JP2004304201A - 太陽電池セルの製造方法 - Google Patents

太陽電池セルの製造方法 Download PDF

Info

Publication number
JP2004304201A
JP2004304201A JP2004170005A JP2004170005A JP2004304201A JP 2004304201 A JP2004304201 A JP 2004304201A JP 2004170005 A JP2004170005 A JP 2004170005A JP 2004170005 A JP2004170005 A JP 2004170005A JP 2004304201 A JP2004304201 A JP 2004304201A
Authority
JP
Japan
Prior art keywords
glass
solar cell
semiconductor wafer
manufacturing
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004170005A
Other languages
English (en)
Other versions
JP3854977B2 (ja
Inventor
Kunio Kamimura
邦夫 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004170005A priority Critical patent/JP3854977B2/ja
Publication of JP2004304201A publication Critical patent/JP2004304201A/ja
Application granted granted Critical
Publication of JP3854977B2 publication Critical patent/JP3854977B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

【課題】 余分な接着剤の除去や精度の高い位置合せの必要を無くす。
【解決手段】 ガラス33に粉末ガラスの溶液を塗布し、太陽電池セル32の表面に粉末ガラスの溶液を塗布した後、太陽電池セル32とガラス33とを貼り合わせ、高温(400℃〜750℃),高真空中でベーク(焼成)を行い、粉末ガラスが溶融された段階で定圧に戻して冷却する。こうして、放射線保護用ガラス33を接着する。この場合、放射線保護用ガラスとして厚いガラスが要求される場合でも、粉末ガラス溶液の少ない塗布によって簡単に形成できる。また、太陽電池セル32と放射線保護用ガラス33との接着層としてのガラス層34を薄く均一に形成できるため、ガラス層34のはみ出し量を小さくして取り除く必要がない。
【選択図】図4

