JP2972261B2 - Nitrogen purge method and heating method for fuel cell power generation system - Google Patents

Nitrogen purge method and heating method for fuel cell power generation system

Info

Publication number
JP2972261B2
JP2972261B2 JP2056870A JP5687090A JP2972261B2 JP 2972261 B2 JP2972261 B2 JP 2972261B2 JP 2056870 A JP2056870 A JP 2056870A JP 5687090 A JP5687090 A JP 5687090A JP 2972261 B2 JP2972261 B2 JP 2972261B2
Authority
JP
Japan
Prior art keywords
nitrogen
desulfurizer
reformer
fuel cell
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2056870A
Other languages
Japanese (ja)
Other versions
JPH03257762A (en
Inventor
信弘 岩佐
良行 田熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOSAKA GASU KK
Mitsubishi Electric Corp
Original Assignee
OOSAKA GASU KK
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOSAKA GASU KK, Mitsubishi Electric Corp filed Critical OOSAKA GASU KK
Priority to JP2056870A priority Critical patent/JP2972261B2/en
Publication of JPH03257762A publication Critical patent/JPH03257762A/en
Application granted granted Critical
Publication of JP2972261B2 publication Critical patent/JP2972261B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は原燃料,例えば炭化水素燃料を水蒸気と反
応させて水素がすを生成する燃料電池発電システムに関
するものである。
Description: BACKGROUND OF THE INVENTION The present invention relates to a fuel cell power generation system for producing hydrogen soot by reacting a raw fuel, for example, a hydrocarbon fuel with water vapor.

〔従来の技術〕[Conventional technology]

原燃料,例えば炭化水素燃料を水蒸気と反応させて水
素ガスを生成する改質装置は,都市ガスプラント,アン
モニア合成プラント等の産業用に広く使用されている。
最近実用化を目指して盛んに開発が進められている燃料
電池発電プラントにも改質装置が使用されている。改質
装置は,触媒を用いて上記の反応(改質反応)を行わせ
る改質器の他,前処理工程として燃料中の硫黄(S)成
分を除去する脱硫器を含む。このような改質装置を使用
した燃料電池発電システムの従来技術として,例えば昭
和63年9月・新エネルギー総合開発機構発行「昭和62年
度研究成果情報〔II〕に開示されたものがあり、その概
要を第3図に示す。第3図において、(1)は燃料極
(1a),空気極(1b),冷却(1c)から成る燃料電池本
体,(2)は炭化水素燃料(原燃料)を水蒸気と反応さ
せて水素を多く含む改質ガスを生成する改質器で,反応
部(2a)とバーナ部(2b)とで構成されている。(3)
は原燃料中の流黄(S)成分を除去する脱硫器,(4)
は原燃料を水蒸気と混合昇圧するエジェクタ,(5)は
水蒸気分離器,(6)は電池冷却水ポンプ,(7)は空
気ブロワ,(8),(9)は原燃料供給管,(10)は原
燃料供給管(8)上に設けたしゃ断弁,(11)は窒素設
備,(12)は窒素供給管,(13)は窒素供給管(12)上
に設けたしゃ断弁,(14)はスチーム供給管,(15)は
混合ガス供給管,(16)は改質ガス供給管,(17)は排
可燃ガス管,(18)は排ガス管,(19)は反応空気供給
管,(20)は排空気管,(21)は燃焼空気供給管,(2
2)は電池冷却水管である。
2. Description of the Related Art A reformer for producing a hydrogen gas by reacting a raw fuel, for example, a hydrocarbon fuel with water vapor, is widely used in industries such as a city gas plant and an ammonia synthesis plant.
Reformers have also been used in fuel cell power plants that have been actively developed recently for practical use. The reforming apparatus includes a desulfurizer that removes a sulfur (S) component in fuel as a pretreatment step, in addition to a reformer that performs the above-described reaction (reforming reaction) using a catalyst. As a conventional technology of a fuel cell power generation system using such a reformer, there is, for example, one disclosed in the New Energy Comprehensive Development Agency in September 1988, "Research Information Information [II] for 1987. An outline is shown in Fig. 3. In Fig. 3, (1) is a fuel cell body composed of a fuel electrode (1a), an air electrode (1b), and cooling (1c), and (2) is a hydrocarbon fuel (raw fuel). Reactor that reacts with steam to generate reformed gas containing a large amount of hydrogen, and is composed of a reaction section (2a) and a burner section (2b).
Is a desulfurizer that removes runoff (S) component in raw fuel, (4)
Is an ejector that mixes and pressurizes raw fuel with steam, (5) is a steam separator, (6) is a battery cooling water pump, (7) is an air blower, (8) and (9) are raw fuel supply pipes, (10) ) Is a shutoff valve provided on the raw fuel supply pipe (8), (11) is a nitrogen equipment, (12) is a nitrogen supply pipe, (13) is a shutoff valve provided on the nitrogen supply pipe (12), (14) ) Is a steam supply pipe, (15) is a mixed gas supply pipe, (16) is a reformed gas supply pipe, (17) is a combustible gas pipe, (18) is an exhaust gas pipe, (19) is a reaction air supply pipe, (20) is the exhaust air pipe, (21) is the combustion air supply pipe, (2)
2) is a battery cooling water pipe.

