JP2004307236A - Hydrogen production system, and starting and stopping method therefor - Google Patents

Hydrogen production system, and starting and stopping method therefor Download PDF

Info

Publication number
JP2004307236A
JP2004307236A JP2003100485A JP2003100485A JP2004307236A JP 2004307236 A JP2004307236 A JP 2004307236A JP 2003100485 A JP2003100485 A JP 2003100485A JP 2003100485 A JP2003100485 A JP 2003100485A JP 2004307236 A JP2004307236 A JP 2004307236A
Authority
JP
Japan
Prior art keywords
section
valve
hydrogen production
production system
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003100485A
Other languages
Japanese (ja)
Other versions
JP4130603B2 (en
Inventor
Naohiko Fujiwara
直彦 藤原
Shigeo Satokawa
重夫 里川
Hiroshi Fujiki
広志 藤木
Toru Takahashi
徹 高橋
Jun Komiya
純 小宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2003100485A priority Critical patent/JP4130603B2/en
Publication of JP2004307236A publication Critical patent/JP2004307236A/en
Application granted granted Critical
Publication of JP4130603B2 publication Critical patent/JP4130603B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen production system which can continue running for a long time while repeating starting-stopping by preventing the degradation of a reforming catalyst and a CO modification catalyst by always keeping the inside of the system to be in a reducing atmosphere from the start of stopping to the stopped state and from the start of operation to the steady-state operation; an operation method for the same; and a fuel cell system. <P>SOLUTION: In the hydrogen production system, a CO modification section and a CO removal section are connected in this order to a steam reformer having a burning section and a reforming section. At the outlet conduit of the CO modification section, a valve is arranged. When the system is stopped, the valve is closed and the supply of a raw material gas and water to the reforming section is stopped. When the reforming section and the CO modification section reach a specified temperature or lower, the valve is opened to supply the raw material gas to both the reforming section and the CO modification section to purge the reformed gas. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、炭化水素の水蒸気改質法による水素製造システム、その起動及び停止方法、並びに、水素製造システムを連結した燃料電池システムに関する。
【0002】
【従来の技術】
水素は、固体高分子形燃料電池(PEFC)の燃料としても用いられる。水素の工業的製造法の一つである炭化水素の水蒸気改質法では、水蒸気改質器が用いられ、炭化水素が水蒸気による改質反応により水素リッチな改質ガスへ変えられる。水蒸気改質器は概略、バーナーあるいは燃焼触媒を配置した燃焼部と改質触媒を配置した改質部とにより構成される。水蒸気改質器を以下適宜“改質器”と言う。
【0003】
改質部での改質反応の進行のために燃焼部において都市ガス等の燃料を空気により燃焼させ、発生した燃焼熱を改質部に供給する。ここで、燃焼部に供給する燃料は、改質部で改質ガスへ変える炭化水素と同じく通常都市ガス等の炭化水素系燃料であるので、本明細書中、両者を区別するため、適宜、燃焼部に供給する燃料を燃料ガスと言い、改質部へ供給する炭化水素を原料ガスと言う。
【0004】
改質部で得られる改質ガスには、水素のほかに、未反応の炭化水素、未反応の水蒸気に加え、二酸化炭素、一酸化炭素(CO)が副生して8〜15%(容量、以下同じ)程度含まれている。このため改質ガス中のCOは、シフト反応により水蒸気と反応させて水素と二酸化炭素へ変えるためにCO変成部に供給される。この反応で必要な水蒸気としては改質部で未反応の残留水蒸気が利用される。
【0005】
CO変成部から出る改質ガスは、未反応の炭化水素と余剰水蒸気を除けば、水素、二酸化炭素、COからなっている。このうち水素が目的とする成分であるが、CO変成部を経た改質ガスについても、COは完全には除去されず、微量ではあるがなおCOが含まれている。このため改質ガスは、さらにCOを除去するためにCO除去部に供給される。例えばPEFCの燃料とする場合、10ppm(容量ppm、以下同じ)以下 さらには1ppmというように低減させる。
【0006】
上記のように、改質器に順次、CO変成部及びCO除去部を連結した水素製造システムは、水素の需要に応じて起動−停止を繰り返して運転される。改質器の運転温度は600℃以上であるので、その起動時に昇温する必要がある。改質部の改質触媒は、常温で酸化することはないが、その雰囲気に酸素成分があると、システムの起動時における昇温中に酸化する。改質触媒が酸化すると、水素などによる還元操作が必要となるばかりでなく、改質触媒の劣化が促進されることになってしまう。
【0007】
また、水素製造システムの運転後、停止する際には、降温や水蒸気の凝縮により、システム内が減圧状態となり、外部から空気が漏れ込む可能性もある。このとき、CO変成部内のCO変成触媒(通常、Cu−Zn系触媒等のCu系触媒が用いられる)が空気と接触すると常温で容易に酸化してしまう。これを回避するためシステム内を窒素などの不活性ガスを用いてパージすることが考えられる。しかし、不活性ガスを用いるには、別途そのための設備が必要となり、不活性ガスの残量管理等も必要となるなど甚だやっかいである。
【0008】
特開2000−290001(先行技術Aとする)では、日常的に起動−停止を繰り返す水素発生装置すなわち改質装置では不活性ガスを常時用意することは比較的困難であるとし、不活性ガスを用いることなく、変成触媒の劣化を防ぐ方法が開示されている。この技術では、▲1▼燃焼部を停止した後も改質部に原料ガスと水を加える、▲2▼、▲1▼により改質部での水素発生装置内の降温を早める、▲3▼その後、改質部が所定温度以下となった段階で水の供給を停止する、▲4▼引続き、原料ガスにより改質ガスをパージした後、原料ガスを停止する、という工程でCO変成触媒の劣化を防ぐというものである。
【0009】
特開2000−95504(先行技術Bとする)では、改質装置の停止時に燃焼部を停止した後、原料ガスの流通は停止する。改質装置内の温度が所定の設定値以下となった時点で水蒸気の供給を停止し、原料ガスの流通を再開し、さらに一定時間経過した後、改質ガスの導出流路を遮断する。ここで温度が“所定の設定値以下となった時点”とは、原料ガスが熱分解して炭素の析出が起こる温度以下となる時点を意味し、原料ガス及び水蒸気はともに、燃焼部の停止時以降、その時点まで供給されている。
【0010】
特開2002−151124(先行技術Cとする)では、改質装置の停止時に燃焼部を停止した後、水蒸気を供給して改質部内の改質ガスをパージした後(この間、原料ガスの供給は停止されている)、原料ガスの熱分解が起こらない温度以下になった時点で原料ガスを供給して改質部内の温度をパージした後、原料ガスの供給を停止する。
【0011】
しかし、先行技術A、Bにおいては、改質装置内が所定温度以下になるまでに供給する原料ガス及び水が利用されず、このためシステム運転上、余分にコストがかかり好ましくない。また、先行技術B、Cにおいては、改質装置内が所定温度以下になるまでに原料ガスが停止される期間があり得る。そうすると改質触媒及びCO変成触媒が高温の水蒸気のみに暴され、改質触媒及びCO変成触媒が水蒸気による酸化により劣化することになる。劣化した触媒では所期の触媒性能は得られず、システム全体の機能を損なう可能性があり好ましくない。
【0012】
【特許文献1】特開2000−290001号公報
【特許文献2】特開2000−95504号公報
【特許文献3】特開2002−151124号公報
【0013】
【発明が解決しようとする課題】
本発明は、それらの先行技術では生じる以上の問題点を一挙に解決することを目的とするものである。すなわち、本発明は、水素製造システムの停止時において、システム内を一度も酸化雰囲気にすることなく、またシステムが結露雰囲気になることを防ぐとともに、その操作をより効率的且つ経済的に実施できる水素製造システム、その起動及び停止方法、並びに、該水素製造システムに燃料電池を連結したシステムを提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明は(A)燃焼部及び改質部を含む水蒸気改質器に順次、CO変成部及びCO除去部を連結してなる水素製造システムであって、CO変成部又はCO除去部の出口導管にバルブを配置し、システムの停止時に、該バルブ閉、改質部への原料ガス及び水の供給停止の操作を行い、その後改質部が所定温度以下になった時点で該バルブを開としてシステム内に原料ガスを供給して改質ガスをパージするようにしてなることを特徴とする水素製造システムを提供する。
ここで、上記改質ガスのパージ後、該バルブを閉としてシステム内を原料ガスで満たすようにしてもよい。
【0015】
本発明は(B)燃焼部及び改質部を含む水蒸気改質器に順次、CO変成部及びCO除去部を連結してなる水素製造システムであって、CO変成部又はCO除去部の出口導管にバルブを配置し、システムの停止時に、該バルブ閉、改質部への原料ガス及び水の供給停止の操作を行い、その後改質部が所定温度以下になった時点で該バルブを開としてシステム内に原料ガスを供給して改質ガスをパージすることを特徴とする水素製造システムの運転方法を提供する。
ここで、上記改質ガスのパージ後、該バルブを閉としてシステム内を原料ガスで満たしてもよい。
【0016】
本発明は(C)燃焼部及び改質部を含む水蒸気改質器に順次、CO変成部及びCO除去部を連結してなる水素製造システムに固体高分子形燃料電池を連結してなる燃料電池システムであって、CO変成部又はCO除去部の出口導管にバルブを配置し、その停止時に、該バルブ閉、改質部への原料ガス及び水の供給停止の操作を行い、その後改質部が所定温度以下になった時点で該バルブを開とし、水素製造システム内に原料ガスを供給して改質ガスをパージするようにしてなることを特徴とする固体高分子形燃料電池システムを提供する。
ここで、上記改質ガスのパージ後、該バルブを閉として水素製造システム内を原料ガスで満たすようにしてもよい。
【0017】
【発明の実施の形態】
本発明(A)〜(B)は、燃焼部及び改質部を含む水蒸気改質器に順次、CO変成部及びCO除去部を連結してなる水素製造システムを対象とし、CO変成部又はCO除去部の出口導管にバルブを配置する。そして、水素製造システムの停止時に、該バルブ閉、原料ガス及び水の供給停止の操作を行う。これにより水素製造システム内は還元性ガスである改質ガスで満たされる。燃焼部の停止は燃料ガス及び空気の供給を停止することで行われる。
【0018】
その後、改質部が所定温度以下になった時点で該バルブを開とし、システム内に原料ガスを供給して改質ガスをパージする。当該パージ後、該バルブを閉とすることにより、水素製造システム内は原料ガスで満たされる。また、それ以降、水素製造システム内の温度がさらに下がり、システム内が大気圧以上で且つ所定圧力以下になった時点では、原料ガスを加えて正圧を維持するようにする。
【0019】
ここで、上記所定温度以下における“所定温度”とは、炭化水素の分解反応が進行せず、分解反応に起因して炭素が析出しない温度であり、例えば炭化水素がメタンの場合には約600℃以下〜400℃以上の温度であり、都市ガス等では、C以上の炭化水素が含まれているため、メタンの場合より低温側にずれるが、具体的には予備実験等を基に設定される。本発明によれば、水素製造システムの停止開始時以降、改質部が当該所定温度に降温するまでは原料ガスが供給されないので、炭素は析出しない。
【0020】
次に、以上の構成及び操作で停止した水素製造システムの起動時には、燃焼部に燃料ガス及び空気を供給して燃焼部を作動させるとともに、該バルブを開とし、改質部が所定温度以下である間にシステム内に原料ガス及び水を供給して水蒸気改質を開始する。この場合にも、水素製造システム内は還元性ガスである原料ガス又は改質ガスの雰囲気となる。
【0021】
このように、本発明によれば、水素製造システム内を、システムの停止開始時から停止状態、起動開始時から定常運転に至るまで、一度も酸化雰囲気にすることがない。これにより、改質触媒及びCO変成触媒を劣化させることがなく、長期間にわたり繰り返し運転を続けることができる。以下、本発明をさらに詳しく説明する。
【0022】
〈(1)CO変成部の出口導管にバルブを配置した態様〉
図1はCO変成部の出口導管にバルブを配置した態様を示す図である。図1(a)は水素製造システムのCO変成部の出口導管にバルブを配置する態様であり、図1(b)は図1(a)水素製造システムにPEFCを連結した態様である。図1のとおり、CO変成部の出口導管にバルブ(HCV)を配置しておく。そして、水素製造システムの運転後、その停止時に、該バルブ閉、原料ガス及び水の供給停止の操作を行う。これにより水素製造システム内は還元性ガスである改質ガスで満たされる。
【0023】
本水素製造システムを上記のとおり該バルブを閉のままの状態に置くと、改質部の温度が徐々に低下し“所定温度”以下になる。この温度は改質部の内部又はCO変成部の内部に配置された温度判定手段により判定される。温度判定手段としては例えば熱電対を用いる。
【0024】
温度判定手段により改質部内が“所定温度”以下に降温したと判定された時点で該バルブを開とし、水素製造システム内に原料ガスを供給して改質部及びCO変成部内の改質ガスをパージする。当該原料ガスによるパージ後、原料ガスの供給を止めるとともに、該バルブを閉に切り替える。これにより水素製造システム内は原料ガスで満たされる。原料ガスは炭化水素であるので、水素製造システム内は、これらの過程で酸化雰囲気にならず、還元雰囲気の状態に保たれる。
【0025】
水素製造システム内の温度がさらに下がると、水素製造システム内圧力が降下する。本発明においては、水素製造システム内が所定の圧力以下になった際に、水素製造システム内に原料ガスを供給して正圧を維持するようにする。水素製造システム内の圧力は圧力計Pにより計測する。圧力計に代えて、タイマーにて制御することもできる。ここで該バルブは閉のままであるので、原料ガスの供給は少量で足りる。図2は時間の経過に伴う水素製造システム内の圧力変化及び温度変化を実測したものである。
