JP2005206395A - Hydrogen producing apparatus and starting method of the same - Google Patents

Hydrogen producing apparatus and starting method of the same Download PDF

Info

Publication number
JP2005206395A
JP2005206395A JP2004012384A JP2004012384A JP2005206395A JP 2005206395 A JP2005206395 A JP 2005206395A JP 2004012384 A JP2004012384 A JP 2004012384A JP 2004012384 A JP2004012384 A JP 2004012384A JP 2005206395 A JP2005206395 A JP 2005206395A
Authority
JP
Japan
Prior art keywords
unit
reforming
temperature
raw material
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004012384A
Other languages
Japanese (ja)
Other versions
JP2005206395A5 (en
Inventor
Tomomichi Asou
智倫 麻生
Akira Maenishi
晃 前西
Yuji Mukai
裕二 向井
Yoshihisa Tamura
佳央 田村
Kunihiro Ukai
邦弘 鵜飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004012384A priority Critical patent/JP2005206395A/en
Publication of JP2005206395A publication Critical patent/JP2005206395A/en
Publication of JP2005206395A5 publication Critical patent/JP2005206395A5/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that a conventional hydrogen producing apparatus has poor utilization efficiency of a gas in starting up. <P>SOLUTION: The hydrogen producing apparatus is provided with a reforming part 1 for producing a reformed gas from a hydrocarbon based raw material gas and steam, a combustion part 7 for heating the reforming part 1, air blowing part 8 for supplying air to the combustion part 7, a reforming part temperature detecting means 13 for detecting the temperature of the reforming part 1, an evaporating part 3 for supplying steam to the reforming part 1, a switch valve 11 for introducing the reformed gas produced in the reforming part 1 and/or the raw material gas passed through the reforming part 1 into one of the combustion part 7 or an apparatus 12 for utilizing the reformed gas and a control means 16 for controlling the combustion part 7 so that a detected temperature by the reforming part temperature detecting means 13 becomes equal to or below a 1st prescribed temperature at which carbon deposition reaction does not proceed when the reforming part 1 is purged by the raw material gas in the starting up and the combustion part 7 is ignited by supplying the raw material gas passed through the reforming part 1 through the switching valve 11. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、炭化水素系燃料を改質して水素を含む改質ガスを生成し、燃料電池の燃料ガスとして供給する水素生成装置、およびその起動方法、水素生成装置から供給される水素ガスを用いる燃料電池発電システムに関する。   The present invention relates to a hydrogen generator that reforms a hydrocarbon-based fuel to generate a reformed gas containing hydrogen and supplies the reformed gas as a fuel gas for a fuel cell, a starting method thereof, and a hydrogen gas supplied from the hydrogen generator. The present invention relates to a fuel cell power generation system to be used.

固体高分子型燃料電池(PEFC)やりん酸型燃料電池(PAFC)の燃料には水素ガスが用いられる。水素の工業的製造法としては水の電気分解などがあり、その他には炭化水素ガスの水蒸気改質法、部分酸化法、両者を組み合わせたオートサーマル法などがある。これらの改質法では、メタン、エタン、プロパン、ブタン、都市ガス、LPガス、その他の炭化水素ガス(二種類以上の炭化水素の混合ガスを含む)を改質して水素リッチガスを生成させるが、いずれの場合にも水素生成装置が用いられる。   Hydrogen gas is used as a fuel for a polymer electrolyte fuel cell (PEFC) or a phosphoric acid fuel cell (PAFC). Industrial production of hydrogen includes electrolysis of water, and other methods include steam reforming of hydrocarbon gas, partial oxidation, and an autothermal method combining both. In these reforming methods, methane, ethane, propane, butane, city gas, LP gas, and other hydrocarbon gases (including a mixture of two or more hydrocarbons) are reformed to produce hydrogen-rich gas. In either case, a hydrogen generator is used.

家庭用の燃料電池システムでは日常的な起動停止が要求され、水素生成装置に用いられている触媒は起動時において酸化雰囲気下では劣化する。そのためにリン酸型燃料電池で用いられている窒素などの不活性ガスを用いるとすると、窒素ボンベ等を別途設ける必要がある。この様にボンベ等を設置するとスペースが余分に必要となるが、家庭用に用いるためには設置スペースが出来るだけ小さいほうが望ましい。   A domestic fuel cell system is required to be routinely started and stopped, and the catalyst used in the hydrogen generator deteriorates in an oxidizing atmosphere at the time of startup. Therefore, if an inert gas such as nitrogen used in a phosphoric acid fuel cell is used, a nitrogen cylinder or the like needs to be provided separately. When a cylinder or the like is installed in this way, an extra space is required, but it is desirable that the installation space be as small as possible for use at home.

そこで、触媒の劣化を抑制するために、水素生成装置の入口側と出口側に開閉弁を設け内部に原料ガスを封止した状態から開始するものがある(例えば、特許文献1参照。)。   Therefore, in order to suppress the deterioration of the catalyst, there is one that starts from a state in which on-off valves are provided on the inlet side and the outlet side of the hydrogen generator and the raw material gas is sealed inside (see, for example, Patent Document 1).

図5は、上記従来の水素生成装置の概略構成図である。   FIG. 5 is a schematic configuration diagram of the conventional hydrogen generator.

図5に示す様に、従来の水素生成装置では、原燃料ガスと水蒸気から水素リッチガスを生成する改質部103を備えている。この改質部103に水蒸気を供給する水蒸気生成部102と、改質部103に供給される原燃料ガスの脱硫を行う脱硫部101が設置されている。   As shown in FIG. 5, the conventional hydrogen generator includes a reforming unit 103 that generates a hydrogen-rich gas from raw fuel gas and water vapor. A steam generation unit 102 that supplies steam to the reforming unit 103 and a desulfurization unit 101 that performs desulfurization of the raw fuel gas supplied to the reforming unit 103 are installed.

この改質部103には改質部103を加熱するための燃焼部104と、改質部103の内部温度を検知する改質部温度検知手段105が設置されている。又、この燃焼部104へ空気を供給する空気供給部106と、燃焼部104にガス燃料を供給するガス燃料供給配管107が設置されている。このガス燃料供給配管107には、ガス燃料の供給停止を行う開閉弁108が設置されている。   The reforming unit 103 is provided with a combustion unit 104 for heating the reforming unit 103 and a reforming unit temperature detecting means 105 for detecting the internal temperature of the reforming unit 103. An air supply unit 106 that supplies air to the combustion unit 104 and a gas fuel supply pipe 107 that supplies gas fuel to the combustion unit 104 are installed. The gas fuel supply pipe 107 is provided with an on-off valve 108 for stopping the supply of gas fuel.

又、脱硫部101の上流には、原料ガスの供給停止を行うための開閉弁109が設置されており、改質部103の下流側には、燃料電池等への水素リッチガスの供給停止若しくは原料ガスの封止を行うための開閉弁110が設置されている。   Further, an on-off valve 109 for stopping the supply of the raw material gas is installed upstream of the desulfurization unit 101, and the supply of the hydrogen rich gas to the fuel cell or the like or the raw material is stopped downstream of the reforming unit 103. An on-off valve 110 is installed for gas sealing.

尚、改質部103からの改質ガスの一部を脱硫部101の加熱源として用いる流路構成となっている。   Note that the flow path configuration uses a part of the reformed gas from the reforming unit 103 as a heating source for the desulfurization unit 101.