次に上記のように構成された従来のシステムの動作に
付いて説明する。燃料電池本体(1)は燃料極(1a),
空気極(1b),冷却器(1c)により構成され,燃料極
(1a)に水素を多く含む改質ガス,空気極(1b)に空気
を供給して酸化還元反応を行わせることにより電力を外
部に取り出す。燃料極(1a)には反応用に水素を必要と
し,このため,炭化水素燃料を水素リッチガスに改質す
る改質器(2)が組み合わされる。まず,天然ガス等の
炭化水素燃料(原燃料)が入口の原燃料供給管(8)を
経て脱硫器(3)に供給される。原燃料の中に含まれる
硫黄(S)分が改質触媒を被毒させる恐れがあるため,
脱硫器(3)が設置され,ここで,原燃料中の硫黄
(S)分を吸着除去される。第3図に示す脱硫器(3)
は,常温吸着型であり,硫黄(S)分の吸着剤として活
性炭や金属系触媒などが使用される。脱硫器(3)を出
た原燃料は原燃料供給管(9)を経てエジェクタ(4)
に送られる。エジェクタ(4)は水蒸気分離器(5)か
ら供給される高圧のスチームを駆動力として,原燃料を
スチムと混合昇圧する機能を有する。エジェクタ(4)
において,原燃料とスチームが混合したあと,その混合
ガス供給管(15)を通って改質器(2)の反応部(2a)
に送られる。反応部(2a)には改質触媒が充填され,そ
こで混合ガスはバーナ部(2b)より熱を与えられて改質
反応を生じ,水素を主成分とする改質ガスに変換され
る。得られた改質ガスは,改質ガス供給管(16)を通っ
て燃料電池本体(1)の燃料極(1a)に供給され,そこ
で反応に消費される。消費された残りの余剰燃料は,排
可燃ガス管(17)を通って改質器(2)のバーナ部(2
b)に送られ,そこで燃焼されて反応部(2a)に対し熱
が与えられる。バーナ部(2b)から排出される燃焼排ガ
スは,排ガス管(18)を経て大気に放出される。空気ブ
ロワ(7)からの空気の一部は反応空気供給管(19)を
経て燃料電池本体(1)の空気極(1b)に供給され,そ
こで酸化反応に供される。前述の燃料極(1a)への改質
ガス供給,及び空気極(1b)への空気の供給によって,
燃料電池本体(1)内で酸化還元反応が行われ,電気出
力が外部に取り出される。空気極(1b)で消費された残
りの空気は,排空気管(20)を通ったあと,バーナ部
(2b)からの排ガス管(18)に合流して大気に放出され
る。空気ブロワ(7)からの残りの空気は,燃焼空気供
給管(21)を通って改質器(2)のバーナ部(2b)へ供
給され,そこで燃焼用空気として消費される。燃料電池
本体(1)には,反応熱を除去する目的で冷却器(1c)
が配置され,ここに電池冷却水が通水される。電池冷却
水は水蒸気分離器(5),電池冷却水ポンプ(6),電
池冷却水管(22)から構成されるループを循環し,燃料
電池本体(1)の冷却器(1c)で奪われた熱はスチーム
の形で水蒸気分離器(5)に回収される。発生したスチ
ームは,スチーム供給管(14)を経てエジェクタ(4)
に供給され,前述の原燃料との混合に使用される。
Next, the operation of the conventional system configured as described above will be described. The fuel cell body (1) has a fuel electrode (1a),
It consists of an air electrode (1b) and a cooler (1c). The reformed gas containing a large amount of hydrogen is supplied to the fuel electrode (1a), and the air is supplied to the air electrode (1b) to cause an oxidation-reduction reaction to generate electric power. Take it out. The fuel electrode (1a) requires hydrogen for the reaction, and therefore, a reformer (2) for reforming the hydrocarbon fuel into a hydrogen-rich gas is combined. First, a hydrocarbon fuel (raw fuel) such as natural gas is supplied to a desulfurizer (3) via a raw fuel supply pipe (8) at an inlet. Since the sulfur (S) content in the raw fuel may poison the reforming catalyst,
A desulfurizer (3) is installed, where sulfur (S) in the raw fuel is adsorbed and removed. Desulfurizer (3) shown in FIG.
Is a normal-temperature adsorption type, in which activated carbon or a metal-based catalyst is used as an adsorbent for sulfur (S). The raw fuel leaving the desulfurizer (3) passes through the raw fuel supply pipe (9) and ejector (4)
Sent to The ejector (4) has a function of mixing and raising the pressure of the raw fuel with the steam using the high-pressure steam supplied from the steam separator (5) as a driving force. Ejector (4)
After the raw fuel and steam are mixed in the reactor, the mixture passes through the mixed gas supply pipe (15) and the reaction section (2a) of the reformer (2)
Sent to The reaction section (2a) is filled with a reforming catalyst, where the mixed gas is given heat from the burner section (2b) to cause a reforming reaction and is converted into a reformed gas containing hydrogen as a main component. The obtained reformed gas is supplied to the fuel electrode (1a) of the fuel cell body (1) through the reformed gas supply pipe (16), where it is consumed for the reaction. The remaining surplus fuel that has been consumed passes through an exhaust combustible gas pipe (17) and burners (2) of a reformer (2).
b), where it is burned and heat is given to the reaction section (2a). The combustion exhaust gas discharged from the burner section (2b) is discharged to the atmosphere via an exhaust gas pipe (18). Part of the air from the air blower (7) is supplied to the air electrode (1b) of the fuel cell body (1) via the reaction air supply pipe (19), where it is subjected to an oxidation reaction. By supplying the reformed gas to the fuel electrode (1a) and the air to the air electrode (1b),
An oxidation-reduction reaction is performed in the fuel cell body (1), and an electric output is taken out. The remaining air consumed in the air electrode (1b) passes through the exhaust air pipe (20), joins the exhaust gas pipe (18) from the burner section (2b), and is discharged to the atmosphere. The remaining air from the air blower (7) is supplied to the burner section (2b) of the reformer (2) through the combustion air supply pipe (21), where it is consumed as combustion air. The fuel cell body (1) has a cooler (1c) for the purpose of removing reaction heat
Is disposed, and the battery cooling water is passed through this. Battery cooling water circulates through a loop composed of a steam separator (5), a battery cooling water pump (6), and a battery cooling water pipe (22), and was taken away by the cooler (1c) of the fuel cell body (1). The heat is recovered in the form of steam in the steam separator (5). The generated steam passes through the steam supply pipe (14) and ejector (4).
And used for mixing with the aforementioned raw fuel.

