbon fiber sheet according to claim 12, wherein a carbon fiber having an average fiber diameter in a range of 5 to 20 m is used. 炭素繊維の平均繊維長として、3〜20mmの範囲内のものを用いることを特徴とする請求項12または13に記載の炭素繊維シートの製造方法。 14. The method for producing a carbon fiber sheet according to claim 12, wherein an average fiber length of the carbon fibers is in a range of 3 to 20 mm. 樹脂を含浸した前駆体繊維シートを用いることを特徴とする請求項10〜14のいずれかに記載の炭素繊維シートの製造方法。 The method for producing a carbon fiber sheet according to any one of claims 10 to 14, wherein a precursor fiber sheet impregnated with a resin is used. 前駆体繊維シートに含浸させる樹脂として、熱硬化性樹脂を用いることを特徴とする請求項15に記載の炭素繊維シートの製造方法。 The method for producing a carbon fiber sheet according to claim 15, wherein a thermosetting resin is used as the resin impregnated in the precursor fiber sheet. 熱硬化性樹脂として、フェノール樹脂を用いることを特徴とする請求項16に記載の多孔質炭素基材の製造方法。 The method for producing a porous carbon substrate according to claim 16, wherein a phenol resin is used as the thermosetting resin. 含浸する樹脂として、合成の際に金属触媒もしくはアルカリ触媒を使用しないフェノール樹脂を用いることを特徴とする請求項15〜17のいずれかに記載の炭素繊維シートの製造方法。 The method for producing a carbon fiber sheet according to any one of claims 15 to 17, wherein a phenol resin that does not use a metal catalyst or an alkali catalyst during synthesis is used as the resin to be impregnated. 前駆体繊維シートに炭素質粉末を含ませることを特徴とする請求項1〜18のいずれかに記載の炭素繊維シートの製造方法。 The method for producing a carbon fiber sheet according to any one of claims 1 to 18, wherein the precursor fiber sheet contains carbonaceous powder. 炭素質粉末の粒径として、0.01〜10μmの範囲内のものを用いることを特徴とする請求項19に記載の炭素繊維シートの製造方法。 The method for producing a carbon fiber sheet according to claim 19, wherein a particle diameter of the carbonaceous powder is in a range of 0.01 to 10 m. 炭素質粉末として、黒鉛またはカーボンブラックを用いることを特徴とする請求項19または20に記載の炭素繊維シートの製造方法。 21. The method for producing a carbon fiber sheet according to claim 19, wherein graphite or carbon black is used as the carbonaceous powder. 請求項1〜21のいずれかに記載の方法によって製造されてなることを特徴とする炭素繊維シート。 A carbon fiber sheet produced by the method according to claim 1. 請求項1〜21のいずれかに記載の方法によって製造されてなることを特徴とする固体高分子型燃料電池用ガス拡散層。 A gas diffusion layer for a polymer electrolyte fuel cell, manufactured by the method according to claim 1.
JP2004088794A 2003-03-26 2004-03-25 Method for producing carbon fiber sheet Expired - Lifetime JP4345538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004088794A JP4345538B2 (en) 2003-03-26 2004-03-25 Method for producing carbon fiber sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003084644 2003-03-26
JP2004088794A JP4345538B2 (en) 2003-03-26 2004-03-25 Method for producing carbon fiber sheet

Publications (2)

Publication Number Publication Date
JP2004308098A true JP2004308098A (en) 2004-11-04
JP4345538B2 JP4345538B2 (en) 2009-10-14

Family

ID=36748294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004088794A Expired - Lifetime JP4345538B2 (en) 2003-03-26 2004-03-25 Method for producing carbon fiber sheet

Country Status (1)

Country Link
JP (1) JP4345538B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081872A (en) * 2006-09-27 2008-04-10 Takayasu Co Ltd Carbon fiber nonwoven fabric and method for producing the same
JP2011111702A (en) * 2009-11-30 2011-06-09 Mitsubishi Rayon Co Ltd Method for producing long carbon fiber sheet of rolled shape, long carbon fiber sheet precursor wound into rolled shape and long carbon fiber sheet
JP2011243578A (en) * 2010-05-20 2011-12-01 Kyosin Ltd Method of manufacturing carbon substrate for gas diffusion layer of polymer electrolyte fuel cell, carbon substrate formed thereby, and system used for manufacturing the same
JP2012184535A (en) * 2011-02-18 2012-09-27 Toray Ind Inc Carbon fiber base material and method for producing the same
JP2013104033A (en) * 2011-11-16 2013-05-30 Toray Ind Inc Fiber-reinforced composite material and method for producing fiber-reinforced composite material
JP2013245253A (en) * 2012-05-24 2013-12-09 Toray Ind Inc Fiber-reinforced composite material and method for producing the same
JP2015143405A (en) * 2013-12-27 2015-08-06 東レ株式会社 Carbon fiber nonwoven fabric and method for producing carbon fiber nonwoven fabric
JP2016014199A (en) * 2014-07-01 2016-01-28 トヨタ紡織株式会社 Nonwoven fabric fabricating method and nonwoven fabric fabricating device
JP2020132390A (en) * 2019-02-22 2020-08-31 東レ株式会社 Manufacturing method of sheet-like material and molded article
JPWO2020213324A1 (en) * 2019-04-19 2020-10-22