上記従来の水素生成装置の起動方法について以下に述べる。   A method for starting the conventional hydrogen generator will be described below.

上記構成の従来の水素生成装置では、停止時には、原料ガスが封止した状態であり開閉弁109及び開閉弁110ともに閉じた状態である。   In the conventional hydrogen generator configured as described above, when stopped, the raw material gas is sealed, and both the on-off valve 109 and the on-off valve 110 are closed.

始めに、開閉弁108と開閉弁110を開く。開閉弁108を開くことによりガス燃料が供給され、同時に空気供給部106からの空気供給を行うことによって燃焼部104の加熱が開始され、改質部103が昇温される。   First, the on-off valve 108 and the on-off valve 110 are opened. Gas fuel is supplied by opening the on-off valve 108, and heating of the combustion unit 104 is started by simultaneously supplying air from the air supply unit 106, and the temperature of the reforming unit 103 is raised.

次に、改質部103の温度が、原料ガスの熱分解による炭素の析出を防止でき、且つ水蒸気の結露を防止できる温度に昇温すると、水蒸気生成部102からの水蒸気供給を開始する。   Next, when the temperature of the reforming unit 103 is raised to a temperature at which carbon deposition due to thermal decomposition of the raw material gas can be prevented and water vapor condensation can be prevented, the supply of water vapor from the water vapor generating unit 102 is started.

次に、改質部103の温度が改質反応の生じる温度まで加温されると開閉弁109を開き、原料ガスの供給が開始され、改質部103にて改質反応が生じ、水素リッチな改質ガスが生成される。
特開2002−356305号公報
Next, when the temperature of the reforming unit 103 is heated to the temperature at which the reforming reaction occurs, the on-off valve 109 is opened, the supply of the raw material gas is started, the reforming reaction occurs in the reforming unit 103, and the hydrogen rich A reformed gas is generated.
JP 2002-356305 A

上述した様に従来の水素生成装置では、起動時における所定温度以上になったときの改質触媒の空気による酸化劣化を避けるために、停止時に原料ガスで装置内を満たしておき、その状態で起動を開始し、又、起動時にガス燃料によって燃焼部104を昇温していたため、ガスの利用効率が悪かった。   As described above, in the conventional hydrogen generator, in order to avoid oxidative deterioration due to the air of the reforming catalyst when the temperature exceeds a predetermined temperature at the time of startup, the inside of the apparatus is filled with the raw material gas at the time of stop, Since the start-up was started and the temperature of the combustion unit 104 was raised by the gas fuel at the time of start-up, the gas utilization efficiency was poor.

又、開閉弁108、開閉弁109、及び開閉弁110と開閉弁を3つも設ける必要があり、コストが高くなり、又、開閉弁自体にも電力消費が発生するために発電効率が低下するという課題があった。   In addition, it is necessary to provide three on-off valves 108, 109, and on-off valves 110, and the cost increases, and power consumption is also generated in the on-off valves themselves, resulting in reduced power generation efficiency. There was a problem.

上記課題を考慮し、本発明の目的は、ガスの利用効率がより良く、又は、より発電効率が低下しない、又は、よりコストの安い水素生成装置及びその起動方法を提供することである。   In view of the above-described problems, an object of the present invention is to provide a hydrogen generation apparatus that has better gas utilization efficiency, does not lower power generation efficiency, or is lower in cost, and a starting method thereof.

上記の目的を達成するために、第1の本発明は、炭化水素系の原料ガスと水蒸気を触媒層に流通させ改質反応によって改質ガスを生成する改質部と、前記改質部を加熱する燃焼部と、前記燃焼部に空気を供給する送風部と、前記改質部の温度を検出する改質部温度検知手段と、前記改質部に前記原料ガスを供給する原料供給部と、前記改質部に前記水蒸気を供給する蒸発部と、前記蒸発部に水を供給する水供給部と、前記改質部で生成された改質ガス及び/又は前記改質ガスを流通した前記原料ガスを、前記燃焼部又は前記改質ガスを利用する装置のうちどちらか一方に導くための切り替え弁と、起動時に、前記原料供給部から前記原料ガスを供給することで前記改質部を前記原料ガスでパージし、前記改質部を流通した前記原料ガスを前記切り替え弁を介して前記燃焼部に供給することで前記燃焼部が着火し、前記改質部温度検出手段により検出される温度が炭素析出反応が進行しない第1の所定温度以下となるように前記燃焼部を制御する制御手段と、を備えた水素生成装置である。   In order to achieve the above object, the first aspect of the present invention comprises a reforming unit that generates a reformed gas by a reforming reaction by circulating a hydrocarbon-based source gas and water vapor through a catalyst layer, and the reforming unit includes: A combustion unit that heats, a blower unit that supplies air to the combustion unit, a reforming unit temperature detection means that detects a temperature of the reforming unit, and a raw material supply unit that supplies the source gas to the reforming unit; An evaporator that supplies the steam to the reformer, a water supply that supplies water to the evaporator, the reformed gas generated in the reformer and / or the reformed gas A switching valve for guiding the raw material gas to either the combustion unit or the device using the reformed gas, and the reforming unit by supplying the raw material gas from the raw material supply unit at startup Purging with the raw material gas, the raw material gas flowing through the reforming section is The combustion part is ignited by supplying it to the combustion part via a switching valve so that the temperature detected by the reforming part temperature detection means is equal to or lower than a first predetermined temperature at which the carbon deposition reaction does not proceed. And a control means for controlling the combustion section.

又、第2の本発明は、前記蒸発部の温度を検知する蒸発部温度検出手段を更に備え、前記制御手段は、前記起動時に前記原料供給部から前記原料ガスを供給すると同時に、前記水供給部からの水供給を開始し、前記蒸発部温度検出手段によって検知される温度が、水蒸気の発生する温度以上になった後、前記改質部の温度を前記改質反応が進行する第2の所定温度に上昇させるように前記燃焼部を制御する第1の本発明の水素生成装置である。   In addition, the second aspect of the present invention further includes an evaporating part temperature detecting means for detecting the temperature of the evaporating part, and the control means supplies the water gas at the same time as supplying the raw material gas from the raw material supplying part at the start-up. The water supply from the section is started, and after the temperature detected by the evaporation section temperature detecting means becomes equal to or higher than the temperature at which steam is generated, the reforming reaction proceeds to the temperature of the reforming section. It is a hydrogen generator of the 1st present invention which controls the above-mentioned combustion part so that it may raise to predetermined temperature.

又、第3の本発明は、前記制御手段は、前記原料供給部からの原料供給量を調節することにより、前記燃焼部の加熱を制御する第1又は2の本発明の水素生成装置である。   The third aspect of the present invention is the hydrogen generator according to the first or second aspect of the present invention, wherein the control means controls the heating of the combustion section by adjusting the amount of the raw material supplied from the raw material supply section. .

又、第4の本発明は、前記制御手段は、前記送風部からの送風量を調節することにより、前記燃焼部の加熱を制御する第1又は2の本発明の水素生成装置である。   The fourth aspect of the present invention is the hydrogen generator according to the first or second aspect of the present invention, wherein the control means controls the heating of the combustion section by adjusting the amount of air blown from the blower section.