【0026】
図2のとおり、時間の経過とともに、改質部の温度が低下し、水素製造システム内の圧力が降下するが、水素製造システム内の圧力は、改質部の温度が400℃以下になる前には、大気圧に対して負圧(<0kPaG)にはなっていない。CO除去部の温度は水素製造システム内では他の箇所より低温であるが、CO除去部の温度が100℃以下になる前に、改質部が400℃以下となるため、結露雰囲気になることなくパージ用の原料ガスを加えることができる。
【0027】
次に、以上の操作を経て停止した水素製造システムの起動時には、該バルブを開とし、燃焼部に燃料ガス、空気を供給して燃焼し、改質部が所定温度以下である間に、水素製造システム内に原料ガス、水を供給する。ここで一部改質ガスが生成するが、この場合にも水素製造システム内は還元性ガスである原料ガス又は改質ガスの雰囲気となっており、また、燃焼部からの加熱で改質部の温度が上昇して改質ガスの生成が進むと水素製造システム内は改質ガスによる還元状態となる。
【0028】
以上のように、本発明によれば、水素製造システムの停止開始時から停止状態、起動開始から定常運転時まで水素製造システム内は常に還元状態である。このように水素製造システム内を一度も酸化雰囲気にせずに停止し、また起動することができる。このことから、起動−停止を繰り返しても改質触媒及びCO変成触媒は劣化することがなく、水素製造システムの性能を落とすことなく長期間にわたり起動−停止を繰り返して運転を続けることができる。
【0029】
〈(2)CO除去部の出口導管にバルブを配置した態様〉
図3は水素製造システムのCO除去部の出口導管にバルブを配置した態様を示す図である。図3(a)は水素製造システムによりCOを低減した水素を製造する態様、図3(b)は図3(a)の水素製造システムにPEFCを連結した態様である。水素製造システムにおけるCO除去部の出口導管にバルブ(HCV)を配置しておく以外は、前記(1)の態様と同様である。CO除去部内を含めて、運転時から停止状態への移行、停止状態から起動状態への移行に際して、水素製造システム内は常に還元状態であり、一度も酸化雰囲気となることはない。
【0030】
〈先行技術A〜Cと本発明との対比〉
先行技術Aの改質装置の運転方法では、改質装置の停止時以降、改質部が所定温度以下になるまでの間、原料ガス、水の供給を徐々に低下させる。すなわち原料ガス、水は、徐々に少なくはなるが、供給されている。これに対して、本発明では、水素製造システムの停止時以降、改質部が所定温度以下になるまでの間、該バルブを閉とするとともに原料ガス及び水の供給を停止している。従って、本発明によれば、改質部が所定温度以下になるまでの間、先行技術Aでは供給される原料ガス、水のロスがないので効率のよい水素製造システムの運転ができる。
【0031】
また、先行技術Bの改質装置では、改質装置の停止時以降、改質部が所定温度以下になるまでの間、水蒸気が供給されるので、水蒸気に起因する改質触媒の酸化による劣化の問題が生じる。これに対して、本発明では、水素製造システムの停止時以降、改質部が所定温度以下になるまでの間、該バルブを閉とするとともに原料ガス及び水の供給を停止している。従って、本発明によれば、先行技術Bでは生じる水蒸気に起因する改質触媒及びCO変成触媒の酸化による劣化はなく、改質触媒及びCO変成触媒の耐久性を長期にわたり保持することができる。
【0032】
また、先行技術Cの改質装置の停止方法では、改質装置の停止時に、水蒸気により改質部中の改質ガスをパージしている。従って、改質部が所定温度以下になるまでの間、改質部中は水蒸気雰囲気となるので、水蒸気に起因する改質触媒の酸化による劣化の問題が生じる。これに対して、本発明では、水素製造システムの停止時以降、改質部が所定温度以下になるまでの間、該バルブを閉とするとともに原料ガス及び水の供給を停止している。従って、本発明によれば、先行技術Cでは生じる水蒸気に起因する改質触媒及びCO変成触媒の酸化による劣化はなく、改質触媒及びCO変成触媒の耐久性を長期にわたり保持することができる。
【0033】
【実施例】
以下、実施例に基づき本発明をさらに詳しく説明するが、本発明がこれら実施例に限定されないことはもちろんである。
【0034】
本実施例では、酸化雰囲気による性能劣化が顕著であるCO変成触媒として粒状Cu−Zn系触媒を使用し、原料ガスとして改質部出口での改質ガス組成を模擬した標準ガスと水蒸気を供給して試験した。ここで空間速度(SV)=15000h−1とし、CO変成部入口温度=300℃とした。CO変成部に供給される標準ガスはCOを8%含むガスである。起動・停止は2時間反応毎に実施した(停止時には何も流していない)。
【0035】
<比較実験>
図4はそれぞれ窒素、水蒸気及び空気の各媒体による起動−停止試験の結果である。図4のとおり、窒素を流して起動した場合には、連続使用した場合と転化率の推移に大きな差がない。これに対して、水蒸気を流して起動した場合には、窒素を流して起動した場合あるいは連続使用した場合と比較して、CO転化率は漸次低下し、CO変成触媒の劣化が顕著にみられる。空気を流して起動した場合も同様である。
【0036】
<本発明による実験>
空間速度=2000h−1とし、CO変成部入口温度=300℃として試験した。標準ガスはCOを10%含むガスである。停止時には、加熱部を停止し、標準ガス及び水蒸気の供給を停止した。そして脱硫済み都市ガスを供給してCO変成部内の標準ガスをパージした。以降、自然冷却により改質部出口温度が常温(約20℃)に低下した時点で、起動を開始した。脱硫済み都市ガスを導入し、加熱部を作動させて昇温しCO変成部が約200℃以下である間に、CO変成部に標準ガス及び水蒸気を供給した。改質部の温度が上昇して定常運転に達してからしばらく運転を続けた後、運転を停止した。停止操作は上記と同様にして行った。以上の運転−停止−起動を繰り返し実施した。
【0037】
図5はその結果である。図5のとおり、CO転化率は起動−停止回数が増えても変化はないことが分かる。初期段階でのCO転化率は89%であり、起動−停止回数104回目でもCO転化率は89%である。このように改質触媒及びCO変成触媒の劣化は認められず、本発明による効果は明らかである。
【0038】
【発明の効果】
本発明の水素製造システム及び燃料電池システムによれば、その停止開始時から起動開始時まで、水素製造システム内が一度も酸化雰囲気とはならないので、改質触媒及びCO変成触媒の劣化を格段に抑制することができる。これにより、水素製造システムを長期間にわたり起動−停止を繰り返しても改質部及びCO変成部の性能低下がなく、水素製造システムの効率を落とさずに運転を続けることができる。
【図面の簡単な説明】
【図1】本発明の水素製造システム及びPEFCシステムにおいてCO変成部の出口導管にバルブを配置した態様を示す図
【図2】水素製造システムの停止操作に伴う水素製造システム内圧力及び温度の降下傾向を示す図
【図3】本発明の水素製造システム及びPEFCシステムにおいてCO除去部の出口導管にバルブを配置した態様を示す図
【図4】各媒体による起動−停止試験の結果を示す図(比較実験)
【図5】実施例の結果を示す図(本発明による実験)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydrogen production system by a hydrocarbon steam reforming method, a method for starting and stopping the hydrogen production system, and a fuel cell system connected with the hydrogen production system.
[0002]
[Prior art]
Hydrogen is also used as a fuel for polymer electrolyte fuel cells (PEFC). In a hydrocarbon steam reforming method which is one of the industrial methods for producing hydrogen, a steam reformer is used, and the hydrocarbon is converted into a hydrogen-rich reformed gas by a reforming reaction with steam. The steam reformer generally includes a combustion section in which a burner or a combustion catalyst is arranged, and a reforming section in which a reforming catalyst is arranged. Hereinafter, the steam reformer is appropriately referred to as a “reformer”.
[0003]
Fuel such as city gas is burned by air in the combustion section for the progress of the reforming reaction in the reforming section, and the generated combustion heat is supplied to the reforming section. Here, the fuel to be supplied to the combustion unit is a hydrocarbon-based fuel such as a normal city gas as well as the hydrocarbon to be converted to the reformed gas in the reforming unit. The fuel supplied to the combustion section is called fuel gas, and the hydrocarbon supplied to the reforming section is called source gas.
[0004]
In the reformed gas obtained in the reforming section, in addition to hydrogen, unreacted hydrocarbons, unreacted steam, and carbon dioxide and carbon monoxide (CO) are by-produced to 8 to 15% (capacity). , The same shall apply hereinafter). For this reason, the CO in the reformed gas is supplied to the CO shift section in order to react with the steam by the shift reaction to convert it into hydrogen and carbon dioxide. As the steam required for this reaction, unreacted residual steam in the reforming section is used.
[0005]
Except for unreacted hydrocarbons and excess steam, the reformed gas emitted from the CO shift section is composed of hydrogen, carbon dioxide, and CO. Of these, hydrogen is the target component, but also in the reformed gas that has passed through the CO shift section, CO is not completely removed, and CO is still contained in a small amount. For this reason, the reformed gas is supplied to the CO removing unit for further removing CO. For example, when a fuel for PEFC is used, the fuel consumption is reduced to 10 ppm (capacity ppm, the same applies hereinafter) and further to 1 ppm.
[0006]
As described above, the hydrogen production system in which the CO shift unit and the CO removal unit are sequentially connected to the reformer is operated by repeatedly starting and stopping according to the demand for hydrogen. Since the operating temperature of the reformer is 600 ° C. or higher, it is necessary to raise the temperature when starting the reformer. The reforming catalyst in the reforming section does not oxidize at room temperature, but if there is an oxygen component in the atmosphere, it oxidizes during the temperature rise when the system is started. Oxidation of the reforming catalyst not only requires a reduction operation with hydrogen or the like, but also promotes deterioration of the reforming catalyst.
[0007]
Further, when the hydrogen production system is stopped after the operation, the inside of the system may be decompressed due to a temperature decrease or condensation of water vapor, and air may leak from the outside. At this time, when the CO shift catalyst (usually a Cu-based catalyst such as a Cu-Zn-based catalyst is used) in the CO shift section comes into contact with air, it is easily oxidized at room temperature. In order to avoid this, purging the system with an inert gas such as nitrogen may be considered. However, the use of an inert gas is extremely troublesome, since equipment for the use of the inert gas is required, and management of the remaining amount of the inert gas is required.
[0008]