Description

この発明は、電気特性を低下させる低エネルギープロトンからの防御を可能にする太陽電池セルの製造方法に関する。
人工衛星の電源に使用される宇宙用太陽電池は、図8に示すように、太陽電池セル1の表面に、厚さ50μm〜1mm程度のカバーガラス2をシリコン接着剤3で接着して形成されている。宇宙空間には、様々なエネルギーの放射線が飛び交っており、太陽電池セル1に放射線が照射されると結晶の欠陥を生み出すために光電変換の能力が低下する。特に、低エネルギーのプロトンは、物体に衝突すると内部にまで到達せずに極表面で吸収される。ところが、太陽電池セル1は、その表面における0.1μm〜0.3μmの極浅い部分にPN接合が有るために、低エネルギープロトンの衝突による劣化が大きいのである。
そこで、上述のように、宇宙用太陽電池の表面には、厚さ50μm〜1mm程度のカバーガラス2がシリコン接着剤3で接着されているのである。このように、カバーガラス2が接着された場合は、低エネルギーのプロトンは、カバーガラス2によって吸収されて太陽電池セル1までは到達しない。こうして、カバーガラス2によって、太陽電池セル1の放射線劣化の一部が防止されるのである。尚、通常のガラスの場合は放射線によって着色するために、セリウム(Ce)を添加して上記放射線による着色を防止するようにしている。
ところで、上記太陽電池セル1の表面電極4は、PN接合部5から効率的に電流を取り出すために0.5mm〜数mmの間隔で線状に形成され、電流取出し部分(図示せず)に集まるよう設計されている。表面電極4は、電気抵抗が小さくなるように抵抗率の小さい銀等の金属が形成される。さらには、断面積を大きくして電気抵抗を小さくするために、厚く形成されることが要求される。通常、表面電極4は真空蒸着法等により形成されるが、電気抵抗を小さくするために厚く形成しようとすると時間が長く掛る。そこで、メッキによって厚さを厚くする方法が考えられる。
ところが、メッキによって表面電極4を形成すると、厚さ方向だけではなく幅方向にも大きくなって、太陽電池セル1へ入射される太陽光を遮光してしまうことになる。そのために、表面電極4を、厚さ方向にのみメッキによって厚く形成するためには、メッキの厚さ以上のレジストによるパターニングが必要になる。さらに、P型シリコン基板6に直接銀をメッキすると十分な密着強度が得られないために、チタン(Ti)等の金属材料を電極形状にパターニングした後、上記パターニングされた金属材料の周囲を囲むようにメッキ用のパターニングを行う必要がある。
一方において、太陽電池の製造方法の一つとして、膜厚が薄く且つ均一なシリコンウェハを得る水素イオン剥離法(特開平10‐93122号公報(特許文献1))がある。この水素イオン剥離法では、多結晶シリコンのインゴットあるいはウェハに水素イオンを注入し、注入側の表面に第2の基板を接着する。そして、適度な熱処理を行うことによって上記第2の基板側のシリコン基板を薄い厚さで剥離させ、この薄膜シリコンを用いて省資源型の太陽電池を製造するものである。
しかしながら、上記従来の太陽電池には以下のような問題がある。すなわち、図8に示す太陽電池の場合には、上述したように、カバーガラス2を接着する接着剤3としてシリコン接着剤が使用されている。この接着剤3には、宇宙空間での高温,高真空において放出されるガス(アウトガス)が少ないことが要求されているために、精製された非常に高価な樹脂が使用される。したがって、コストアップに繋がると言う問題がある。また、接着剤3は、常温では柔らかい特性を有しているが、シリコンやガラスに比して−80℃以下の低温で急激な物性変化を呈する。そのために、極低温環境において、太陽電池セル1およびカバーガラス2に大きな熱ストレスを与える。その結果、太陽電池セル1やカバーガラス2の破損や接着剤3の剥離等の不具合が生じ易いと言う問題がある。
また、上記接着剤3は、上記カバーガラス2の接着作業中に、太陽電池セル1の側面やカバーガラス2の表側にはみ出すことがある。ところが、シリコン接着剤3は紫外線に照射されると変質してしまうので、上述のようにカバーガラス2の表面に付着したり側面からはみ出した接着剤3aは取り除く必要がある。しかしながら、接着剤3aの除去作業は、50μm〜1mmと非常に薄いカバーガラス2や太陽電池セル1を壊すことが多いために精密な取り扱いが必要である。
また、上記太陽電池セル1とカバーガラス2との側壁での位置合せは、太陽電池セル1が露出しないこと及びカバーガラス2が太陽電池セル1よりも大きく張り出さないことから、通常0.2mm以下の寸法差で正確に行う必要がある。さらに、上述のごとくメッキによって表面電極4を形成する場合には、チタン(Ti)等の下地金属と表面電極4の横方向への広がりを防ぐメッキ用パターニングとの位置合せを精度良く行う必要がある。ところが、この下地金属とメッキ用パターニングとの位置合せは製造上時間が必要であり、そのために宇宙用太陽電池の量産が難しい欠点がある。
さらに、上記水素イオン剥離法による太陽電池の製造方法においては、得られる太陽電池におけるシリコン基板の膜厚が薄いために、機械的に補強するための第2の基板を予め接着しておく必要がある。この第2の基板は、導電性の金属材料や太陽光線の少なくとも一部に対して透光性を有する絶縁材料であって、ガラス板やアルミニウム板等が用いられる。その場合、上記第2の基板としてガラス板を用いた場合には、太陽電池形成の際に第2の基板をカバーガラスとして利用することになり、シリコンウェハに第2の基板を接着する際には、上述の太陽電池セルにカバーガラスを接着する場合と同様の問題が発生する可能性がある。また、上記第2の基板としてアルミニウム等を用いた場合には、上記第2の基板分だけコストアップに繋がると言う問題がある。
特開平10‐93122号公報
そこで、この発明の課題は、はみ出した接着剤の除去や精度の高い位置合せの必要が無く、地球と宇宙との環境変化が繰り返されても熱歪が小さい太陽電池セルの製造方法を提供することにある。