又、第5の本発明は、前記制御手段は、前記原料供給部からの原料供給量の調節及び前記送風部からの送風量の調節によって前記第1の所定温度以下にならない場合、前記原料供給部からの原料供給を一旦停止することにより前記加熱部を失火させ、前記改質部温度検出手段の温度が、前記第1の所定温度よりも低い第3の所定温度以下になった後に、前記原料供給部を動作させることで前記燃焼部が着火し、前記改質部温度検出手段の温度が炭素析出反応が進行しない第1の所定温度以下となるように前記燃焼部を制御する制御手段である第1又は2の本発明の水素生成装置である。   According to a fifth aspect of the present invention, in the case where the control means does not fall below the first predetermined temperature due to adjustment of the raw material supply amount from the raw material supply unit and adjustment of the blast amount from the air blowing unit, The heating unit is misfired by temporarily stopping the supply of raw material from the unit, and after the temperature of the reforming unit temperature detecting means becomes equal to or lower than a third predetermined temperature lower than the first predetermined temperature, Control means for controlling the combustion section so that the combustion section is ignited by operating the raw material supply section, and the temperature of the reforming section temperature detection means is equal to or lower than a first predetermined temperature at which the carbon deposition reaction does not proceed. It is a certain first or second hydrogen generator of the present invention.

又、第6の本発明は、前記蒸発部は、前記改質部と熱交換可能に配置されている第1の本発明の水素生成装置である。   The sixth aspect of the present invention is the hydrogen generator according to the first aspect of the present invention, wherein the evaporation section is arranged to be able to exchange heat with the reforming section.

又、第7の本発明は、第1〜6のいずれかの本発明の水素生成装置の前記制御手段としてコンピューターを機能させるためのプログラムである。   The seventh invention is a program for causing a computer to function as the control means of the hydrogen generator of any one of the first to sixth inventions.

又、第8の本発明は、第7の本発明ののプログラムを担持した記録媒体であって、コンピューターにより処理可能な記録媒体である。   The eighth invention is a recording medium carrying the program of the seventh invention, which can be processed by a computer.

又、第9の本発明は、水素生成装置の起動方法において、原料供給部から原料ガスを供給することで改質部を前記原料ガスでパージするステップと、前記改質部を流通した前記ガスを前記改質部に設置された燃焼部に供給することで前記燃焼部が着火するステップと、前記改質部の温度が炭素析出反応が進行しない第1の所定温度以下となるように前記燃焼部を制御するステップとを備えた水素生成装置の起動方法である。   According to a ninth aspect of the present invention, in the method for starting the hydrogen generator, the step of purging the reforming unit with the source gas by supplying the source gas from the source supply unit, and the gas flowing through the reforming unit Is supplied to the combustion section installed in the reforming section, and the combustion section is ignited, and the combustion is performed so that the temperature of the reforming section is equal to or lower than a first predetermined temperature at which the carbon deposition reaction does not proceed. And a step of controlling the unit.

又、第10の本発明は、第1〜6のいずれかに記載の水素生成装置と、前記改質ガスを利用する装置としての、前記改質ガスを用いて発電を行う燃料電池とを備えた燃料電池システムである。   A tenth aspect of the present invention includes the hydrogen generator according to any one of the first to sixth aspects, and a fuel cell that generates power using the reformed gas as a device that uses the reformed gas. Fuel cell system.

本発明によれば、ガスの利用効率がより良く、又は、より発電効率が低下しない、又は、よりコストの安い水素生成装置及びその起動方法を提供することが出来る。   ADVANTAGE OF THE INVENTION According to this invention, the utilization efficiency of gas can improve the generation | occurrence | production efficiency of gas, or the generation | occurrence | production efficiency is not reduced, or a cheaper cost, and its starting method.

以下に本発明の実施の形態について、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1における水素生成装置を用いた燃料電池システムの概略構成を示す説明図である。図1に示す様に、本実施の形態1における水素生成装置は、改質反応によって原料ガスと水蒸気から水素リッチな改質ガスを生成する改質触媒を充填した改質部1が設置されている。この改質部1には、改質部1の温度を検知するための改質部温度検知手段13が設置されている。
(Embodiment 1)
FIG. 1 is an explanatory diagram showing a schematic configuration of a fuel cell system using the hydrogen generator in Embodiment 1 of the present invention. As shown in FIG. 1, the hydrogen generator in the first embodiment includes a reforming unit 1 filled with a reforming catalyst that generates a hydrogen-rich reformed gas from a raw material gas and water vapor by a reforming reaction. Yes. The reforming unit 1 is provided with reforming unit temperature detection means 13 for detecting the temperature of the reforming unit 1.

又、改質部1に原料を供給するための原料供給部2が設置されており、原料ガスの供給方向を基準として原料供給部2の上流には原料ガスに含まれる硫黄成分を取り除くための脱硫器14と、更に上流側に原料ガスの供給停止を行う開閉弁15が設置されている。尚、図1では開閉弁15は原料供給部2側が黒く塗りつぶされているが、これは、開閉弁15が閉じていることを示している。   In addition, a raw material supply unit 2 for supplying the raw material to the reforming unit 1 is installed, and for removing sulfur components contained in the raw material gas upstream of the raw material supply unit 2 based on the supply direction of the raw material gas. A desulfurizer 14 and an on-off valve 15 for stopping the supply of the raw material gas are installed further upstream. In FIG. 1, the on-off valve 15 is painted black on the raw material supply unit 2 side, which indicates that the on-off valve 15 is closed.

又、改質部1に水蒸気を供給する蒸発部3が、改質部1の外部に熱交換可能に設置されており、この蒸発部3には蒸発部3を加熱するためのヒーター部5及び蒸発部3の温度を検知するための蒸発部温度検知手段6が設けられている。又、この蒸発部3に水を供給する水供給部4が設置されている。   An evaporation unit 3 for supplying water vapor to the reforming unit 1 is installed outside the reforming unit 1 so that heat can be exchanged. The evaporation unit 3 includes a heater unit 5 for heating the evaporation unit 3 and Evaporator temperature detecting means 6 for detecting the temperature of the evaporator 3 is provided. Further, a water supply unit 4 for supplying water to the evaporation unit 3 is installed.

又、改質部1を加熱するための燃焼部7と、燃焼部7に空気を供給するための送風部8と、燃焼部7の燃焼状態を検知する熱電対やフレームロッドなどの燃焼検知手段9が設けられている。   Also, a combustion unit 7 for heating the reforming unit 1, a blower unit 8 for supplying air to the combustion unit 7, and a combustion detection means such as a thermocouple or a frame rod for detecting the combustion state of the combustion unit 7 9 is provided.

又、本実施の形態1の水素生成装置を用いた燃料電池システムは、改質部1の下流側に改質ガス流路10を介して燃料電池12を備えている。この改質ガス流路10は分岐し、燃焼部7にも接続されており、この分岐部に替え弁11が設けられ、改質ガスを燃料電池12へ供給する場合と、燃料電池12に供給しないで燃焼部7に供給する場合とに流路を切り替える。尚、図1では切り替え弁11の燃料電池12側が黒く塗りつぶされているが、これは切り替え弁11が燃焼部8に流路が切り替えられており、燃料電池12側が閉じている状態を示している。又、切り替え弁11から燃焼部12への改質ガス流路10と燃料電池12の間に、燃料電池12からの余剰ガス等を排出する排ガス流路17が設置されている。   Further, the fuel cell system using the hydrogen generator of Embodiment 1 includes a fuel cell 12 on the downstream side of the reforming unit 1 via the reformed gas flow path 10. This reformed gas flow path 10 branches and is also connected to the combustion section 7. A replacement valve 11 is provided at this branch section to supply reformed gas to the fuel cell 12 and to the fuel cell 12. Without switching, the flow path is switched to the case where the combustion section 7 is supplied. In FIG. 1, the fuel cell 12 side of the switching valve 11 is painted black. This indicates that the switching valve 11 is switched to the combustion section 8 and the fuel cell 12 side is closed. . Further, an exhaust gas passage 17 for discharging surplus gas and the like from the fuel cell 12 is installed between the reformed gas passage 10 from the switching valve 11 to the combustion section 12 and the fuel cell 12.