さて、このような燃料電池発電システムにおいて,シ
ステムが停止するとき,系内に可燃ガスを残したままだ
と安全上問題があるため,系内の窒素パージ用に窒素設
備(11)が設置される。システムが停止したとき,原燃
料供給管(8)上のしゃ断弁(10)を閉じ,窒素供給管
(12)上のしゃ断弁(13)を開いて窒素設備(11)から
の窒素を系内に送り込み,系内の可燃ガスを外部に追い
出す。脱硫器(3)の上流側から窒素を供給することに
より,可燃ガスを含む殆ど全ての機器,配管に対し窒素
パージを行うことができる。可燃ガス系統の窒素置換を
十分に行うために,系統容積の数倍の量の窒素パージが
行われる。窒素パージ開始後,脱硫器(3)の容積分の
パージが終了するまでの間はエジェクタ(4)を介して
スチームを供給し続け,脱硫器(3)の容積分のパージ
終了後はスチーム供給を停止する。(スチーム供給の遮
断機構の図示は省略する)これは,窒素パージにより脱
硫器(3)から押し出されてきた炭化水素燃料が適正な
量のスチームを伴って正常な改質反応を継続することを
期待するもので,脱硫器(3)の容積分パージが終了す
ればその必要はないものとしてスチームを停止させる。
もし炭化水素燃料がスチームを伴わずに高温の改質器
(2)の反応部(2a)に供給されると,そこで炭化水素
が分解して改質触媒上にカーボン析出を起こし,運転上
種々の弊害をもたらせる。必要量の窒素が供給されれ
ば,しゃ断弁(13)を閉じて窒素パージを終了し,シス
テムは停止状態へ移行する。窒素パージ完了後のシステ
ム停止中は,そのまま系内を窒素で封じ込めておくか,
或は外部から空気が侵入しない程度に微量の窒素パージ
を行うか,時々しゃ断弁(13)を開いて間欠的に窒素パ
ージを行うなどの処置がとられる。システム起動時は,
まず窒素供給管(12)上のしゃ断弁(13)を開いて系内
に窒素を供給し,同時に改質器(2)のバーナ部(2b)
で原燃料を直接燃焼し(回路は回示せず),窒素を熱触
媒体とした系内の昇温,いわゆる窒素昇温を行わせる。
改質器(2)を始めとする系内の昇温が完了した後,窒
素供給管(12)のしゃ断弁(13)を閉じ,原燃料供給管
(8)上のしゃ断弁(10)を開いて原燃料を導入する。
これにより改質反応が開始され発電が行われる。
Now, in such a fuel cell power generation system, when the system is stopped, there is a safety problem if flammable gas is left in the system. Therefore, a nitrogen facility (11) is installed for purging nitrogen in the system. . When the system stops, shut off the shutoff valve (10) on the raw fuel supply pipe (8) and open the shutoff valve (13) on the nitrogen supply pipe (12) to allow nitrogen from the nitrogen facility (11) to flow through the system. To expel flammable gas in the system to the outside. By supplying nitrogen from the upstream side of the desulfurizer (3), it is possible to perform nitrogen purging on almost all devices and piping including combustible gas. In order to sufficiently perform the nitrogen replacement of the combustible gas system, a nitrogen purge of an amount several times the system volume is performed. After the start of the nitrogen purge, steam is continuously supplied through the ejector (4) until the purge of the volume of the desulfurizer (3) is completed, and after the purge of the volume of the desulfurizer (3), the steam is supplied. To stop. (The illustration of the steam supply shut-off mechanism is omitted.) This is to ensure that the hydrocarbon fuel pushed out from the desulfurizer (3) by the nitrogen purge continues the normal reforming reaction with an appropriate amount of steam. As expected, when the purge for the volume of the desulfurizer (3) is completed, the steam is stopped as it is unnecessary.
If hydrocarbon fuel is supplied to the reaction section (2a) of the high-temperature reformer (2) without steam, the hydrocarbon is decomposed there and carbon deposits on the reforming catalyst. Can bring the ill effects. When the required amount of nitrogen has been supplied, the shut-off valve (13) is closed to terminate the nitrogen purge, and the system shifts to a stop state. While the system is stopped after the nitrogen purge is completed, keep the system filled with nitrogen,
Alternatively, a measure such as performing a slight amount of nitrogen purging so that air does not enter from the outside or intermittently purging the nitrogen by opening the shutoff valve (13) is taken. At system startup,
First, the shutoff valve (13) on the nitrogen supply pipe (12) is opened to supply nitrogen into the system, and at the same time, the burner section (2b) of the reformer (2)
The raw fuel is directly burned (the circuit is not shown) to raise the temperature in a system using nitrogen as a thermal catalyst, so-called nitrogen heating.
After the temperature in the system including the reformer (2) has been raised, the shutoff valve (13) of the nitrogen supply pipe (12) is closed, and the shutoff valve (10) on the raw fuel supply pipe (8) is closed. Open and introduce raw fuel.
Thereby, the reforming reaction is started, and power generation is performed.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上述した従来の燃料電池発電システムは,システム停
止時に脱硫器(3)の上流側から窒素パージを行わせる
ものであり,脱硫器(3)に使用される常温の吸着型の
触媒(脱硫触媒)は炭化水素燃料を吸着する性質を有す
るため,脱硫器(3)内の窒素パージに時間を要すると
いう問題があった。金属系触媒を使用した脱硫器(3)
について,都市ガス13Aを原燃料として運転した後窒素
パージをかけたときの脱硫器(3)出口ガス成分を測定
した結果の一例を第4図に示す。都市ガス13Aのガス成
分は,メタン(CH4)88%,エタン(C2H6)6%,プロ
パン(C3H8)4%,ブタン(C4H10)2%,脱硫器
(3)容積は約0.6m3,窒素パージ流量は約20Nm3/hであ
る。脱硫触媒に吸着性がなければ,窒素パージによる脱
硫器(3)内可燃ガス追い出しは数分程度で完了する筈
であるが,第4図によれば,特に高分子量成分であるブ
タンが長時間にわたりゆっくりと排出され,数時間を経
てもなお窒素置換が十分に行われていないことが示され
ている。これは脱硫触媒が都市ガス中の高分子量成分
(ブタン等)を吸着する性質を有し,窒素パージのとき
に吸着した炭化水素をゆっくりと離脱することの現象に
基づくものである。
In the conventional fuel cell power generation system described above, a nitrogen purge is performed from the upstream side of the desulfurizer (3) when the system is stopped, and a normal temperature adsorption type catalyst (desulfurization catalyst) used in the desulfurizer (3) Has the property of adsorbing hydrocarbon fuel, so that there is a problem that it takes time to purge nitrogen in the desulfurizer (3). Desulfurizer using metal catalyst (3)
FIG. 4 shows an example of the result of measuring the gas components at the outlet of the desulfurizer (3) when nitrogen gas was purged after operating with the city gas 13A as the raw fuel. Gas component city gas 13A is methane (CH 4) 88%, ethane (C 2 H 6) 6% , propane (C 3 H 8) 4% , butane (C 4 H 10) 2% , desulfurizer (3 ) The volume is about 0.6 m 3 and the nitrogen purge flow rate is about 20 Nm 3 / h. If the desulfurization catalyst does not have adsorptivity, the removal of combustible gas in the desulfurizer (3) by nitrogen purge should be completed in about a few minutes. However, according to FIG. Over a few hours, indicating that nitrogen replacement is still not sufficient after several hours. This is based on the phenomenon that the desulfurization catalyst has the property of adsorbing high molecular weight components (such as butane) in city gas, and slowly removes the adsorbed hydrocarbons during nitrogen purge.

さて,このように脱硫器(3)内の窒素パージに時間
を要することは,次に述べるとおりいくつかの不具合を
もたらせる。まず一つ目として,システム停止時,窒素
パージに伴って脱硫器(3)から排出される炭化水素が
スチームを伴わずにそのまま高温の改質器(2)の反応
部(2a)に導かれると,そこで炭化水素が分解し改質触
媒上にカーボン析出が生ずる。カーボン析出は,改質触
媒の活性を低下させたり,圧力損失を増加させるなど改
質器(2)の運転に重大な悪影響を及ぼす。従来,脱硫
器(3)の容積分の窒素パージが完了するまで(数分程
度)の間,水蒸気分離器(5)からのスチームを併せて
供給することでカーボン析出の防止を図っていたが,上
述の如く脱硫器(3)からの炭化水素が容積分のパージ
終了後も継続して排出されるため,スチーム停止後にカ
ーボン析出の問題が発生していた。窒素パージは,可燃
ガスを含む全系統の容積分を対象とするため,脱硫器
(3)の容積分のパージ終了後も所要量のパージ継続が
必要である。脱硫器(3)の容積分のパージ終了後もス
チームの供給を継続すればカーボン析出の問題はない
が,残存炭化水素の量に見合う適正なスチーム量の調整
は困難で,スチーム量が過剰になれば,燃料電池本体
(1)に湿分の多いガスが供給され燃料電池本体(1)
に対し不都合を招くといった問題点があった。
The time required for purging nitrogen in the desulfurizer (3) in this way causes some problems as described below. First, when the system is shut down, the hydrocarbons discharged from the desulfurizer (3) due to the nitrogen purge are guided to the reactor (2a) of the high-temperature reformer (2) without steam. Then, hydrocarbons are decomposed there and carbon deposition occurs on the reforming catalyst. Carbon deposition has a serious adverse effect on the operation of the reformer (2), such as decreasing the activity of the reforming catalyst and increasing the pressure loss. Conventionally, carbon deposition was prevented by simultaneously supplying steam from the steam separator (5) until the nitrogen purge for the volume of the desulfurizer (3) was completed (about several minutes). As described above, since the hydrocarbons from the desulfurizer (3) are continuously discharged after the completion of the purging for the volume, the problem of carbon deposition has occurred after the steam was stopped. Since the nitrogen purge covers the volume of the entire system including the combustible gas, it is necessary to continue purging the required amount even after the purging of the volume of the desulfurizer (3) is completed. If the supply of steam is continued even after the purging of the desulfurizer (3) is completed, there is no problem of carbon deposition, but it is difficult to adjust the amount of steam appropriately to match the amount of residual hydrocarbons. If it is, a gas with a high humidity is supplied to the fuel cell body (1), and the fuel cell body (1)
However, there is a problem that it causes inconvenience.