Japanese Patent Application Laid-Open No. 2000-290001 (Prior Art A) states that it is relatively difficult to always prepare an inert gas in a hydrogen generator, ie, a reformer, which repeatedly starts and stops on a daily basis. A method for preventing deterioration of the shift catalyst without using it is disclosed. In this technology, (1) the raw material gas and water are added to the reforming section even after the combustion section is stopped, (2) and (1), the temperature in the hydrogen generator in the reforming section is accelerated, and (3). Thereafter, the supply of water is stopped when the temperature of the reforming unit becomes equal to or lower than the predetermined temperature. (4) Subsequently, after purging the reformed gas with the raw material gas, the raw material gas is stopped. It is to prevent deterioration.
[0009]
In Japanese Patent Application Laid-Open No. 2000-95504 (referred to as Prior Art B), the flow of the raw material gas is stopped after the combustion unit is stopped when the reformer is stopped. When the temperature in the reformer becomes equal to or lower than a predetermined set value, the supply of steam is stopped, the flow of the raw material gas is restarted, and after a certain period of time has elapsed, the flow path for the reformed gas is shut off. Here, the “time point when the temperature falls below a predetermined set value” means the time point when the temperature falls below the temperature at which the raw material gas is thermally decomposed and carbon is deposited, and both the raw material gas and the steam stop the combustion part. After that time, it has been supplied up to that point.
[0010]
In Japanese Patent Application Laid-Open No. 2002-151124 (referred to as prior art C), after the combustion unit is stopped when the reformer is stopped, steam is supplied to purge the reformed gas in the reforming unit (during this time, the supply of the raw material gas is performed). Is stopped), and when the temperature becomes lower than the temperature at which thermal decomposition of the source gas does not occur, the source gas is supplied to purge the temperature in the reforming section, and then the supply of the source gas is stopped.
[0011]
However, in the prior arts A and B, the raw material gas and water supplied until the inside of the reformer reaches a predetermined temperature or less are not used, and therefore, extra cost is required in system operation, which is not preferable. Further, in the prior arts B and C, there may be a period in which the raw material gas is stopped until the inside of the reformer becomes a predetermined temperature or lower. Then, the reforming catalyst and the CO shift catalyst are exposed only to high-temperature steam, and the reforming catalyst and the CO shift catalyst are deteriorated by oxidation with steam. The deteriorated catalyst cannot obtain the expected catalyst performance, and may impair the function of the entire system, which is not preferable.
[0012]
[Patent Document 1] JP-A-2000-290001 [Patent Document 2] JP-A-2000-95504 [Patent Document 3] JP-A-2002-151124
[Problems to be solved by the invention]
An object of the present invention is to solve at least the above problems that occur in the prior art. That is, according to the present invention, when the hydrogen production system is stopped, it is possible to prevent the system from becoming an oxidizing atmosphere, prevent the system from becoming a dew condensation atmosphere, and perform the operation more efficiently and economically. An object of the present invention is to provide a hydrogen production system, a method for starting and stopping the hydrogen production system, and a system in which a fuel cell is connected to the hydrogen production system.
[0014]
[Means for Solving the Problems]
The present invention relates to (A) a hydrogen production system in which a CO reforming section and a CO removing section are sequentially connected to a steam reformer including a combustion section and a reforming section, and an outlet conduit of the CO transforming section or the CO removing section. When the system is stopped, the operation of closing the valve and stopping the supply of the raw material gas and water to the reforming section is performed, and then the valve is opened when the temperature of the reforming section falls below a predetermined temperature. Provided is a hydrogen production system characterized in that a raw material gas is supplied into the system to purge a reformed gas.
Here, after purging the reformed gas, the valve may be closed to fill the inside of the system with the raw material gas.
[0015]
The present invention relates to (B) a hydrogen production system in which a CO reforming section and a CO removing section are sequentially connected to a steam reformer including a combustion section and a reforming section, and an outlet conduit of the CO converting section or the CO removing section. When the system is stopped, the operation of closing the valve and stopping the supply of the raw material gas and water to the reforming section is performed, and then the valve is opened when the temperature of the reforming section falls below a predetermined temperature. Provided is a method for operating a hydrogen production system, which comprises supplying a source gas into a system and purging a reformed gas.
Here, after purging the reformed gas, the valve may be closed to fill the system with the raw material gas.
[0016]
The present invention relates to (C) a fuel cell in which a polymer electrolyte fuel cell is connected to a hydrogen production system in which a CO shift section and a CO removal section are sequentially connected to a steam reformer including a combustion section and a reforming section. In the system, a valve is disposed in an outlet conduit of a CO shift section or a CO removing section, and when the valve is stopped, the valve is closed, and the supply of the raw material gas and water to the reforming section is stopped. When the temperature becomes equal to or lower than a predetermined temperature, the valve is opened to supply a raw material gas into the hydrogen production system and purge the reformed gas, thereby providing a polymer electrolyte fuel cell system. I do.
Here, after purging the reformed gas, the valve may be closed to fill the hydrogen production system with the raw material gas.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention (A) and (B) is directed to a hydrogen production system in which a CO reforming section and a CO removing section are sequentially connected to a steam reformer including a combustion section and a reforming section. Place a valve in the outlet conduit of the removal section. Then, when the hydrogen production system is stopped, the operation of closing the valve and stopping the supply of the raw material gas and water is performed. Thereby, the inside of the hydrogen production system is filled with the reformed gas that is the reducing gas. The stop of the combustion unit is performed by stopping the supply of the fuel gas and the air.
[0018]
Thereafter, when the temperature of the reforming section becomes equal to or lower than the predetermined temperature, the valve is opened, and the raw material gas is supplied into the system to purge the reformed gas. After the purge, by closing the valve, the inside of the hydrogen production system is filled with the source gas. Further, thereafter, when the temperature in the hydrogen production system further decreases, and the inside of the system becomes higher than the atmospheric pressure and lower than a predetermined pressure, the source gas is added to maintain the positive pressure.
[0019]