又、蒸発部温度検知手段6、燃焼検知手段9、若しくは改質部温度検知手段13の結果等に基づいて、原料供給部2、水供給部4、ヒーター部5、送風部8、切り替え弁11、若しくは開閉弁15の制御を行う制御部16が設置されている。   Further, based on the results of the evaporation part temperature detection means 6, the combustion detection means 9, or the reforming part temperature detection means 13, the raw material supply part 2, the water supply part 4, the heater part 5, the blower part 8, and the switching valve 11 Or the control part 16 which controls the on-off valve 15 is installed.

上記構成の本実施の形態1における水素生成装置の起動方法について以下に説明する。図4は、本実施の形態1における水素生成装置の起動方法のフロー図である。尚、改質部に供給する原料としては、天然ガス、メタノール、ガソリンなどがあるが、ここでは、天然ガスを水蒸気改質して改質ガスを得る場合について述べる。   A method for starting the hydrogen generator in Embodiment 1 having the above-described configuration will be described below. FIG. 4 is a flowchart of the method for starting the hydrogen generator in the first embodiment. The raw material supplied to the reforming unit includes natural gas, methanol, gasoline, and the like. Here, a case where the reformed gas is obtained by steam reforming the natural gas will be described.

起動開始直前の状態では、図1に示す様に切り替え弁11は燃焼部8側に接続されており、改質ガスは改質ガス流路10を流通し燃焼部8に供給される流路構成となっている。   In the state immediately before the start of startup, as shown in FIG. 1, the switching valve 11 is connected to the combustion unit 8 side, and the reformed gas flows through the reformed gas channel 10 and is supplied to the combustion unit 8. It has become.

始めに、燃焼部7の着火動作について説明する。   First, the ignition operation of the combustion unit 7 will be described.

ステップ1Sにて制御手段16は、燃焼部7に燃焼用の空気を供給する送風部8を所定回転数で駆動させ、ステップ2Sにて燃焼部7に設けられた点火電極(図示せず)を放電させる。   In step 1S, the control means 16 drives the air blowing unit 8 for supplying combustion air to the combustion unit 7 at a predetermined rotational speed, and an ignition electrode (not shown) provided in the combustion unit 7 in step 2S. Discharge.

次に、ステップ3Sにて制御手段16によって開閉弁15が開かれ、原料供給部2で流量調整された原料である天然ガスが脱硫器14を経て改質部1に供給される。この脱硫器14で、天然ガスに付臭成分として添加されている硫黄化合物が除去される。そして改質部1に供給された天然ガスは、改質部1の内部をパージしながら改質ガス流路10を流通し、切り替え弁11を経て燃焼部7に到達し、点火電極での放電を着火源として燃焼部7で燃焼が開始される。この状態を示すのが図2である。尚、図1と比較して開閉弁15の原料供給部2側が黒く塗りつぶされておらず、これは開閉弁15が開いていることを示している。   Next, in step 3S, the on / off valve 15 is opened by the control means 16, and the natural gas that is the raw material whose flow rate is adjusted by the raw material supply unit 2 is supplied to the reforming unit 1 through the desulfurizer 14. In the desulfurizer 14, sulfur compounds added to the natural gas as odorous components are removed. The natural gas supplied to the reforming section 1 flows through the reformed gas flow path 10 while purging the interior of the reforming section 1, reaches the combustion section 7 via the switching valve 11, and discharges at the ignition electrode. Combustion is started in the combustion section 7 using as an ignition source. FIG. 2 shows this state. In addition, compared with FIG. 1, the raw material supply part 2 side of the on-off valve 15 is not painted black, which indicates that the on-off valve 15 is open.

一方、ステップ3Sでの天然ガスの供給と同時に水供給部4から蒸発部3への水の供給が制御手段16によって開始され、ヒーター部5及び改質部1からの熱移動によって蒸発部3が加熱され、発生した水蒸気は改質部1に供給される。   On the other hand, simultaneously with the supply of natural gas in step 3S, the supply of water from the water supply unit 4 to the evaporation unit 3 is started by the control means 16, and the evaporation unit 3 is moved by the heat transfer from the heater unit 5 and the reforming unit 1. Heated and generated water vapor is supplied to the reforming unit 1.

上記の様に、改質部1の内部の改質触媒は、天然ガスでパージされた後に燃焼部7での燃焼が開始されるので、改質触媒が昇温される時には、酸化雰囲気ではなく天然ガス雰囲気とすることができる。そのため、改質触媒の酸化劣化を防止することができる。   As described above, since the reforming catalyst in the reforming unit 1 starts combustion in the combustion unit 7 after being purged with natural gas, when the temperature of the reforming catalyst is raised, it is not an oxidizing atmosphere. A natural gas atmosphere can be obtained. Therefore, it is possible to prevent oxidative degradation of the reforming catalyst.

次に起動中の改質部1の温度制御について以下に説明する。   Next, the temperature control of the reforming unit 1 during startup will be described below.

改質部1は燃焼部7での燃焼ガスによって加熱される。ここで、改質触媒での水蒸気改質反応はおよそ400℃以上で進行が始まるが、改質触媒の雰囲気に天然ガスが存在する状態で、水蒸気改質反応に必要な水蒸気量が不足すると、天然ガス中の炭化水素成分が分解され炭素析出が発生する。改質部1に炭素析出すると、流路が閉塞され使用不能をなる。   The reforming unit 1 is heated by the combustion gas in the combustion unit 7. Here, the steam reforming reaction in the reforming catalyst starts to proceed at about 400 ° C. or more. However, when the amount of steam required for the steam reforming reaction is insufficient in a state where natural gas exists in the atmosphere of the reforming catalyst, Hydrocarbon components in natural gas are decomposed and carbon deposition occurs. When carbon deposits on the reforming section 1, the flow path is blocked and becomes unusable.

そこで、ステップ4Sにて改質部1の温度を本発明の第1の所定温度の一例である350℃以下となるように制御手段16により制御を行う。すなわち改質部1に供給する天然ガス量を減少させることで、燃焼部7に供給される可燃ガス量を減少させ、加熱量を減少させる。すなわち、350℃以下で定常状態となるように、改質部1から持ち出される熱量と、加熱量をバランスさせるために天然ガス量が制御手段16によって調節される。ここで、改質部1内の温度が350℃以下に保たれている場合、この状態を維持する。その間に、蒸発部3の温度が上昇する。   Therefore, in step 4S, the control means 16 performs control so that the temperature of the reforming unit 1 is 350 ° C. or less, which is an example of the first predetermined temperature of the present invention. That is, by reducing the amount of natural gas supplied to the reforming unit 1, the amount of combustible gas supplied to the combustion unit 7 is reduced, and the amount of heating is reduced. That is, the amount of natural gas is adjusted by the control means 16 in order to balance the amount of heat taken out from the reforming unit 1 and the amount of heating so that a steady state is obtained at 350 ° C. or lower. Here, when the temperature in the reforming unit 1 is maintained at 350 ° C. or lower, this state is maintained. In the meantime, the temperature of the evaporation part 3 rises.