次に二つ目として,可燃ガス系統の窒素パージが十分
に行われてないか,或は窒素パージを十分に行おうとす
れば多くの時間と多量の窒素を必要とする。脱硫触媒に
吸着作用がなければ系内可燃ガス追い出しは系統容積の
数倍の量の窒素パージで十分であり,これには十数分程
度の時間を要するのみであった。しかしながら第4図に
示すとおり,脱硫触媒の吸着作用のため窒素パージ開始
後も長時間にわたり可燃ガスが残り,従来のように十数
分程度で窒素パージを止めれば系内には2%以上の可燃
ガスを残したままとなり,安全上の問題があった。まさ
にこの可燃ガスを十分に追い出そうとすれば,少なくと
も数時間以上の窒素パージが必要であり,システム停止
に多大の時間がかかること及びその間膨大な窒素を消費
するという問題があった。
Secondly, the combustible gas system is not sufficiently purged with nitrogen, or a sufficient nitrogen purge requires a lot of time and a large amount of nitrogen. If the desulfurization catalyst had no adsorption action, the purging of combustible gas in the system was sufficient with a nitrogen purge several times the system volume, which only took about ten minutes. However, as shown in FIG. 4, the combustible gas remains for a long time even after the nitrogen purge is started due to the adsorbing action of the desulfurization catalyst. The combustible gas remained, causing a safety problem. If the combustible gas is to be satisfactorily removed, it is necessary to purge nitrogen for at least several hours, and there is a problem that it takes a long time to stop the system and consumes an enormous amount of nitrogen during that time.

さらに三つ目として,システム起動時の窒素昇温時
に,脱硫器(3)から排出される炭化水素がスチームを
伴わずにそのまま高温の改質器(2)の反応部(2a)に
導かれ,そこで停止時と同様のカーボン析出が生ずる。
システム起動時,脱硫器(3)の上流側から窒素が供給
され,改質器(2)のバーナ部(2b)の燃焼によって系
内の昇温が行われるが,このとき前回の運転で脱硫触媒
に吸着された炭化水素が停止時の窒素パージ不十分のま
ま次の起動時に窒素の通気とともに排出されてそのまま
改質器(2)に導かれていた。起動時の昇温中は,系内
の昇温がまだ十分になされていないので,スチーム供給
は不可能であり,スチームのない状態で炭化水素は昇温
中の改質触媒に触れて容易にカーボン析出を起こしてい
た。
Third, when the temperature of the nitrogen rises at the time of system startup, the hydrocarbons discharged from the desulfurizer (3) are guided to the reactor (2a) of the high-temperature reformer (2) without steam. Then, carbon precipitation similar to that at the time of stopping occurs.
When the system is started, nitrogen is supplied from the upstream side of the desulfurizer (3), and the internal temperature of the system is increased by the combustion of the burner section (2b) of the reformer (2). The hydrocarbon adsorbed on the catalyst was discharged together with the nitrogen gas at the next start-up while the nitrogen purge at the time of stop was insufficient, and was led to the reformer (2) as it was. During the temperature rise at start-up, steam supply is not possible because the temperature inside the system has not been sufficiently increased yet, and in the absence of steam, hydrocarbons easily come into contact with the reforming catalyst during temperature rise. Carbon deposition was occurring.

この発明は上記のような課題を解決するためになされ
たものであり,システム停止時にカーボン析出を防止で
き,システム起動時の昇温時にカーボン析出を防止でき
る燃料電池発電システムを得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a fuel cell power generation system that can prevent carbon deposition when the system is stopped and that can prevent carbon deposition when the temperature is raised when the system is started. I do.

[課題を解決するための手段] この発明に係わる燃料電池発電システムの窒素パージ
方法は、燃料電池本体と、原燃料を水蒸気と反応させて
水素ガスを生成する改質器と、前記改質器の上流側に配
設された脱硫器と、前記脱硫器の上流側及び下流側に、
それぞれしゃ断弁を介して窒素設備につながる窒素供給
管とを有する燃料電池発電システムの窒素パージ方法で
あって、 前記燃料電池発電システムの停止時に、前記脱硫器の
直後を大気に開放することなく、前記上流側のしゃ断弁
を開いて前記脱硫器の上流側から前記脱硫器の容積分の
窒素パージを行った後に、前記上流側のしゃ断弁を閉鎖
し前記下流側のしゃ断弁を開いて、前記脱硫器の下流側
から前記改質器の窒素パージを行うものである。
Means for Solving the Problems A nitrogen purging method for a fuel cell power generation system according to the present invention includes a fuel cell main body, a reformer that generates hydrogen gas by reacting raw fuel with steam, and the reformer. A desulfurizer disposed on the upstream side, and on the upstream and downstream sides of the desulfurizer,
A nitrogen purge method for a fuel cell power generation system having a nitrogen supply pipe connected to a nitrogen facility via a shutoff valve, without releasing the air immediately after the desulfurizer to the atmosphere when the fuel cell power generation system is stopped. After opening the upstream shutoff valve and performing a nitrogen purge for the volume of the desulfurizer from the upstream side of the desulfurizer, closing the upstream shutoff valve and opening the downstream shutoff valve, The reformer is purged with nitrogen from the downstream side of the desulfurizer.

又、燃料電池本体と、原燃料を水蒸気と反応させて水
素ガスを生成する改質器と、前記改質器の上流側に配設
された脱硫器と、前記脱硫器と前記改質器との間に設け
たしゃ断弁と、このしゃ断弁の下流側に、しゃ断弁を介
して窒素設備につながる窒素供給管とを有する燃料電池
発電システムの窒素パージ方法であって、 前記燃料電池発電システムの停止時に、前記脱硫器と
前記改質器との間に設けたしゃ断弁を閉じると同時に、
前記窒素供給管に設けたしゃ断弁を開いて、前記脱硫器
の下流側から前記改質器の窒素パージを行うものであ
る。
Further, a fuel cell body, a reformer that reacts raw fuel with steam to generate hydrogen gas, a desulfurizer disposed upstream of the reformer, the desulfurizer and the reformer, A nitrogen purge method for a fuel cell power generation system, comprising: a shutoff valve provided between the fuel cell power generation system and a nitrogen supply pipe connected to a nitrogen facility via the shutoff valve on the downstream side of the shutoff valve. At the time of stop, at the same time as closing the shutoff valve provided between the desulfurizer and the reformer,
The shutoff valve provided in the nitrogen supply pipe is opened, and nitrogen purging of the reformer is performed from the downstream side of the desulfurizer.

又、この発明に係る燃料電池発電システムの昇温方法
は、燃料電池本体と、原燃料を水蒸気と反応させて水素
ガスを生成する改質器と、前記改質器の上流側に配設さ
れた脱硫器と、前記脱硫器の下流側に、しゃ断弁を介し
て窒素設備につながる窒素供給管とを有する燃料電池発
電システムの昇温方法であって、 前記燃料電池発電システムの起動時に、前記しゃ断弁
を開いて、前記脱硫器の下流側から前記改質器へ窒素を
供給して前記改質器の昇温を行うものである。
In addition, a method for raising a temperature of a fuel cell power generation system according to the present invention includes a fuel cell main body, a reformer that reacts raw fuel with water vapor to generate hydrogen gas, and is disposed upstream of the reformer. A method for raising the temperature of a fuel cell power generation system having a desulfurizer and a nitrogen supply pipe connected to a nitrogen facility via a shut-off valve on the downstream side of the desulfurizer. The shutoff valve is opened, and nitrogen is supplied to the reformer from the downstream side of the desulfurizer to raise the temperature of the reformer.