Here, the "predetermined temperature" below the predetermined temperature is a temperature at which the hydrocarbon decomposition reaction does not proceed and carbon is not precipitated due to the decomposition reaction. ° C. the temperature of more than or less to 400 ° C., in the city gas, etc., because it contains C 2 and higher hydrocarbons, but shifted to lower temperature side than that of methane, set based on preliminary experiments or the like in particular Is done. According to the present invention, since the raw material gas is not supplied after the start of the shutdown of the hydrogen production system and until the temperature of the reforming unit drops to the predetermined temperature, no carbon is precipitated.
[0020]
Next, when starting the hydrogen production system stopped by the above configuration and operation, the fuel gas and air are supplied to the combustion unit to operate the combustion unit, the valve is opened, and the reforming unit is operated at a predetermined temperature or lower. Meanwhile, feed gas and water are supplied into the system to start steam reforming. Also in this case, the atmosphere in the hydrogen production system is a source gas or a reformed gas that is a reducing gas.
[0021]
As described above, according to the present invention, the inside of the hydrogen production system is never brought into an oxidizing atmosphere from the start of the system stop to the stop state, and from the start of the system to the steady operation. As a result, the operation can be repeatedly performed for a long time without deteriorating the reforming catalyst and the CO shift catalyst. Hereinafter, the present invention will be described in more detail.
[0022]
<(1) Embodiment in which a valve is arranged in the outlet conduit of the CO shift section>
FIG. 1 is a view showing an embodiment in which a valve is arranged in an outlet conduit of a CO shift section. FIG. 1 (a) shows a mode in which a valve is arranged in an outlet conduit of a CO conversion unit of a hydrogen production system, and FIG. 1 (b) shows a mode in which PEFC is connected to the hydrogen production system in FIG. 1 (a). As shown in FIG. 1, a valve (HCV) is arranged in the outlet conduit of the CO shift section. Then, after the operation of the hydrogen production system, when the operation is stopped, the operation of closing the valve and stopping the supply of the raw material gas and water is performed. Thereby, the inside of the hydrogen production system is filled with the reformed gas that is the reducing gas.
[0023]
When the hydrogen production system is kept in a state in which the valve is closed as described above, the temperature of the reforming section gradually decreases and becomes equal to or lower than the “predetermined temperature”. This temperature is determined by the temperature determining means disposed inside the reforming section or inside the CO shift section. As the temperature determining means, for example, a thermocouple is used.
[0024]
When it is determined by the temperature determining means that the temperature inside the reforming section has dropped to a "predetermined temperature" or lower, the valve is opened and the raw material gas is supplied into the hydrogen production system to supply the reformed gas in the reforming section and the CO shift section. Purge. After purging with the source gas, the supply of the source gas is stopped, and the valve is closed. Thereby, the inside of the hydrogen production system is filled with the source gas. Since the source gas is a hydrocarbon, the hydrogen production system is maintained in a reducing atmosphere instead of an oxidizing atmosphere in these processes.
[0025]
When the temperature in the hydrogen production system further decreases, the pressure in the hydrogen production system drops. In the present invention, when the pressure in the hydrogen production system becomes equal to or lower than a predetermined pressure, the source gas is supplied into the hydrogen production system to maintain the positive pressure. The pressure in the hydrogen production system is measured by a pressure gauge P. Instead of the pressure gauge, it can be controlled by a timer. Here, since the valve is kept closed, the supply of the source gas is small. FIG. 2 is a graph showing actual changes in pressure and temperature in the hydrogen production system over time.
[0026]
As shown in FIG. 2, as the time elapses, the temperature of the reforming unit decreases, and the pressure in the hydrogen production system decreases. However, the pressure in the hydrogen production system increases before the temperature of the reforming unit becomes 400 ° C. or lower. Does not have a negative pressure (<0 kPaG) with respect to the atmospheric pressure. The temperature of the CO removal unit is lower than the other parts in the hydrogen production system, but before the temperature of the CO removal unit becomes 100 ° C or lower, the temperature of the reforming unit becomes 400 ° C or lower, so that a dew condensation atmosphere may occur. The source gas for purging can be added without the need.
[0027]
Next, when starting the hydrogen production system stopped after the above operation, the valve is opened, fuel gas and air are supplied to the combustion unit for combustion, and while the reforming unit is at a predetermined temperature or lower, hydrogen is supplied. Supply raw material gas and water into the production system. Here, a part of the reformed gas is generated, but also in this case, the atmosphere in the hydrogen production system is the atmosphere of the raw material gas or the reformed gas which is the reducing gas, and the reforming part is heated by the combustion part. When the temperature of the gas rises and the generation of the reformed gas proceeds, the inside of the hydrogen production system is reduced by the reformed gas.
[0028]
As described above, according to the present invention, the inside of the hydrogen production system is always in the reduction state from the start of the stop of the hydrogen production system to the stop state, and from the start of the start to the steady operation. As described above, the hydrogen production system can be stopped and started without being brought into an oxidizing atmosphere. Therefore, even if the start-stop is repeated, the reforming catalyst and the CO shift catalyst do not deteriorate, and the start-stop can be repeated for a long period of time without deteriorating the performance of the hydrogen production system, and the operation can be continued.
[0029]
<(2) Embodiment in which a valve is arranged in the outlet conduit of the CO removal unit>
FIG. 3 is a diagram illustrating an embodiment in which a valve is disposed in an outlet conduit of a CO removal unit of the hydrogen production system. FIG. 3A shows an embodiment in which hydrogen with reduced CO is produced by a hydrogen production system, and FIG. 3B shows an embodiment in which a PEFC is connected to the hydrogen production system in FIG. 3A. This is the same as the embodiment (1) except that a valve (HCV) is arranged in the outlet conduit of the CO removal unit in the hydrogen production system. At the time of transition from the operation to the stop state and from the stop state to the start state including the inside of the CO removing unit, the inside of the hydrogen production system is always in the reducing state and never becomes an oxidizing atmosphere.