そして、ステップ5Sにて蒸発部温度検知手段6の温度が100℃以上になったことが検知された時点で水蒸気が発生していると判断できる。   And it can be judged that water vapor | steam has generate | occur | produced at the time of detecting that the temperature of the evaporation part temperature detection means 6 became 100 degreeC or more in step 5S.

その後、ステップ6Sにて原料および水供給部4からの水の供給を増加させることで、燃焼部7に供給される可燃ガス流量を増加させ改質器1の温度を本発明の第2の所定温度の一例である600℃以上の水蒸気改質反応が進行する温度に昇温させる。尚、水蒸気改質反応は、600℃〜700℃の範囲で進行するため本発明の第2の所定温度はこの範囲の温度であればよい。又、この範囲内に改質部1内の温度が保たれる様に制御手段16により制御が行われる。   Thereafter, the supply of water from the raw material and the water supply unit 4 is increased in step 6S, thereby increasing the flow rate of the combustible gas supplied to the combustion unit 7 and setting the temperature of the reformer 1 to the second predetermined value of the present invention. The temperature is raised to a temperature at which a steam reforming reaction of 600 ° C. or more, which is an example of the temperature, proceeds. Since the steam reforming reaction proceeds in the range of 600 ° C. to 700 ° C., the second predetermined temperature of the present invention only needs to be in this range. Further, the control means 16 performs control so that the temperature in the reforming unit 1 is maintained within this range.

次に、ステップ7Sにて制御手段16により、水蒸気改質反応が進行する温度であることが検知された時点で、ステップ8Sにて切り替え弁11を燃料電池12の側が開くように切り替える。この状態を示すのが図3である。尚、図2と比較して切り替え弁11は、燃料電池12ではなく燃焼部7にガスが進む側が黒く塗りつぶされている。これは切り替え弁11の燃料電池12側が閉じており、燃焼部11側が開いていることを示している。   Next, when it is detected by the control means 16 that the steam reforming reaction proceeds at step 7S, the switching valve 11 is switched so that the fuel cell 12 side is opened at step 8S. FIG. 3 shows this state. 2, the switching valve 11 is painted in black on the side where the gas advances not to the fuel cell 12 but to the combustion section 7. This indicates that the fuel cell 12 side of the switching valve 11 is closed and the combustion unit 11 side is open.

切り替え弁11を燃料電池12側に切り替えることにより、改質部で生じる水蒸気改質反応により発生した水素リッチな改質ガスが燃料電池12に供給され、発電が開始される。尚、発電が開始されたときには、燃料電池12からの余剰ガスが排ガス流路17を通って燃焼部7に供給され加熱するための燃料として使用される。   By switching the switching valve 11 to the fuel cell 12 side, the hydrogen-rich reformed gas generated by the steam reforming reaction generated in the reforming unit is supplied to the fuel cell 12, and power generation is started. When power generation is started, surplus gas from the fuel cell 12 is supplied to the combustion unit 7 through the exhaust gas passage 17 and used as fuel for heating.

又、改質部1の温度が350℃以下で定常状態となるように送風部8から供給する空気量を増加させることで、燃焼部7での火炎温度を低くすることができ、改質部1の温度を低下させることができる。したがって送風部8からの送風量を調節して、改質部1の温度を第1所定温度以下に維持できる。   Moreover, the flame temperature in the combustion part 7 can be lowered | hung by increasing the amount of air supplied from the ventilation part 8 so that the temperature of the reforming part 1 may become a steady state at 350 degrees C or less, and a reforming part The temperature of 1 can be lowered. Therefore, the temperature of the reforming unit 1 can be maintained below the first predetermined temperature by adjusting the amount of air blown from the air blowing unit 8.

一方、ステップ4Sにて起動時に天然ガス量を減少させるかあるいは送風部8からの空気量を増加させることで、第1の所定温度である350℃以下とならないときには、ステップ15Sにて制御手段16は開閉弁15を閉止し原料である天然ガスの供給を停止させる。天然ガスの供給停止により燃焼部7を失火させることで、改質部1の温度を低下させる。この時、開閉弁15と切り替え弁11の状態は図1に示す起動開始時と同じ状態になっている。   On the other hand, when the amount of natural gas is decreased at the time of start-up in step 4S or the amount of air from the blower unit 8 is increased so that the first predetermined temperature is not lower than 350 ° C., the control means 16 is determined in step 15S. Closes the on-off valve 15 and stops the supply of natural gas as a raw material. The combustion part 7 is misfired by stopping the supply of natural gas, thereby reducing the temperature of the reforming part 1. At this time, the states of the on-off valve 15 and the switching valve 11 are the same as those at the start of activation shown in FIG.

次に、ステップ16Sにて改質部1の温度が本発明の第3の所定温度の一例である約300℃以下まで低下したことが検知された後、ステップ17Sにて送風部8、点化器(図示せず)を動作させて、開閉弁15を開く。そして、制御手段16は原料供給部2を動作させ、原料を改質部1に供給し、燃焼部7での燃焼を再開できる。   Next, after it is detected in step 16S that the temperature of the reforming unit 1 has decreased to about 300 ° C. or less, which is an example of the third predetermined temperature of the present invention, the blowing unit 8 is turned on in step 17S. A device (not shown) is operated to open the on-off valve 15. And the control means 16 can operate the raw material supply part 2, can supply a raw material to the modification | reformation part 1, and can restart the combustion in the combustion part 7. FIG.

ここで、約300℃まで低下させた後に、原料供給部2からの原料供給及び燃焼部7による加熱を開始しているので、ステップ18Sにて改質部1内の温度を350℃以下の定常状態に保つことが出来る。   Here, since the raw material supply from the raw material supply unit 2 and the heating by the combustion unit 7 are started after the temperature is lowered to about 300 ° C., the temperature in the reforming unit 1 is steady at 350 ° C. or less in step 18S. It can be kept in a state.

次に、ステップ5Sへと進み、蒸発部温度検知手段6によって検知される温度が100℃以上になった時、水蒸気が発生していると判断でき、原料および水供給部4からの水の供給を増加させる。   Next, it progresses to step 5S, and when the temperature detected by the evaporation part temperature detection means 6 becomes 100 degreeC or more, it can be judged that water vapor | steam has generate | occur | produced, and supply of the raw material and the water from the water supply part 4 Increase.

次に、ステップ6Sにて制御手段16は、燃焼部7に供給される可燃ガス流量を増加させ改質器1の温度を600℃以上の水蒸気改質反応が進行する第2の所定温度に昇温させる。以下、上記と同様にステップ7S、8Sへが実行される。   Next, in step 6S, the control means 16 increases the flow rate of the combustible gas supplied to the combustion unit 7 and raises the temperature of the reformer 1 to a second predetermined temperature at which the steam reforming reaction proceeds at 600 ° C. or higher. Let warm. Thereafter, steps 7S and 8S are executed in the same manner as described above.