上記課題を解決するため、請求項1に係る発明の太陽電池セルの製造方法は、半導体ウェハの表面にPN接合を形成する工程と、半導体ウェハの全面に感光性レジストを塗布した後,表面電極形成領域のみに上記感光性レジストを残すようにパターニングする工程と、半導体ウェハの全面に粉末ガラスを溶剤で溶かした溶液を塗布して上記溶剤を揮発させた後,上記表面電極形成領域以外の上記半導体ウェハ上に透明ガラス層を形成するために上記粉末ガラスを焼成する工程と、上記レジストを除去した後に,メッキによって上記表面電極を形成する工程を備えたことを特徴としている。
上記構成によれば、上記透明ガラス層は表面電極形成領域を除いて形成されるために、上記表面電極形成領域に表面電極をメッキによって形成する場合に、上記透明ガラス層がメッキ電極形成用パターンとして利用される。さらに、専用のメッキ電極形成用パターンを必要とはしないために上記表面電極とメッキ電極形成用パターンとの位置合せの必要がなく、上記表面電極が非常に簡単に形成される。
また、請求項2に係る発明は、請求項1に係る発明の太陽電池セルの製造方法において、上記半導体ウェハの裏面側を、既に形成された太陽電池セルを残して所定の厚さに剥離することを特徴としている。
上記構成によれば、裏面側が所定の厚さに剥離された薄膜半導体基板を用いて省資源型の太陽電池を製造するに際して、上記薄膜半導体基板が上記透明ガラス層によって機械的に補強される。したがって、上記薄膜半導体基板を補強するための専用基板を接着する必要がなく、上記専用基板の接着に伴う問題やコストアップが解消される。
また、請求項3に係る発明の太陽電池セルの製造方法は、粉末ガラスを溶剤で溶かした溶液を放射線保護用ガラスの表面に塗布する工程と、上記粉末ガラスを溶剤で溶かした溶液を半導体ウェハの前面側に形成された太陽電池セルの表面に塗布する工程と、上記太陽電池セルと放射線保護用ガラスとにおける互いの上記溶液が塗布された側の面を貼り合わせる工程と、上記溶剤を揮発させた後に上記粉末ガラスを400℃以上且つ750℃以下の温度で焼成する工程を備えたことを特徴としている。
上記構成によれば、放射線保護用ガラスと同じ材質の透明ガラス層によって、上記放射線保護用ガラスが太陽電池セルの表面に接着される。したがって、高価なシリコン接着剤を必要はしない。さらに、接着層としての上記透明ガラス層は耐紫外線性に優れるため、はみ出した透明ガラス層を取り除く作業を無くしてコストダウンが図られる。さらに、低温下での接着層の物性変化に起因する太陽電池セルやガラス板に対する熱応力が無くなり、上記太陽電池セルやガラス板の破損や接着剤の剥離が減少される。
また、請求項4に係る発明は、請求項3に係る発明の太陽電池セルの製造方法において、上記半導体ウェハの裏面側を、既に形成された太陽電池セルを残して所定の厚さに剥離することを特徴としている。
上記構成によれば、裏面側が所定の厚さに剥離された薄膜半導体基板を用いて省資源型の太陽電池を製造するに際して、上記薄膜半導体基板が上記放射線保護用ガラスによって機械的に補強される。したがって、上記薄膜半導体基板を補強するための専用基板を接着する必要がなく、上記専用基板の接着に伴う問題やコストアップが解消される。
また、請求項5に係る発明の太陽電池セルの製造方法は、半導体ウェハの表面側に形成された太陽電池セルの表面に粉末ガラスを溶剤で溶かした溶液を塗布し,上記溶剤を揮発させた後,上記粉末ガラスを焼成して上記太陽電池セルの表面に透明ガラス層を形成する工程と、前の工程によって上記透明ガラス層が形成された上記半導体ウェハの裏面側を,既に形成された太陽電池セルを残して所定の厚さに剥離する工程を備えたことを特徴としている。
上記構成によれば、接着によらずに透明ガラス層が上記太陽電池セルの表面に直接形成される。したがって、放射線防止用のガラスを接着するための高価な接着剤を必要とはせず、はみ出した接着剤を取り除く作業を無くし、上記太陽電池セルと放射線防止用のガラス板との位置合わせ不良を無くして、コストダウンが図られる。さらに、低温下での接着剤の物性変化に起因する太陽電池セルや上記ガラス板に対する熱応力が無くなり、上記太陽電池セルやガラスの破損あるいは接着剤の剥離が減少される。
さらに、上記透明ガラス層が形成された上記半導体ウェハの裏面側が所定の厚さに剥離されて、省資源型の太陽電池が製造される。その際に、上記薄膜半導体基板が上記透明ガラス層によって機械的に補強される。したがって、上記薄膜半導体基板を補強するための専用基板を接着する必要がなく、上記専用基板の接着に伴う問題やコストアップが解消される。
また、請求項6に係る発明の太陽電池セルの製造方法は、半導体ウェハの表面にPN接合を形成する工程と、上記半導体ウェハの表面における表面電極形成領域に下地金属を形成する工程と、上記下地金属を含む半導体ウェハの表面全体に粉末ガラスを溶剤で溶かした溶液を塗布し,上記表面電極形成領域においてガラス層が形成されないように上記下地金属によって上記溶液に処理を施して,上記表面電極形成領域に溝を形成する工程と、上記溝内に表面電極を形成する工程を備えたことを特徴としている。
上記構成によれば、上記溶液は下地金属によって上記表面電極形成領域にガラス層が形成されないように処理されるために、上記ガラス層は表面電極形成領域を除いて形成され上記表面電極形成領域に溝が形成される。したがって、上記溝内における上記下地金属上に表面電極を形成する場合に、上記ガラス層がメッキ電極形成用パターンとして利用される。さらに、上記表面電極用の下地金属と上記透明ガラス層との位置合せの必要がなく、上記表面電極が非常に簡単に形成される。さらに加えて、上記ガラス層形成用の感光性レジストのパターニングが必要なく、請求項3に係る発明よりも更に簡単に上記表面電極が形成される。