[0030]
<Comparison between prior arts A to C and the present invention>
In the operation method of the reforming apparatus of the prior art A, the supply of the raw material gas and the water is gradually reduced after the reforming apparatus is stopped until the temperature of the reforming section becomes equal to or lower than the predetermined temperature. That is, the raw material gas and water are supplied, although they gradually decrease. On the other hand, in the present invention, after the hydrogen production system is stopped, the valve is closed and the supply of the raw material gas and water is stopped until the temperature of the reforming unit becomes equal to or lower than the predetermined temperature. Therefore, according to the present invention, until the temperature of the reforming section becomes equal to or lower than the predetermined temperature, in the prior art A, there is no loss of the supplied source gas and water, so that an efficient operation of the hydrogen production system can be performed.
[0031]
Further, in the reforming apparatus of the prior art B, since steam is supplied until the temperature of the reforming section becomes equal to or lower than a predetermined temperature after the reforming apparatus is stopped, deterioration of the reforming catalyst due to oxidation caused by steam is caused. Problem arises. On the other hand, in the present invention, after the hydrogen production system is stopped, the valve is closed and the supply of the raw material gas and water is stopped until the temperature of the reforming unit becomes equal to or lower than the predetermined temperature. Therefore, according to the present invention, in the prior art B, there is no deterioration due to oxidation of the reforming catalyst and the CO shift catalyst caused by the generated steam, and the durability of the reforming catalyst and the CO shift catalyst can be maintained for a long time.
[0032]
In the method of stopping the reforming apparatus according to the prior art C, the reformed gas in the reforming section is purged by steam when the reforming apparatus is stopped. Therefore, until the temperature of the reforming section becomes equal to or lower than the predetermined temperature, the inside of the reforming section is in a steam atmosphere, so that there is a problem of deterioration of the reforming catalyst due to oxidation caused by steam. On the other hand, in the present invention, after the hydrogen production system is stopped, the valve is closed and the supply of the raw material gas and water is stopped until the temperature of the reforming unit becomes equal to or lower than the predetermined temperature. Therefore, according to the present invention, in the prior art C, there is no deterioration due to oxidation of the reforming catalyst and the CO shift catalyst caused by the generated steam, and the durability of the reforming catalyst and the CO shift catalyst can be maintained for a long time.
[0033]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but it goes without saying that the present invention is not limited to these Examples.
[0034]
In this embodiment, a particulate Cu-Zn-based catalyst is used as a CO shift catalyst in which the performance is significantly deteriorated due to an oxidizing atmosphere, and a standard gas and a steam simulating a reformed gas composition at a reforming section outlet are supplied as raw material gases. And tested. Here, the space velocity (SV) was set to 15000 h −1, and the temperature at the CO shift inlet was set to 300 ° C. The standard gas supplied to the CO shift section is a gas containing 8% of CO. Starting and stopping were carried out every 2 hours for reaction (when stopped, nothing was flowing).
[0035]
<Comparative experiment>
FIG. 4 shows the results of the start-stop test using each medium of nitrogen, water vapor, and air. As shown in FIG. 4, when starting by flowing nitrogen, there is no large difference between the case of continuous use and the transition of the conversion. On the other hand, in the case of starting by flowing steam, the CO conversion rate gradually decreases as compared with the case of starting by flowing nitrogen or the case of continuous use, and deterioration of the CO shift catalyst is remarkably observed. . The same applies to the case of starting by flowing air.
[0036]
<Experiment according to the present invention>
The test was conducted with the space velocity = 2000 h −1 and the CO shift inlet temperature = 300 ° C. The standard gas is a gas containing 10% of CO. At the time of the stop, the heating unit was stopped, and the supply of the standard gas and the steam was stopped. Then, the desulfurized city gas was supplied to purge the standard gas in the CO shift section. Thereafter, when the temperature at the outlet of the reforming unit was lowered to room temperature (about 20 ° C.) by natural cooling, the starting was started. The desulfurized city gas was introduced, the heating unit was operated to raise the temperature, and the standard gas and the steam were supplied to the CO shift unit while the temperature of the CO shift unit was about 200 ° C. or less. The operation was continued for a while after the temperature of the reforming section rose to reach a steady operation, and then the operation was stopped. The stopping operation was performed in the same manner as described above. The above operation-stop-start was repeated.
[0037]
FIG. 5 shows the result. As shown in FIG. 5, it can be seen that the CO conversion rate does not change even when the number of start-stop times increases. The CO conversion rate at the initial stage is 89%, and the CO conversion rate is 89% even at the 104th start-stop operation. As described above, the deterioration of the reforming catalyst and the CO shift catalyst is not recognized, and the effect of the present invention is clear.
[0038]
【The invention's effect】
According to the hydrogen production system and the fuel cell system of the present invention, since the inside of the hydrogen production system never becomes an oxidizing atmosphere from the start of the stop to the start of the start, the deterioration of the reforming catalyst and the CO shift catalyst is remarkably deteriorated. Can be suppressed. Thus, even if the hydrogen production system is repeatedly started and stopped for a long period of time, the performance of the reforming unit and the CO shift unit does not decrease, and the operation can be continued without lowering the efficiency of the hydrogen production system.
[Brief description of the drawings]
FIG. 1 is a view showing an embodiment in which a valve is arranged in an outlet conduit of a CO shift unit in a hydrogen production system and a PEFC system of the present invention. FIG. 2 A drop in pressure and temperature in the hydrogen production system due to a shutdown operation of the hydrogen production system. FIG. 3 is a diagram showing a tendency. FIG. 3 is a diagram showing a mode in which a valve is arranged in an outlet conduit of a CO removal unit in the hydrogen production system and the PEFC system of the present invention. FIG. 4 is a diagram showing the results of a start-stop test using each medium ( Comparative experiment)
FIG. 5 is a diagram showing the results of an example (experiment according to the present invention).