又、蒸発部3は改質部1に熱的に接触して設けられているので、改質部1の温度が上昇するとともに受熱し、必要水蒸気量が得られる。起動時には改質部1からの伝熱量が小さいので、ヒーター部5を通電し、蒸発部3を加熱できるので、水蒸気が得られるまでの時間を短くでき、起動時間を短縮できる。   Further, since the evaporating unit 3 is provided in thermal contact with the reforming unit 1, the temperature of the reforming unit 1 rises and receives heat, and a necessary water vapor amount is obtained. Since the amount of heat transferred from the reforming unit 1 is small at the time of startup, the heater unit 5 can be energized and the evaporation unit 3 can be heated, so that the time until water vapor is obtained can be shortened and the startup time can be shortened.

上述した様に本実施の形態1の水素生成装置では、パージした原料ガスを燃焼部7での燃料として用いているため、従来の水素生成装置の様にパージ用と燃焼用と分けた場合と比較すると燃料の利用効率は良くなる。   As described above, since the purged source gas is used as the fuel in the combustion unit 7 in the hydrogen generator of the first embodiment, the case where the purge and the combustion are separated as in the conventional hydrogen generator. In comparison, the fuel utilization efficiency is improved.

又、本実施の形態1の水素生成装置は、開閉弁15と切り替え弁11を備えているが、従来と比較して弁の数が減っているために、よりコストが安くなり、又より発電効率が低下しない。   In addition, the hydrogen generator of the first embodiment includes the on-off valve 15 and the switching valve 11, but the number of valves is reduced as compared with the conventional one, so that the cost is reduced and the power generation is further improved. Efficiency does not decrease.

尚、本実施の形態1の水素生成装置は、改質部1のみを設けているが、改質部1によって生成された改質ガス中の一酸化炭素を低減するためのシフト反応部及びCO除去反応部を改質部1と切り替え弁11の間に更に設けてもよい。   Although the hydrogen generator of the first embodiment is provided with only the reforming unit 1, a shift reaction unit and a CO for reducing carbon monoxide in the reformed gas generated by the reforming unit 1 are provided. A removal reaction unit may be further provided between the reforming unit 1 and the switching valve 11.

又、本発明の第3の所定温度の一例として、本実施の形態1では300℃としているが300℃以下であってもよく、要するに第1の所定温度の一例である350℃以下で、原料供給部2及び送風部8の制御によって第1の所定温度以下に保つことが出来、蒸発部3の温度を水蒸気の発生する温度まで加温することが出来る温度でありさえすればよい。   In addition, as an example of the third predetermined temperature of the present invention, although it is 300 ° C. in the first embodiment, it may be 300 ° C. or lower. In short, at 350 ° C. or lower, which is an example of the first predetermined temperature, It is only necessary that the temperature can be kept below the first predetermined temperature by controlling the supply unit 2 and the air blowing unit 8 and the temperature of the evaporation unit 3 can be heated to a temperature at which water vapor is generated.

又、装置構成、触媒等によって設定温度は本実施の形態1に記載した温度に限らない。   Further, the set temperature is not limited to the temperature described in the first embodiment depending on the device configuration, the catalyst, and the like.

尚、本発明のプログラムは、上述した本発明の水素生成装置の制御部の機能をコンピュータにより実行させるためのプログラムであって、コンピュータと協働して動作するプログラムである。   The program of the present invention is a program for causing a computer to execute the function of the control unit of the hydrogen generator of the present invention described above, and is a program that operates in cooperation with the computer.

又、本発明の記録媒体は、上述した本発明の水素生成装置の制御部の全部又は一部の機能をコンピュータにより実行させるためのプログラムを担持した記録媒体であり、コンピュータにより読み取り可能且つ、読み取られた前記プログラムが前記コンピュータと協動して前記機能を実行する記録媒体である。   The recording medium of the present invention is a recording medium carrying a program for causing a computer to execute all or a part of the functions of the control unit of the above-described hydrogen generator of the present invention. The recorded program executes the function in cooperation with the computer.

又、本発明の上記制御部の機能とは、全部又は一部の機能を意味する。   Moreover, the function of the said control part of this invention means all or one part function.

又、本発明のプログラムの一利用形態は、コンピュータにより読み取り可能な記録媒体に記録され、コンピュータと協働して動作する態様であっても良い。   Further, one usage form of the program of the present invention may be an aspect in which the program is recorded on a computer-readable recording medium and operates in cooperation with the computer.

又、本発明のプログラムの一利用形態は、伝送媒体中を伝送し、コンピュータにより読みとられ、コンピュータと協働して動作する態様であっても良い。   Further, one usage form of the program of the present invention may be an aspect in which the program is transmitted through a transmission medium, read by a computer, and operated in cooperation with the computer.

又、記録媒体としては、ROM等が含まれ、伝送媒体としては、インターネット等の伝送媒体、光・電波・音波等が含まれる。   The recording medium includes a ROM and the like, and the transmission medium includes a transmission medium such as the Internet, light, radio waves, sound waves, and the like.

又、上述した本発明のコンピュータは、CPU等の純然たるハードウェアに限らず、ファームウェアや、OS、更に周辺機器を含むものであっても良い。   The computer of the present invention described above is not limited to pure hardware such as a CPU, but may include firmware, an OS, and peripheral devices.

尚、以上説明した様に、本発明の構成は、ソフトウェア的に実現しても良いし、ハードウェア的に実現しても良い。   As described above, the configuration of the present invention may be realized by software or hardware.

本発明にかかる水素生成装置およびその起動方法は、ガスの利用効率がより良く、又は、より発電効率が低下しない、又は、よりコストが安くなる効果を有し、燃料電池発電システム等として有用である。   The hydrogen generator and the start-up method according to the present invention have an effect that the gas utilization efficiency is better, or the power generation efficiency is not lowered or the cost is lower, and is useful as a fuel cell power generation system and the like. is there.

本発明にかかる実施の形態1における水素生成装置を用いた燃料電池システムの概略図Schematic of a fuel cell system using a hydrogen generator in Embodiment 1 according to the present invention 本発明にかかる実施の形態1における水素生成装置の起動方法を説明する図The figure explaining the starting method of the hydrogen generator in Embodiment 1 concerning this invention 本発明にかかる実施の形態1における水素生成装置の起動方法を説明する図The figure explaining the starting method of the hydrogen generator in Embodiment 1 concerning this invention 本発明にかかる実施の形態1における水素生成装置の起動方法を示すフロー図The flowchart which shows the starting method of the hydrogen generator in Embodiment 1 concerning this invention 従来の水素生成装置を用いた燃料電池システムの概略図Schematic diagram of a fuel cell system using a conventional hydrogen generator

符号の説明Explanation of symbols

1 改質部
2 原料供給部
3 蒸発部
4 水供給部
5 ヒーター部
6 蒸発部温度検知手段
7 燃焼部
8 送風部
9 燃焼検知部
10 改質ガス流路
11 切り替え弁
12 燃料電池
13 改質部温度検知手段
14 脱硫器
15 開閉弁
16 制御部
17 排ガス流路
DESCRIPTION OF SYMBOLS 1 Reforming part 2 Raw material supply part 3 Evaporation part 4 Water supply part 5 Heater part 6 Evaporation part temperature detection means 7 Combustion part 8 Blower part 9 Combustion detection part 10 Reformed gas flow path 11 Switching valve 12 Fuel cell 13 Reformer part Temperature detection means 14 Desulfurizer 15 On-off valve 16 Control unit 17 Exhaust gas flow path

Claims (10)