[作用] 脱硫器の直後を大気に開放しないで、脱硫器の上流側
から脱硫器の容積分の窒素パージを行った後、脱硫器の
下流側からのパージに切替える方法は、脱硫器内のガス
を大気に直接放出しないので環境に及ぼす影響を少なく
するという作用がある。
[Action] The method of switching to the purge from the downstream side of the desulfurizer after performing the nitrogen purge for the volume of the desulfurizer from the upstream side of the desulfurizer without opening to the atmosphere immediately after the desulfurizer, Since the gas is not released directly to the atmosphere, it has the effect of reducing the effect on the environment.

又、システム停止時に脱硫器の後のしゃ断弁(25)を
閉じると同時に、このしゃ断弁(25)の後ろから窒素パ
ージを行う方法は、脱硫器内のガスを大気に放出しない
ので、環境に及ぼす影響が少ないという作用がある。
In addition, the method of closing the shut-off valve (25) after the desulfurizer when the system is stopped and simultaneously purging with nitrogen from the back of the shut-off valve (25) does not discharge the gas in the desulfurizer to the atmosphere. It has the effect of little effect.

また,別の発明における燃料電池発電システムの昇温
方法は,システムの起動時にしゃ断弁を開いて脱硫器の
下流側から改質器へ窒素を供給して改質器の昇温を行
う。
According to another aspect of the invention, there is provided a method for raising the temperature of a fuel cell power generation system, in which the shut-off valve is opened when the system is started, and nitrogen is supplied from a downstream side of the desulfurizer to the reformer to raise the temperature of the reformer.

〔実施例〕〔Example〕

以下,この発明の一実施例を第1図に基づいて説明す
る。第1図において,(1)〜(22)は上述した従来シ
ステムの構成と同様である。(23)は脱硫器(3)の下
流側の原燃料供給管(9)に接続し,窒素設備(11)か
らの窒素を供給する窒素供給管,(24)は窒素供給管
(23)上に設けられたしゃ断弁,(25)は脱硫器(3)
の下流側の原燃料供給管(9)上あって窒素供給管(2
3)の接続点の上流側に配置したしゃ断弁,(26)は脱
硫器(3)としゃ断弁(25)との間の原燃料供給管
(9)上に設けた大気放出管,(27)は大気放出管(2
6)上に設けたしゃ断弁である。
An embodiment of the present invention will be described below with reference to FIG. In FIG. 1, (1) to (22) have the same configuration as the above-described conventional system. (23) is connected to the raw fuel supply pipe (9) downstream of the desulfurizer (3) and supplies nitrogen from the nitrogen equipment (11). Nitrogen supply pipe (24) is on the nitrogen supply pipe (23). Shut-off valve installed in (25) Desulfurizer (3)
Above the raw fuel supply pipe (9) on the downstream side of the
A shutoff valve arranged upstream of the connection point of 3), (26) is an atmosphere discharge pipe provided on the raw fuel supply pipe (9) between the desulfurizer (3) and the shutoff valve (25), (27) ) Is the air release pipe (2
6) The shutoff valve provided above.

次に動作について説明する。システム運転中の動作は
上述した第3図で説明した従来技術の動作と同様であ
る。運転中は原燃料導入の状態にあり,原燃料供給管
(8),(9)上のしゃ断弁(10),(25)は開状態,
窒素供給管(12),(23)上のしゃ断弁(13),(24)
及び大気放出管(26)上のしゃ断弁(27)は閉の状態で
ある。システムが停止すると,原燃料供給管(8),
(9)上のしゃ断弁(10),(25)を閉じると同時に,
窒素供給管(12),(23)上のしゃ断弁(13),(24)
を開くとともに大気放出管(26)上のしゃ断弁(27)を
開いて可燃ガス系統の窒素パージを開始する。即ち,脱
硫器(3)と,改質器(2),燃料電池本体(1)を含
む後流側の可燃ガス系統を切離して窒素パージを行う。
これにより,従来技術で問題になった脱硫器(3)内の
残存炭化水素燃料の改質器(2)への投入,カーボン析
出の可能性が全くなくなる。窒素パージ開始後,脱硫器
(3)内の炭化水素燃料が改質器(2)へ供給されるこ
とがないから,水蒸気分離器(5)からのスチーム供給
はすぐに停止してもよい。従来技術のように脱硫器
(3)から炭化水素燃料が排出されることはないから,
改質器(2),燃料電池本体(1)を含む後流側の可燃
ガス系統の窒素パージは,系統容積の数倍分の量で十分
であり,短時間(例えば+数分程度)で終了する。脱硫
器(3)の窒素パージは,窒素供給管(12)より行わ
れ,排出ガスは大気放出管(26)を経て大気へ放出され
る。やはり,脱硫触媒への炭化水素燃料の吸着により,
長時間にわたり炭化水素燃料が排出されるが,脱硫器
(3)はもともと常温動作であり,また窒素雰囲気であ
ることから多少の可燃ガスを残しても安全上何等問題は
ない。したがって,脱硫触媒への吸着分まで可燃ガスを
追い出す必要はなく,脱硫器(3)内の空間容積分の窒
素パージを行えば十分であり,短時間で窒素パージは終
了する。このような方法により,改質器(2)でカーボ
ン析出を生ずることなく,短時間で効果的に窒素パージ
を行うことができる。
Next, the operation will be described. The operation during the system operation is the same as the operation of the prior art described with reference to FIG. During operation, the raw fuel is being introduced, and the shut-off valves (10) and (25) on the raw fuel supply pipes (8) and (9) are open.
Shut-off valves (13), (24) on nitrogen supply pipes (12), (23)
And the shutoff valve (27) on the atmosphere discharge pipe (26) is in a closed state. When the system stops, the raw fuel supply pipe (8),
(9) At the same time as closing the shutoff valves (10) and (25)
Shut-off valves (13), (24) on nitrogen supply pipes (12), (23)
Is opened and the shutoff valve (27) on the atmosphere discharge pipe (26) is opened to start nitrogen purging of the combustible gas system. That is, the flammable gas system on the downstream side including the desulfurizer (3), the reformer (2), and the fuel cell body (1) is disconnected to perform nitrogen purging.
This eliminates the possibility of charging the remaining hydrocarbon fuel in the desulfurizer (3) into the reformer (2) and depositing carbon, which are problems in the prior art. After the start of the nitrogen purge, since the hydrocarbon fuel in the desulfurizer (3) is not supplied to the reformer (2), the steam supply from the steam separator (5) may be stopped immediately. Since no hydrocarbon fuel is discharged from the desulfurizer (3) unlike the prior art,
Nitrogen purging of the flammable gas system on the downstream side including the reformer (2) and the fuel cell body (1) is sufficient for several times the system volume, and can be performed in a short time (for example, about + several minutes). finish. Nitrogen purging of the desulfurizer (3) is performed from a nitrogen supply pipe (12), and the exhaust gas is discharged to the atmosphere via an air discharge pipe (26). After all, by the adsorption of hydrocarbon fuel to the desulfurization catalyst,
Although hydrocarbon fuel is discharged for a long time, the desulfurizer (3) originally operates at room temperature, and since it is in a nitrogen atmosphere, there is no problem in terms of safety even if some combustible gas remains. Therefore, it is not necessary to drive out the combustible gas to the amount adsorbed on the desulfurization catalyst, and it is sufficient to perform the nitrogen purge for the space volume in the desulfurizer (3), and the nitrogen purge is completed in a short time. According to such a method, nitrogen purging can be effectively performed in a short time without causing carbon deposition in the reformer (2).