また、請求項7に係る発明は、請求項6に係る発明の太陽電池セルの製造方法において、上記半導体ウェハの裏面側を、既に形成された太陽電池セルを残して所定の厚さに剥離することを特徴としている。
上記構成によれば、裏面側が所定の厚さに剥離された薄膜半導体基板を用いて省資源型の太陽電池を製造するに際して、上記薄膜半導体基板が上記ガラス層によって機械的に補強される。したがって、上記薄膜半導体基板を補強するための専用基板を接着する必要がなく、上記専用基板の接着に伴う問題やコストアップが解消される。
以上より明らかなように、請求項1に係る発明の太陽電池セルの製造方法は、半導体ウェハの表面にPN接合を形成し、半導体ウェハの全面に感光性レジストを塗布して表面電極形成領域のみに上記感光性レジストを残し、半導体ウェハの全面に粉末ガラスの溶液を塗布し、上記溶剤を揮発させて上記表面電極形成領域以外の上記半導体ウェハ上に透明ガラス層を形成するために上記粉末ガラスを焼成し、上記レジストを除去した後にメッキによって上記表面電極を形成するので、上記表面電極をメッキで形成する場合に上記透明ガラス層をメッキ電極形成用パターンとして利用でき、コストダウンを図ることができる。さらに、専用のメッキ電極形成用パターンを必要とはしないために上記表面電極と上記メッキ電極形成用パターンとの位置合せの必要がなく、メッキ電極の形成を非常に簡単にして、宇宙用太陽電池の量産を容易にできる。
また、請求項2に係る発明の太陽電池セルの製造方法は、上記半導体ウェハの裏面側を、既に形成された太陽電池セルを残して所定の厚さに剥離するので、薄膜半導体基板を用いて省資源型の太陽電池を製造するに際して、上記薄膜半導体基板を上記透明ガラス層によって機械的に補強できる。したがって、上記補強用の専用基板を接着する必要がなく、上記専用基板の接着に伴う問題やコストアップを解消できる。
また、請求項3に係る発明の太陽電池セルの製造方法は、粉末ガラスの溶液を上記放射線保護用ガラスの表面に塗布し、上記粉末ガラスの溶液を半導体ウェハの前面側に形成された太陽電池セルの表面に塗布し、上記太陽電池セルと放射線保護用ガラスとを貼り合わせ、上記溶剤を揮発させた後に上記粉末ガラスを焼成するので、放射線保護用ガラスと同じ材質の透明ガラス層によって、上記放射線保護用ガラスを太陽電池セルの表面に接着できる。したがって、高価なシリコン接着剤を必要とはしない。さらに、接着層としての上記透明ガラス層は耐紫外線性に優れるため、はみ出した透明ガラス層を取り除く作業を無くしてコストダウンを図ることができる。さらに、低温下での接着層の物性変化に起因する太陽電池セルやガラス板に対する熱応力が無くなり、上記太陽電池セルやガラス板の破損や接着剤の剥離を減少できる。
また、請求項4に係る発明の太陽電池セルの製造方法は、上記半導体ウェハの裏面側を、既に形成された太陽電池セルを残して所定の厚さに剥離するので、薄膜半導体基板を用いて省資源型の太陽電池を製造するに際して、上記薄膜半導体基板を上記放射線保護用ガラスによって機械的に補強できる。したがって、上記補強用の専用基板を接着する必要がなく、上記専用基板の接着に伴う問題やコストアップを解消できる。
また、請求項5に係る発明の太陽電池セルの製造方法は、半導体ウェハの表面側に形成された太陽電池セルの表面に粉末ガラスを溶剤で溶かした溶液を塗布し、上記溶剤を揮発させた後、上記粉末ガラスを焼成して透明ガラス層を形成するので、接着によらずに上記太陽電池セルの表面に透明ガラス層を容易に直接形成できる。したがって、高価な接着剤を必要とはせず、はみ出した接着剤を取り除く作業を無くし、上記太陽電池セルと放射線防止用のガラス板との位置合わせ不良を無くして、コストダウンを図ることができる。さらに、低温下での接着剤の物性変化に起因する太陽電池セルや上記ガラス板に対する熱応力を無くし、上記太陽電池セルやガラスの破損あるいは接着剤の剥離を減少できる。
さらに、上記半導体ウェハの裏面側を、既に形成された太陽電池セルを残して所定の厚さに剥離するので、薄膜半導体基板を用いて省資源型の太陽電池を製造するに際して、上記薄膜半導体基板を上記透明ガラス層によって機械的に補強できる。したがって、上記補強用の専用基板を接着する必要がなく、上記専用基板の接着に伴う問題やコストアップを解消できる。
また、請求項6に係る発明の太陽電池セルの製造方法は、表面にPN接合が形成された半導体ウェハの表面における表面電極形成領域に下地金属を形成し、上記下地金属を含む半導体ウェハの表面全体に粉末ガラスの溶液を塗布し、上記表面電極形成領域においてガラス層が形成されないように上記下地金属によって上記溶液に処理を施すことによって上記表面電極形成領域に溝を形成し、上記溝内に表面電極を形成するので、上記表面電極形成領域を除いて透明ガラス層を形成でき、上記請求項3に係る発明と同様の効果を奏することができる。さらに加えて、上記透明ガラス層形成用の感光性レジストのパターニングが必要なく、請求項1に係る発明よりも更に簡単に上記表面電極を形成できる。
また、請求項7に係る発明の太陽電池セルの製造方法は、上記半導体ウェハの裏面側を、既に形成された太陽電池セルを残して所定の厚さに剥離するので、薄膜半導体基板を用いて省資源型の太陽電池を製造するに際して、上記薄膜半導体基板を上記ガラス層によって機械的に補強できる。したがって、上記補強用の専用基板を接着する必要がなく、上記専用基板の接着に伴う問題やコストアップを解消できる。
以下、この発明を図示の実施の形態により詳細に説明する。
<第1実施の形態>
図1は、本実施の形態の太陽電池における概略縦断面図である。本実施の形態における太陽電池11では、放射線保護用ガラス(以下、単にガラスと言う)13が、太陽電池セル12の表面に、接着剤を介さずに直接形成されている。尚、太陽電池セル12の構造は図8に示す従来の太陽電池セル1と同じであり、P型シリコン基板14の表面にN+層15が形成されて、PN接合部16を形成している。そして、N+層15の表面にはN電極17が0.5mm〜数mmの間隔で線状に形成され、P型シリコン基板14の表面にはP電極18が形成されている。