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081872A (en) * 2006-09-27 2008-04-10 Takayasu Co Ltd Carbon fiber nonwoven fabric and method for producing the same
JP2011111702A (en) * 2009-11-30 2011-06-09 Mitsubishi Rayon Co Ltd Method for producing long carbon fiber sheet of rolled shape, long carbon fiber sheet precursor wound into rolled shape and long carbon fiber sheet
US8747796B2 (en) 2010-05-20 2014-06-10 Hyup Jin I&C Co., Ltd. Method of preparing carbon substrate for gas diffusion layer of polymer electrolyte fuel cell, carbon substrate prepared by using the method, and system for manufacturing the same
JP2011243578A (en) * 2010-05-20 2011-12-01 Kyosin Ltd Method of manufacturing carbon substrate for gas diffusion layer of polymer electrolyte fuel cell, carbon substrate formed thereby, and system used for manufacturing the same
JP2012184535A (en) * 2011-02-18 2012-09-27 Toray Ind Inc Carbon fiber base material and method for producing the same
JP2013104033A (en) * 2011-11-16 2013-05-30 Toray Ind Inc Fiber-reinforced composite material and method for producing fiber-reinforced composite material
JP2013245253A (en) * 2012-05-24 2013-12-09 Toray Ind Inc Fiber-reinforced composite material and method for producing the same
JP2015143405A (en) * 2013-12-27 2015-08-06 東レ株式会社 Carbon fiber nonwoven fabric and method for producing carbon fiber nonwoven fabric
JP2016014199A (en) * 2014-07-01 2016-01-28 トヨタ紡織株式会社 Nonwoven fabric fabricating method and nonwoven fabric fabricating device
JP2020132390A (en) * 2019-02-22 2020-08-31 東レ株式会社 Manufacturing method of sheet-like material and molded article
JP7310168B2 (en) 2019-02-22 2023-07-19 東レ株式会社 Method for manufacturing sheet-like material and molded article
JPWO2020213324A1 (en) * 2019-04-19 2020-10-22
WO2020213324A1 (en) * 2019-04-19 2020-10-22 東レ株式会社 Gas diffusion electrode substrate, method for producing same, gas diffusion electrode, membrane-electrode assembly, and solid polymer fuel cell
JP7276340B2 (en) 2019-04-19 2023-05-18 東レ株式会社 Gas diffusion electrode base material, manufacturing method thereof, gas diffusion electrode, membrane electrode assembly, and polymer electrolyte fuel cell
US11757103B2 (en) 2019-04-19 2023-09-12 Toray Industries, Inc. Gas diffusion electrode medium and method for producing the same, gas diffusion electrode, membrane electrode assembly, and polymer electrolyte fuel cell

Also Published As

Publication number Publication date
JP4345538B2 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
US7410719B2 (en) Porous carbon base material, method for preparation thereof, gas-diffusing material film-electrode jointed article, and fuel cell
KR101294825B1 (en) Method for preparing carbon substrate for gas diffusion layer of polymer electrolyte membrane fuel cell, carbon substrate prepared thereby, and system for manufacturing the same
US7297445B2 (en) Porous carbon electrode substrate and its production method and carbon fiber paper
JP5364976B2 (en) Porous carbon sheet and method for producing the same
JPWO2004031465A1 (en) Acrylic flame resistant fiber nonwoven fabric, carbon fiber nonwoven fabric, and production method thereof
JP4266699B2 (en) Porous electrode substrate for polymer electrolyte fuel cell and method for producing the same
JP2003183994A (en) Carbon fiber paper, and porous carbon electrode material for fuel battery using the same
JP4345538B2 (en) Method for producing carbon fiber sheet
JP5055682B2 (en) Porous carbon plate and method for producing the same
JP5544960B2 (en) Porous carbon sheet for polymer electrolyte fuel cell and method for producing the same
JP2007002394A (en) Carbon fiber sheet, method for producing the same and heat treatment furnace for sheet-like material
JP2004259711A (en) Carbon fiber paper and porous carbon electrode base material for fuel cells
JP2007176750A (en) Porous carbon fiber sheet and method of manufacturing the same
JP5484777B2 (en) Porous electrode substrate and method for producing the same
JP5728802B2 (en) Porous carbon electrode substrate and method for producing the same
JP2009234851A (en) Porous carbon sheet and its manufacturing process
JP2005302558A (en) Carbon electrode base and manufacturing method thereof
JP2009280437A (en) Method for producing porous carbon sheet
JP2006264329A (en) Fiber-reinforced plastic long sheet and its manufacturing method
JP2006004858A (en) Porous electrode base material and its manufacturing method
JP2004176245A (en) Method for making of carbon fiber sheet
JP2006089331A (en) Manufacturing method of carbon fiber substrate
JP2011040386A (en) Porous carbon electrode base material for fuel cell
JPH09157065A (en) Production of carbonaceous porous body and porous laminated sheet
JP2024043358A (en) Gas diffusion base material and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090706

R151 Written notification of patent or utility model registration

Ref document number: 4345538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140724

Year of fee payment: 5

EXPY Cancellation because of completion of term