また,システム停止時の窒素パージの別実施例とし
て,脱硫器(3)の容積分の窒素パージを従来技術のと
おり行った後に,脱硫器(3)の下流側からの窒素パー
ジに切替える方法がある。この場合,大気放出管(26)
としゃ断弁(27)は不要である。システム停止時に先ず
原燃料供給管(8)上のしゃ断弁(10)を閉じ,窒素供
給管(12)上のしゃ断弁(13)を開いて脱硫器(3)の
上流側より窒素パージを行う。このとき,脱硫器(3)
内の炭化水素燃料が改質器(2)に供給されるため,ス
チームを併せて供給し,改質器(2)でのカーボン析出
を防止する。脱硫器(3)の容積分の窒素パージを終了
すれば,しゃ断弁(13)を閉じ,しゃ断弁(24)を開い
て,脱硫器(3)の下流側からの窒素パージに切替え,
その後スチームを停止する。脱硫器(3)の下流側から
の窒素パージは,下流側か年ガス系統容積の数倍分の量
でよく,短時間で終了する。しゃ断弁(13),(24)の
切替え後は脱硫器(3)の窒素パージは行われず,脱硫
触媒に吸着した分の炭化水素燃料は残るが,上述の実施
例と同様の理由で安全上の問題はない。この実施例では
原燃料供給管(9)上のしゃ断弁(25)はなくてもよい
が,脱硫器(3)内の吸着可燃ガスの後流側への拡散移
動を防ぐために設置した方が望ましい。この場合,しゃ
断弁(24)を開くと同時にしゃ断弁(25)を閉じ,以後
システム停止中はしゃ断弁(25)を閉じたままとしてお
く。この実施例においても改質器(2)でカーボン析出
を生ずることなく,短時間で効果的に窒素パージを行う
ことができる。
As another embodiment of the nitrogen purge when the system is stopped, there is a method in which the nitrogen purge for the volume of the desulfurizer (3) is performed as in the prior art, and then the nitrogen purge is performed from the downstream side of the desulfurizer (3). is there. In this case, air release pipe (26)
The shutoff valve (27) is not required. When the system is stopped, first shut off the shutoff valve (10) on the raw fuel supply pipe (8), open the shutoff valve (13) on the nitrogen supply pipe (12), and perform nitrogen purge from the upstream side of the desulfurizer (3). . At this time, desulfurizer (3)
Since the hydrocarbon fuel inside is supplied to the reformer (2), steam is also supplied to prevent the carbon deposition in the reformer (2). When the nitrogen purge for the volume of the desulfurizer (3) is completed, the shutoff valve (13) is closed, the shutoff valve (24) is opened, and the nitrogen purge from the downstream side of the desulfurizer (3) is switched.
Then stop steaming. Nitrogen purge from the downstream side of the desulfurizer (3) may be several times the amount of the annual gas system volume on the downstream side, and is completed in a short time. After the switching of the shutoff valves (13) and (24), the nitrogen purging of the desulfurizer (3) is not performed, and the hydrocarbon fuel adsorbed on the desulfurization catalyst remains. No problem. In this embodiment, the shutoff valve (25) on the raw fuel supply pipe (9) may be omitted, but it is better to install it in order to prevent the adsorbable combustible gas in the desulfurizer (3) from diffusing and moving to the downstream side. desirable. In this case, the shut-off valve (24) is opened and the shut-off valve (25) is closed at the same time, and thereafter the shut-off valve (25) is kept closed while the system is stopped. Also in this embodiment, the nitrogen purge can be effectively performed in a short time without causing carbon deposition in the reformer (2).

システム停止時の窒素パージのさらに別の実施例とし
て,脱硫器(3)の窒素パージを全く行わず,脱硫器
(3)内に原燃料を残したままにしておく方法がある。
この場合,第1図において,大気放出管(26),しゃ断
弁(27),窒素供給管(12),しゃ断弁(13)が不要と
なる。システム停止時にしゃ断弁(24)を開き,脱硫器
(3)の下流側の可燃ガス系統の窒素パージを行うのみ
で,脱硫器(3)の窒素パージは行わない。しゃ断弁
(25)は窒素パージ開始とともに閉じ,脱硫器(3)内
の可燃ガスの後流側への拡散移動を防止する。脱硫器
(3)は常温動作であり,特に長時間の停止がない限り
可燃ガスを内包したまま放置しても安全上の問題はな
い。この場合も,上述した各実施例と同様の効果を奏す
る。尚,第1図の実施例では,窒素供給管(23)を脱硫
器(3)とエジェクタ(4)との間の原燃料供給管
(9)上に接続する例を示したが,これをエジェクタ
(4)の下流側の混合ガス供給管(15)上に接続しても
よく,上記実施例と同様の効果を奏する。
As still another embodiment of the nitrogen purge when the system is stopped, there is a method in which the nitrogen purge of the desulfurizer (3) is not performed at all and the raw fuel is left in the desulfurizer (3).
In this case, the air release pipe (26), the shutoff valve (27), the nitrogen supply pipe (12), and the shutoff valve (13) become unnecessary in FIG. When the system is stopped, the shut-off valve (24) is opened, and only the nitrogen purge of the combustible gas system downstream of the desulfurizer (3) is performed, but the nitrogen purge of the desulfurizer (3) is not performed. The shutoff valve (25) closes at the start of the nitrogen purge to prevent the flammable gas in the desulfurizer (3) from diffusing and moving to the downstream side. The desulfurizer (3) operates at normal temperature, and there is no safety problem even if the desulfurizer (3) is left with flammable gas contained unless it is stopped for a long time. In this case, the same effects as those of the above-described embodiments can be obtained. In the embodiment of FIG. 1, an example is shown in which the nitrogen supply pipe (23) is connected to the raw fuel supply pipe (9) between the desulfurizer (3) and the ejector (4). It may be connected on the mixed gas supply pipe (15) on the downstream side of the ejector (4), and the same effects as in the above embodiment can be obtained.