図2は、上記構成を有する太陽電池11におけるガラス13の形成手順を示す図である。先ず、図1に示す構成を有する太陽電池セル12が用意される(ステップS1)。そして、太陽電池セル12におけるN電極17側の表面に、粉末ガラスを溶剤で溶かした溶液が塗布される(ステップS2)。そうした後、溶剤成分が揮発されて乾燥される(ステップS3)。但し、一度の溶液塗布で形成されるガラス13の厚さは20μm程度と放射線保護用ガラスとしては薄いため、上記ステップS2およびステップS3が何度も繰り返されて、ガラス13が何層も重ねて形成される。こうして、所望(50μm〜1mm程度)の厚さのガラス13の層が形成されると、ベーク(焼成)によって粉末ガラスが溶融されて最終的にガラス13が形成される(ステップS4)。尚、上記焼成における焼成温度は400℃〜750℃である。
実施例として、上記粉末ガラスとして日本電気硝子社製のGP‐5210を用いた例に付いて述べる。先ず、10ΩのP型シリコンウェハの両面に、熱拡散法によってN型の不純物層(N+層)を形成する。そして、片側の不純物層をエッチングによって取り除いたP型シリコンウェハにおける残った不純物層上に、アルコールを主成分とする溶剤にGP−5210を溶かした溶液を塗布する。次に、アルコール成分を蒸発させ、その後、600℃と720℃とで二回焼成する。
このように、本実施の形態においては、電極17,18が形成された太陽電池セル12における電極17側の表面に、粉末ガラスを溶剤で溶かしてなる溶液を塗布した後に溶剤成分を揮発させて焼成することによって、直接ガラス13の層を形成するようにしている。したがって、太陽電池セル12の表面に均一にガラス13の層を形成することができ、煩わしい太陽電池セルとガラスとの位置合わせや、はみ出した接着剤を取り除く仕上げ作業を行う必要ない。また、太陽電池セル(P型シリコン基板14)12と略同等の熱膨張係数を呈するガラス13を形成できる粉末ガラスを選ぶことによって、地球と宇宙との環境変化に伴う大きな温度変動や温度サイクルにおける熱歪を小さくすることができる。
すなわち、本実施の形態によれば、高価な接着剤を必要としないこと、不必要な接着剤の除去工程を無くして製造工程を簡略化すること、太陽電池セルとガラスとの位置合わせを無くして製品歩留まりを向上すること等によって、コストダウンを図ることができるのである。さらに、上記熱歪に伴う太陽電池セル12やガラス13の破損やガラス13の剥離等の不具合を無くして、信頼性を向上させることができるのである。
<第2実施の形態>
上述のごとく、第1実施の形態においては、粉末ガラスを溶剤で溶かしてなる溶液の一回の塗布では形成されるガラス13の厚さが不充分なため、上記溶液の塗布を繰り返してガラス13を何層も重ねて形成している。本実施の形態においては、ガラス13を複数層に形成するに際して、各層を形成するための粉末ガラスの屈折率を各層毎に異なるようにするのである。
その場合に、図3に示すように、太陽電池セル22の表面側から外側に向かって順次屈折率nが大きくなるようにガラス層24〜27を多層に形成する。こうすることによって、第1実施の形態における効果に加えて、ガラス23の表面における太陽光の反射率を小さくすることができる。したがって、太陽電池21による太陽光の吸収率を大きくして光電変換の効率を向上できるのである。尚、ガラス23の形成手順は、図2に示す形成手順に順ずる。
<第3実施の形態>
上記各実施の形態においては、上記粉末ガラスを放射線保護用ガラス13,23の形成に使用している。ところが、その場合には、放射線保護用ガラスとして厚いガラスが要求される場合には、粉末ガラスの溶液の塗布回数が非常に多くなり、積層されるガラスの層数が多くなって均一な放射線保護用ガラスが得られない場合がある。そのような場合に対処するため、本実施の形態においては、上記粉末ガラスを太陽電池セルと放射線保護用ガラスの接着に使用するのである。本実施の形態においては、図4に示すように、太陽電池セル32の表面に、粉末ガラスで形成されるガラス層34で放射線保護用ガラス33を接着することによって、太陽電池31を形成している。
図5は、上記構成を有する太陽電池31におけるガラス33の接着手順を示す図である。先ず、太陽電池セル32が用意される(ステップS11)。そして、ガラス33に粉末ガラスの溶液が塗布される(ステップS12)。太陽電池セル32の表面に粉末ガラスの溶液が塗布される(ステップS13)。そうした後、太陽電池セル32とガラス33とが貼り合わされ(ステップS14)、高温,高真空中でベーク(焼成)が行われる(ステップS15)。そして、粉末ガラスが溶融された段階で定圧に戻されて冷却される(ステップS16)。こうして、最終的に放射線保護用ガラス33が接着される。
本実施の形態によれば、上記放射線保護用ガラスとして厚いガラスが要求される場合であっても、粉末ガラス溶液の少ない塗布によって簡単に形成することができる。また、太陽電池セル32と放射線保護用ガラス33との接着層としてのガラス層34は、塗布する粉末ガラスの溶液を薄く塗布することによって薄く均一に形成することができる。したがって、ガラス層34のはみ出し量は小さく、然も、はみ出したガラス層34は耐紫外線性に優れているので取り除く必要がない。したがって、貼り合わせ後の仕上げ工程を簡単してコストダウンを図ることができる。また、本実施の形態の場合においても、太陽電池セル(P型シリコン基板)32とガラス33とガラス層34との熱膨張係数を揃えることによって、地球と宇宙との環境変化に伴う大きな温度変動や温度サイクルにおける熱歪を小さくし、太陽電池セル32やガラス33の破損やガラス33の剥離等の不具合を無くして高信頼性を得ることができるのである。
<第4実施の形態>