炭化水素系の原料ガスと水蒸気を触媒層に流通させ改質反応によって改質ガスを生成する改質部と、
前記改質部を加熱する燃焼部と、
前記燃焼部に空気を供給する送風部と、
前記改質部の温度を検出する改質部温度検知手段と、
前記改質部に前記原料ガスを供給する原料供給部と、
前記改質部に前記水蒸気を供給する蒸発部と、
前記蒸発部に水を供給する水供給部と、
前記改質部で生成された改質ガス及び/又は前記改質部を流通した前記原料ガスを、前記燃焼部又は前記改質ガスを利用する装置のうちどちらか一方に導くための切り替え弁と、
起動時に、前記原料供給部から前記原料ガスを供給することで前記改質部を前記原料ガスでパージし、前記改質部を流通した前記原料ガスを前記切り替え弁を介して前記燃焼部に供給することで前記燃焼部が着火し、前記改質部温度検出手段により検出される温度が炭素析出反応が進行しない第1の所定温度以下となるように前記燃焼部を制御する制御手段と、を備えた水素生成装置。
A reforming section for producing a reformed gas by a reforming reaction by circulating a hydrocarbon-based source gas and water vapor through the catalyst layer;
A combustion section for heating the reforming section;
A blower for supplying air to the combustion part;
A reforming section temperature detecting means for detecting the temperature of the reforming section;
A raw material supply section for supplying the raw material gas to the reforming section;
An evaporation section for supplying the steam to the reforming section;
A water supply unit for supplying water to the evaporation unit;
A switching valve for guiding the reformed gas generated in the reforming section and / or the raw material gas flowing through the reforming section to either the combustion section or the apparatus using the reformed gas; ,
At startup, the raw material gas is supplied from the raw material supply unit to purge the reforming unit with the raw material gas, and the raw material gas flowing through the reforming unit is supplied to the combustion unit via the switching valve. Control means for controlling the combustion section so that the combustion section is ignited and the temperature detected by the reforming section temperature detection means is equal to or lower than a first predetermined temperature at which the carbon deposition reaction does not proceed. Equipped with a hydrogen generator.
前記蒸発部の温度を検知する蒸発部温度検出手段を更に備え、
前記制御手段は、前記起動時に前記原料供給部から前記原料ガスを供給すると同時に、前記水供給部からの水供給を開始し、
前記蒸発部温度検出手段によって検知される温度が、水蒸気の発生する温度以上になった後、前記改質部の温度を前記改質反応が進行する第2の所定温度に上昇させるように前記燃焼部を制御する請求項1記載の水素生成装置。
Further comprising an evaporating part temperature detecting means for detecting the temperature of the evaporating part,
The control means starts supplying water from the water supply unit at the same time as supplying the raw material gas from the raw material supply unit during the startup,
The combustion is performed so that the temperature of the reforming section is raised to a second predetermined temperature at which the reforming reaction proceeds after the temperature detected by the evaporation section temperature detecting means becomes equal to or higher than the temperature at which steam is generated. The hydrogen generator of Claim 1 which controls a part.
前記制御手段は、前記原料供給部からの原料供給量を調節することにより、前記燃焼部の加熱を制御する請求項1又は2記載の水素生成装置。   The hydrogen generation apparatus according to claim 1, wherein the control unit controls heating of the combustion unit by adjusting a raw material supply amount from the raw material supply unit. 前記制御手段は、前記送風部からの送風量を調節することにより、前記燃焼部の加熱を制御する請求項1又は2記載の水素生成装置。   The hydrogen generator according to claim 1, wherein the control unit controls heating of the combustion unit by adjusting an amount of air blown from the blower unit. 前記制御手段は、
前記原料供給部からの原料供給量の調節及び前記送風部からの送風量の調節によって前記第1の所定温度以下にならない場合、
前記原料供給部からの原料供給を一旦停止することにより前記加熱部を失火させ、前記改質部温度検出手段の温度が、前記第1の所定温度よりも低い第3の所定温度以下になった後に、前記原料供給部を動作させることで前記燃焼部が着火し、前記改質部温度検出手段の温度が炭素析出反応が進行しない第1の所定温度以下となるように前記燃焼部を制御する制御手段である請求項1又は2記載の水素生成装置。
The control means includes
When the temperature does not fall below the first predetermined temperature by adjusting the raw material supply amount from the raw material supply unit and adjusting the blast amount from the air blowing unit,
The heating unit was misfired by temporarily stopping the material supply from the material supply unit, and the temperature of the reforming unit temperature detection means became equal to or lower than a third predetermined temperature lower than the first predetermined temperature. Thereafter, the combustion unit is ignited by operating the raw material supply unit, and the combustion unit is controlled so that the temperature of the reforming unit temperature detection means is equal to or lower than a first predetermined temperature at which the carbon deposition reaction does not proceed. The hydrogen generator according to claim 1, which is a control means.
前記蒸発部は、前記改質部と熱交換可能に配置されている請求項1記載の水素生成装置。   The hydrogen generating apparatus according to claim 1, wherein the evaporation unit is arranged to be able to exchange heat with the reforming unit. 請求項1〜6のいずれかに記載の水素生成装置の前記制御手段としてコンピューターを機能させるためのプログラム。   The program for functioning a computer as the said control means of the hydrogen generator in any one of Claims 1-6. 請求項7記載のプログラムを担持した記録媒体であって、コンピューターにより処理可能な記録媒体。   A recording medium carrying the program according to claim 7, which can be processed by a computer. 水素生成装置の起動方法において、
原料供給部から原料ガスを供給することで改質部を前記原料ガスでパージするステップと、
前記改質部を流通した前記ガスを前記改質部に設置された燃焼部に供給することで前記燃焼部が着火するステップと、
前記改質部の温度が炭素析出反応が進行しない第1の所定温度以下となるように前記燃焼部を制御するステップとを備えた水素生成装置の起動方法。
In the startup method of the hydrogen generator,
Purging the reforming unit with the source gas by supplying source gas from the source supply unit;
Igniting the combustion unit by supplying the gas flowing through the reforming unit to a combustion unit installed in the reforming unit;
And a step of controlling the combustion section so that the temperature of the reforming section is equal to or lower than a first predetermined temperature at which the carbon deposition reaction does not proceed.
請求項1〜6のいずれかに記載の水素生成装置と、
前記改質ガスを利用する装置としての、前記改質ガスを用いて発電を行う燃料電池とを備えた燃料電池システム。
A hydrogen generator according to any one of claims 1 to 6;
A fuel cell system comprising: a fuel cell that generates electricity using the reformed gas as an apparatus that uses the reformed gas.
JP2004012384A 2004-01-20 2004-01-20 Hydrogen producing apparatus and starting method of the same Withdrawn JP2005206395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004012384A JP2005206395A (en) 2004-01-20 2004-01-20 Hydrogen producing apparatus and starting method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004012384A JP2005206395A (en) 2004-01-20 2004-01-20 Hydrogen producing apparatus and starting method of the same

Publications (2)

Publication Number Publication Date
JP2005206395A true JP2005206395A (en) 2005-08-04
JP2005206395A5 JP2005206395A5 (en) 2007-03-08

Family

ID=34898772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004012384A Withdrawn JP2005206395A (en) 2004-01-20 2004-01-20 Hydrogen producing apparatus and starting method of the same

Country Status (1)