Claims (9)

燃焼部及び改質部を含む水蒸気改質器に順次、CO変成部及びCO除去部を連結してなる水素製造システムであって、CO変成部又はCO除去部の出口導管にバルブを配置し、システムの停止時に、該バルブ閉、改質部への原料ガス及び水の供給停止の操作を行い、その後改質部が所定温度以下になった時点で該バルブを開としてシステム内に原料ガスを供給して改質ガスをパージするようにしてなることを特徴とする水素製造システム。A hydrogen production system in which a CO shift section and a CO removal section are sequentially connected to a steam reformer including a combustion section and a reforming section, wherein a valve is disposed in an outlet conduit of the CO shift section or the CO removal section, When the system is stopped, the operation of closing the valve and stopping the supply of the raw material gas and water to the reforming section is performed. Thereafter, when the temperature of the reforming section becomes lower than a predetermined temperature, the valve is opened to supply the raw material gas into the system. A hydrogen production system comprising supplying and purging a reformed gas. 燃焼部及び改質部を含む水蒸気改質器に順次、CO変成部及びCO除去部を連結してなる水素製造システムであって、CO変成部又はCO除去部の出口導管にバルブを配置し、システムの停止時に、該バルブ閉、改質部への原料ガス及び水の供給停止の操作を行い、その後改質部が所定温度以下になった時点で該バルブを開としてシステム内に原料ガスを供給して改質ガスをパージした後、該バルブを閉としてシステム内を原料ガスで満たすようにしてなることを特徴とする水素製造システム。A hydrogen production system in which a CO shift section and a CO removal section are sequentially connected to a steam reformer including a combustion section and a reforming section, wherein a valve is disposed in an outlet conduit of the CO shift section or the CO removal section, When the system is stopped, the operation of closing the valve and stopping the supply of the raw material gas and water to the reforming section is performed. Thereafter, when the temperature of the reforming section becomes lower than a predetermined temperature, the valve is opened to supply the raw material gas into the system. After supplying and purging the reformed gas, the valve is closed to fill the system with the raw material gas. 前記バルブを閉としてシステム内を原料ガスで満たした後、システム内の温度が下がり、システム内が大気圧以上で且つ所定圧力以下になった時点で、システム内に原料ガスを供給してシステム内を正圧に維持するようにしてなることを特徴とする請求項2に記載の水素製造システム。After the valve is closed and the inside of the system is filled with the source gas, when the temperature in the system falls and the inside of the system becomes higher than atmospheric pressure and lower than a predetermined pressure, the source gas is supplied into the system and The hydrogen production system according to claim 2, wherein the pressure is maintained at a positive pressure. 燃焼部及び改質部を含む水蒸気改質器に順次、CO変成部及びCO除去部を連結してなる水素製造システムの運転方法であって、CO変成部又はCO除去部の出口導管にバルブを配置し、システムの停止時に、該バルブ閉、改質部への原料ガス及び水の供給停止の操作を行い、その後改質部が所定温度以下になった時点で該バルブを開とし、システム内に原料ガスを供給して改質ガスをパージすることを特徴とする水素製造システムの運転方法。A method for operating a hydrogen production system in which a CO shift section and a CO removal section are sequentially connected to a steam reformer including a combustion section and a reforming section, wherein a valve is provided at an outlet conduit of the CO shift section or the CO removal section. When the system is stopped, the operation of closing the valve and stopping the supply of the raw material gas and water to the reforming section is performed. Thereafter, when the temperature of the reforming section becomes lower than a predetermined temperature, the valve is opened, and the system is opened. A method for operating a hydrogen production system, characterized in that a raw material gas is supplied to a reactor and a reformed gas is purged. 燃焼部及び改質部を含む水蒸気改質器に順次、CO変成部及びCO除去部を連結してなる水素製造システムの運転方法であって、CO変成部又はCO除去部の出口導管にバルブを配置し、その停止時に、該バルブ閉、改質部への原料ガス及び水の供給停止の操作を行い、その後改質部が所定温度以下になった時点で該バルブを開とし、システム内に原料ガスを供給して改質ガスをパージした後、該バルブを閉としてシステム内を原料ガスで満たすことを特徴とするする水素製造システムの運転方法。A method for operating a hydrogen production system in which a CO shift section and a CO removal section are sequentially connected to a steam reformer including a combustion section and a reforming section, wherein a valve is provided at an outlet conduit of the CO shift section or the CO removal section. When the operation is stopped, the operation of closing the valve and stopping the supply of the raw material gas and water to the reforming section is performed. Thereafter, when the temperature of the reforming section becomes lower than a predetermined temperature, the valve is opened, and the system is opened. A method for operating a hydrogen production system, comprising supplying a source gas and purging a reformed gas, closing the valve, and filling the system with the source gas. 前記バルブを閉としてシステム内を原料ガスで満たした後、水素製造システム内の温度が下がり、システム内が大気圧以上で且つ所定圧力以下になった時点で、システム内に原料ガスを供給してシステム内を正圧に維持することを特徴とする請求項5に記載の水素製造システムの運転方法。After the valve is closed and the inside of the system is filled with the source gas, the temperature in the hydrogen production system is reduced, and when the inside of the system becomes higher than atmospheric pressure and lower than a predetermined pressure, the source gas is supplied into the system. The method according to claim 5, wherein the inside of the system is maintained at a positive pressure. 燃焼部及び改質部を含む水蒸気改質器に順次、CO変成部及びCO除去部を連結してなる水素製造システムに固体高分子形燃料電池を連結してなる燃料電池システムであって、CO変成部又はCO除去部の出口導管にバルブを配置し、その停止時に、該バルブ閉、改質部への原料ガス及び水の供給停止の操作を行い、その後改質部が所定温度以下になった時点で該バルブを開とし、水素製造システム内に原料ガスを供給して改質ガスをパージするようにしてなることを特徴とする固体高分子形燃料電池システム。A fuel cell system in which a polymer electrolyte fuel cell is connected to a hydrogen production system in which a CO shift section and a CO removal section are sequentially connected to a steam reformer including a combustion section and a reforming section, A valve is placed in the outlet conduit of the shift unit or CO removal unit. When the valve is stopped, the valve is closed and the supply of raw material gas and water to the reforming unit is stopped. The polymer electrolyte fuel cell system is characterized in that the valve is opened at the point of time, and the raw material gas is supplied into the hydrogen production system to purge the reformed gas. 燃焼部及び改質部を含む水蒸気改質器に順次、CO変成部及びCO除去部を連結してなる水素製造システムに固体高分子形燃料電池を連結してなる燃料電池システムであって、CO変成部又はCO除去部の出口導管にバルブを配置し、その停止時に、該バルブ閉、改質部への原料ガス及び水の供給停止の操作を行い、その後改質部が所定温度以下になった時点で該バルブを開とし、水素製造システム内に原料ガスを供給して改質ガスをパージした後、該バルブを閉として水素製造システム内を原料ガスで満たすようにしてなることを特徴とする固体高分子形燃料電池システム。A fuel cell system in which a polymer electrolyte fuel cell is connected to a hydrogen production system in which a CO shift section and a CO removal section are sequentially connected to a steam reformer including a combustion section and a reforming section, A valve is placed in the outlet conduit of the shift unit or CO removal unit. When the valve is stopped, the valve is closed and the supply of raw material gas and water to the reforming unit is stopped. At this point, the valve is opened, the source gas is supplied into the hydrogen production system to purge the reformed gas, and then the valve is closed to fill the hydrogen production system with the source gas. Polymer electrolyte fuel cell system. 前記バルブを閉として、水素製造システム内を原料ガスで満たした後、水素製造システム内の温度が下がり、水素製造システム内が大気圧以上で且つ所定圧力以下になった時点で、水素製造システム内に原料ガスを供給して水素製造システム内を正圧に維持するようにしてなることを特徴とする請求項8に記載の固体高分子形燃料電池システム。After the valve is closed and the inside of the hydrogen production system is filled with the raw material gas, the temperature in the hydrogen production system falls, and when the inside of the hydrogen production system becomes higher than atmospheric pressure and lower than a predetermined pressure, the hydrogen production system is closed. 9. The polymer electrolyte fuel cell system according to claim 8, wherein a raw material gas is supplied to the hydrogen production system to maintain the inside of the hydrogen production system at a positive pressure.
JP2003100485A 2003-04-03 2003-04-03 Operation method of hydrogen production system Expired - Lifetime JP4130603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003100485A JP4130603B2 (en) 2003-04-03 2003-04-03 Operation method of hydrogen production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003100485A JP4130603B2 (en) 2003-04-03 2003-04-03 Operation method of hydrogen production system

Publications (2)

Publication Number Publication Date
JP2004307236A true JP2004307236A (en) 2004-11-04
JP4130603B2 JP4130603B2 (en) 2008-08-06

Family

ID=33464605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003100485A Expired - Lifetime JP4130603B2 (en) 2003-04-03 2003-04-03 Operation method of hydrogen production system

Country Status (1)

Country Link
JP (1) JP4130603B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044653A (en) * 2003-07-23 2005-02-17 Matsushita Electric Ind Co Ltd Fuel cell system and operation method of fuel cell system
JP2006164662A (en) * 2004-12-06 2006-06-22 Kobe Steel Ltd Method of manufacturing hydrogen gas for fuel cell
WO2006080512A1 (en) * 2005-01-31 2006-08-03 Matsushita Electric Industrial Co., Ltd. Fuel cell power generation system, and method for operating fuel cell power generation system
JP2007191338A (en) * 2006-01-18 2007-08-02 Matsushita Electric Ind Co Ltd Method for driving hydrogen production system, hydrogen production system, and fuel cell power generation unit
WO2007111124A1 (en) * 2006-03-27 2007-10-04 Toyota Jidosha Kabushiki Kaisha Method of shutdown of reforming apparatus
JP2008001594A (en) * 2007-08-09 2008-01-10 Aisin Seiki Co Ltd Method for stopping operation of reformer
WO2008035776A1 (en) * 2006-09-22 2008-03-27 Panasonic Corporation Hydrogen generator, method of operating hydrogen generator, and fuel cell system
JP2008201650A (en) * 2007-02-22 2008-09-04 Matsushita Electric Ind Co Ltd Hydrogen generating apparatus, fuel cell system and method for operating hydrogen generating apparatus
JP2008251398A (en) * 2007-03-30 2008-10-16 Casio Comput Co Ltd Reactor, power generation device, and shutdown method for reactor
WO2009011098A1 (en) * 2007-07-18 2009-01-22 Panasonic Corporation Hydrogen generation system, fuel cell system, and method for operation of hydrogen generation system
JP2009176748A (en) * 2009-03-31 2009-08-06 Panasonic Corp Fuel cell system and operation method of fuel cell system
JP2010150119A (en) * 2008-11-20 2010-07-08 Panasonic Corp Hydrogen generation apparatus and fuel cell system having the same
US20100183928A1 (en) * 2007-07-18 2010-07-22 Panasonic Corporation Hydrogen generation system, fuel cell system, and method for operation of hydrogen generation system
WO2010087167A1 (en) 2009-01-27 2010-08-05 パナソニック株式会社 Fuel processing device, fuel cell system provided therewith, and method for operating a fuel processing device
WO2010128600A1 (en) * 2009-05-08 2010-11-11 パナソニック株式会社 Fuel cell system
WO2010143358A1 (en) 2009-06-11 2010-12-16 パナソニック株式会社 Hydrogen generation apparatus, and method for operation thereof
JP2011051847A (en) * 2009-09-03 2011-03-17 Panasonic Corp Hydrogen generation apparatus and method for starting/stopping the same
CN102015526A (en) * 2009-03-02 2011-04-13 松下电器产业株式会社 Hydrogen generator, fuel cell system comprising the same, and method for operating hydrogen generator
US8202658B2 (en) 2008-01-17 2012-06-19 Panasonic Corporation Method for stopping a hydrogen generator by controlling water supply to a reformer
EP2578531A1 (en) * 2010-05-28 2013-04-10 Panasonic Corporation Hydrogen generator and method for operation thereof, and fuel cell system
US8507136B2 (en) 2009-03-27 2013-08-13 Panasonic Corporation Fuel cell system
JP2013237580A (en) * 2012-05-14 2013-11-28 Toyota Industries Corp Reforming system
US8702823B2 (en) 2009-01-19 2014-04-22 Panasonic Corporation Hydrogen generation apparatus, fuel cell system and method of shutting down hydrogen generation apparatus
US8758950B2 (en) 2009-05-12 2014-06-24 Panasonic Corporation Fuel cell system
US8906564B2 (en) 2009-03-30 2014-12-09 Panasonic Corporation Hydrogen generator, fuel cell system, and method for operating hydrogen generator
US8916304B2 (en) 2008-11-20 2014-12-23 Panasonic Corporation Hydrogen generator and fuel cell system including same
US8980488B2 (en) 2009-05-12 2015-03-17 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system
US9083014B2 (en) 2008-11-20 2015-07-14 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system for performing normal and abnormal shut-down processes
US9174901B2 (en) 2012-03-27 2015-11-03 IFP Energies Nouvelles Temporary desulphurization reactor for pre-treating a hydrocarbon feed before steam reforming with a view to hydrogen production

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3035197U (en) * 1996-08-29 1997-03-11 幸次郎 三觜 Fittings for roofs and columns
WO2011077752A1 (en) 2009-12-25 2011-06-30 パナソニック株式会社 Hydrogen generation device, fuel cell system, and method for operating hydrogen generation device
US9334164B2 (en) 2009-12-25 2016-05-10 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generator and fuel cell system