上記各実施の形態においては、上記N+層15の表面にN電極17が形成された太陽電池セル12,22,32上に、ガラス13,23,33を形成あるいは接着する場合に付いて説明している。これに対して、本実施の形態は、N+層の表面にガラスを形成した後に電極をメッキによって形成するものである。以下、詳細に述べる。
図6は本実施の形態による放射線保護用ガラスおよび電極の形成方法を示す。先ず、図6(a)に示すように、P型シリコン基板41の表面にN+層42が形成され、更にN+層42上にチタン(Ti)等によって下地金属43がパターニングされる。
次に、図6(b)に示すように、全面に、粉末ガラスを溶剤に溶かした溶液44が塗布される。その場合、下地金属43の部分では粉末ガラスの溶液44がはじかれるため、塗布された粉末ガラス溶液44は下地金属43の部分を除いてパターニングされる。そうした後、溶剤が揮発され、焼成が行われて、図6(c)に示すようにガラス45が形成される。その後、図(d)に示すように、下地金属43上に銀等をメッキすることによってメッキ電極46が形成される。その場合、下地金属43の両側にはガラス45の壁が有るために、メッキ電極46は厚さ方向にのみ形成される。
このように、本実施の形態によれば、上記N+層42の表面に形成されたガラス45をメッキ電極形成用パターンとして使用するので、メッキ電極46の横方向への広がりを防ぐ専用のレジスト等によるメッキ電極形成用パターンを必要とはしない。また、形成されたガラス45は下地金属43の部分を除いてパターニングされるので、下地金属43とガラス45との位置合せの必要が無い。したがって、メッキ電極46の形成が非常に簡単になり、宇宙用太陽電池の量産が容易になる。
尚、本実施の形態においては、粉末ガラスを溶剤に溶かした溶液44が下地金属43の部分ではじかれることを利用して、表面電極形成領域を除いて粉末ガラス溶液44をパターニングしている。しかしながら、この発明はこれに限定されるものではなく、例えば、次のようにして表面電極形成領域を除いて粉末ガラス溶液をパターニングしてもよい。
すなわち、先ず、P型シリコン基板の表面にN+層を形成する。そして、上記P型シリコン基板の全面に感光性レジストを塗布し、表面電極形成領域のみに上記感光性レジストを残すようにパターニングする。次に、上記P型シリコン基板の全面に粉末ガラスを溶剤で溶かした溶液を塗布し、上記溶剤を揮発させた後に上記粉末ガラスを焼成して放射線保護用ガラスを形成する。その後、上記レジストを除去し、上記表面電極形成領域に下地金属を形成する。そして、この下地金属上にメッキによって上記表面電極を形成するのである。この場合にも、上記下地金属の両側にはガラスの壁が有るために、メッキ電極は厚さ方向にのみ形成されることになる。また、上記下地金属と放射線保護用ガラスとの位置合せの必要が無く、メッキ電極の形成が非常に簡単になり、宇宙用太陽電池の量産が容易になる。
<第5実施の形態>
本実施の形態は、上述の水素イオン剥離法に対してこの発明を適用するものである。図7は本実施の形態によるガラスの形成方法を示す。先ず、図7(a)に示すように、P型シリコン基板51の表面にN+層52が形成され、剥離位置(水素注入層)53まで水素イオンが注入された後に、N電極54が形成される。そして、図7(b)に示すように、第1〜第4実施の形態の何れかによって、N+層52側の表面にガラス55が形成される。次に、熱処理が行われて、図7(c)に示すように、P型シリコン基板51の表面が水素注入層53(56)の位置から剥離される。そして、剥離面上にP電極(図示せず)が形成されて、放射線保護用ガラス55が形成された非常に薄い太陽電池57が得られる。その場合、放射線保護用ガラス55が薄膜シリコンの補強材となっている。一方、太陽電池57が剥離された後のP型シリコン基板51'は再利用されて、図7(d)に示すように、N+層52'が形成され、水素注入層53'まで水素イオンが注入された後に、N電極54'が形成される。以後、上述の手順が繰り返される。
このように、本実施の形態においては、P型シリコン基板51の表面にN+層52を形成し、水素イオンを注入し、N電極54を形成した後、N+層52側の表面に放射線保護用のガラス55を形成する。その後、熱処理を行って剥離を行うようにしている。その結果、放射線保護用ガラス55を薄膜シリコンの補強材として利用することができ、薄膜シリコンを機械的に補強するための専用の基板を接着する必要がない。したがって、その分だけコストダウンを図ることができる。さらに、放射線保護用ガラス55は、接着剤を用いることなくP型シリコン基板51上に直接形成されるため、第1〜第4実施の形態と同様に、ガラスを接着剤で貼り付ける場合の種々の問題点を解決できるのである。
尚、上記各実施の形態においては特に述べてはいないが、放射線保護用ガラス13,23,45,55および接着用のガラス層34を形成する際に、粉末ガラスを溶剤で溶かした溶液中にセリウムを添加することによって、形成されたガラスが放射線によって着色することを防止できる。
この発明の太陽電池における概略縦断面図である。 図1におけるガラスの形成手順を示す図である。 図1とは異なる太陽電池における概略縦断面図である。 図1及び図3とは異なる太陽電池における概略縦断面図である。 図4におけるガラスの接着手順を示す図である。 図1,図3,図4とは異なる太陽電池におけるガラスおよび電極の形成方法を示す図である。 図1,図3,図4,図6とは異なる太陽電池の製造方法の説明図である。 従来の太陽電池における概略縦断面図である。
符号の説明
11,21,31,57…太陽電池、
12,22,32…太陽電池セル、
13,23,33,45,55…放射線保護用ガラス(ガラス)、
14,41,51…P型シリコン基板、
15,42,52…N+層、
16…PN接合部、
17,54…N電極、
18…P電極、
24〜27…ガラス層、
34…ガラス層(接着層)、
43…下地金属、
44…粉末ガラス溶液、
46…メッキ電極、
53…水素注入層。

