JP2004303989A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2004303989A
JP2004303989A JP2003095970A JP2003095970A JP2004303989A JP 2004303989 A JP2004303989 A JP 2004303989A JP 2003095970 A JP2003095970 A JP 2003095970A JP 2003095970 A JP2003095970 A JP 2003095970A JP 2004303989 A JP2004303989 A JP 2004303989A
Authority
JP
Japan
Prior art keywords
insulating film
memory
film
semiconductor substrate
lower electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003095970A
Other languages
Japanese (ja)
Inventor
Tsutomu Asakawa
勉 浅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003095970A priority Critical patent/JP2004303989A/en
Publication of JP2004303989A publication Critical patent/JP2004303989A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device which alleviates the possibility of disconnection remarkably about an electric connection to a memory peripheral circuit in a cross point type ferroelectric RAM, and to provide a method for manufacturing the same. <P>SOLUTION: An interlayer insulating film 15 and a silicon nitride film 16 are laminated on a predetermined region of a semiconductor substrate 11 surrounded by an element isolation insulating film 12, and a lower electrode 17 is formed in a stripe shape on this silicon nitride film 16. An upper electrode 19 is formed in a stripe shape above the lower electrode 17 so as to intersect the lower electrode 17. A ferroelectric thin film 18 is arranged between the lower electrode 17 and the upper electrode 19, the intersection area of both the electrodes is arranged in a matrix shape in a memory cell structure to constitute a memory 20. An interlayer insulating film 21 is formed to cover the memory part 20. The thickness of the interlayer insulating film L1 can be suppressed to low. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、特にクロスポイント型のFeRAM(Ferroelectric Random Access Memory)セルを有する半導体集積回路を含む半導体装置及びその製造方法に関する。
【0002】
【従来の技術】
FeRAM、いわゆる強誘電体メモリは高速性、低消費電力、高集積性、耐書き換え特性に優れた不揮発性メモリの一つである。強誘電体メモリは強誘電体薄膜のヒステリシス特性、すなわち高速分極反転とその残留分極を利用する高速書き換えが可能である。特にクロスポイント型のFeRAMは、下部電極と上部電極が強誘電体薄膜を介して交差させた構造のメモリセルがマトリクス状に配列される構成を有し、高集積性に優れている。
【0003】
図3は、従来のクロスポイント型のFeRAMにおける一部のメモリ部及びその周辺を示す断面図である。半導体基板31上に素子分離絶縁膜32が形成され、隣接する素子領域33にはメモリ部の周辺回路として働くMOS型素子34が形成されている。MOS型素子34上を含め全面に層間絶縁膜35が形成されている。層間絶縁膜35はCMP(化学的機械的研磨)技術等を用いて平坦化され、層間絶縁膜35上にはシリコン窒化膜36が形成されている。シリコン窒化膜36は少なくとも後述するメモリ部40に設けられるバリア膜として機能する。すなわち、シリコン窒化膜36は、PZT(Pb(Zr,Ti)O)、SBT(SrBiTa)等の強誘電体のエッチング後に行う、O雰囲気下のリカバリー・アニール時に、酸素がトランジスタ素子(ゲート酸化膜や拡散層等)へ拡散していくのを防止する目的で成膜される。
【0004】