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044653A (en) * 2003-07-23 2005-02-17 Matsushita Electric Ind Co Ltd Fuel cell system and operation method of fuel cell system
JP4647195B2 (en) * 2003-07-23 2011-03-09 パナソニック株式会社 FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM
JP2006164662A (en) * 2004-12-06 2006-06-22 Kobe Steel Ltd Method of manufacturing hydrogen gas for fuel cell
WO2006080512A1 (en) * 2005-01-31 2006-08-03 Matsushita Electric Industrial Co., Ltd. Fuel cell power generation system, and method for operating fuel cell power generation system
US8257873B2 (en) 2005-01-31 2012-09-04 Panasonic Corporation Fuel cell power generation system with valve on raw material gas supply passage and valve downstream of carbon monoxide decreasing unit, and method for operating fuel cell power generation system
US8475965B2 (en) 2005-01-31 2013-07-02 Panasonic Corporation Fuel cell power generation system with valve on raw material gas supply passage and valve downstream of carbon monoxide decreasing unit, and method for operating fuel cell power generation system
JP2007191338A (en) * 2006-01-18 2007-08-02 Matsushita Electric Ind Co Ltd Method for driving hydrogen production system, hydrogen production system, and fuel cell power generation unit
WO2007111124A1 (en) * 2006-03-27 2007-10-04 Toyota Jidosha Kabushiki Kaisha Method of shutdown of reforming apparatus
US8202333B2 (en) 2006-03-27 2012-06-19 Toyota Jidosha Kabushiki Kaisha Method of shutdown of reforming apparatus
DE112007000653B4 (en) * 2006-03-27 2010-09-30 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Method for switching off a reforming device
US8449634B2 (en) 2006-09-22 2013-05-28 Panasonic Corporation Hydrogen generating apparatus, method of operating hydrogen generating apparatus, and fuel cell system
JP5349048B2 (en) * 2006-09-22 2013-11-20 パナソニック株式会社 Hydrogen generator, operation method of hydrogen generator, and fuel cell system
WO2008035776A1 (en) * 2006-09-22 2008-03-27 Panasonic Corporation Hydrogen generator, method of operating hydrogen generator, and fuel cell system
JP2008201650A (en) * 2007-02-22 2008-09-04 Matsushita Electric Ind Co Ltd Hydrogen generating apparatus, fuel cell system and method for operating hydrogen generating apparatus
JP2008251398A (en) * 2007-03-30 2008-10-16 Casio Comput Co Ltd Reactor, power generation device, and shutdown method for reactor
US20100183928A1 (en) * 2007-07-18 2010-07-22 Panasonic Corporation Hydrogen generation system, fuel cell system, and method for operation of hydrogen generation system
WO2009011098A1 (en) * 2007-07-18 2009-01-22 Panasonic Corporation Hydrogen generation system, fuel cell system, and method for operation of hydrogen generation system
US9079771B2 (en) 2007-07-18 2015-07-14 Panasonic Corporation Hydrogen generation system, fuel cell system, and method for operation of hydrogen generation system
CN101743191B (en) * 2007-07-18 2012-04-11 松下电器产业株式会社 Hydrogen generation, fuel cell system, and method for operation of hydrogen generation system
JP2009040679A (en) * 2007-07-18 2009-02-26 Panasonic Corp Hydrogen generation device, fuel cell system, and method for operation of hydrogen generation device
EP2172420A4 (en) * 2007-07-18 2012-10-24 Panasonic Corp Hydrogen generation system, fuel cell system, and method for operation of hydrogen generation system
EP2172420A1 (en) * 2007-07-18 2010-04-07 Panasonic Corporation Hydrogen generation system, fuel cell system, and method for operation of hydrogen generation system
JP2008001594A (en) * 2007-08-09 2008-01-10 Aisin Seiki Co Ltd Method for stopping operation of reformer
US8202658B2 (en) 2008-01-17 2012-06-19 Panasonic Corporation Method for stopping a hydrogen generator by controlling water supply to a reformer
JP2010150119A (en) * 2008-11-20 2010-07-08 Panasonic Corp Hydrogen generation apparatus and fuel cell system having the same
US9083014B2 (en) 2008-11-20 2015-07-14 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system for performing normal and abnormal shut-down processes
US8916304B2 (en) 2008-11-20 2014-12-23 Panasonic Corporation Hydrogen generator and fuel cell system including same
US8702823B2 (en) 2009-01-19 2014-04-22 Panasonic Corporation Hydrogen generation apparatus, fuel cell system and method of shutting down hydrogen generation apparatus
US8951686B2 (en) 2009-01-27 2015-02-10 Panasonic Intellectual Property Management Co., Ltd. Fuel processing apparatus, fuel cell system including fuel processing apparatus, and method for operating fuel processing apparatus
WO2010087167A1 (en) 2009-01-27 2010-08-05 パナソニック株式会社 Fuel processing device, fuel cell system provided therewith, and method for operating a fuel processing device
EP2392544A1 (en) * 2009-01-27 2011-12-07 Panasonic Corporation Fuel processing device, fuel cell system provided therewith, and method for operating a fuel processing device
EP2392544A4 (en) * 2009-01-27 2014-01-01 Panasonic Corp Fuel processing device, fuel cell system provided therewith, and method for operating a fuel processing device
US8951683B2 (en) 2009-03-02 2015-02-10 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generator, fuel cell system including hydrogen generator, and method for operating hydrogen generator
CN102015526A (en) * 2009-03-02 2011-04-13 松下电器产业株式会社 Hydrogen generator, fuel cell system comprising the same, and method for operating hydrogen generator
CN102015526B (en) * 2009-03-02 2014-07-09 松下电器产业株式会社 Hydrogen generator, fuel cell system comprising the same, and method for operating hydrogen generator
US8507136B2 (en) 2009-03-27 2013-08-13 Panasonic Corporation Fuel cell system
US8906564B2 (en) 2009-03-30 2014-12-09 Panasonic Corporation Hydrogen generator, fuel cell system, and method for operating hydrogen generator
JP2009176748A (en) * 2009-03-31 2009-08-06 Panasonic Corp Fuel cell system and operation method of fuel cell system
WO2010128600A1 (en) * 2009-05-08 2010-11-11 パナソニック株式会社 Fuel cell system
JP5490107B2 (en) * 2009-05-08 2014-05-14 パナソニック株式会社 Fuel cell system
US8658320B2 (en) 2009-05-08 2014-02-25 Panasonic Corporation Method of operating a fuel cell
US8758950B2 (en) 2009-05-12 2014-06-24 Panasonic Corporation Fuel cell system
US8980488B2 (en) 2009-05-12 2015-03-17 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system
US8673222B2 (en) 2009-06-11 2014-03-18 Panasonic Corporation Hydrogen generator and method for operating the same
CN102300805A (en) * 2009-06-11 2011-12-28 松下电器产业株式会社 Hydrogen generation apparatus, and method for operation thereof
WO2010143358A1 (en) 2009-06-11 2010-12-16 パナソニック株式会社 Hydrogen generation apparatus, and method for operation thereof
JP2011051847A (en) * 2009-09-03 2011-03-17 Panasonic Corp Hydrogen generation apparatus and method for starting/stopping the same
EP2578531A4 (en) * 2010-05-28 2014-01-22 Panasonic Corp Hydrogen generator and method for operation thereof, and fuel cell system
EP2578531A1 (en) * 2010-05-28 2013-04-10 Panasonic Corporation Hydrogen generator and method for operation thereof, and fuel cell system
US9174901B2 (en) 2012-03-27 2015-11-03 IFP Energies Nouvelles Temporary desulphurization reactor for pre-treating a hydrocarbon feed before steam reforming with a view to hydrogen production
JP2013237580A (en) * 2012-05-14 2013-11-28 Toyota Industries Corp Reforming system

Also Published As

Publication number Publication date
JP4130603B2 (en) 2008-08-06

Similar Documents

Publication Publication Date Title
JP4130603B2 (en) Operation method of hydrogen production system
JP4105758B2 (en) Fuel cell system
JP4274754B2 (en) Operation method of hydrogen-containing gas generator
JP2006049277A (en) Reformed gas treatment at latter stage of reforming device
JP2003282114A (en) Stopping method of fuel cell power generating device
JP2002093447A (en) Method for starting and stopping reformer for solid high polymer type fuel cell
JP2002151124A (en) Stopping method of reformer for solid polymer fuel cell
JP2003288930A (en) Fuel treatment device
JP4342803B2 (en) Reformer system with polymer electrolyte fuel cell and method for operating the same
JP2005206395A (en) Hydrogen producing apparatus and starting method of the same
JP2003002605A (en) Method for operating and stopping steam reformer
JP2007314410A (en) Fuel reformer equipped with movable burner, its operating method, and fuel cell system
JP4030322B2 (en) Fuel processing apparatus, fuel cell power generation system, fuel processing method, and fuel cell power generation method
JP2001189165A (en) Fuel cell system, method of stopping and starting the same
JP3857022B2 (en) Method for starting and stopping a polymer electrolyte fuel cell
JP2972261B2 (en) Nitrogen purge method and heating method for fuel cell power generation system
JP5731202B2 (en) Syngas production method and apparatus
JP2007179851A (en) Liquid fuel solid polymer fuel cell system and method of stopping same
JP4442163B2 (en) Fuel cell system
JP2005332834A (en) Fuel cell power generation system and method of controlling fuel cell power generation system
JP2008105892A (en) Stopping method for fuel reformer
JP4909339B2 (en) Operation method of hydrogen-containing gas generator
JP2007250454A (en) Fuel cell power generating device and its operation stop method
JP2006306665A (en) Operation method of hydrogen manufacturing device
JP2005209642A (en) Starting and stopping method of fuel cell generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080522

R150 Certificate of patent or registration of utility model

Ref document number: 4130603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140530

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term