Claims (7)

  1. 半導体ウェハの表面にPN接合を形成する工程と、
    半導体ウェハの全面に感光性レジストを塗布した後、表面電極形成領域のみに上記感光性レジストを残すようにパターニングする工程と、
    半導体ウェハの全面に粉末ガラスを溶剤で溶かした溶液を塗布し、上記溶剤を揮発させた後、上記表面電極形成領域以外の上記半導体ウェハ上に透明ガラス層を形成するために上記粉末ガラスを焼成する工程と、
    上記レジストを除去した後に、メッキによって上記表面電極を形成する工程
    を備えたことを特徴とする太陽電池セルの製造方法。
  2. 請求項1に記載の太陽電池セルの製造方法において、
    上記半導体ウェハの裏面側を、既に形成された太陽電池セルを残して所定の厚さに剥離する
    ことを特徴とする太陽電池セルの製造方法。
  3. 粉末ガラスを溶剤で溶かした溶液を放射線保護用ガラスの表面に塗布する工程と、
    上記粉末ガラスを溶剤で溶かした溶液を半導体ウェハの前面側に形成された太陽電池セルの表面に塗布する工程と、
    上記太陽電池セルと放射線保護用ガラスとにおける互いの上記溶液が塗布された側の面を貼り合わせる工程と、
    上記溶剤を揮発させた後に上記粉末ガラスを400℃以上且つ750℃以下の温度で焼成する工程を
    備えたことを特徴とする太陽電池セルの製造方法。
  4. 請求項3に記載の太陽電池セルの製造方法において、
    上記半導体ウェハの裏面側を、既に形成された太陽電池セルを残して所定の厚さに剥離する
    ことを特徴とする太陽電池セルの製造方法。
  5. 半導体ウェハの表面側に形成された太陽電池セルの表面に粉末ガラスを溶剤で溶かした溶液を塗布し、上記溶剤を揮発させた後、上記粉末ガラスを焼成して上記太陽電池セルの表面に透明ガラス層を形成する工程と、
    前の工程によって上記透明ガラス層が形成された上記半導体ウェハの裏面側を、既に形成された太陽電池セルを残して所定の厚さに剥離する工程
    を備えたことを特徴とする太陽電池セルの製造方法。
  6. 半導体ウェハの表面にPN接合を形成する工程と、
    上記半導体ウェハの表面における表面電極形成領域に下地金属を形成する工程と、
    上記下地金属を含む半導体ウェハの表面全体に粉末ガラスを溶剤で溶かした溶液を塗布し、上記表面電極形成領域においてガラス層が形成されないように上記下地金属によって上記溶液に処理を施して、上記表面電極形成領域に溝を形成する工程と、
    上記溝内に表面電極を形成する工程
    を備えたことを特徴とする太陽電池セルの製造方法。
  7. 請求項6に記載の太陽電池セルの製造方法において、
    上記半導体ウェハの裏面側を、既に形成された太陽電池セルを残して所定の厚さに剥離する
    ことを特徴とする太陽電池セルの製造方法。
JP2004170005A 2004-06-08 2004-06-08 太陽電池セルの製造方法 Expired - Fee Related JP3854977B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004170005A JP3854977B2 (ja) 2004-06-08 2004-06-08 太陽電池セルの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004170005A JP3854977B2 (ja) 2004-06-08 2004-06-08 太陽電池セルの製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP16241999A Division JP3577430B2 (ja) 1999-06-09 1999-06-09 太陽電池セルおよびその製造方法