また、別の発明であるシステム起動時の昇温方法を第
2図に基づいて説明する。第2図において,(1)〜
(11),(14)〜(22)は上述した従来システムの構成
と同様である。(28)は脱硫器(3)の下流側の原燃料
供給管(9)に接続し,窒素設備(11)からの窒素を供
給する窒素供給管,(29)は窒素供給管(28)上に設け
られたしゃ断弁である。システム起動時に,しゃ断弁
(29)を開いて脱硫器(3)の下流側より昇温用の窒素
を供給する。これにより,昇温用窒素が脱硫器(3)を
通過することがなくなり,従来技術のように脱硫器
(3)から排出される炭化水素で改質器(2)にカーボ
ン析出を生ずるという問題は全くなくなる。あとは従来
技術と同様にこの窒素供給と並行して改質器(2)のバ
ーナ部(2b)で原燃料を燃焼させて(回路は図示せず)
系内の昇温を行う。系内の昇温完了後に窒素供給管(2
8)上のしゃ断弁(29)を閉じ,原燃料供給管(8)上
のしゃ断弁(10)を開いて原燃料を導入する。尚,この
発明における窒素供給管(28)としゃ断弁(29)は,上
記発明の第1図に示す窒素供給管(23)としゃ断弁(2
4)と兼ねてよいことは勿論のことである。また,第2
図の実施例では,窒素供給管(28)を脱硫器(3)とエ
ジェクタ(4)との間の原燃料供給管(9)上に接続す
る例を示したが,これをエジェクタ(4)の下流側の混
合ガス供給管(15)上に接続してもよく,上記実施例と
同様の効果を奏する。
A method for raising the temperature when the system is started, which is another invention, will be described with reference to FIG. In FIG. 2, (1)-
(11) and (14) to (22) are the same as the configuration of the conventional system described above. (28) is connected to the raw fuel supply pipe (9) downstream of the desulfurizer (3) and supplies nitrogen from the nitrogen equipment (11). Nitrogen supply pipe (29) is on the nitrogen supply pipe (28). It is a shut-off valve provided in. When the system is started, the shut-off valve (29) is opened and nitrogen for heating is supplied from the downstream side of the desulfurizer (3). As a result, the nitrogen for heating does not pass through the desulfurizer (3), and the hydrocarbon discharged from the desulfurizer (3) causes carbon deposition in the reformer (2) as in the prior art. Is completely gone. Then, as in the prior art, the raw fuel is burned in the burner section (2b) of the reformer (2) in parallel with the nitrogen supply (the circuit is not shown).
Raise the temperature inside the system. After the temperature inside the system is raised, the nitrogen supply pipe (2
8) Close the upper shutoff valve (29) and open the shutoff valve (10) on the raw fuel supply pipe (8) to introduce raw fuel. The nitrogen supply pipe (28) and the shutoff valve (29) in the present invention are the same as the nitrogen supply pipe (23) and the shutoff valve (2) shown in FIG.
Of course, 4) can also be used. The second
In the embodiment shown in the figure, the nitrogen supply pipe (28) is connected to the raw fuel supply pipe (9) between the desulfurizer (3) and the ejector (4). May be connected on the mixed gas supply pipe (15) on the downstream side, and the same effects as in the above embodiment can be obtained.

〔発明の効果〕〔The invention's effect〕

以上のように,この発明によれば,脱硫器の下流側の
しゃ断弁を介して配設された窒素設備につながる窒素供
給管を設け,窒素供給管からの窒素をしゃ断弁を介して
脱硫器の下流側から供給するようにしたので,短時間で
効果的な窒素供給が行える燃料電池発電システムを得る
ことができる。
As described above, according to the present invention, the nitrogen supply pipe connected to the nitrogen equipment provided via the shutoff valve on the downstream side of the desulfurizer is provided, and the nitrogen from the nitrogen supply pipe is supplied to the desulfurizer via the shutoff valve. The fuel cell power generation system that can supply nitrogen effectively in a short time can be obtained.

また,別の発明は,脱硫器の下流側にしゃ断弁を介し
て窒素設備につながる窒素供給管を接続し,システムの
停止時にしゃ断弁を開いて脱硫器の下流側から改質器の
窒素パージを行うようにしたので,カーボン析出を生ず
ることなく短時間で効果的な窒素パージが行える燃料電
池発電システムの窒素パージ方法を得ることができる。
In another invention, a nitrogen supply pipe connected to a nitrogen facility is connected to a downstream side of a desulfurizer via a shutoff valve, and when the system is stopped, the shutoff valve is opened and a nitrogen purge of a reformer is performed from a downstream side of the desulfurizer. Therefore, it is possible to obtain a nitrogen purging method for a fuel cell power generation system capable of performing effective nitrogen purging in a short time without causing carbon precipitation.

又、この方法において、大気放出管(26)が不要であ
るということは脱硫器内のガスを直接大気に放出しない
ということ、即ち、環境に及ぼす影響をより小さくする
ことができる。
Further, in this method, the elimination of the air discharge pipe (26) means that the gas in the desulfurizer is not directly discharged to the atmosphere, that is, the influence on the environment can be reduced.

さらに,別の発明は,脱硫器の下流側にしゃ断弁を介
して窒素設備につながる窒素供給管を接続し,システム
の起動時にしゃ断弁を開いて脱硫器の下流側から改質器
へ窒素を供給して改質器の昇温を行うようにしたので,
カーボン析出を生ずることなく短時間で効果的な昇温を
行える燃料電池発電システムの昇温方法を得ることがで
きる。
In another invention, a nitrogen supply pipe connected to a nitrogen facility is connected to a downstream side of the desulfurizer through a shutoff valve, and when the system is started, the shutoff valve is opened to supply nitrogen from the downstream side of the desulfurizer to the reformer. Since the temperature of the reformer is increased by supplying
A method for raising the temperature of a fuel cell power generation system capable of effectively raising the temperature in a short time without causing carbon deposition can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例による燃料電池発電システ
ム及びその窒素パージ方法を示す系統図,第2図は別の
発明による燃料電池発電システムの昇温方法を示す系統
図,第3図は従来の燃料電池発電システムを示す系統
図,第4図は従来の窒素パージの特性を示す特性図であ
る。 図において,(1)は燃料電池本体,(2)は改質器,
(3)は脱硫器,(11)は窒素設備,(23)は窒素供給
管,(24)はしゃ断弁,(28)は窒素供給管,(29)は
しゃ断弁である。 尚、図中同一符号は同一または相当部分を示す。
FIG. 1 is a system diagram showing a fuel cell power generation system according to one embodiment of the present invention and a nitrogen purging method thereof, FIG. 2 is a system diagram showing a temperature raising method of a fuel cell power generation system according to another invention, and FIG. FIG. 4 is a system diagram showing a conventional fuel cell power generation system, and FIG. 4 is a characteristic diagram showing characteristics of a conventional nitrogen purge. In the figure, (1) is the fuel cell body, (2) is the reformer,
(3) is a desulfurizer, (11) is a nitrogen equipment, (23) is a nitrogen supply pipe, (24) is a shutoff valve, (28) is a nitrogen supply pipe, and (29) is a shutoff valve. In the drawings, the same reference numerals indicate the same or corresponding parts.

フロントページの続き (56)参考文献 特開 昭57−212774(JP,A) 特開 昭58−164167(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 8/00 - 8/24 Continuation of the front page (56) References JP-A-57-212774 (JP, A) JP-A-58-164167 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 8 / 00-8/24