Country Link
JP (1) JP2005206395A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001438A1 (en) * 2004-06-28 2006-01-05 Osaka Gas Co., Ltd. Method and apparatus for producing reformed gas
JP2007191338A (en) * 2006-01-18 2007-08-02 Matsushita Electric Ind Co Ltd Method for driving hydrogen production system, hydrogen production system, and fuel cell power generation unit
JP2007284287A (en) * 2006-04-17 2007-11-01 T Rad Co Ltd Method for starting reforming system
JP2008105900A (en) * 2006-10-25 2008-05-08 Aisin Seiki Co Ltd Reforming apparatus
JP2008108691A (en) * 2006-09-28 2008-05-08 Aisin Seiki Co Ltd Control method of reformer, and reformer as well as fuel cell system
JP2008218355A (en) * 2007-03-07 2008-09-18 Toshiba Corp Fuel cell power generation system
JP2008297155A (en) * 2007-05-31 2008-12-11 Panasonic Corp Fuel reforming device and fuel cell system
EP2138456A1 (en) * 2008-01-17 2009-12-30 Panasonic Corporation Hydrogen generator, fuel cell power generation system including the same, and method for stopping the operation of hydrogen generator
WO2010119608A1 (en) * 2009-04-17 2010-10-21 パナソニック株式会社 Hydrogen generation device and fuel cell system equipped with same
JP2010248035A (en) * 2009-04-16 2010-11-04 Aisin Seiki Co Ltd Reformer and fuel cell system
US7838161B2 (en) 2005-11-10 2010-11-23 Samsung Sdi Co., Ltd. Reformer and fuel cell system using the same
JP2011051847A (en) * 2009-09-03 2011-03-17 Panasonic Corp Hydrogen generation apparatus and method for starting/stopping the same
JP4904348B2 (en) * 2006-06-20 2012-03-28 パナソニック株式会社 Hydrogen generator, fuel cell system, and operation method thereof
EP2455335A1 (en) * 2009-03-02 2012-05-23 Panasonic Corporation Hydrogen generator, fuel cell system comprising the same, and method for operating hydrogen generator
JP5213703B2 (en) * 2006-04-19 2013-06-19 パナソニック株式会社 Fuel cell system

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001438A1 (en) * 2004-06-28 2006-01-05 Osaka Gas Co., Ltd. Method and apparatus for producing reformed gas
US9162888B2 (en) 2004-06-28 2015-10-20 Osaka Gas Co., Ltd. Reformed gas production method and reformed gas production apparatus
US8486167B2 (en) 2004-06-28 2013-07-16 Osaka Gas Co., Ltd. Reformed gas production method and reformed gas production apparatus
US7838161B2 (en) 2005-11-10 2010-11-23 Samsung Sdi Co., Ltd. Reformer and fuel cell system using the same
JP2007191338A (en) * 2006-01-18 2007-08-02 Matsushita Electric Ind Co Ltd Method for driving hydrogen production system, hydrogen production system, and fuel cell power generation unit
JP2007284287A (en) * 2006-04-17 2007-11-01 T Rad Co Ltd Method for starting reforming system
JP5213703B2 (en) * 2006-04-19 2013-06-19 パナソニック株式会社 Fuel cell system
JP4904348B2 (en) * 2006-06-20 2012-03-28 パナソニック株式会社 Hydrogen generator, fuel cell system, and operation method thereof
US8304124B2 (en) 2006-06-20 2012-11-06 Panasonic Corporation Hydrogen generator, fuel cell system, and methods for operating them
JP2008108691A (en) * 2006-09-28 2008-05-08 Aisin Seiki Co Ltd Control method of reformer, and reformer as well as fuel cell system
JP2008105900A (en) * 2006-10-25 2008-05-08 Aisin Seiki Co Ltd Reforming apparatus
JP2008218355A (en) * 2007-03-07 2008-09-18 Toshiba Corp Fuel cell power generation system
JP2008297155A (en) * 2007-05-31 2008-12-11 Panasonic Corp Fuel reforming device and fuel cell system
EP2138456A4 (en) * 2008-01-17 2012-04-18 Panasonic Corp Hydrogen generator, fuel cell power generation system including the same, and method for stopping the operation of hydrogen generator
US8202658B2 (en) 2008-01-17 2012-06-19 Panasonic Corporation Method for stopping a hydrogen generator by controlling water supply to a reformer
EP2138456A1 (en) * 2008-01-17 2009-12-30 Panasonic Corporation Hydrogen generator, fuel cell power generation system including the same, and method for stopping the operation of hydrogen generator
EP2455335A1 (en) * 2009-03-02 2012-05-23 Panasonic Corporation Hydrogen generator, fuel cell system comprising the same, and method for operating hydrogen generator
EP2455335A4 (en) * 2009-03-02 2013-05-01 Panasonic Corp Hydrogen generator, fuel cell system comprising the same, and method for operating hydrogen generator
US8951683B2 (en) 2009-03-02 2015-02-10 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generator, fuel cell system including hydrogen generator, and method for operating hydrogen generator
JP2010248035A (en) * 2009-04-16 2010-11-04 Aisin Seiki Co Ltd Reformer and fuel cell system
WO2010119608A1 (en) * 2009-04-17 2010-10-21 パナソニック株式会社 Hydrogen generation device and fuel cell system equipped with same
JP5634986B2 (en) * 2009-04-17 2014-12-03 パナソニック株式会社 Hydrogen generator and fuel cell system provided with the same
JP2011051847A (en) * 2009-09-03 2011-03-17 Panasonic Corp Hydrogen generation apparatus and method for starting/stopping the same

Similar Documents

Publication Publication Date Title
JP4130603B2 (en) Operation method of hydrogen production system
JP5389167B2 (en) Hydrogen generator and operating method thereof
JP3970064B2 (en) Operation method of hydrogen-containing gas generator
JP2005206395A (en) Hydrogen producing apparatus and starting method of the same
JP2005162580A (en) Hydrogen generator, operation stopping method for hydrogen generator, and fuel cell power generating unit
JP4274754B2 (en) Operation method of hydrogen-containing gas generator
JPWO2007091632A1 (en) Fuel cell system
US8951683B2 (en) Hydrogen generator, fuel cell system including hydrogen generator, and method for operating hydrogen generator
WO2007119736A1 (en) Hydrogen generator, fuel cell system equipped therewith and method of operating the same
JP5090769B2 (en) Operation method of fuel cell power generator
JP3995503B2 (en) Method for starting reformer and reformer
JP5796227B2 (en) Fuel cell power generation system and method for stopping operation of fuel cell power generation system
JP4847759B2 (en) Operation method of hydrogen production apparatus, hydrogen production apparatus, and fuel cell power generation apparatus
WO2011055523A1 (en) Fuel cell system
JP2011256059A (en) Method for operating hydrogen generator and fuel cell system
JP2004296102A (en) Fuel cell system and fuel cell system stopping method
JP4909339B2 (en) Operation method of hydrogen-containing gas generator
JP5166829B2 (en) Reformer and fuel cell system
JP2005332834A (en) Fuel cell power generation system and method of controlling fuel cell power generation system
JP2008087990A (en) Hydrogen generation apparatus and fuel cell system equipped with the same
JP4835273B2 (en) Hydrogen generator and fuel cell system
JP2009242205A (en) Start-up method of hydrogen-containing gas producing apparatus
JP2016034881A (en) Hydrogen generator and method for operating the same, and fuel cell system
JP6270507B2 (en) Start-up operation method for hydrogen-containing gas generator and hydrogen-containing gas generator
JP2010195631A (en) Apparatus for generating hydrogen-containing gas

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080407