所定領域における素子分離絶縁膜32上方において、シリコン窒化膜36上に下部電極37がストライプ状に形成されている。下部電極37上方には上部電極39が交差するようにストライプ状に形成されている。下部電極37と上部電極39の間に強誘電体薄膜38を配しており、両電極の交差領域がマトリクス状に配列されるメモリセル構造となり、メモリ部40を構成する。メモリ部40上を覆うように層間絶縁膜41が形成されている。
【0005】
クロスポイント型のFeRAMにおいては、下部電極37の副ビット線電位と上部電極39のワード線電位の関係を制御して、それぞれ強誘電体薄膜38を有する強誘電体キャパシタを所定の印加電界方向に分極させる。選択されたメモリセルは、強電体キャパシタの分極状態に応じた副ビット線電位となり、図示しない選択トランジスタ及びビット線に伝達される。このようなクロスポイント型のFeRAMは例えば特許文献1に開示されている。
【0006】
【特許文献1】
特開平9−116107(第5−10頁)
【0007】
【発明が解決しようとする課題】
図3において、例えばメモリ部の周辺回路として働くMOS型素子34上には層間絶縁膜35、シリコン窒化膜36、及び層間絶縁膜41のトータル膜厚の比較的大きい層間絶縁膜IL2が形成されている。MOS型素子34への電気的接続には、この層間絶縁膜IL2上より目的の領域に達するコンタクトホールHL2を開孔し、導電部材により配線する必要がある。
【0008】
上記構成によれば、メモリ部が素子分離絶縁膜32上に層間絶縁膜35及びシリコン窒化膜36を介した上に設けられる。これにより、メモリ部の周辺回路、例えばMOS型素子34へのコンタクトホールHL2が高アスペクト比を有する形態となり、アルミニウム配線の断線が懸念される。このような段差被覆性の問題を回避するためW(タングステン)プラグの利用も考えられる。しかしながら、強誘電体メモリでは、上述したようにリカバリー・アニールと呼ばれる、強誘電体薄膜38の安定したヒステリシス特性を得るための酸素アニール(熱処理)を必要とする。これにより、Wプラグを使用した場合、Wプラグ上面で酸化が進行し、配線抵抗が上昇してしまう。従って、Wプラグの使用は避けたい。
【0009】
本発明は上記のような事情を考慮してなされたもので、クロスポイント型のFeRAMにおけるメモリ部周辺回路への電気的接続に関し断線の恐れを大幅に軽減する半導体装置及びその製造方法を提供しようとするものである。
【0010】
【課題を解決するための手段】
本発明に係る半導体装置は、半導体基板上の素子分離絶縁膜と、前記素子分離絶縁膜に囲まれた前記半導体基板の所定領域上に形成された前記素子分離絶縁膜より小さい膜厚の絶縁膜と、前記絶縁膜上に設けられる、交差する下部電極と上部電極の間に強誘電体薄膜を有するメモリセルがマトリクス状に配列されたメモリ部と、を具備したことを特徴とする。
【0011】
上記本発明に係る半導体装置によれば、メモリ部が半導体基板の所定領域上において素子分離絶縁膜より小さい膜厚の絶縁膜を介して設けられる形態をとっている。これにより、メモリ部の領域の高さは、隣接する層間絶縁膜の膜厚差をより小さくする方向に改善される。
【0012】
なお、上記本発明に係る半導体装置において、前記絶縁膜は前記下部電極に対するバリア膜を含む積層膜で構成されることを特徴とする。
また、前記メモリ部近くの前記半導体基板上の素子領域において前記メモリ部との接続を有する周辺回路に関係するMOS型素子をさらに具備したことを特徴とする。
また、前記メモリ部近くの前記半導体基板上の素子領域において前記メモリ部との接続を有する周辺回路に関係するMOS型素子をさらに具備し、前記絶縁膜は前記MOS型素子上の層間絶縁膜であることを特徴としている。
上述した特徴によって、MOS型素子とメモリ部を電気的に接続する際のコンタクトホールのアスペクト比はより低い方向に改善され、断線を防ぐ形態が得られる。
【0013】
上記本発明に係る半導体装置の製造方法は、半導体基板上に素子分離絶縁膜を形成する工程と、前記素子分離絶縁膜に囲まれた前記半導体基板の所定領域上に前記素子分離絶縁膜より小さい膜厚の絶縁膜を形成する工程と、前記絶縁膜上において、交差させる下部電極と上部電極の間に強誘電体薄膜を有したメモリセルがマトリクス状に配列されるようにしたメモリ部を形成する工程と、を具備したことを特徴とする。
【0014】
上記本発明に係る半導体装置の製造方法によれば、メモリ部が半導体基板の所定領域上において素子分離絶縁膜より小さい膜厚の絶縁膜を介して設けられる。これにより、メモリ部の領域の高さは、隣接する層間絶縁膜の膜厚差をより小さくする方向に改善される。
【0015】
なお、上記本発明に係る半導体装置の製造方法において、前記絶縁膜は積層膜とし、上部に前記下部電極に対するバリア膜を形成することを特徴とする。
また、前記メモリ部近くの前記半導体基板上の素子領域において前記メモリ部との接続を有する周辺回路に関係するMOS型素子を形成する工程をさらに具備したことを特徴とする。
また、前記メモリ部近くの前記半導体基板上の素子領域において前記メモリ部との接続を有する周辺回路に関係するMOS型素子を形成する工程をさらに具備し、前記絶縁膜の形成は前記MOS型素子上への層間絶縁膜の形成と同一工程で達成することを特徴としている。
上述した特徴によって、MOS型素子とメモリ部を電気的に接続する際のコンタクトホールのアスペクト比はより低い方向に改善可能である。
【0016】
【発明の実施の形態】
図1は、本発明の一実施形態に係る半導体装置の要部構成であり、クロスポイント型のFeRAMにおける一部のメモリ部及びその周辺を示す断面図である。また、図2は、図1の構成を実現するための途中工程を示す断面図である。
半導体基板11に素子分離絶縁膜12が形成され、隣接する素子領域13にはメモリ部の周辺回路として働くMOS型素子14が形成されている。MOS型素子14上を含め全面に層間絶縁膜15が形成されている。層間絶縁膜15上にはシリコン窒化膜16が形成されている。上述したようにシリコン窒化膜16は、少なくともメモリ部形成時に必要なリカバリー・アニール時の酸素拡散防止用のバリア膜として機能する。
【0017】
この実施形態では素子分離絶縁膜12に囲まれた半導体基板11の所定領域上に層間絶縁膜15及びシリコン窒化膜16が積層され、このシリコン窒化膜16上に下部電極17がストライプ状に形成されている。下部電極17は例えば厚さ100nm程度のPtである。下部電極17上方には上部電極19が交差するようにストライプ状に形成されている。上部電極19も例えば厚さ100nm程度のPtで構成される。下部電極17と上部電極19の間に強誘電体薄膜18を配する。強誘電体薄膜18は様々考えられ、例えば、PZT(Pb(Zr,Ti)O)系の化合物、層状構造を有するBi系化合物(SBT(SrBiTa)等)などから選択して採用する。強誘電体薄膜18の厚さは100〜200nm程度である。これにより、下部電極17と上部電極19の交差領域がマトリクス状に配列されるメモリセル構造となり、メモリ部20を構成する。メモリ部20上を覆うように層間絶縁膜21が形成されている。
【0018】
すなわち、図2に示すように、素子分離絶縁膜を形成しない素子領域と同様の半導体基板11上にMOS型素子14形成後の、層間絶縁膜15及びシリコン窒化膜16が積層され、メモリ部の下地領域を形成する。層間絶縁膜15は100nm程度のSiO膜で、後酸化膜等に相当する。シリコン窒化膜16は50nm程度でバリア膜、素子の保護膜として構成される。このような下地領域にメモリ部20を形成する。
【0019】
例えばメモリ部20の周辺回路として働くMOS型素子14上には層間絶縁膜15、シリコン窒化膜16、及び層間絶縁膜21のトータル膜厚の層間絶縁膜IL1が形成されている。しかし、従来技術に比べれば、層間絶縁膜IL1の厚みは低く抑えることができる。すなわち、メモリ部20が素子分離領絶縁膜12上方に形成されるのではないので、層間絶縁膜IL1の厚みは大略、素子分離領絶縁膜12厚さの約半分に相当する高さ分だけ小さくすることができる。
【0020】
メモリ部の周辺回路、例えばMOS型素子14への電気的接続には、この層間絶縁膜IL1上より目的の領域に達するコンタクトホールHL1を開孔し、導電部材により配線する必要がある。層間絶縁膜IL1の厚みが小さい分、従来構成よりコンタクトホールHL1のアスペクト比は小さくなり、アルミニウム配線の断線の恐れが大幅に軽減される。
【0021】
上記実施形態及び方法によれば、メモリ部20が半導体基板11の所定領域上において素子分離絶縁膜12より小さい膜厚の絶縁膜(層間絶縁膜15、シリコン窒化膜16の積層)を介して設けられる形態となる。これにより、メモリ部20の領域の高さは、隣接する層間絶縁膜IL1の膜厚差をより小さくする方向に改善される。コンタクトホールHL1内を埋める配線部材は、主配線層として例えばアルミニウム配線を採用する。アルミニウム配線は、Alに少なくともCuを、あるいはさらにSiを僅かに含有する。コンタクトホールHL1のアスペクト比改善により、アルミニウム配線において断線の恐れが大幅に軽減される。
【0022】
また、層間絶縁膜IL1は、従来DOF(焦点深度)確保のためにCMP等の平坦化加工を要していたが、コンタクトホールHL1のアスペクト比が小さくなることもあって、CMPを必ずしも必要としない。これにより工程短縮の利点が期待できる。
【0023】
以上説明したように、本発明によれば、メモリ部が半導体基板の所定領域上において素子分離絶縁膜より小さい膜厚の絶縁膜を介して設けられる。これにより、メモリ部の領域の高さは、隣接する層間絶縁膜の膜厚差をより小さくする方向に改善される。この結果、クロスポイント型のFeRAMにおけるメモリ部周辺回路への電気的接続に関し断線の恐れを大幅に軽減する半導体装置及びその製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る半導体装置の要部構成であり、クロスポイント型のFeRAMにおける一部のメモリ部及びその周辺を示す断面図。
【図2】図1の構成を実現するための途中工程を示す断面図。
【図3】従来のクロスポイント型のFeRAMにおける一部のメモリ部及びその周辺を示す断面図。
【符号の説明】
11,31…半導体基板、12,32…素子分離絶縁膜、13,33…素子領域、14,34…MOS型素子、15,35…層間絶縁膜、16,36…シリコン窒化膜、17,37…下部電極、18,38…強誘電体薄膜、19,39…上部電極、20,40…メモリ部、21,41…層間絶縁膜。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention particularly relates to a semiconductor device including a semiconductor integrated circuit having a cross-point type FeRAM (Ferroelectric Random Access Memory) cell and a method of manufacturing the same.
[0002]
[Prior art]
An FeRAM, a so-called ferroelectric memory, is one of the non-volatile memories having high speed, low power consumption, high integration, and excellent rewriting resistance. The ferroelectric memory can perform high-speed rewriting using the hysteresis characteristic of the ferroelectric thin film, that is, high-speed polarization inversion and its remanent polarization. In particular, a cross-point type FeRAM has a configuration in which memory cells having a structure in which a lower electrode and an upper electrode intersect via a ferroelectric thin film are arranged in a matrix, and is excellent in high integration.
[0003]
FIG. 3 is a cross-sectional view showing a part of a memory part and its periphery in a conventional cross-point type FeRAM. An element isolation insulating film 32 is formed on a semiconductor substrate 31, and a MOS element 34 serving as a peripheral circuit of a memory section is formed in an adjacent element region 33. An interlayer insulating film 35 is formed on the entire surface including on the MOS element 34. The interlayer insulating film 35 is planarized by using a CMP (chemical mechanical polishing) technique or the like, and a silicon nitride film 36 is formed on the interlayer insulating film 35. The silicon nitride film 36 functions as a barrier film provided at least in the memory unit 40 described later. That is, the silicon nitride film 36 is formed of oxygen during recovery annealing in an O 2 atmosphere, which is performed after etching of a ferroelectric such as PZT (Pb (Zr, Ti) O 3 ) or SBT (SrBi 2 Ta 2 O 9 ). Is formed for the purpose of preventing the diffusion into the transistor element (gate oxide film, diffusion layer, etc.).
[0004]
A lower electrode 37 is formed in a stripe shape on the silicon nitride film 36 above the element isolation insulating film 32 in a predetermined region. Above the lower electrode 37, an upper electrode 39 is formed in a stripe shape so as to intersect. A ferroelectric thin film 38 is provided between the lower electrode 37 and the upper electrode 39, and a memory cell structure in which the intersecting regions of the two electrodes are arranged in a matrix form constitutes a memory section 40. An interlayer insulating film 41 is formed so as to cover the memory section 40.
[0005]
In the cross-point type FeRAM, the relationship between the sub-bit line potential of the lower electrode 37 and the word line potential of the upper electrode 39 is controlled, and the ferroelectric capacitors each having the ferroelectric thin film 38 are moved in a predetermined applied electric field direction. Polarize. The selected memory cell has a sub-bit line potential corresponding to the polarization state of the ferroelectric capacitor, and is transmitted to a selection transistor and a bit line (not shown). Such a cross-point type FeRAM is disclosed in Patent Document 1, for example.
[0006]
[Patent Document 1]
JP-A-9-116107 (pages 5 to 10)
[0007]
[Problems to be solved by the invention]
In FIG. 3, for example, an interlayer insulating film IL2 having a relatively large total thickness of an interlayer insulating film 35, a silicon nitride film 36, and an interlayer insulating film 41 is formed on a MOS element 34 serving as a peripheral circuit of a memory section. I have. In order to electrically connect to the MOS element 34, it is necessary to open a contact hole HL2 that reaches a target region from above the interlayer insulating film IL2 and to connect a wiring with a conductive member.
[0008]
According to the above configuration, the memory unit is provided on the element isolation insulating film 32 via the interlayer insulating film 35 and the silicon nitride film 36. As a result, the peripheral circuit of the memory section, for example, the contact hole HL2 to the MOS element 34 has a high aspect ratio, and there is a concern about disconnection of the aluminum wiring. In order to avoid such a problem of step coverage, use of a W (tungsten) plug may be considered. However, the ferroelectric memory requires oxygen annealing (heat treatment) for obtaining a stable hysteresis characteristic of the ferroelectric thin film 38, which is called recovery annealing as described above. As a result, when a W plug is used, oxidation proceeds on the upper surface of the W plug, and the wiring resistance increases. Therefore, we want to avoid using W plugs.
[0009]
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides a semiconductor device and a method of manufacturing the same which greatly reduces the risk of disconnection in electrical connection to a peripheral circuit of a memory section in a cross-point type FeRAM. It is assumed that.
[0010]
[Means for Solving the Problems]
A semiconductor device according to the present invention includes an element isolation insulating film on a semiconductor substrate, and an insulating film having a smaller thickness than the element isolation insulating film formed on a predetermined region of the semiconductor substrate surrounded by the element isolation insulating film. And a memory unit provided on the insulating film, in which memory cells having a ferroelectric thin film between the intersecting lower electrode and upper electrode are arranged in a matrix.
[0011]
According to the semiconductor device of the present invention, the memory section is provided on a predetermined region of the semiconductor substrate via an insulating film having a smaller thickness than the element isolation insulating film. Thereby, the height of the memory area is improved in a direction in which the difference in film thickness between adjacent interlayer insulating films is reduced.
[0012]
In the above-described semiconductor device according to the present invention, the insulating film is formed of a laminated film including a barrier film for the lower electrode.
Further, a MOS type device related to a peripheral circuit having a connection with the memory portion is further provided in an element region on the semiconductor substrate near the memory portion.
Further, the semiconductor device further includes a MOS type device related to a peripheral circuit having a connection with the memory portion in an element region on the semiconductor substrate near the memory portion, wherein the insulating film is an interlayer insulating film on the MOS type device. It is characterized by having.
Due to the above-described features, the aspect ratio of the contact hole when the MOS element is electrically connected to the memory portion is improved in a lower direction, and a mode of preventing disconnection can be obtained.
[0013]
The method of manufacturing a semiconductor device according to the present invention includes a step of forming an element isolation insulating film on a semiconductor substrate, and a step of forming an element isolation insulating film on a predetermined region of the semiconductor substrate surrounded by the element isolation insulating film. Forming an insulating film having a thickness, and forming a memory portion on the insulating film in which memory cells having a ferroelectric thin film between a lower electrode and an upper electrode to be crossed are arranged in a matrix. And a step of performing
[0014]
According to the method of manufacturing a semiconductor device according to the present invention, the memory unit is provided on the predetermined region of the semiconductor substrate via the insulating film having a smaller thickness than the element isolation insulating film. Thereby, the height of the memory area is improved in a direction in which the difference in film thickness between adjacent interlayer insulating films is reduced.
[0015]
In the method of manufacturing a semiconductor device according to the present invention, the insulating film is a laminated film, and a barrier film for the lower electrode is formed on the insulating film.
The method may further include a step of forming a MOS element related to a peripheral circuit having a connection with the memory section in an element region on the semiconductor substrate near the memory section.
The method may further include forming a MOS type device related to a peripheral circuit having a connection with the memory portion in an element region on the semiconductor substrate near the memory portion, wherein the insulating film is formed by the MOS type device. It is achieved by the same process as the formation of the interlayer insulating film thereon.
With the features described above, the aspect ratio of the contact hole when electrically connecting the MOS element and the memory unit can be improved in a lower direction.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a cross-sectional view showing a main part of a semiconductor device according to an embodiment of the present invention, showing a part of a memory part and its periphery in a cross-point type FeRAM. FIG. 2 is a sectional view showing an intermediate step for realizing the configuration of FIG.
An element isolation insulating film 12 is formed on a semiconductor substrate 11, and a MOS element 14 serving as a peripheral circuit of a memory section is formed in an adjacent element region 13. An interlayer insulating film 15 is formed on the entire surface including the MOS element 14. On the interlayer insulating film 15, a silicon nitride film 16 is formed. As described above, the silicon nitride film 16 functions as a barrier film for preventing oxygen diffusion at the time of recovery annealing required at least when forming the memory portion.
[0017]
In this embodiment, an interlayer insulating film 15 and a silicon nitride film 16 are laminated on a predetermined region of a semiconductor substrate 11 surrounded by an element isolation insulating film 12, and a lower electrode 17 is formed in a stripe on the silicon nitride film 16. ing. The lower electrode 17 is, for example, Pt having a thickness of about 100 nm. Above the lower electrode 17, an upper electrode 19 is formed in a stripe shape so as to intersect. The upper electrode 19 is also made of, for example, Pt having a thickness of about 100 nm. The ferroelectric thin film 18 is provided between the lower electrode 17 and the upper electrode 19. Various types of the ferroelectric thin film 18 are conceivable. For example, the ferroelectric thin film 18 is selected from a PZT (Pb (Zr, Ti) O 3 ) -based compound, a Bi-based compound having a layered structure (SBT (SrBi 2 Ta 2 O 9 )) and the like. To adopt. The thickness of the ferroelectric thin film 18 is about 100 to 200 nm. As a result, a memory cell structure in which the intersecting regions of the lower electrode 17 and the upper electrode 19 are arranged in a matrix is formed, and the memory section 20 is formed. An interlayer insulating film 21 is formed so as to cover the memory section 20.
[0018]
That is, as shown in FIG. 2, the interlayer insulating film 15 and the silicon nitride film 16 after the formation of the MOS element 14 are laminated on the same semiconductor substrate 11 as the element region where the element isolation insulating film is not formed, and A base region is formed. The interlayer insulating film 15 is a SiO 2 film having a thickness of about 100 nm and corresponds to a post-oxide film or the like. The silicon nitride film 16 has a thickness of about 50 nm and is configured as a barrier film and a protective film for the device. The memory unit 20 is formed in such a base region.
[0019]
For example, an interlayer insulating film IL1 having a total thickness of the interlayer insulating film 15, the silicon nitride film 16, and the interlayer insulating film 21 is formed on the MOS element 14 serving as a peripheral circuit of the memory unit 20. However, compared to the conventional technique, the thickness of the interlayer insulating film IL1 can be reduced. That is, since the memory section 20 is not formed above the element isolation insulating film 12, the thickness of the interlayer insulating film IL1 is generally smaller by a height corresponding to about half the thickness of the element isolation insulating film 12. can do.
[0020]
For electrical connection to a peripheral circuit of the memory section, for example, to the MOS element 14, it is necessary to open a contact hole HL1 which reaches a target region from above the interlayer insulating film IL1 and to wire it with a conductive member. Since the thickness of the interlayer insulating film IL1 is small, the aspect ratio of the contact hole HL1 is smaller than that of the conventional configuration, and the possibility of disconnection of the aluminum wiring is greatly reduced.
[0021]
According to the above-described embodiment and method, the memory unit 20 is provided on the predetermined region of the semiconductor substrate 11 via the insulating film (the lamination of the interlayer insulating film 15 and the silicon nitride film 16) having a smaller thickness than the element isolation insulating film 12. It is a form that can be done. Thereby, the height of the region of the memory unit 20 is improved in a direction in which the difference in thickness between the adjacent interlayer insulating films IL1 is reduced. As a wiring member filling the inside of the contact hole HL1, for example, an aluminum wiring is used as a main wiring layer. The aluminum wiring contains at least Cu in Al or a small amount of Si. By improving the aspect ratio of the contact hole HL1, the risk of disconnection in the aluminum wiring is greatly reduced.
[0022]
In addition, the interlayer insulating film IL1 has conventionally required a flattening process such as CMP to secure DOF (depth of focus). However, the aspect ratio of the contact hole HL1 becomes small, so that the CMP is not necessarily required. do not do. Thereby, an advantage of shortening the process can be expected.
[0023]
As described above, according to the present invention, the memory unit is provided on the predetermined region of the semiconductor substrate via the insulating film having a smaller thickness than the element isolation insulating film. Thereby, the height of the region of the memory portion is improved in a direction in which the difference in film thickness between adjacent interlayer insulating films is reduced. As a result, it is possible to provide a semiconductor device and a method of manufacturing the same that greatly reduce the possibility of disconnection in electrical connection to a peripheral circuit of a memory unit in a cross-point type FeRAM.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a main part of a semiconductor device according to an embodiment of the present invention, showing a part of a memory part and a periphery thereof in a cross-point type FeRAM.
FIG. 2 is a sectional view showing an intermediate step for realizing the configuration of FIG. 1;
FIG. 3 is a cross-sectional view showing a part of a memory part and its periphery in a conventional cross-point type FeRAM.
[Explanation of symbols]
11, 31: semiconductor substrate, 12, 32: element isolation insulating film, 13, 33: element region, 14, 34: MOS element, 15, 35: interlayer insulating film, 16, 36: silicon nitride film, 17, 37 ... Lower electrode, 18, 38... Ferroelectric thin film, 19, 39... Upper electrode, 20, 40.

Claims (8)

半導体基板上の素子分離絶縁膜と、
前記素子分離絶縁膜に囲まれた前記半導体基板の所定領域上に形成された前記素子分離絶縁膜より小さい膜厚の絶縁膜と、
前記絶縁膜上に設けられる、交差する下部電極と上部電極の間に強誘電体薄膜を有するメモリセルがマトリクス状に配列されたメモリ部と、
を具備したことを特徴とする半導体装置。
An element isolation insulating film on a semiconductor substrate,
An insulating film having a thickness smaller than that of the element isolation insulating film formed on a predetermined region of the semiconductor substrate surrounded by the element isolation insulating film;
A memory unit provided on the insulating film, in which memory cells having a ferroelectric thin film between the intersecting lower electrode and upper electrode are arranged in a matrix,
A semiconductor device comprising:
前記絶縁膜は前記下部電極に対するバリア膜を含む積層膜で構成されることを特徴とする請求項1記載の半導体装置。2. The semiconductor device according to claim 1, wherein the insulating film is formed of a laminated film including a barrier film for the lower electrode. 前記メモリ部近くの前記半導体基板上の素子領域において前記メモリ部との接続を有する周辺回路に関係するMOS型素子をさらに具備したことを特徴とする請求項1または2記載の半導体装置。3. The semiconductor device according to claim 1, further comprising a MOS element related to a peripheral circuit having a connection with the memory unit in an element region on the semiconductor substrate near the memory unit. 前記メモリ部近くの前記半導体基板上の素子領域において前記メモリ部との接続を有する周辺回路に関係するMOS型素子をさらに具備し、前記絶縁膜は前記MOS型素子上の層間絶縁膜であることを特徴とした請求項1または2記載の半導体装置。The semiconductor device further includes a MOS element related to a peripheral circuit having a connection with the memory section in an element region on the semiconductor substrate near the memory section, and the insulating film is an interlayer insulating film on the MOS element. 3. The semiconductor device according to claim 1, wherein: 半導体基板上に素子分離絶縁膜を形成する工程と、
前記素子分離絶縁膜に囲まれた前記半導体基板の所定領域上に前記素子分離絶縁膜より小さい膜厚の絶縁膜を形成する工程と、
前記絶縁膜上において、交差させる下部電極と上部電極の間に強誘電体薄膜を有したメモリセルがマトリクス状に配列されるようにしたメモリ部を形成する工程と、
を具備したことを特徴とする半導体装置の製造方法。
Forming an element isolation insulating film on the semiconductor substrate;
Forming an insulating film having a thickness smaller than that of the element isolation insulating film on a predetermined region of the semiconductor substrate surrounded by the element isolation insulating film;
Forming a memory portion on the insulating film, in which memory cells having a ferroelectric thin film between a lower electrode and an upper electrode to intersect are arranged in a matrix;
A method for manufacturing a semiconductor device, comprising:
前記絶縁膜は積層膜とし、上部に前記下部電極に対するバリア膜を形成することを特徴とする請求項5記載の半導体装置の製造方法。6. The method according to claim 5, wherein the insulating film is a laminated film, and a barrier film for the lower electrode is formed thereon. 前記メモリ部近くの前記半導体基板上の素子領域において前記メモリ部との接続を有する周辺回路に関係するMOS型素子を形成する工程をさらに具備したことを特徴とする請求項5または6記載の半導体装置。7. The semiconductor according to claim 5, further comprising a step of forming a MOS-type element related to a peripheral circuit having a connection with the memory section in an element region on the semiconductor substrate near the memory section. apparatus. 前記メモリ部近くの前記半導体基板上の素子領域において前記メモリ部との接続を有する周辺回路に関係するMOS型素子を形成する工程をさらに具備し、前記絶縁膜の形成は前記MOS型素子上への層間絶縁膜の形成と同一工程で達成することを特徴とした請求項5または6記載の半導体装置の製造方法。Forming a MOS-type device related to a peripheral circuit having a connection with the memory portion in an element region on the semiconductor substrate near the memory portion; and forming the insulating film on the MOS-type device. 7. The method for manufacturing a semiconductor device according to claim 5, wherein the method is achieved in the same step as the formation of the interlayer insulating film.
JP2003095970A 2003-03-31 2003-03-31 Semiconductor device and its manufacturing method Withdrawn JP2004303989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003095970A JP2004303989A (en) 2003-03-31 2003-03-31 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003095970A JP2004303989A (en) 2003-03-31 2003-03-31 Semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004303989A true JP2004303989A (en) 2004-10-28

Family

ID=33408168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003095970A Withdrawn JP2004303989A (en) 2003-03-31 2003-03-31 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004303989A (en)

Similar Documents

Publication Publication Date Title
TW508798B (en) Semiconductor integrated circuit device and its manufacturing method
JP2001274350A (en) Ferroelectric memory and its manufacturing method
KR100399072B1 (en) Method for fabricating ferroelectric memory device
JP6299114B2 (en) Semiconductor device and manufacturing method of semiconductor device
KR100504693B1 (en) Ferroelectric memory device and method for fabricating the same
JPH10242409A (en) Electronic material and its manufacturing method, dielectric capacitor, non-volatile memory, and semiconductor device
JP2003086771A (en) Capacitive element, and semiconductor device and its manufacturing method
US6483691B1 (en) Capacitor and method for manufacturing the same
JP2006302976A (en) Semiconductor device and manufacturing method thereof
JP3795882B2 (en) Semiconductor device and manufacturing method thereof
JP2005093605A (en) Semiconductor device and its manufacturing method
US6958501B2 (en) Contact-making structure for a ferroelectric storage capacitor and method for fabricating the structure
JP2004303990A (en) Semiconductor device and its manufacturing method
JP2004303989A (en) Semiconductor device and its manufacturing method
JP3039425B2 (en) Capacitive element and method of manufacturing the same
JP2001345434A (en) Semiconductor device
JP2004031553A (en) Semiconductor device and manufacturing method therefor
KR100846366B1 (en) Ferroelectric Ramdom Access Memory and Method for fabricating the same
KR100465832B1 (en) Ferroelectric Random Access Memory and fabricating method of the same
TW202327057A (en) Semiconductor device and method for fabricating the same
JPH10200068A (en) Semiconductor storage device and its manufacturing method
JP2006253194A (en) Semiconductor device and manufacturing method thereof
KR100846364B1 (en) Method for fabricating embedded Ferroelectric memory device with hydrogen diffusion barrier
JP2004153293A (en) Capacitive element, semiconductor storage device, and its manufacturing method
CN116133436A (en) Semiconductor element and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606