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】燃料電池本体と、原燃料を水蒸気と反応さ
せて水素ガスを生成する改質器と、前記改質器の上流側
に配設された脱硫器と、前記脱硫器の上流側及び下流側
に、それぞれしゃ断弁を介して窒素設備につながる窒素
供給管とを有する燃料電池発電システムの窒素パージ方
法であって、 前記燃料電池発電システムの停止時に、前記脱硫器の直
後を大気に開放することなく、前記上流側のしゃ断弁を
開いて前記脱硫器の上流側から前記脱硫器の容積分の窒
素パージを行った後に、前記上流側のしゃ断弁を閉鎖し
前記下流側しゃ断弁を開いて、前記脱硫器の下流側から
前記改質器の窒素パージを行うことを特徴とする燃料電
池発電システムの窒素パージ方法。
1. A fuel cell main body, a reformer for generating hydrogen gas by reacting raw fuel with steam, a desulfurizer disposed upstream of the reformer, and an upstream side of the desulfurizer. A nitrogen purge method for a fuel cell power generation system having a nitrogen supply pipe connected to a nitrogen facility via a shut-off valve, and a downstream side, wherein when the fuel cell power generation system is stopped, the atmosphere immediately after the desulfurizer is brought to the atmosphere. Without opening, after opening the upstream shutoff valve and performing a nitrogen purge for the volume of the desulfurizer from the upstream side of the desulfurizer, the upstream shutoff valve is closed and the downstream shutoff valve is closed. A nitrogen purging method for a fuel cell power generation system, comprising opening and purging nitrogen in the reformer from a downstream side of the desulfurizer.
【請求項2】燃料電池本体と、原燃料を水蒸気と反応さ
せて水素ガスを生成する改質器と、前記改質器の上流側
に配設された脱硫器と、前記脱硫器と前記改質器との間
に設けたしゃ断弁と、このしゃ断弁の下流側に、しゃ断
弁を介して窒素設備につながる窒素供給管とを有する燃
料電池発電システムの窒素パージ方法であって、 前記燃料電池発電システムの停止時に、前記脱硫器と前
記改質器との間に設けたしゃ断弁を閉じると同時に、前
記窒素供給管に設けたしゃ断弁を開いて、前記脱硫器の
下流側から前記改質器の窒素パージを行うことを特徴と
する燃料電池発電システムの窒素パージ方法。
2. A fuel cell main body, a reformer for reacting raw fuel with steam to generate hydrogen gas, a desulfurizer disposed upstream of the reformer, and the desulfurizer and the reformer. A nitrogen purge method for a fuel cell power generation system comprising: a shut-off valve provided between the fuel cell and a nitrogen supply pipe downstream of the shut-off valve to a nitrogen facility via the shut-off valve. When the power generation system is stopped, the shutoff valve provided between the desulfurizer and the reformer is closed, and at the same time, the shutoff valve provided on the nitrogen supply pipe is opened, and the reforming is performed from the downstream side of the desulfurizer. A method for purging nitrogen in a fuel cell power generation system, comprising purging a reactor with nitrogen.
【請求項3】燃料電池本体と、原燃料を水蒸気と反応さ
せて水素ガスを生成する改質器と、前記改質器の上流側
に配設された脱硫器と、前記脱硫器のの下流側に、しゃ
断弁を介して窒素設備につながる窒素供給管とを有する
燃料電池発電システムの昇温方法であって、 前記燃料電池発電システムの起動時に、前記しゃ断弁を
開いて、前記脱硫器の下流側から前記改質器へ窒素を供
給して前記改質器の昇温を行うことを特徴とする燃料電
池発電システムの昇温方法。
3. A fuel cell main body, a reformer for reacting raw fuel with steam to generate hydrogen gas, a desulfurizer disposed upstream of the reformer, and a downstream of the desulfurizer. A fuel supply system having a nitrogen supply pipe connected to a nitrogen facility via a shut-off valve on the side of the desulfurizer. A method for raising the temperature of a fuel cell power generation system, comprising supplying nitrogen to the reformer from a downstream side to raise the temperature of the reformer.
JP2056870A 1990-03-07 1990-03-07 Nitrogen purge method and heating method for fuel cell power generation system Expired - Fee Related JP2972261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2056870A JP2972261B2 (en) 1990-03-07 1990-03-07 Nitrogen purge method and heating method for fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2056870A JP2972261B2 (en) 1990-03-07 1990-03-07 Nitrogen purge method and heating method for fuel cell power generation system

Publications (2)

Publication Number Publication Date
JPH03257762A JPH03257762A (en) 1991-11-18
JP2972261B2 true JP2972261B2 (en) 1999-11-08

Family

ID=13039460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2056870A Expired - Fee Related JP2972261B2 (en) 1990-03-07 1990-03-07 Nitrogen purge method and heating method for fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP2972261B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7432004B2 (en) 2000-06-14 2008-10-07 Matsushita Electric Industrial Co., Ltd. Fuel cell electric power generating system and method of stopping fuel cell electric power generation
KR101435394B1 (en) * 2012-08-31 2014-08-28 삼성중공업 주식회사 Fuel cell operation system system and method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7033687B2 (en) 2001-09-19 2006-04-25 Matsushita Electric Industrial Co., Ltd. Fuel cell power generation system and method of controlling fuel cell power generation
JP2003109640A (en) * 2001-09-28 2003-04-11 Matsushita Electric Ind Co Ltd Fuel cell system
US7192669B2 (en) 2001-11-30 2007-03-20 Matsushita Electric Industrial Co., Ltd. System and method of fuel cell power generation
US20060166056A1 (en) * 2003-08-07 2006-07-27 Akinari Nakamura Fuel cell power generation system
JP2006286249A (en) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd Gas purge mechanism of fuel reformer in fuel cell power generation system
JP5135606B2 (en) * 2007-12-20 2013-02-06 コスモ石油株式会社 Startup method for stationary hydrogen production equipment
JP5289199B2 (en) * 2009-06-12 2013-09-11 パナソニック株式会社 Operation method of hydrogen generator
CN115092372A (en) * 2022-06-30 2022-09-23 广船国际有限公司 Ship

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7432004B2 (en) 2000-06-14 2008-10-07 Matsushita Electric Industrial Co., Ltd. Fuel cell electric power generating system and method of stopping fuel cell electric power generation
KR101435394B1 (en) * 2012-08-31 2014-08-28 삼성중공업 주식회사 Fuel cell operation system system and method

Also Published As

Publication number Publication date
JPH03257762A (en) 1991-11-18

Similar Documents

Publication Publication Date Title
JP4130603B2 (en) Operation method of hydrogen production system
JP2972261B2 (en) Nitrogen purge method and heating method for fuel cell power generation system
JP2001189165A (en) Fuel cell system, method of stopping and starting the same
JP2003002605A (en) Method for operating and stopping steam reformer
JP2002060204A (en) Fuel reformer, its operating method and fuel cell power generation unit using the same
KR20050107821A (en) Operating states for fuel processor subsystems
JPH05114414A (en) Fuel cell power generation system
JP3886789B2 (en) Reforming apparatus and operation method thereof
JP2005206414A (en) Hydrogen producing apparatus
JP2003303608A (en) Fuel cell generation system, control method of fuel cell generation system
JPS61218073A (en) Fuel cell system
JP3608872B2 (en) Fuel cell power generation system
JP4049526B2 (en) Method for starting reformer for fuel cell
JP3259291B2 (en) Fuel cell generator
JP4790230B2 (en) Method for removing deposited carbon in fuel reformer and system therefor
JP2004296102A (en) Fuel cell system and fuel cell system stopping method
KR101362209B1 (en) Regeneration method and apparatus for sulfur-poisoned reform catalyst in the fuel processor of fuel cell system
JPH08315845A (en) Phosphoric acid type fuel cell power generation device
JP4977312B2 (en) Method for stopping fuel cell power generation system
JP2000331700A5 (en)
JP2769556B2 (en) Fuel cell generator
JP2005209642A (en) Starting and stopping method of fuel cell generator
JP4977311B2 (en) Method for stopping fuel cell power generation system
JP2005289704A (en) System for producing fuel gas and method for stopping the same
JP4682518B2 (en) Fuel cell system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees