JP2004176245A - Method for making of carbon fiber sheet - Google Patents

Method for making of carbon fiber sheet Download PDF

Info

Publication number
JP2004176245A
JP2004176245A JP2003380946A JP2003380946A JP2004176245A JP 2004176245 A JP2004176245 A JP 2004176245A JP 2003380946 A JP2003380946 A JP 2003380946A JP 2003380946 A JP2003380946 A JP 2003380946A JP 2004176245 A JP2004176245 A JP 2004176245A
Authority
JP
Japan
Prior art keywords
fiber sheet
carbon fiber
tension
heating furnace
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003380946A
Other languages
Japanese (ja)
Inventor
Shinya Isoi
伸也 礒井
Shuichi Inogakura
周一 猪ヶ倉
Mikio Inoue
幹夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003380946A priority Critical patent/JP2004176245A/en
Publication of JP2004176245A publication Critical patent/JP2004176245A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Fibers (AREA)
  • Woven Fabrics (AREA)
  • Paper (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for making carbon fiber sheet suppressing surface defects such as wrinkles and ups and downs, etc. <P>SOLUTION: The method for making carbon fiber sheet 10 by baking a precursor fiber sheet 2 on a bed 5 of a heating furnace 6 while continuously pulling, the precursor fiber sheet 2 is kept in a tension satisfying the following formula ¾T1-T2¾≤30N/m, wherein T1 is a tension in pulling direction of the precursor sheet 2 and T2 is a tension in a direction orthogonalizing to the pulling direction. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、炭素繊維の織物、不織布、紙等のシートを製造する方法に関する。       The present invention relates to a method for producing a sheet of carbon fiber woven fabric, nonwoven fabric, paper and the like.

炭素繊維の織物、不織布、紙等のシートは、CFRP(炭素繊維強化プラスチック)の成形や、コンクリート構造物の補修・補強や、電波吸収体、燃料電池の電極等、多種多用な用途に利用されている。   Sheets such as carbon fiber woven fabric, non-woven fabric, and paper are used for a wide variety of applications such as molding CFRP (carbon fiber reinforced plastic), repairing and reinforcing concrete structures, radio wave absorbers, and fuel cell electrodes. ing.

ところで、炭素繊維は、よく知られているように、たとえばポリアクリロニトリル繊維等の原料繊維(プリカーサ)を200〜400℃程度の比較的低温の酸化性雰囲気下で焼成して耐炎化した後(耐炎化繊維とした後)、1,000℃以上の高温の不活性雰囲気下で焼成して炭化することによって作られている。炭素繊維シート、たとえば織物は、そのようにして作られた炭素繊維を織糸として製織すればよいのであるが、炭素繊維は脆く、また、毛羽立ちやすいので、製織はなかなか難しい。また、原料繊維や耐炎化繊維を1本1本焼成するのは非効率でもあるので、原料繊維や耐炎化繊維をあらかじめ織物としておき、それを焼成して炭素繊維織物とすることも行われている(たとえば、特許文献1参照)。   By the way, as is well known, carbon fibers are prepared by firing raw material fibers (precursors) such as polyacrylonitrile fibers in a relatively low-temperature oxidizing atmosphere of about 200 to 400 ° C. to make them flame-resistant (flame-resistant). And then carbonized by firing in an inert atmosphere at a high temperature of 1,000 ° C. or higher. A carbon fiber sheet, for example, a woven fabric may be woven with the carbon fiber thus produced as a woven yarn. However, weaving is difficult because the carbon fiber is brittle and easily fluffed. Also, since it is inefficient to fire the raw material fibers and the oxidized fibers one by one, the raw fibers and the oxidized fibers are made into a woven fabric in advance, and then baked to form a carbon fiber woven fabric. (For example, see Patent Document 1).

しかるに、原料繊維を糸条密度の高い織物の形態で耐炎化処理に供すると、耐炎化処理は発熱反応を伴うことから織物に蓄熱が起こり、安定した温度制御が極めて難しくなって得られる炭素繊維織物に品質のむらが起こりやすい。また、耐炎化織物を炭化処理する場合、耐炎化織物は一般に強度が低いことから、無緊張下で焼成するのが好ましいとされているが、全くの無緊張下に保つことは極めて困難なことである。そのため、耐炎化織物を炉内または炉外に設置した搬送ロールを用いて加熱炉内を搬送しながら焼成しているが、搬送張力のばらつきに起因する皺や起伏等の表面欠陥を生じやすい。炭素繊維織物に皺や起伏等の表面欠陥があると、たとえばそれを固体高分子型燃料電池の電極として用いた場合、プロトン交換膜との密着不良が起こり、電池特性を大きく低下させてしまう問題がある。
特公昭61−11323号公報
However, when the raw fiber is subjected to the oxidization treatment in the form of a woven fabric having a high yarn density, the oxidization treatment involves an exothermic reaction, so that the woven fabric stores heat, and it is extremely difficult to control the temperature stably. Quality unevenness easily occurs in the fabric. In addition, when carbonizing the flame-resistant fabric, it is said that it is preferable that the flame-resistant fabric is fired under no tension because it generally has low strength.However, it is extremely difficult to keep the fabric under no tension at all. It is. Therefore, the fire-resistant fabric is baked while being transported in the heating furnace using a transport roll installed inside or outside the furnace, but surface defects such as wrinkles and undulations due to variations in the transport tension are likely to occur. If the carbon fiber woven fabric has surface defects such as wrinkles and undulations, for example, when it is used as an electrode of a polymer electrolyte fuel cell, poor adhesion to a proton exchange membrane occurs and the cell characteristics are greatly reduced. There is.
Japanese Patent Publication No. 61-11323

本発明の目的は、従来の技術の上述した問題点を解決し、皺や起伏等の表面欠陥の発生を抑制できる炭素繊維シートの製造方法を提供するにある。   An object of the present invention is to solve the above-mentioned problems of the conventional technology and to provide a method for manufacturing a carbon fiber sheet that can suppress the occurrence of surface defects such as wrinkles and undulations.

上記目的を達成するために、本発明は、前駆体繊維シートを加熱炉の炉床上を連続的に引っ張りながら焼成して炭素繊維シートを製造する際に、焼成中、上記前駆体繊維シートを、その前駆体繊維シートの引張方向の張力をT1、引張方向と直交する方向の張力をT2としたとき、次の式、
|T1−T2|≦30N/m
好ましくは、次の式、
|T1−T2|≦20N/m
を満足する張力下に維持することを特徴とする炭素繊維シートの製造方法を提供する。張力T1、T2は、低いのが好ましく、20N/m以下、さらには10N/m以下とするのが好ましいが、それらの関係が上式の範囲を外れるときは、張力T1、T2それぞれのばらつきが皺や起伏等の表面欠陥として炭素繊維シートの表面に残るようになる。
In order to achieve the above object, the present invention is to produce a carbon fiber sheet by firing while continuously pulling the precursor fiber sheet on the hearth of the heating furnace, during firing, the precursor fiber sheet, When the tension in the tension direction of the precursor fiber sheet is T1 and the tension in the direction perpendicular to the tension direction is T2, the following equation is obtained.
| T1-T2 | ≦ 30 N / m
Preferably, the following formula:
| T1-T2 | ≦ 20 N / m
And a method for producing a carbon fiber sheet, characterized by maintaining under a tension satisfying the following. The tensions T1 and T2 are preferably low, and are preferably 20 N / m or less, and more preferably 10 N / m or less. When the relationship is out of the range of the above equation, the dispersion of each of the tensions T1 and T2 is reduced. They remain on the surface of the carbon fiber sheet as surface defects such as wrinkles and undulations.

前駆体繊維としては、ポリアクリロニトリル系繊維を耐炎化してなるポリアクリロニトリル系耐炎化繊維、レーヨン繊維、フェノール繊維、不融化ピッチ繊維等を用いることができるが、特に、強度や弾性率といった諸特性に優れた炭素繊維、ひいては炭素繊維シートが得られるポリアクリロニトリル系耐炎化繊維であるのが好ましい。   As the precursor fiber, polyacrylonitrile-based flame-resistant fiber obtained by flame-resistant polyacrylonitrile-based fiber, rayon fiber, phenol fiber, infusible pitch fiber, etc. can be used. It is preferably a polyacrylonitrile-based oxidized fiber from which excellent carbon fibers and, eventually, a carbon fiber sheet can be obtained.

そのような前駆体繊維からなるシートとしては、織物、不織布、紙等の耐炎化繊維布帛を用いることができる。これらの耐炎化繊維布帛には、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ポリイミド樹脂、メラミン樹脂等の熱硬化性樹脂や、アクリル樹脂、ポリ塩化ビニリデン樹脂、ポリテトラフルオロエチレン樹脂等の熱可塑性樹脂が含浸されていてもよい。その場合、樹脂は未硬化または未固化の状態であってもよいが、そのような樹脂は焼成時の炭化に伴って収縮し、得られる炭素繊維シートの表面が粗くなることがあるので、焼成に先立って硬化または固化させておくのが好ましい。また、これらの樹脂は繊維状のものとして前駆体繊維シートに含まれていてもよい。さらに、前駆体繊維シートとしては、炭素繊維のチョップド糸(短繊維)等をフェノール樹脂、PVA樹脂等のバインダで結着してなる紙を用いることもできる。   As a sheet made of such precursor fibers, an oxidized fiber fabric such as a woven fabric, a nonwoven fabric, and paper can be used. These flame-resistant fiber fabrics include thermosetting resins such as epoxy resins, unsaturated polyester resins, phenolic resins, polyimide resins, and melamine resins, and thermoplastic resins such as acrylic resins, polyvinylidene chloride resins, and polytetrafluoroethylene resins. The resin may be impregnated. In that case, the resin may be in an uncured or unsolidified state, but such a resin shrinks with the carbonization during firing, and the surface of the obtained carbon fiber sheet may be roughened. It is preferable that the resin be cured or solidified prior to the treatment. Further, these resins may be contained in the precursor fiber sheet as a fibrous material. Further, as the precursor fiber sheet, paper formed by binding chopped carbon fiber (short fibers) or the like with a binder such as a phenol resin or a PVA resin can also be used.

前駆体繊維シートの引張方向の張力T1、引張方向と直交する方向の張力T2との関係を、次の式、
|T1−T2|≦30N/m
好ましくは、次の式、
|T1−T2|≦20N/m
なる張力下に維持するための好適な方法は、加熱炉として、前駆体繊維シートの引張方向と直交する断面において上方に凸の表面を備えた炉床を有する加熱炉を用い、その上を引きずることである。このようにすると、前駆体繊維シートの引張方向には加熱炉入り口での初期張力に炉床との摩擦により生じる張力を加えた張力T1が発生するとともに、引張方向と直交する方向には上方に凸の炉床上を引きずることにより初期張力に炉床との摩擦および重力により生じる張力を加えた張力T2が発生する。
The relationship between the tension T1 in the tension direction of the precursor fiber sheet and the tension T2 in the direction orthogonal to the tension direction is represented by the following equation:
| T1-T2 | ≦ 30 N / m
Preferably, the following formula:
| T1-T2 | ≦ 20 N / m
A preferred method for maintaining under a certain tension is to use, as a heating furnace, a heating furnace having a hearth with an upwardly convex surface in a cross section orthogonal to the tensile direction of the precursor fiber sheet, and dragging over the furnace. That is. In this way, in the tensile direction of the precursor fiber sheet, a tension T1, which is obtained by adding the initial tension at the entrance of the heating furnace to the tension generated by friction with the hearth, is generated, and the tension T1 is upward in the direction orthogonal to the tensile direction. By dragging on the convex hearth, a tension T2 is generated by adding initial tension to tension generated by friction with the hearth and gravity.

炉床形状は上記に限られたものではなく平板であってもよい。また、平板に表面加工を施すことによって前駆体繊維シートと炉床との間の摩擦係数に異方性を与え、張力T1、T2を調整してもよい。   The hearth shape is not limited to the above, and may be a flat plate. The tension T1 and T2 may be adjusted by imparting anisotropy to the friction coefficient between the precursor fiber sheet and the hearth by performing surface processing on the flat plate.

また、別の好適な方法は、らせん状の線材(以下らせん材という)と棒状の線材(以下ロッド材という)を組み合わせたものを炉床として用い、その上を引きずることである。
このようにすると、前駆体繊維シートの引張方向および引張方向と直交する方向には、それぞれ初期張力にらせん材との摩擦により生じる張力T1、T2が発生するが、らせん材とロッド材の径およびピッチの組み合わせによって、前駆体シートの引張方向および引張方向と直交する方向に対向するらせん材の角度が変わるため、引張方向の摩擦係数と、引張方向と直行する方向の摩擦係数を調整することが可能となり、T1、T2を制御することができる。この場合、線材は、加熱炉の温度領域に応じてSUS310S等の耐熱金属や、炭素繊維強化炭素などの材料を用いることが好ましい。
Another preferred method is to use a combination of a helical wire (hereinafter, referred to as a helical material) and a rod-shaped wire (hereinafter, referred to as a rod) as a hearth and drag it over the hearth.
By doing so, tensions T1 and T2 generated by friction with the spiral material are generated in the initial tension in the tensile direction of the precursor fiber sheet and in a direction perpendicular to the tensile direction, respectively. The combination of pitches changes the tension direction of the precursor sheet and the angle of the helical material facing in the direction perpendicular to the tension direction, so that the friction coefficient in the tension direction and the friction coefficient in the direction perpendicular to the tension direction can be adjusted. It becomes possible, and T1 and T2 can be controlled. In this case, it is preferable to use a heat-resistant metal such as SUS310S or a material such as carbon fiber reinforced carbon depending on the temperature range of the heating furnace.

また、前駆体繊維シートは複数層重ねて焼成してもよいし、あるいは、マッフル内を上下方向に多段に区画し、前駆体繊維シートをそれぞれの区画内の炉床上を連続的に引っ張りながら焼成してもよい。こうすることによって、単位時間当たりの処理量を増やすことができる。   Further, the precursor fiber sheet may be fired by stacking a plurality of layers, or the muffle is divided into multiple stages in the vertical direction, and the precursor fiber sheet is fired while continuously pulling the furnace fiber in the respective sections. May be. By doing so, the processing amount per unit time can be increased.

また、加熱炉として、マッフル内に前駆体繊維シートを下方から支える位置関係にベルトを設け、ベルトの速度V1、前駆体繊維シートの搬送速度V2が、次の式、
V1<V2
を満足する条件下に維持することにより、前述した式の張力差を発生させてもよい。
この場合、マッフル内に設けるベルトとしては、例えば最高温度が1000℃未満の加熱炉であればSUS310S等の耐熱金属が、1000℃以上となる加熱炉ではセラミックス、黒鉛、炭素繊維強化炭素製等のものが好ましく、また、その設置位置はマッフル内の一部でもよいが、全長に渡って設けるのが好ましい。また、ベルトは静止しているものでも良いし、移動するものであってもよい。要は上を通過する前駆体繊維シートとベルトとの2つの速度差により、上記式の関係を満足する張力差が発生すればよいのである。また、炉内にベルトを設けると、上記張力差のみならず併せて前駆体繊維シートの炉内通布を容易にするとともに、焼成の際に発生し炉床に付着するスケール等の生成物を、炉外で連続的に取り除くことが可能となる。この場合、ベルトは前述のらせん材とロッド材を組み合わせたものを用い、その上を引きずることがより好ましい。
Further, as a heating furnace, a belt is provided in a positional relationship for supporting the precursor fiber sheet from below in the muffle, and the belt speed V1 and the transport speed V2 of the precursor fiber sheet are represented by the following formula:
V1 <V2
By maintaining the condition that satisfies the following condition, the tension difference of the above-described equation may be generated.
In this case, as the belt provided in the muffle, for example, a heating furnace having a maximum temperature of less than 1000 ° C. is made of a heat-resistant metal such as SUS310S, and a heating furnace having a temperature of 1000 ° C. or more is made of ceramics, graphite, carbon fiber reinforced carbon, or the like. It is preferable that the mounting position is part of the inside of the muffle, but it is preferable that the mounting position be provided over the entire length. Further, the belt may be stationary or may be moving. The point is that the difference in the two speeds between the precursor fiber sheet and the belt passing above should generate a tension difference that satisfies the above relationship. In addition, when a belt is provided in the furnace, not only the above-described tension difference but also easy passage of the precursor fiber sheet in the furnace, and products such as scales generated at the time of firing and adhering to the hearth are removed. , Can be continuously removed outside the furnace. In this case, it is more preferable to use a combination of the above-mentioned helical material and rod material as the belt, and to drag over the belt.

また、V1を小さくしても前駆体繊維シートとベルトの間に作用する動摩擦力は変わらないため、V1をより小さくする方が加熱炉への熱負荷が低くなり、加熱炉の消費電力を低減することが可能となる。   Also, even if V1 is reduced, the dynamic frictional force acting between the precursor fiber sheet and the belt does not change. Therefore, when V1 is reduced, the heat load on the heating furnace is reduced, and the power consumption of the heating furnace is reduced. It is possible to do.

このほかにも、上記式の関係を満足する張力差を発生させるために、幅方向の張力T2付与にピンテンターやクランプテンター等を用いることもできる。この場合、ベルトと同様に加熱炉の温度領域によって、耐熱金属やセラミックス、炭素材料を使い分けることが重要である。   In addition, a pin tenter, a clamp tenter, or the like may be used to apply the tension T2 in the width direction in order to generate a tension difference that satisfies the above relationship. In this case, it is important to use heat-resistant metals, ceramics, and carbon materials depending on the temperature range of the heating furnace as in the case of the belt.

本発明は、前駆体繊維シートを加熱炉の炉床上を連続的に引っ張りながら焼成して炭素繊維シートを製造する際に、焼成中、上記前駆体繊維シートを、その前駆体繊維シートの引張方向の張力をT1、引張方向と直交する方向の張力をT2としたとき、式、
|T1−T2|≦30N/m
を満足する張力下に維持するので、実施例と比較例との対比からも明らかなように、皺や起伏等の表面欠陥のない炭素繊維シートを得ることができる。
The present invention provides a method for manufacturing a carbon fiber sheet by firing a precursor fiber sheet while continuously pulling the precursor fiber sheet on a hearth of a heating furnace.During firing, the precursor fiber sheet is stretched in the tensile direction of the precursor fiber sheet. When the tension in the direction perpendicular to the tension direction is T1 and the tension in the direction perpendicular to the tension direction is T2,
| T1-T2 | ≦ 30 N / m
Is maintained under a tension that satisfies the following condition, so that a carbon fiber sheet free from surface defects such as wrinkles and undulations can be obtained as is clear from the comparison between the examples and comparative examples.

図1は、本発明の製造方法を実施している様子を示すもので、搬入ロール1によって運ばれてくる前駆体繊維シート2は、張力計3、案内ロール4を経て加熱炉6のマッフル7内に導入される。また、加熱炉6内での焼成により得られた炭素繊維シート11は、案内ロール8、張力計9、搬出ロール10を経て、次工程、たとえばロール状への巻取工程に搬送される。加熱炉6は、図2に横断面図で示すように、マッフル7と、搬出ロール10による前駆体繊維シート2の引張方向と直交する断面を見たとき上方に凸の表面を有する炉床5を備えている。   FIG. 1 shows a state in which the production method of the present invention is being carried out. A precursor fiber sheet 2 carried by a carry-in roll 1 is passed through a tension meter 3 and a guide roll 4 to form a muffle 7 in a heating furnace 6. Introduced within. The carbon fiber sheet 11 obtained by firing in the heating furnace 6 is conveyed to the next step, for example, a roll-up step, via a guide roll 8, a tensiometer 9, and an unloading roll 10. The heating furnace 6 includes a muffle 7 and a hearth 5 having an upwardly convex surface when viewed in a cross section orthogonal to the pulling direction of the precursor fiber sheet 2 by the unloading roll 10 as shown in a cross-sectional view in FIG. It has.

さて、前駆体繊維シート2は、加熱炉6のマッフル7内の炉床5上を引っ張られながら搬送されている間に焼成され、炭素繊維シート11となるが、このとき、引張方向には、加熱炉入り口での初期張力と、前駆体繊維シート2と炉床5との摩擦により生じる張力からなる張力T1が生ずる。一方、前駆体繊維シート2の引張方向と直交する断面を見たとき、上方に凸の表面を有する炉床5を用いているため、前駆体繊維シート2は、図2、図3に示すように、引張方向と直交する幅方向に凸状にわん曲しながら搬送され、これにより、前駆体繊維シート2の引張方向と直交する幅方向には、初期張力と、前駆体繊維シート2と炉床5との摩擦及び前駆体繊維シート2の自重により生じる張力からなるT2が生ずる。そこで、張力計3、9で引張方向の張力を監視しながら、|T1−T2|が30N/m以下、好ましくは20N/m以下になるように搬入ロール1、搬出ロール10の速度を制御する。すなわち、前駆体繊維シート2は、加熱炉6のマッフル7内の炉床5上を連続的に引っ張られながら焼成されて炭素繊維シート11となるが、前駆体繊維シート2は、焼成中、引張方向の張力T1と幅方向の張力T2との差の絶対値|T1−T2|が30N/m以下、好ましくは20N/m以下の張力下に維持されることになる。なお、幅方向の張力T2は、次の不等式に基づく計算値として求める。   Now, the precursor fiber sheet 2 is baked while being conveyed while being pulled on the hearth 5 in the muffle 7 of the heating furnace 6, and becomes the carbon fiber sheet 11. At this time, in the tensile direction, A tension T1 consisting of an initial tension at the entrance of the heating furnace and a tension generated by friction between the precursor fiber sheet 2 and the hearth 5 is generated. On the other hand, when a cross section orthogonal to the tensile direction of the precursor fiber sheet 2 is viewed, the furnace fiber 5 having the upwardly convex surface is used, so that the precursor fiber sheet 2 is as shown in FIGS. 2 and 3. In the width direction orthogonal to the tension direction of the precursor fiber sheet 2, the initial tension, the precursor fiber sheet 2 and the furnace are conveyed while bending in a convex shape in the width direction orthogonal to the tension direction. T2 is generated, which consists of the friction caused by the friction with the floor 5 and the weight of the precursor fiber sheet 2. Therefore, while monitoring the tension in the tension direction with the tensiometers 3 and 9, the speeds of the carry-in roll 1 and the carry-out roll 10 are controlled such that | T1-T2 | becomes 30 N / m or less, preferably 20 N / m or less. . That is, the precursor fiber sheet 2 is fired while being continuously pulled on the hearth 5 in the muffle 7 of the heating furnace 6 to become the carbon fiber sheet 11, but the precursor fiber sheet 2 is pulled during firing. The absolute value | T1−T2 | of the difference between the tension T1 in the directional direction and the tension T2 in the width direction is maintained at a tension of 30 N / m or less, preferably 20 N / m or less. Note that the tension T2 in the width direction is obtained as a calculated value based on the following inequality.

0≦T2≦w・a・g・μ/2,000
ただし、w:前駆体繊維シートの幅(m)
a:前駆体繊維シートの目付(g/m2
g:重力加速度(m/sec2
μ:前駆体繊維シートと炉床表面との動摩擦係数
上記において、加熱炉内は、通常、窒素ガス、アルゴンガス等の不活性雰囲気下に維持するが、絶対圧力で20Pa以下のような減圧雰囲気下に維持してもよい。また、炉内温度は、通常、300〜3,000℃程度の範囲とする。もっとも、前駆体繊維シートの引張方向に沿って炉内温度に勾配を設けたり、加熱炉を2個に分割したりして、焼成を2段階、すなわち、前炭化処理と炭化処理とに分けて行うこともできる。その場合、炉内温度は、前炭化処理においては300〜1,200℃程度、炭化処理においては1,200〜3,000℃程度の範囲になるようにする。このような2段階焼成を行うと、分解ガスが多く発生し、炭化による収縮が進行する前炭化処理と、得られる炭素繊維シートの表面の皺、起伏等の表面品位への関与の度合いの大きい炭化処理とで張力条件を変更することも可能となる。また、加熱炉の設計が容易になる場合もある。なお、分解ガスによる炉体の減耗、損傷や雰囲気温度を考慮すると、前炭化処理には金属系材料を炉材とし、炭化処理には黒鉛系材料やセラミックス系材料を炉材とするのが好ましい。
0 ≦ T2 ≦ waaggμ / 2,000
Here, w: width (m) of the precursor fiber sheet
a: Weight of precursor fiber sheet (g / m 2 )
g: Gravitational acceleration (m / sec 2 )
μ: dynamic friction coefficient between the precursor fiber sheet and the hearth surface In the above description, the inside of the heating furnace is usually maintained under an inert atmosphere such as nitrogen gas, argon gas or the like. May be kept below. The furnace temperature is usually in the range of about 300 to 3,000 ° C. However, by providing a gradient in the furnace temperature along the tensile direction of the precursor fiber sheet, or by dividing the heating furnace into two, the firing is divided into two stages, namely, pre-carbonization treatment and carbonization treatment. You can do it too. In this case, the furnace temperature is set to be in the range of about 300 to 1,200 ° C. in the pre-carbonization treatment, and in the range of about 1,200 to 3,000 ° C. in the carbonization treatment. When such a two-stage baking is performed, a large amount of decomposition gas is generated, and the degree of involvement in the surface quality such as wrinkles and undulations of the surface of the obtained carbon fiber sheet and the pre-carbonization treatment in which shrinkage due to carbonization proceeds is large. It is also possible to change the tension conditions between the carbonization process. In some cases, the design of the heating furnace is facilitated. In consideration of the depletion, damage, and ambient temperature of the furnace body due to the decomposition gas, it is preferable to use a metal-based material for the pre-carbonization treatment and a graphite-based material or a ceramic-based material for the carbonization treatment. .

本発明は、皺や起伏等の表面欠陥を生じやすい、たとえば、厚みが0.05〜2mm程度、目付が30〜300g/m2程度の比較的薄い炭素繊維シートを得る場合に特に好適である。また、本発明により得られる炭素繊維シートは、上述したようないろいろな用途に用いることができるが、皺や起伏等の表面欠陥が電池特性に大きな影響を与える固体高分子型燃料電池の電極材料として特に好適である。 The present invention is particularly suitable for obtaining a relatively thin carbon fiber sheet having a thickness of about 0.05 to 2 mm and a basis weight of about 30 to 300 g / m 2 , in which surface defects such as wrinkles and undulations are likely to occur. . Further, the carbon fiber sheet obtained by the present invention can be used for various applications as described above, but the electrode material of a polymer electrolyte fuel cell in which surface defects such as wrinkles and undulations have a great effect on cell characteristics. It is particularly suitable as

実施例1〜5および比較例1
前駆体繊維シートとして、幅500mm、厚み0.285mm、目付140g/m2のポリアクリロニトリル系耐炎化繊維織物を用いた。
Examples 1 to 5 and Comparative Example 1
As the precursor fiber sheet, a polyacrylonitrile-based oxidized fiber woven fabric having a width of 500 mm, a thickness of 0.285 mm, and a basis weight of 140 g / m 2 was used.

上記織物に、図1〜図3に示した加熱炉6を2基直列に配置し、窒素ガス雰囲気下にて最高温度が650℃の前炭化処理と最高温度が1,950℃の炭化処理とを施し(2段階焼成)、炭素繊維シートたる炭素繊維織物を得た。加熱炉6の有効炉長は3mで、炉床5としては、耐炎化繊維織物の引張方向と直交する断面において曲率半径2,000mmの上方に凸の表面を有するものを用いた。また、搬送速度は0.2m/分とし、搬入ロール1、搬出ロール10を制御して、耐炎化繊維織物の引張方向の張力T1を3〜50N/mの範囲で変更した。幅方向の張力T2は0.1N/m以下であった。得られた炭素繊維織物の表面の皺や起伏の有無を目視により観察した。観察結果を表1に示す。   Two heating furnaces 6 shown in FIGS. 1 to 3 are arranged in series on the above-described woven fabric, and a maximum temperature of 650 ° C. is pre-carbonized and a maximum temperature is 1,950 ° C. in a nitrogen gas atmosphere. (Two-stage firing) to obtain a carbon fiber woven fabric as a carbon fiber sheet. The effective furnace length of the heating furnace 6 was 3 m, and the furnace floor 5 used had an upwardly convex surface with a radius of curvature of 2,000 mm in a cross section orthogonal to the tensile direction of the oxidized fiber woven fabric. Further, the transport speed was set to 0.2 m / min, and the carry-in roll 1 and the carry-out roll 10 were controlled to change the tension T1 in the tension direction of the oxidized fiber woven fabric in the range of 3 to 50 N / m. The tension T2 in the width direction was 0.1 N / m or less. The surface of the obtained carbon fiber fabric was visually inspected for wrinkles or undulations. Table 1 shows the observation results.

次に、得られた炭素繊維織物の表面に、カーボンブラック粉末とポリテトラフルオロエチレン粉末との混合物(カーボンブラック粉末の含有量:80重量%)を目付が2mg/cm2になるように塗布し、大気中にて380℃で熱処理してカーボン層付炭素繊維織物を得た。一方、米国デュポン社製プロトン交換膜“Nafion”112の両面に、触媒たる白金を担持したカーボン粉末と“Nafion”粉末との混合物を、白金の目付が0.5mg/m2になるように塗布して膜−触媒シートを得た。 Next, a mixture of carbon black powder and polytetrafluoroethylene powder (carbon black powder content: 80% by weight) was applied to the surface of the obtained carbon fiber fabric so that the basis weight was 2 mg / cm 2. Then, heat treatment was performed at 380 ° C. in the air to obtain a carbon fiber fabric with a carbon layer. On the other hand, a mixture of a carbon powder carrying platinum as a catalyst and a “Nafion” powder was applied to both surfaces of a proton exchange membrane “Nafion” 112 manufactured by DuPont, USA, so that the basis weight of platinum was 0.5 mg / m 2. As a result, a membrane-catalyst sheet was obtained.

次に、上記膜−触媒シートを、2枚の上記カーボン層付炭素繊維織物でカーボン層が膜−触媒シート側になるように挟み、3MPaの圧力下に130℃で加圧、加熱して一体化し、固体高分子型燃料電池の膜−電極接合体を得た。   Next, the membrane-catalyst sheet is sandwiched between the two carbon fiber fabrics with a carbon layer so that the carbon layer is on the membrane-catalyst sheet side, and pressurized and heated at 130 ° C. under a pressure of 3 MPa to integrally form To obtain a membrane-electrode assembly for a polymer electrolyte fuel cell.

次に、上記膜−電極接合体を溝付セパレータで挟み、米国スクリブナ社製燃料電池計測ユニット890−500Wを用いて燃料電池として運転を行い(発電を行い)、運転前後におけるプロトン交換膜とカーボン層付炭素繊維織物との密着性を目視により観察した。評価時の運転条件は、電池温度70℃、水素ガス加湿温度80℃、空気加湿温度60℃とし、ガス圧力は大気圧とした。なお、電流密度0.7A/cm2時における水素利用率は70%、空気利用率は40%であった。 Next, the membrane-electrode assembly was sandwiched between grooved separators, and operated as a fuel cell using a fuel cell measuring unit 890-500W manufactured by Scribna Corporation (power generation). The adhesion to the layered carbon fiber fabric was visually observed. The operating conditions at the time of evaluation were a battery temperature of 70 ° C., a hydrogen gas humidification temperature of 80 ° C., an air humidification temperature of 60 ° C., and a gas pressure of atmospheric pressure. At a current density of 0.7 A / cm 2 , the hydrogen utilization was 70% and the air utilization was 40%.

評価結果を表1に示す。プロトン交換膜とカーボン層付炭素繊維織物との密着性は、燃料電池として稼働中に剥離等を生じないことが重要であるので、剥離のない場合を合格とし、剥離が認められた場合には不合格とした。   Table 1 shows the evaluation results. The adhesion between the proton exchange membrane and the carbon fiber woven fabric with a carbon layer is important that the fuel cell does not peel off during operation as a fuel cell. Rejected.

実施例6
加熱炉6内のマッフル7から炉床5を除去し、マッフル底面(平面)上を引っ張りながら焼成したほかは上記実施例1〜5および比較例1と同様にして、炭素繊維織物を得た。耐炎化繊維織物の引張方向の張力T1は12N/mとした。また、幅方向の張力T2は、上方に凸の炉床5がないため、0.08N/m以下であった。得られた炭素繊維織物の表面の皺や起伏の有無を目視により観察した。観察結果を表1に示す。
Example 6
A carbon fiber woven fabric was obtained in the same manner as in Examples 1 to 5 and Comparative Example 1 except that the hearth 5 was removed from the muffle 7 in the heating furnace 6 and fired while pulling on the bottom surface (plane) of the muffle. The tension T1 in the tensile direction of the oxidized fiber woven fabric was 12 N / m. Further, the tension T2 in the width direction was 0.08 N / m or less because the hearth 5 was not convex upward. The surface of the obtained carbon fiber fabric was visually inspected for wrinkles or undulations. Table 1 shows the observation results.

以下、上記実施例1〜5および比較例1と同様に、膜−電極接合体を作り、さらに電池特性を評価した。評価結果を表1に示す。   Hereinafter, in the same manner as in Examples 1 to 5 and Comparative Example 1, a membrane-electrode assembly was prepared, and the battery characteristics were further evaluated. Table 1 shows the evaluation results.

実施例7、8
加熱炉6内のマッフル7から炉床5を除去し、らせん材と棒材からなるベルト上を、ベルトの速度V1、耐炎化繊維織物の搬送速度V2の組み合わせがV1=0m/分(静止)、V2=0.2m/分およびV1=0.2m/分、V2=0.5m/分として引っ張りながら焼成したほかは上記実施例1〜5および比較例1と同様にして、炭素繊維織物を得た。耐炎化繊維織物の引張方向の張力T1は14N/mとした。また、幅方向の張力T2は、耐炎化繊維織物とベルトの間の摩擦係数から0.2N/m以下であった。得られた炭素繊維織物の表面の皺や起伏の有無を目視により観察した。観察結果を表1に示す。
Examples 7 and 8
The hearth 5 is removed from the muffle 7 in the heating furnace 6, and the combination of the belt speed V1 and the conveyance speed V2 of the oxidized fiber woven fabric is V1 = 0 m / min (stationary) on the belt made of the spiral material and the bar material. , V2 = 0.2 m / min, V1 = 0.2 m / min, and V2 = 0.5 m / min. Obtained. The tension T1 in the tensile direction of the oxidized fiber woven fabric was 14 N / m. Further, the tension T2 in the width direction was 0.2 N / m or less from the friction coefficient between the oxidized fiber woven fabric and the belt. The surface of the obtained carbon fiber fabric was visually inspected for wrinkles or undulations. Table 1 shows the observation results.

以下、上記実施例1〜5および比較例1と同様に、膜−電極接合体を作り、さらに電池特性を評価した。評価結果を表1に示す。   Hereinafter, in the same manner as in Examples 1 to 5 and Comparative Example 1, a membrane-electrode assembly was prepared, and the battery characteristics were further evaluated. Table 1 shows the evaluation results.

比較例2
加熱炉6内のマッフル7から炉床5を除去したほかは上記実施例1〜5および比較例1と同様にして、炭素繊維織物を得た。炉床5を除去したため、耐炎化繊維織物は加熱炉6中を放物線を描くように自重により撓みながら搬送された。また、耐炎化繊維織物の引張方向の張力T1は100N/mとした。幅方向の張力T2は、加熱炉内に炉床がないため、ほぼ0であった。得られた炭素繊維織物の表面の皺や起伏の有無を目視により観察した。観察結果を表1に示す。
Comparative Example 2
A carbon fiber fabric was obtained in the same manner as in Examples 1 to 5 and Comparative Example 1 except that the hearth 5 was removed from the muffle 7 in the heating furnace 6. Since the hearth 5 was removed, the oxidized fiber woven fabric was conveyed in the heating furnace 6 while being bent by its own weight so as to draw a parabola. The tension T1 in the tensile direction of the oxidized fiber woven fabric was 100 N / m. The tension T2 in the width direction was almost 0 because there was no hearth in the heating furnace. The surface of the obtained carbon fiber fabric was visually inspected for wrinkles or undulations. Table 1 shows the observation results.

以下、上記実施例1〜5および比較例1と同様に、膜−電極接合体を作り、さらに電池特性を評価した。評価結果を表1に示す。   Hereinafter, in the same manner as in Examples 1 to 5 and Comparative Example 1, a membrane-electrode assembly was prepared, and the battery characteristics were further evaluated. Table 1 shows the evaluation results.

比較例3
加熱炉6が地面に対して垂直方向となる縦型炉を用いたほかは上記実施例1〜5および比較例1と同様にして、炭素繊維織物を得た。縦型炉であるためマッフル内には炉床はなく、また耐炎化繊維織物が炉壁と接触しないようにした。耐炎化繊維織物には、自重により、張力T1として33N/mの張力が加わった。幅方向の張力T2は、加熱炉内に炉床が存在しないため、ほぼ0であったが、炉内の不活性雰囲気の対流により炭素繊維織物にばたつきが生じた。得られた炭素繊維織物の表面の皺や起伏の有無を目視により観察した。観察結果を表1に示す。
Comparative Example 3
A carbon fiber woven fabric was obtained in the same manner as in Examples 1 to 5 and Comparative Example 1 except that the heating furnace 6 was a vertical furnace which was perpendicular to the ground. Since the furnace was a vertical furnace, there was no hearth in the muffle, and the oxidized fiber woven fabric did not come into contact with the furnace wall. A tension of 33 N / m was applied as a tension T1 to the flame-resistant fiber fabric by its own weight. Although the tension T2 in the width direction was almost 0 because the hearth was not present in the heating furnace, the carbon fiber fabric fluttered due to the convection of the inert atmosphere in the furnace. The surface of the obtained carbon fiber fabric was visually inspected for wrinkles or undulations. Table 1 shows the observation results.

以下、上記実施例1〜5および比較例1と同様に、膜−電極接合体を作り、さらに電池特性を評価した。評価結果を表1に示す。   Hereinafter, in the same manner as in Examples 1 to 5 and Comparative Example 1, a membrane-electrode assembly was prepared, and the battery characteristics were further evaluated. Table 1 shows the evaluation results.

Figure 2004176245
表1から明らかなように、本発明によれば、固体高分子型燃料電池の電池特性の低下を招くような、皺や起伏等の表面欠陥のない炭素繊維シートを得ることができる。
Figure 2004176245
As is clear from Table 1, according to the present invention, it is possible to obtain a carbon fiber sheet free from surface defects such as wrinkles and undulations, which causes deterioration of the cell characteristics of the polymer electrolyte fuel cell.

本発明は、固体高分子型燃料電池の電極材料に限らず、各種電極や電波吸収体などにも応用することができるが、その応用範囲が、これらに限られるものではない。   The present invention can be applied not only to the electrode material of the polymer electrolyte fuel cell but also to various electrodes and radio wave absorbers, but the application range is not limited to these.

本発明の実施に用いる加熱炉の一形態を示す概略縦断面図である。FIG. 1 is a schematic vertical sectional view showing one embodiment of a heating furnace used for carrying out the present invention. 図1に示した加熱炉のマッフル内横断面図である。FIG. 2 is a cross-sectional view of the inside of the muffle of the heating furnace shown in FIG. 1. 図1に示した加熱炉を用いて前駆体繊維シートを焼成している様子を示す、マッフル内の炉床の概略斜視図である。FIG. 2 is a schematic perspective view of a hearth in a muffle, showing a state in which a precursor fiber sheet is fired using the heating furnace shown in FIG. 1. 前駆体繊維シートを複数層重ねたまま焼成している様子を示す、マッフル内横断面図である。FIG. 4 is a cross-sectional view in a muffle showing a state in which a plurality of precursor fiber sheets are fired while being stacked. 上下に区画された多段マッフルを用い、複数枚の前駆体繊維シートを焼成している様子を示す、マッフル内横断面図である。It is a cross section inside a muffle which shows a mode that a plurality of precursor fiber sheets are calcined using a multi-stage muffle divided up and down. 本発明の実施に用いるらせん材と棒材を組み合わせた炉床(またはベルト)の部分正面図である。1 is a partial front view of a hearth (or a belt) in which a spiral material and a bar material are combined for use in carrying out the present invention.

符号の説明Explanation of reference numerals

1 搬入ロール
2 前駆体繊維シート
3 張力計
4 案内ロール
5 炉床
6 加熱炉
7 マッフル
8 案内ロール
9 張力計
10 搬出ロール
11 炭素繊維シート
12 多段マッフル
13 らせん材
14 棒材
Reference Signs List 1 carry-in roll 2 precursor fiber sheet 3 tensiometer 4 guide roll 5 hearth 6 heating furnace 7 muffle 8 guide roll 9 tensiometer 10 carry-out roll 11 carbon fiber sheet 12 multi-stage muffle 13 spiral material 14 rod material

Claims (11)

前駆体繊維シートを加熱炉の炉床上を連続的に引っ張りながら焼成して炭素繊維シートを製造する際に、焼成中、上記前駆体繊維シートを、その前駆体繊維シートの引張方向の張力をT1、引張方向と直交する方向の張力をT2としたとき、次の式、
|T1−T2|≦30N/m
を満足する張力下に維持することを特徴とする炭素繊維シートの製造方法。
When the precursor fiber sheet is fired while continuously pulling it on the hearth of the heating furnace to produce a carbon fiber sheet, during firing, the precursor fiber sheet is subjected to a tension T1 in the tensile direction of the precursor fiber sheet. , When the tension in the direction perpendicular to the tension direction is T2,
| T1-T2 | ≦ 30 N / m
A method for producing a carbon fiber sheet, wherein the carbon fiber sheet is maintained under a tension satisfying the following.
張力T1と張力T2とが、次の式、
|T1−T2|≦20N/m
を満足する張力下に維持する、請求項1に記載の炭素繊維シートの製造方法。
The tension T1 and the tension T2 are expressed by the following equation:
| T1-T2 | ≦ 20 N / m
The method for producing a carbon fiber sheet according to claim 1, wherein the tension is maintained under the following condition.
前駆体繊維シートとして、耐炎化繊維布帛を用いる、請求項1または2に記載の炭素繊維シートの製造方法。 The method for producing a carbon fiber sheet according to claim 1 or 2, wherein an oxidized fiber cloth is used as the precursor fiber sheet. 耐炎化繊維布帛として、織物、不織布または紙を用いる、請求項3に記載の炭素繊維シートの製造方法。 The method for producing a carbon fiber sheet according to claim 3, wherein a woven fabric, a nonwoven fabric, or paper is used as the flame-resistant fiber fabric. 前駆体繊維シートとして、炭素繊維をバインダで結着してなる紙を用いる、請求項1または2に記載の炭素繊維シートの製造方法。 The method for producing a carbon fiber sheet according to claim 1 or 2, wherein a paper obtained by binding carbon fibers with a binder is used as the precursor fiber sheet. 前駆体繊維シートとして、樹脂を含浸し、硬化または固化させたものを用いる、請求項3〜5のいずれかに記載の炭素繊維シートの製造方法。 The method for producing a carbon fiber sheet according to any one of claims 3 to 5, wherein a resin fiber impregnated, cured or solidified is used as the precursor fiber sheet. 加熱炉として、前駆体繊維シートの引張方向と直交する断面において上方に凸の表面を備えた炉床を有する加熱炉を用いる、請求項1〜6のいずれかに記載の炭素繊維シートの製造方法。 The method for producing a carbon fiber sheet according to any one of claims 1 to 6, wherein a heating furnace having a hearth having an upwardly convex surface in a cross section orthogonal to the tensile direction of the precursor fiber sheet is used as the heating furnace. . 加熱炉として、らせん状の線材と棒状の線材を組み合わせたものを炉床として用いる、請求項1〜7のいずれかに記載の炭素繊維シートの製造方法。 The method for producing a carbon fiber sheet according to any one of claims 1 to 7, wherein a combination of a helical wire and a rod-shaped wire is used as a heating furnace as a heating furnace. 前駆体繊維シートを複数層重ねたまま焼成する、請求項1〜8のいずれかに記載の炭素繊維シートの製造方法。 The method for producing a carbon fiber sheet according to any one of claims 1 to 8, wherein the precursor fiber sheet is fired while a plurality of layers are stacked. 加熱炉として、マッフル内を上下方向に多段に区画し、前駆体繊維シートをそれぞれの区画内の炉床上を連続的に引っ張りながら焼成する、請求項1〜9のいずれかに記載の炭素繊維シートの製造方法。 The carbon fiber sheet according to any one of claims 1 to 9, wherein, as a heating furnace, the inside of the muffle is vertically divided into multiple stages, and the precursor fiber sheet is fired while continuously pulling the furnace floor in each section. Manufacturing method. 加熱炉として、加熱炉内に前駆体繊維シートを下方から支える位置関係にベルトを設け、ベルトの速度V1、前駆体繊維シートの搬送速度V2が、次の式、
V1<V2
を満足する条件下に維持する、請求項1〜9のいずれかに記載の炭素繊維シートの製造方法。
As a heating furnace, a belt is provided in a positional relationship that supports the precursor fiber sheet from below in the heating furnace, and the belt speed V1 and the transport speed V2 of the precursor fiber sheet are represented by the following formula:
V1 <V2
The method for producing a carbon fiber sheet according to any one of claims 1 to 9, wherein the condition is satisfied.
JP2003380946A 2002-11-12 2003-11-11 Method for making of carbon fiber sheet Pending JP2004176245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003380946A JP2004176245A (en) 2002-11-12 2003-11-11 Method for making of carbon fiber sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002327960 2002-11-12
JP2003380946A JP2004176245A (en) 2002-11-12 2003-11-11 Method for making of carbon fiber sheet

Publications (1)

Publication Number Publication Date
JP2004176245A true JP2004176245A (en) 2004-06-24

Family

ID=32716139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003380946A Pending JP2004176245A (en) 2002-11-12 2003-11-11 Method for making of carbon fiber sheet

Country Status (1)

Country Link
JP (1) JP2004176245A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007089695A (en) * 2005-09-27 2007-04-12 Matsushita Electric Works Ltd Massager
JP2009191406A (en) * 2008-02-15 2009-08-27 Toray Ind Inc Method of manufacturing carbon fiber sheet
CN102260934A (en) * 2011-02-24 2011-11-30 西安诚瑞科技发展有限公司 Continuous induction heating type fiber high-temperature carbonizing device
JP2015026586A (en) * 2013-07-29 2015-02-05 株式会社不二越 Fabric for gas diffusion layer sheet for fuel cell, and method for manufacturing gas diffusion layer sheet for fuel cell and gas diffusion layer sheet for fuel cell using the same, and fuel cell having the same
WO2021182188A1 (en) * 2020-03-13 2021-09-16 帝人株式会社 Method and apparatus for manufacturing carbon fiber electrode substrate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007089695A (en) * 2005-09-27 2007-04-12 Matsushita Electric Works Ltd Massager
JP4674517B2 (en) * 2005-09-27 2011-04-20 パナソニック電工株式会社 Massage equipment
JP2009191406A (en) * 2008-02-15 2009-08-27 Toray Ind Inc Method of manufacturing carbon fiber sheet
CN102260934A (en) * 2011-02-24 2011-11-30 西安诚瑞科技发展有限公司 Continuous induction heating type fiber high-temperature carbonizing device
JP2015026586A (en) * 2013-07-29 2015-02-05 株式会社不二越 Fabric for gas diffusion layer sheet for fuel cell, and method for manufacturing gas diffusion layer sheet for fuel cell and gas diffusion layer sheet for fuel cell using the same, and fuel cell having the same
WO2021182188A1 (en) * 2020-03-13 2021-09-16 帝人株式会社 Method and apparatus for manufacturing carbon fiber electrode substrate
JP2021143445A (en) * 2020-03-13 2021-09-24 帝人株式会社 Method and device for manufacturing carbon fiber electrode base material
CN115244230A (en) * 2020-03-13 2022-10-25 帝人株式会社 Method and apparatus for producing carbon fiber electrode base material
EP4120403A4 (en) * 2020-03-13 2023-08-30 Teijin Limited Method and apparatus for manufacturing carbon fiber electrode substrate
JP7368283B2 (en) 2020-03-13 2023-10-24 帝人株式会社 Manufacturing method and manufacturing device for carbon fiber electrode base material

Similar Documents

Publication Publication Date Title
US8142883B2 (en) Porous carbon sheet and process for production thereof
KR101094566B1 (en) Porous Carbon Base Material, Gas-Diffusing Material, Film-Electrode Jointed Article, and Fuel Cell
JP2011243578A (en) Method of manufacturing carbon substrate for gas diffusion layer of polymer electrolyte fuel cell, carbon substrate formed thereby, and system used for manufacturing the same
US20130011602A1 (en) C/c composite material and method of manufacturing the same
JP6211881B2 (en) Carbon fiber and method for producing the same
EP1550766A1 (en) Carbonaceous fiber fabric, roll of carbonaceous fiber fabric, gas diffusion layer material for solid polymer fuel cell, method for production of carbonaceous fiber fabric, and method for production of solid polymer fuel cell
JP2007002394A (en) Carbon fiber sheet, method for producing the same and heat treatment furnace for sheet-like material
JP7290032B2 (en) Manufacturing method of carbon fiber sheet
JP2008201005A (en) Carbon fiber sheet and its manufacturing method
JP2004176245A (en) Method for making of carbon fiber sheet
JP4345538B2 (en) Method for producing carbon fiber sheet
JP2007268735A (en) Carbon fiber sheet and its manufacturing method
JP2016143492A (en) Carbon fiber fabric for fuel cell and method for producing the same
JP2010047865A (en) Carbon fiber for composite material and composite material produced by using the same
JP2005240224A (en) High-density nonwoven fabric of flame-resistant fiber, nonwoven fabric of carbon fiber, and method for producing them
JP6188135B2 (en) Fabric for gas diffusion layer sheet for fuel cell and method for producing gas diffusion layer sheet for fuel cell using the same
JP2006265093A (en) Method for manufacturing carbonized sheet
JP2006264329A (en) Fiber-reinforced plastic long sheet and its manufacturing method
JP2008044201A (en) Carbon fiber sheet and its manufacturing method
JP4282964B2 (en) Carbon fiber woven fabric
JP2007012440A (en) Porous carbon material for fuel cell, thermal conductive member made of carbon fiber reinforced plastic, and manufacturing method of these
JP2004183123A (en) Method for producing carbon fiber sheet
JP7310127B2 (en) Porous carbon electrode substrate and manufacturing method thereof
JP3993151B2 (en) Method for producing carbon fiber woven fabric and method for producing gas diffusion layer material for polymer electrolyte fuel cell
JPH09157065A (en) Production of carbonaceous porous body and porous laminated sheet