Publications (2)

Publication Number Publication Date
JP2004304201A true JP2004304201A (ja) 2004-10-28
JP3854977B2 JP3854977B2 (ja) 2006-12-06

Family

ID=33411335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004170005A Expired - Fee Related JP3854977B2 (ja) 2004-06-08 2004-06-08 太陽電池セルの製造方法

Country Status (1)

Country Link
JP (1) JP3854977B2 (ja)

Also Published As

Publication number Publication date
JP3854977B2 (ja) 2006-12-06

Similar Documents

Publication Publication Date Title
JP5067815B2 (ja) 素子間配線部材、光電変換素子接続体および光電変換モジュール
US8338903B2 (en) Photoelectric transducer and manufacturing method therefor
US20100216276A1 (en) Method for Electrically Connecting Photovoltaic Cells in a Photovoltaic Device
JP3577430B2 (ja) 太陽電池セルおよびその製造方法
US9263603B2 (en) Solar cell with connecting sheet, solar cell module, and fabrication method of solar cell with connecting sheet
JP2009515369A (ja) 光電池接触部及び配線の形成
EP1005096A3 (en) Solar cell module
US20180151766A1 (en) Anti-corrosion protection in photovoltaic structures
US20090050202A1 (en) Solar cell and method for forming the same
JP2023002693A (ja) 高性能太陽電池、アレイ、およびその製造方法
JP5334066B2 (ja) 宇宙用途向けの太陽電池、特に、多−接合太陽電池
CN103730529A (zh) 包括太阳能电池的光伏模块用背接触式背板及其制造方法
CN102054887A (zh) 薄膜太阳能电池及其制造方法
US8716592B2 (en) Thin film photovoltaic assembly method
US9362435B2 (en) Solar cell apparatus and method of fabricating the same
JP5501225B2 (ja) 薄層型光電池の背面コンタクト形成方法
US9728669B2 (en) Solar cell and method of manufacturing the same
JP3854977B2 (ja) 太陽電池セルの製造方法
KR20190014882A (ko) 태양 전지 패널 및 이의 제조 방법
TWI496308B (zh) Thin film solar cell and manufacturing method thereof
WO2013038540A1 (ja) 光電変換デバイス用電極及びそれを用いた光電変換デバイス
WO2013069492A1 (ja) バイパスダイオード
JP6009134B1 (ja) 多接合型太陽電池セルの製造方法
KR101210183B1 (ko) 태양광 발전장치 및 이의 제조방법
ITVI20120132A1 (it) Backsheet per moduli fotovoltaici comprendenti celle contattate posteriormente

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees