JP2004300013A - Metal oxide ultrafine particle dispersed solution and metal oxide ultrafine particle thin film - Google Patents

Metal oxide ultrafine particle dispersed solution and metal oxide ultrafine particle thin film Download PDF

Info

Publication number
JP2004300013A
JP2004300013A JP2003313463A JP2003313463A JP2004300013A JP 2004300013 A JP2004300013 A JP 2004300013A JP 2003313463 A JP2003313463 A JP 2003313463A JP 2003313463 A JP2003313463 A JP 2003313463A JP 2004300013 A JP2004300013 A JP 2004300013A
Authority
JP
Japan
Prior art keywords
metal oxide
thin film
ultrafine particle
oxide ultrafine
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003313463A
Other languages
Japanese (ja)
Other versions
JP4311134B2 (en
Inventor
Hirohisa Yamashita
裕久 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003313463A priority Critical patent/JP4311134B2/en
Priority to PCT/JP2003/011821 priority patent/WO2004026762A1/en
Priority to AU2003264459A priority patent/AU2003264459A1/en
Publication of JP2004300013A publication Critical patent/JP2004300013A/en
Application granted granted Critical
Publication of JP4311134B2 publication Critical patent/JP4311134B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
    • C01B13/328Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process by processes making use of emulsions, e.g. the kerosine process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/02Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/10Metal-oxide dielectrics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5481Monomodal

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal oxide ultrafine particle dispersed solution in which crystallized metal oxide ultrafine particles with a uniform diameter and a uniform shape are highly dispersed, and a dense metal oxide ultrafine particle thin film with a small particle diameter. <P>SOLUTION: As to the metal oxide ultrafine particle dispersed solution prepared by a hydrolysis reaction of a raw material in a microemulsion containing a hydrophobic dispersion medium 6, water 4, and a surfactant 2, the raw material comprises a combined metal alkoxide and the amount of water contained in the microemulsion is 0.95-3 times the amount of water required for the hydrolysis of the complex metal alkoxide. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、金属酸化物超微粒子が分散した金属酸化物超微粒子分散溶液、特に、複合金属酸化物超微粒子薄膜の製造に好適な金属酸化物超微粒子分散溶液、及びナノサイズの金属酸化物超微粒子からなる誘電特性に優れた金属酸化物超微粒子薄膜に関する。   The present invention relates to a metal oxide ultrafine particle dispersion solution in which metal oxide ultrafine particles are dispersed, in particular, a metal oxide ultrafine particle dispersion solution suitable for producing a composite metal oxide ultrafine particle thin film, and a nano-sized metal oxide ultrafine particle. The present invention relates to a metal oxide ultrafine particle thin film composed of fine particles and having excellent dielectric properties.

近年、デバイスの小型化の要求に伴い、ますます高機能なデバイスの研究開発が精力的に行われている。例えば、チタン酸バリウムやチタン酸ジルコン酸鉛等の複合金属酸化物は、誘電性、圧電性に優れていることから、積層コンデンサやアクチュエータ等に広く利用されている。さらなる小型化、高性能化のためには、素子の薄膜化が不可欠であり、このためには、よりファインな超微粒子からなる高品質な薄膜製造技術の確立を行うことが重要である。   In recent years, with the demand for miniaturization of devices, research and development of increasingly sophisticated devices have been vigorously performed. For example, composite metal oxides such as barium titanate and lead zirconate titanate are widely used in multilayer capacitors, actuators, and the like because of their excellent dielectric properties and piezoelectric properties. For further miniaturization and higher performance, thinning of the element is indispensable. For this purpose, it is important to establish a high-quality thin-film manufacturing technology composed of finer ultrafine particles.

しかしながら、一方で、強誘電体材料は、サイズ効果により、或る臨界粒径で強誘電性が消滅するといわれている。例えば積層コンデンサに用いられるチタン酸バリウムの場合では、50nm程度で強誘電性が消滅するといわれており、これ以下の粒径においては、比誘電率が大幅に低下すると共に、強誘電体として電子デバイスに応用することはできなくなる。   However, on the other hand, it is said that ferroelectric material loses ferroelectricity at a certain critical particle size due to a size effect. For example, in the case of barium titanate used for a multilayer capacitor, it is said that the ferroelectricity disappears at about 50 nm. It cannot be applied to

従って、一般的に積層コンデンサでは、例えば加水分解法により合成された50nm程度のチタン酸バリウムを熱処理により100nm以上まで粒成長させ、結晶性を向上させた上でバインダー、分散剤等と共に混合・粉砕し、スラリー化した後、シート成形し、これらを積み重ね、さらに脱バインダー工程、本焼工程を経て作製されている。   Therefore, in general, in a multilayer capacitor, for example, barium titanate of about 50 nm synthesized by a hydrolysis method is grown to 100 nm or more by heat treatment to improve crystallinity, and then mixed and pulverized with a binder, a dispersant, and the like. After the slurry is formed, the sheets are formed, stacked, stacked, and further subjected to a binder removal process and a firing process.

しかしながら、積層コンデンサにおいては、素子厚1μm程度まで薄層化が進んでおり、この場合、充分な信頼性を得るため、一層あたりに例えば厚み方向で十個の粒子を想定すると、一粒子あたり100nm程度までの微小化が必要となる。さらに次世代の積層コンデンサとして、素子厚0.5μmを想定した場合では、50nm程度まで粒子の微小化が必要となる。即ち、薄層化による粒子の微粒化を求める一方で、サイズ効果をその限界まで抑えることが求められている。   However, in the multilayer capacitor, the element thickness has been reduced to about 1 μm. In this case, in order to obtain sufficient reliability, assuming, for example, ten particles in one layer in the thickness direction, 100 nm per particle is assumed. It is necessary to miniaturize to the extent. Further, assuming an element thickness of 0.5 μm as a next-generation multilayer capacitor, it is necessary to reduce the size of particles to about 50 nm. That is, there is a demand for miniaturization of particles by thinning, while suppressing the size effect to its limit.

但し、実際のところ、このようなナノレベルの粒子サイズにおける正確な実験データは得られておらず、ナノ領域における強誘電特性は殆ど明らかになっていないのが実状である。これは、
1) 微細で粒度分布が狭くかつ結晶性の高いセラミックスナノ粒子を得るのが困難であったこと
2) 微細な粒径を保ったまま緻密な試料を得るのが困難であったこと
に起因している。また、同じ粒径であっても粉末試料と薄膜試料とを比較した場合、薄膜試料では、基板表面からのストレス等の影響から粉末試料に比べて臨界粒径が変化する可能性があり、実際、ナノ粒子レベルでいくつか強誘電特性を示すセラミックスナノ粒子薄膜の報告はあるものの、実用レベルにある作製法により平均粒径50nm以下でかつ強誘電性を示し、十分良好な誘電特性を持つセラミックスナノ粒子薄膜は得られていなかった。
However, as a matter of fact, accurate experimental data at such a nano-level particle size has not been obtained, and ferroelectric properties in a nano-range are hardly clarified. this is,
1) It was difficult to obtain fine, narrow particle size distribution, and highly crystalline ceramic nanoparticles. 2) Due to the difficulty in obtaining a dense sample while maintaining the fine particle size. ing. Also, when the powder sample and the thin film sample are compared even if they have the same particle size, the critical particle size of the thin film sample may change compared to the powder sample due to the stress from the substrate surface, etc. Although there are reports of ceramic nanoparticle thin films that exhibit some ferroelectric properties at the nanoparticle level, ceramics with an average particle size of 50 nm or less and ferroelectricity, and exhibiting sufficiently good dielectric properties are produced by practical production methods. No nanoparticle thin film was obtained.

薄膜の製法としては、まず、配向性の優れたセラミックス薄膜の形成方法として、分子線エピタキシー法(MBE)、化学気相合成法(CVD)、物理気相成長法(PVD)等の気相法が知られている。しかしながら、これらの方法では、多大なコストがかさむと共に、2種類以上の複合金属酸化物超微粒子を製造する場合においては、金属毎の蒸気圧、昇華性、化学反応性の違いなどのために、組成を合わせ込むのが難しく、なかなか実用化には至っていないのが実状である。   As a method of producing a thin film, first, as a method of forming a ceramic thin film having excellent orientation, a vapor phase method such as a molecular beam epitaxy method (MBE), a chemical vapor deposition method (CVD), and a physical vapor deposition method (PVD) is used. It has been known. However, in these methods, enormous cost is increased, and when two or more kinds of composite metal oxide ultrafine particles are produced, a difference in vapor pressure, sublimability, chemical reactivity, etc. of each metal, The fact is that it is difficult to adjust the composition, and it has not yet been put to practical use.

一方、ゾルゲル法に代表される液相法を用いた薄膜形成は、組成制御性及びコストの観点から気相法より有利であり、広く研究がなされている。   On the other hand, thin film formation using a liquid phase method represented by a sol-gel method is more advantageous than a gas phase method from the viewpoints of composition controllability and cost, and has been extensively studied.

ここで、ゾルゲル法で薄膜形成を行う場合、一般には、金属アルコキシド溶液を原料に用い、水を添加しないか、または、少量の水を添加して部分加水分解を行った前駆体溶液を調整し、スピンコーティング法やディップコーティング法により成膜が行われる。   Here, when a thin film is formed by the sol-gel method, generally, a metal alkoxide solution is used as a raw material, and water is not added, or a precursor solution that has been partially hydrolyzed by adding a small amount of water is prepared. The film is formed by a spin coating method or a dip coating method.

しかしながらゾルゲル法により得られたこれらのゲル薄膜は、成膜後、非常にゆっくりと加水分解反応を進行させて目的の酸化物とする必要があり、急激に加水分解を行うと膜の収縮のために多くのひび割れが形成され、良質な薄膜が得られない。従って、ひび割れのない良質な薄膜を得るためには、長時間エージングを行う必要があった。   However, these gel thin films obtained by the sol-gel method need to proceed with the hydrolysis reaction very slowly to form the target oxide after film formation. Many cracks are formed on the surface, and a good quality thin film cannot be obtained. Therefore, aging had to be performed for a long time to obtain a good quality thin film without cracks.

また、このようにして形成された膜は、一般に有機化合物を含む非晶質であり、結晶性の膜を得るためには成膜後、さらに焼成を行う必要がある。しかしながら、この場合、膜の非晶質相は、焼成の際に中間相を形成することがあり、緻密化を阻害したり表面粗さが増すなどの問題や、基板との界面で異相を形成して特性を劣化させるなどの問題があった。また、この場合、比較的高温で焼成を行う必要があるため、焼成により粒成長が起こり、十分に細かな粒径を保ったまま緻密な薄膜を得るのは難しかった。   Further, the film thus formed is generally amorphous containing an organic compound, and it is necessary to further bake after forming the film in order to obtain a crystalline film. However, in this case, the amorphous phase of the film may form an intermediate phase during firing, which causes problems such as hindering densification and increasing surface roughness, and formation of a different phase at the interface with the substrate. As a result, there is a problem that the characteristics are deteriorated. In this case, since it is necessary to perform firing at a relatively high temperature, grain growth occurs by firing, and it has been difficult to obtain a dense thin film while maintaining a sufficiently small particle size.

そこで、これらの問題を解決するために、既によく結晶化した複合金属酸化物超微粒子が高度に溶媒内に分散した複合金属酸化物超微粒子分散溶液を作製することができれば、作製した分散溶液を用いて、例えばスピンコーティング法により成膜を行い、乾燥後、比較的低温で熱処理を行うことにより、十分に細かな粒径を保ったまま緻密な薄膜を得ることができる。   Therefore, in order to solve these problems, if it is possible to prepare a composite metal oxide ultrafine particle dispersion in which highly crystallized composite metal oxide ultrafine particles are already highly dispersed in a solvent, the prepared dispersion solution may be used. By performing film formation by, for example, a spin coating method, drying, and performing heat treatment at a relatively low temperature, a dense thin film can be obtained while maintaining a sufficiently small particle size.

このような複合金属酸化物超微粒子分散溶液を作製するには、組成が均質で、粒子径が揃い且つ結晶化した複合金属酸化物超微粒子を合成すること、及びそれを溶媒内に高度に分散させることが必要となる。しかしながら、微細化が進むにつれ、セラミックス微粒子は凝集の制御が難しくなり、水が存在することによって硬い凝集を起こすと言われている(非特許文献1参照)。   In order to prepare such a composite metal oxide ultrafine particle dispersion solution, it is necessary to synthesize ultrafine composite metal oxide particles having a uniform composition, a uniform particle size, and crystallized, and to disperse them in a solvent to a high degree. It is necessary to make it. However, it is said that as the miniaturization proceeds, it becomes difficult to control the aggregation of the ceramic fine particles, and that the presence of water causes hard aggregation of the ceramic fine particles (see Non-Patent Document 1).

すなわち、粉末表面に水が存在すると、図1に示されるように、水を介した水素結合により隣接微粒子が架橋して凝集が進行し、水がとれて一旦、微粒子間の酸素を介した架橋による凝集が生じてしまうと、凝集したセラミックス微粒子を解砕して再び高度に分散させることは非常に困難となる。   That is, if water is present on the powder surface, as shown in FIG. 1, adjacent fine particles are cross-linked by hydrogen bonding via water, and aggregation proceeds. If the agglomeration occurs, it is very difficult to crush the agglomerated ceramic fine particles and re-disperse them again to a high degree.

従って、まず結晶性の高い複合金属酸化物超微粒子を凝集を避けて合成すること、次に、一度合成された超微粒子を凝集させずに分散した状態に保つことが鍵となる。   Therefore, the key is to first synthesize ultrafine composite metal oxide particles having high crystallinity while avoiding aggregation, and then to keep the ultrafine particles once synthesized in a dispersed state without agglomeration.

ここで、特許文献1には、金属コロイド法、マイクロエマルジョン法(逆ミセル法)、高分子錯体法、メタルアルコラートの加水分解法、グリニヤール法など、最近報告されている金属酸化物超微粒子の製造方法が列記されている。   Here, Patent Document 1 discloses production of ultrafine metal oxide particles which have recently been reported, such as a metal colloid method, a microemulsion method (reverse micelle method), a polymer complex method, a metal alcoholate hydrolysis method, and a Grignard method. The methods are listed.

この中で、W/O(Water in Oil)マイクロエマルジョン法は、疎水性液体中に水を界面活性剤と共に加えて微小水滴として分散させ、この微小水滴中で加水分解等の反応によって、導入した原料を反応させて金属酸化物超微粒子を得る方法である。このW/Oマイクロエマルジョン法では、金属酸化物微粒子の粒径、表面構造がナノスケール制御されていることが知られている(非特許文献2参照)。   Among them, in the W / O (Water in Oil) microemulsion method, water is added to a hydrophobic liquid together with a surfactant to disperse as fine water droplets, and the water is introduced by a reaction such as hydrolysis in the fine water droplets. This is a method of reacting raw materials to obtain ultrafine metal oxide particles. In this W / O microemulsion method, it is known that the particle size and surface structure of metal oxide fine particles are controlled on a nanoscale (see Non-Patent Document 2).

ただし、一般には、合成後、さらに沈殿剤等を加えて得られた微粒子を完全に沈殿させ、遠心分離機により沈殿物を取り出す。取り出した沈殿物である微粒子と界面活性剤との混合物を有機溶剤等により洗浄することによって、目的の微粒子を分離して得ている(特許文献2参照)。
化学工業、1995年4月号45項 Chem.Phys.Lett.125、299項等 特開2001−163617号公報 特開平9−255331号公報
However, generally, after the synthesis, fine particles obtained by further adding a precipitant or the like are completely precipitated, and the precipitate is taken out by a centrifuge. The target fine particles are separated and obtained by washing the mixture of the fine particles, which are taken out precipitates, and the surfactant with an organic solvent or the like (see Patent Document 2).
Chemical Industry, April 1995, Item 45 Chem.Phys.Lett.125, 299, etc. JP 2001-163617 A JP-A-9-255331

ここで、マイクロエマルジョン法で合成された超微粒子をそのまま凝集させることなく溶液中に分散させることができれば、金属酸化物超微粒子薄膜の成膜用の溶液として用いることができる。   Here, if the ultrafine particles synthesized by the microemulsion method can be dispersed in a solution without being aggregated, they can be used as a solution for forming a metal oxide ultrafine particle thin film.

該エマルジョンの水滴は、熱力学的に安定であり、分散して存在している。しかしながら、個々の液滴1,1は、図2に示すように、結合、解離を繰り返している。従って、該マイクロエマルジョン法で複合金属酸化物超微粒子の合成を行った場合、上述の結合、解離を繰り返しているうちに、徐々に合成された微粒子の凝集が進み沈殿を生じる。   The water droplets of the emulsion are thermodynamically stable and present in a dispersed state. However, the individual droplets 1 and 1 repeat bonding and dissociation as shown in FIG. Therefore, when the composite metal oxide ultrafine particles are synthesized by the microemulsion method, while the above-mentioned bonding and dissociation are repeated, the synthesized fine particles gradually aggregate and precipitate.

また、誘電体デバイスに用いる金属酸化物超微粒子薄膜では、上述のように、結晶粒径を小さくすると、ある臨界粒径で強誘電特性が消失するという問題がある。そのため、サイズによって強誘電特性が消失するというサイズ効果をその限界まで抑制しつつ、更なる薄層化を行い、高性能化を図ることが求められている。   Further, as described above, in the ultrafine metal oxide thin film used for the dielectric device, there is a problem that when the crystal grain size is reduced, the ferroelectric characteristics disappear at a certain critical grain size. Therefore, it is required to further reduce the thickness and improve the performance while suppressing the size effect that the ferroelectric characteristic disappears depending on the size to the limit.

本発明は、上述のような点に鑑みて為されたものであって、組成が均質で、粒子径及び形状が揃い且つ結晶化した金属酸化物超微粒子が高度に分散した金属酸化物超微粒子分散溶液を提供するととともに、得られた複合金属酸化物超微粒子分散溶液を用いて、粒径が小さくかつ緻密な金属酸化物超微粒子薄膜を提供することを主たる目的とし、さらに、誘電特性に優れたナノ粒子サイズの金属酸化物超微粒子の薄膜を提供することを目的とする。   The present invention has been made in view of the above points, and has a uniform composition, uniform particle diameter and shape, and highly dispersed metal oxide ultrafine particles in which crystallized metal oxide ultrafine particles are highly dispersed. Along with providing the dispersion solution, the main purpose is to provide a fine metal oxide ultrafine particle thin film having a small particle size by using the obtained composite metal oxide ultrafine particle dispersion solution, and further, has excellent dielectric properties. It is an object of the present invention to provide a thin film of metal oxide ultrafine particles having a nanoparticle size.

そこで、本件発明者は、上記目的を達成するために鋭意検討した結果、マイクロエマルジョン法による金属酸化物超微粒子を合成する際に、反応過程でエマルジョン中の水を消費する原料として、例えば、金属アルコキシドを用い、マイクロエマルジョン溶液の水量を極力少なくすることにより、反応後はほぼ水が消費され、合成された金属酸化物超微粒子が、反応後の溶媒中に高度に分散した溶液を得ることができることを見出し本発明を完成した。   Therefore, the present inventors have conducted intensive studies to achieve the above object, and as a result, when synthesizing ultrafine metal oxide particles by the microemulsion method, as a raw material that consumes water in the emulsion in the reaction process, for example, metal By using an alkoxide and minimizing the amount of water in the microemulsion solution, water is almost consumed after the reaction, and a solution in which the synthesized ultrafine metal oxide particles are highly dispersed in the solvent after the reaction can be obtained. We have found that we can do this and completed the present invention.

すなわち、本発明の金属酸化物超微粒子分散溶液は、疎水性液体である分散媒、水および界面活性剤を含むマイクロエマルジョン中での原料の加水分解反応によって作製される金属酸化物超微粒子分散溶液であって、前記原料は複数の金属アルコキシドをアルコール中で混合して複合化した複合金属アルコキシド溶液からなり、前記マイクロエマルジョンに含まれる水量が、前記原料の加水分解に必要な水量の0.95倍以上3倍以下である。   That is, the metal oxide ultrafine particle dispersion solution of the present invention is a metal oxide ultrafine particle dispersion solution produced by a hydrolysis reaction of raw materials in a microemulsion containing a dispersion medium which is a hydrophobic liquid, water and a surfactant. Wherein the raw material is a composite metal alkoxide solution obtained by mixing and mixing a plurality of metal alkoxides in alcohol, and the amount of water contained in the microemulsion is 0.95 of the amount of water required for hydrolysis of the raw material. More than twice and less than three times.

ここで、超微粒子とは、例えば、平均粒径が100nm以下の粒子をいう。   Here, the ultrafine particles refer to, for example, particles having an average particle diameter of 100 nm or less.

本発明によると、マイクロエマルジョンに含まれる水量を、原料の加水分解に必要な水量の0.95倍以上としたので、加水分解が行なわれないままの未分解の原料や結晶性が十分でない非晶質の超微粒子の割合を少なくできる一方、マイクロエマルジョンに含まれる水量が、原料の加水分解に必要な水量の3倍以下であるので、反応後に生成した金属酸化物超微粒子の凝集が抑えられ、高度に分散した透明な金属酸化物超微粒子分散溶液となる。   According to the present invention, the amount of water contained in the microemulsion is 0.95 times or more the amount of water required for hydrolysis of the raw material, so that undecomposed raw material without hydrolysis and non-sufficient crystallinity are not used. While the ratio of the crystalline ultrafine particles can be reduced, the amount of water contained in the microemulsion is not more than three times the amount of water required for hydrolysis of the raw material, so that aggregation of the metal oxide ultrafine particles generated after the reaction is suppressed. , Resulting in a highly dispersed transparent metal oxide ultrafine particle dispersion solution.

また、本発明によると、原料溶液となる金属アルコキシド溶液は、複数の金属アルコキシドを複合化した複合金属アルコキシド溶液であるので、生成した超微粒子は、非常に微細で組成が均質で、しかも粒子径及び形状が揃い且つ結晶化した複合金属酸化物単相の微粒子となる。   Further, according to the present invention, since the metal alkoxide solution serving as the raw material solution is a composite metal alkoxide solution in which a plurality of metal alkoxides are compounded, the generated ultrafine particles are very fine, the composition is uniform, and the particle diameter is large. In addition, the composite metal oxide single phase fine particles having a uniform and crystallized shape are obtained.

本発明の他の実施態様においては、前記複数の金属アルコキシドの少なくとも一つがバリウムアルコキシドであって、前記複合金属アルコキシド溶液は、前記バリウムアルコキシドの重合を抑制する重合抑制剤を含むものである。   In another embodiment of the present invention, at least one of the plurality of metal alkoxides is a barium alkoxide, and the composite metal alkoxide solution contains a polymerization inhibitor that suppresses polymerization of the barium alkoxide.

重合抑制剤としては、例えば、ベンゼンが好ましい。   As the polymerization inhibitor, for example, benzene is preferable.

この実施態様によると、バリウムアルコキシドの重合を抑制するベンゼンなどの重合抑制剤を含んでいるので、バリウムアルコキシドの重合が抑制され、バリウムアルコキシドと他の金属アルコキシドとの均質な複合金属アルコキシドを得ることができる。   According to this embodiment, since a polymerization inhibitor such as benzene which suppresses the polymerization of barium alkoxide is contained, polymerization of barium alkoxide is suppressed, and a homogeneous composite metal alkoxide of barium alkoxide and another metal alkoxide is obtained. Can be.

本発明に係る金属酸化物超微粒子薄膜は、本発明方法で作製された金属酸化物超微粒子分散溶液を用いて製造されたものである。   The metal oxide ultrafine particle thin film according to the present invention is produced using the metal oxide ultrafine particle dispersion prepared by the method of the present invention.

本発明によると、粒径が小さくかつ緻密な金属酸化物超微粒子薄膜を得ることができる。   According to the present invention, a dense metal oxide ultrafine particle thin film having a small particle diameter can be obtained.

また、本発明に係る金属酸化物超微粒子薄膜は、平均粒径15nm以上50nm以下の金属酸化物超微粒子から構成され、残留分極(Pr)において、2Prが2μC/cm2以上の強誘電特性を有し、測定周波数1kHzにおける比誘電率が300以上である。 Further, the metal oxide ultrafine particle thin film according to the present invention is composed of metal oxide ultrafine particles having an average particle diameter of 15 nm or more and 50 nm or less, and has a ferroelectric property of 2 Pr of 2 μC / cm 2 or more in remanent polarization (Pr). And a dielectric constant at a measurement frequency of 1 kHz is 300 or more.

本発明によると、平均粒径50nm以下であるので、よりいっそうの薄層化を図ることができる一方、15〜50nmの超微粒子から構成されても、2Prが2μC/cm2以上の強誘電特性を有し、測定周波数1kHzにおける比誘電率が300以上の優れた薄膜を得ることができる。 According to the present invention, since the average particle diameter is 50 nm or less, it is possible to further reduce the thickness. On the other hand, even if it is composed of ultrafine particles of 15 to 50 nm, the ferroelectric properties of 2 Pr of 2 μC / cm 2 or more are obtained. And an excellent thin film having a relative dielectric constant of 300 or more at a measurement frequency of 1 kHz can be obtained.

また、本発明の金属酸化物超微粒子薄膜を構成する前記金属酸化物超微粒子が、チタンおよびバリウムを含むペロブスカイト型酸化物であることが好ましい。このようにチタン及バリウムを含むペロブスカイト型酸化物のような複合酸化物であっても、平均粒径50nm以下であるので、よりいっそうの薄層化を図ることができる一方、15〜50nmの超微粒子から構成されても、2Prが2μC/cm2以上の強誘電特性を有し、測定周波数1kHzにおける比誘電率が300以上の優れた薄膜を得ることができる。 Further, it is preferable that the metal oxide ultrafine particles constituting the metal oxide ultrafine particle thin film of the present invention are perovskite oxides containing titanium and barium. As described above, even a composite oxide such as a perovskite-type oxide containing titanium and barium has an average particle diameter of 50 nm or less, so that it is possible to further reduce the thickness. Even when composed of fine particles, an excellent thin film having a ferroelectric property of 2Pr of 2 μC / cm 2 or more and a relative dielectric constant of 300 or more at a measurement frequency of 1 kHz can be obtained.

以上のように本発明によれば、マイクロエマルジョンに含まれる水量を制限したので、組成が均質で、粒子径及び形状が揃い且つ結晶化した金属酸化物超微粒子が高度に分散した金属酸化物超微粒子分散溶液を容易に得ることができる。また、得られた金属酸化物超微粒子分散溶液を用いて、粒径が小さくかつ緻密な金属酸化物超微粒子薄膜を製造することができる。   As described above, according to the present invention, since the amount of water contained in the microemulsion is limited, the composition is homogeneous, the particle diameter and shape are uniform, and the crystallized metal oxide ultrafine particles are highly dispersed. A fine particle dispersion solution can be easily obtained. In addition, a dense metal oxide ultrafine particle thin film having a small particle diameter can be produced using the obtained metal oxide ultrafine particle dispersion solution.

また、複合金属アルコキシドを原料とするので、複合金属酸化物超微粒子が高度に分散した複合金属酸化物超微粒子分散溶液および粒径が小さくかつ緻密な複合金属酸化物超微粒子薄膜を得ることができる。   In addition, since the composite metal alkoxide is used as a raw material, a composite metal oxide ultrafine particle dispersion solution in which the composite metal oxide ultrafine particles are highly dispersed and a thin composite metal oxide ultrafine particle thin film having a small particle size can be obtained. .

また、本発明の金属酸化物超微粒子薄膜によれば、平均粒径が50nm以下であるので、デバイスに用いた場合に、小型化、薄層化を図ることができるとともに、サイズ効果を抑制して優れた誘電特性を得ることができる。   Further, according to the metal oxide ultrafine particle thin film of the present invention, the average particle diameter is 50 nm or less, so that when used for a device, it is possible to reduce the size and thickness and to suppress the size effect. And excellent dielectric properties can be obtained.

以下、本発明について更に詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明におけるマイクロエマルジョンは、疎水性液体である分散媒、水、界面活性剤によりなるW/Oマイクロエマルジョンである。   The microemulsion according to the present invention is a W / O microemulsion comprising a dispersion medium, which is a hydrophobic liquid, water, and a surfactant.

疎水性液体である分散媒としては、ケロシンなどの石油系炭化水素、シクロへキサン、ヘキサン、シクロペンタン、ベンゼン、オクタンなどの無極性炭化水素、ジエチルエーテル、イソプロピルエーテルなどのエーテルなどが挙げられる。   Examples of the dispersion medium that is a hydrophobic liquid include petroleum hydrocarbons such as kerosene, nonpolar hydrocarbons such as cyclohexane, hexane, cyclopentane, benzene, and octane, and ethers such as diethyl ether and isopropyl ether.

また、界面活性剤は、AOT(sodium bis(2‐ethylhexyl)sulfosucciate)やSDS:CH3(CH2)11OSO3Naなどのイオン性界面活性剤の他、NP‐n(n=1〜10):(p‐C919)‐C64‐O‐(CH2CH2O)nCH2CH2OHやpolyoxyethylene(n)1aury1ether:C1225(OCH2CH2)nOHなどの非イオン性界面活性剤のいずれも用いることができるが、イオン性界面活性剤の場合には、膜成分に余分な成分が残存するので、非イオン性の界面活性剤の方が好ましい。 Surfactants include ionic surfactants such as AOT (sodium bis (2-ethylhexyl) sulfosucciate) and SDS: CH 3 (CH 2 ) 11 OSO 3 Na, and NP-n (n = 1 to 10). ) :( p-C 9 H 19 ) -C 6 H 4 -O- (CH 2 CH 2 O) n CH 2 CH 2 OH and polyoxyethylene (n) 1aury1ether: C 12 H 25 (OCH 2 CH 2) n OH Any nonionic surfactant such as ionic surfactant can be used. However, in the case of ionic surfactant, an extra component remains in the membrane component, and thus nonionic surfactant is preferable.

本発明の原料は、複合金属アルコキシドである。   The raw material of the present invention is a composite metal alkoxide.

これは、複数の金属アルコキシドを、アルコール中で混合して複合化することによって得られる。ここで用いられるアルコールとしては、エタノール、プロパノール、ブタノール、イソプロピルアルコール等を適宜用いることができる。なお、各金属アルコキシドに対応したアルコールを用いることが好ましい。   This is obtained by mixing a plurality of metal alkoxides in an alcohol to form a composite. As the alcohol used here, ethanol, propanol, butanol, isopropyl alcohol and the like can be appropriately used. Note that it is preferable to use an alcohol corresponding to each metal alkoxide.

この複合金属アルコキシドとしては、特に限定はないが、例えば、バリウムチタンメトキシド、バリウムチタンエトキシド、バリウムチタンプロポキシド、バリウムチタンブトキシド、ストロンチウムチタンメトキシド、ストロウチウムチタンエトキシド、マグネシウムチタンメトキシド、マグネシウムチタンエトキシドなどが挙げられる。   Examples of the composite metal alkoxide include, but are not particularly limited to, for example, barium titanium methoxide, barium titanium ethoxide, barium titanium propoxide, barium titanium butoxide, strontium titanium methoxide, strotium titanium ethoxide, and magnesium titanium methoxide. , Magnesium titanium ethoxide and the like.

また、本発明のマイクロエマルジョン中の水量は、原料である金属アルコキシドの加水分解に必要な水量の0.95倍以上3倍以下であることが好ましい。   The amount of water in the microemulsion of the present invention is preferably 0.95 times or more and 3 times or less the amount of water required for hydrolysis of the metal alkoxide as a raw material.

加水分解に必要な水量は、化学反応式より規定されるものであり、例えば、バリウムイソプロポキシドBa(isop)2とチタンイソプロポキシドTi(isop)4との加水分解反応を例にとると、次のようになる。 The amount of water required for the hydrolysis is defined by a chemical reaction formula. For example, taking the hydrolysis reaction between barium isopropoxide Ba (isop) 2 and titanium isopropoxide Ti (isop) 4 as an example , As follows:

Ba(isop)2+Ti(isop)4+3H2
→BaTiO3+6isopropanol
したがって、この場合には、バリウムイソプロポキシドとチタンイソプロポキシドの各1molに対して、3molの水が加水分解に必要となる。そして、この場合のマイクロエマルジョン中に含まれる水量は、加水分解に必要な水の量の0.95倍以上3倍以下、すなわち、2.85mol以上9mol以下であることが必要となる。
Ba (isop) 2 + Ti (isop) 4 + 3H 2 O
→ BaTiO 3 + 6isopropanol
Therefore, in this case, 3 mol of water is required for hydrolysis with respect to 1 mol of each of barium isopropoxide and titanium isopropoxide. In this case, the amount of water contained in the microemulsion needs to be 0.95 to 3 times the amount of water required for hydrolysis, that is, 2.85 to 9 mol.

水量が1倍以下の場合、反応後に水は完全に消費されるため、非常にクリアーな分散溶液が得られる他、反応後も加水分解が行われないまま残るかまたは非晶質で結晶性が十分でない微粒子が一部含まれることになる。しかしながら、これらの相が成膜時に膜を形成する超微粒子間に入り、膜密度の向上や焼結助剤的な働きをする場合もあるため、1倍以下に水量を調整し、未分解または非晶質部を含むように調整することがよい場合もある。   When the amount of water is less than 1 time, water is completely consumed after the reaction, so that a very clear dispersion solution can be obtained. Some of the particles are not sufficient. However, these phases may enter between the ultrafine particles that form a film at the time of film formation and act as a sintering aid to improve the film density. In some cases, it may be better to adjust to include an amorphous portion.

但し、未分解または非結晶相が増すにつれ、結晶相の割合が減るため、少なくとも0.95倍の水を含む方が好ましい。さらに水量が、1.05倍以上1.2倍以下であれば、クリアーで分散性が高く且つ結晶性の高い複合金属酸化物超微粒子分散溶液が得られるため一層好ましい。反応後の残留水量を極力少なくすることによって、合成された複合金属酸化物の組成のずれを防ぐ効果も有する。   However, since the proportion of the crystalline phase decreases as the undecomposed or non-crystalline phase increases, it is preferable to contain at least 0.95 times of water. Further, when the amount of water is 1.05 times or more and 1.2 times or less, it is more preferable because a clear, highly dispersible, and highly crystalline composite metal oxide ultrafine particle dispersion solution can be obtained. By minimizing the amount of residual water after the reaction, there is also an effect of preventing a deviation in the composition of the synthesized composite metal oxide.

例えば、チタン酸バリウムでは、物質中のBa/Ti比は特性上重要な要素であるが、水中ではバリウムが一部溶出することが知られている。一般的に加水分解法で合成を行う場合、バリウム過剰で調整を行った原料を用いて合成されている。一方、本発明のように反応後に残留する水がほとんどない場合には、バリウムイオンが水中に溶け出すことがないため、調整した原料の組成のままで均質な目的の超微粒子を得ることができる。従って、マイクロエマルジョン中に含まれる水量を加水分解に必要な水量の0.95倍以上3倍以下、好ましくは1.05倍以上1.2倍以下にすることにより、このような一部水中に溶解し易い成分が残ることによる組成のずれもほとんどなくすことができるという利点も有する。   For example, in the case of barium titanate, the Ba / Ti ratio in a substance is an important factor in characteristics, but it is known that barium partially elutes in water. Generally, when synthesis is performed by a hydrolysis method, synthesis is performed using a raw material adjusted in excess of barium. On the other hand, when there is almost no water remaining after the reaction as in the present invention, barium ions do not dissolve in water, so that uniform target ultrafine particles can be obtained with the adjusted raw material composition. . Therefore, by making the amount of water contained in the microemulsion 0.95 times or more and 3 times or less, preferably 1.05 times or more and 1.2 times or less the amount of water required for hydrolysis, There is also an advantage that the composition shift due to the remaining easily soluble components can be almost eliminated.

また、該マイクロエマルジョンにおいて、もう1つの界面活性剤いわゆるコサーファクタントとして、1種類以上のアルコールを加えることが好ましい。   In the microemulsion, it is preferable to add one or more alcohols as another surfactant, so-called cosurfactant.

図3は、マイクロエマルジョン溶液と、その一部の液滴付近を拡大して示すとともに、複合金属アルコキシドを加えて加水分解反応後の状態を併せて示す模式図である。同図において、2は界面活性剤、3はコサーファクタント、4は水、5は反応生成物、6はシクロヘキサンなどの分散媒である。   FIG. 3 is a schematic diagram showing, in an enlarged manner, the vicinity of a microemulsion solution and a part of droplets thereof, and also shows a state after a hydrolysis reaction by adding a composite metal alkoxide. In the figure, 2 is a surfactant, 3 is a cosurfactant, 4 is water, 5 is a reaction product, and 6 is a dispersion medium such as cyclohexane.

コサーファクタントとして、1種類以上のアルコールを加えることによって、マイクロエマルジョン調整時において、水滴をより安定化して存在させることができる。さらに、反応後にエマルジョン中の水が消費されて複合金属酸化物が生成した際は、該複合酸化物界面と界面活性剤の間に入り、界面活性剤がそのまま複合酸化物超微粒子の周囲を囲む形で存在できるために、合成された複合酸化物超微粒子が水の場合と同様に安定して分散を保つことができると考えられる。   By adding one or more alcohols as a cosurfactant, water droplets can be made to exist more stably at the time of preparing the microemulsion. Further, when the water in the emulsion is consumed after the reaction to produce the composite metal oxide, the composite metal oxide enters between the interface of the composite oxide and the surfactant, and the surfactant surrounds the periphery of the composite oxide ultrafine particles as it is. It can be considered that the synthesized composite oxide ultrafine particles can stably maintain dispersion as in the case of water because they can exist in a form.

コサーファクタントは、界面活性剤の親水部に入り、水との界面エネルギーを下げ、また、界面活性剤の親水部の炭素長鎖の立体障害を和らげる効果があると考えられる。適当なアルコールの炭素数は、界面活性剤の親水部の炭素鎖の長さにも依存するが、4〜10程度が好ましい。4以下では、親水性が上がり過ぎるため、水内に溶け、水‐界面活性剤の界面だけに存在しないと考えられる。また、10以上に大きくなると、疎水性が大きくなり過ぎたり、立体障害が大きくなったりするため、あまり好ましくない。   It is considered that the cosurfactant has an effect of entering the hydrophilic part of the surfactant, lowering the interfacial energy with water, and reducing the steric hindrance of the long carbon chain of the hydrophilic part of the surfactant. The appropriate number of carbon atoms of the alcohol also depends on the length of the carbon chain of the hydrophilic portion of the surfactant, but is preferably about 4 to 10. If it is 4 or less, the hydrophilicity is too high, so that it is considered to be dissolved in water and not exist only at the water-surfactant interface. On the other hand, when it is larger than 10, the hydrophobicity becomes too large and the steric hindrance becomes large, so that it is not so preferable.

原料は、金属アルコキシドを用い、加水分解前に各金属アルコキシドは混合し、複合化しておくことが好ましい。   It is preferable that a metal alkoxide is used as a raw material, and that each metal alkoxide is mixed and complexed before hydrolysis.

また、バリウムアルコキシドは、アルコール中で重合しやすいことが知られている。ここで、J.Am.Ceram.Soc,77[2]603‐605項及びJpn.J.Appl.Phys.Vo136,5 939‐5942項では、バリウム及びチタンのイソ‐プロパノール溶液をベンゼン中で熟成させることにより、BaTi(OCH(CH3)2)‐C66の結晶を得られることが述べられている。また、この中でベンゼンは、金属アルコキシドをほとんど溶解せずBaTi(OCH(CH3)2)‐C66結晶の安定化及び析出の助けとなると同時に、バリウムアルコキシドの重合を抑制する効果が示唆されている。 Barium alkoxide is known to be easily polymerized in alcohol. Here, J. Am. Ceram. Soc, 77 [2], pp. 603-605 and Jpn. J. Appl. Phys. Vo136, 5 939-5942 states that BaTi (OCH (CH 3 ) 2 ) -C 6 H 6 crystals can be obtained by aging an iso-propanol solution of barium and titanium in benzene. I have. In this, benzene hardly dissolves the metal alkoxide, helps stabilize and precipitate BaTi (OCH (CH 3 ) 2 ) -C 6 H 6 crystals, and has the effect of suppressing the polymerization of barium alkoxide. Is suggested.

したがって、結晶が析出しない範囲でベンゼンを加えることにより、バリウムアルコキシドの重合が抑えられ、均質なバリウムチタンダブルアルコキシドが得やすくなると考えられる。このため、バリウムアルコキシドの重合を抑制する働きを有するベンゼンを、アルコール溶剤中に一部加えてバリウム含有複合アルコキシド原料溶液を調整して用いるのが、均質なバリウム含有複合酸化物超微粒子を得るためには好ましい。なお、同種の効果を有するものであればベンゼンに限らず用いることができる。   Therefore, it is considered that by adding benzene within a range in which no crystal is precipitated, polymerization of barium alkoxide is suppressed, and a uniform barium titanium double alkoxide is easily obtained. For this reason, benzene having a function of suppressing the polymerization of barium alkoxide is partially added to the alcohol solvent to adjust and use the barium-containing composite alkoxide raw material solution to obtain uniform barium-containing composite oxide ultrafine particles. Is preferred. In addition, as long as it has the same kind of effect, it can be used without being limited to benzene.

本発明の金属酸化物超微粒子薄膜は、本発明方法で作製された金属酸化物超微粒子分散溶液を用いて製造されるものである。   The metal oxide ultrafine particle thin film of the present invention is produced using the metal oxide ultrafine particle dispersion prepared by the method of the present invention.

金属酸化物超微粒子分散溶液の超微粒子は、結晶性が高いので、比較的低温、例えば、600℃以下で熱処理することができる。   Since the ultrafine particles of the metal oxide ultrafine particle dispersion solution have high crystallinity, they can be heat-treated at a relatively low temperature, for example, at 600 ° C. or lower.

本発明の金属酸化物超微粒子薄膜は、平均粒径15nm以上50nm以下の金属酸化物超微粒子から構成され、強誘電特性を有するものである。   The metal oxide ultrafine particle thin film of the present invention is composed of metal oxide ultrafine particles having an average particle diameter of 15 nm or more and 50 nm or less and has ferroelectric properties.

強誘電特性として、残留分極(Pr)において、2Prが2μC/cm2以上の強誘電特性を有するのが好ましく、また、測定周波数1kHz(室温)における比誘電率が300以上であるのが好ましい。 As the ferroelectric properties, in terms of remanent polarization (Pr), 2Pr preferably has a ferroelectric property of 2 μC / cm 2 or more, and a relative dielectric constant at a measurement frequency of 1 kHz (room temperature) is preferably 300 or more.

本発明のような、15〜50μmの超微粒子から構成される金属酸化物超微粒子薄膜であって、残留分極(Pr)において、2Prが2μC/cm2以上の強誘電特性を有し、かつ比誘電率が300以上であれば、薄膜コンデンサまたは積層コンデンサといった強誘電特性デバイスとして十分に機能する。このため、本発明のような15〜50nmの超微粒子から構成される金属酸化物超微粒子薄膜を用いることによって、よりいっそうの薄層化、小型化を図ることができる。また、本発明の金属酸化物超微粒子薄膜を、薄膜コンデンサとして用いた場合、15〜50nmの微細な粒子から構成されるため、一層あたりの粒子数を増やすことができ、信頼性を大きく向上させることができるほか、さらなる薄層化、小型化を図ることができる。 A metal oxide ultrafine particle thin film composed of 15 to 50 μm ultrafine particles as in the present invention, wherein 2Pr has a ferroelectric property of 2 μC / cm 2 or more in remanent polarization (Pr), and When the dielectric constant is 300 or more, the device sufficiently functions as a ferroelectric device such as a thin film capacitor or a multilayer capacitor. Therefore, by using a metal oxide ultrafine particle thin film composed of ultrafine particles of 15 to 50 nm as in the present invention, it is possible to further reduce the thickness and size. Further, when the metal oxide ultrafine particle thin film of the present invention is used as a thin film capacitor, it is composed of fine particles of 15 to 50 nm, so that the number of particles per layer can be increased and reliability is greatly improved. In addition, it is possible to further reduce the thickness and size.

本発明の金属酸化物超微粒子薄膜は、可能な限り微細でかつ結晶化した金属酸化物超微粒子、例えば、チタン酸塩を含むペロブスカイト型酸化物からなるセラミックスナノ粒子を合成した後、そのまま高分散状態に保ち、これを基板上に成膜し、次に熱処理等のエネルギー添加により15nm以上50nm以下に粒成長させ、緻密化、結晶化をさらに促進させることにより製造されるのが好ましい。   The metal oxide ultrafine particle thin film of the present invention is highly dispersible as it is after synthesizing the finest possible and crystallized metal oxide ultrafine particles, for example, ceramic nanoparticles composed of perovskite-type oxide containing titanate. It is preferable to manufacture the film by keeping it in a state, forming a film on a substrate, and then growing the particles to a size of 15 nm or more and 50 nm or less by adding energy such as heat treatment to further promote densification and crystallization.

このような成膜方法としては、例えばマイクロエマルジョン(ME)法よりナノサイズで粒度分布の揃った金属酸化物超微粒子がそのまま高度に分散した状態に保たれた溶液、例えば、本発明の金属酸化物超微粒子分散溶液を原料溶液に用いて、スピンコーティング法等で直接成膜を行なう方法により薄膜を作製し、これをさらにRTA(Rapid Thermal Annealing)炉等を用いて熱処理を行なうことにより製造することができる。   As such a film forming method, for example, a solution in which ultrafine metal oxide particles having a nano-size and a uniform particle size distribution are kept in a highly dispersed state as they are by the microemulsion (ME) method, for example, the metal oxide of the present invention is used. A thin film is formed by a method of directly forming a film by a spin coating method or the like using the material ultrafine particle dispersion solution as a raw material solution, and further performing a heat treatment using an RTA (Rapid Thermal Annealing) furnace or the like. be able to.

また、本発明の金属酸化物超微粒子薄膜は、平均粒径が、例えば、30nm以下の金属酸化物超微粒子、例えば、チタン酸塩を含むペロブスカイト型酸化物からなるセラミックスナノ粒子の合成過程と、合成されたセラミックスナノ粒子をそのまま媒質中に高分散状態で保つ過程と、該高分散状態のセラミックスナノ粒子を基板上に成膜する一連の過程により作製されたセラミックスナノ粒子薄膜を、さらに熱処理等のエネルギー添加により15nm〜50nmに粒成長させることにより製造されるのが好ましい。   The metal oxide ultrafine particle thin film of the present invention has an average particle diameter of, for example, 30 nm or less, metal oxide ultrafine particles, for example, a process of synthesizing ceramic nanoparticles composed of perovskite oxide containing titanate, A process of keeping the synthesized ceramic nanoparticles in a medium in a highly dispersed state as it is and a series of processes of forming the highly dispersed ceramic nanoparticles on a substrate are used to further heat-treat the ceramic nanoparticle thin film. It is preferable to produce the particles by growing the particles to 15 nm to 50 nm by adding energy.

上述のようにセラミックス微粒子、すなわち、セラミックスナノ粒子は凝集が激しく、また、一度凝集してしまうとこれをバラバラに再分散することは極めて困難となるため、セラミックスナノ粒子を合成した後、そのまま媒質中に高分散状態に保つ必要がある。このためには、媒質中にナノサイズで区画された微細な反応空間で原料を反応させることにより目的のナノ粒子を作製し、そのまま凝集させない状態に保つ必要がある、このような方法として、上述のマイクロエマルジョン法は、望ましい方法である。W/Oマイクロエマルジョンは、上述のように、疎水性液体である分散媒、水、界面活性剤よりなり、疎水性溶媒中に液滴径が数nm〜数10nmの水滴を熱的に安定に分散させることができる。   As described above, ceramic fine particles, that is, ceramic nanoparticles, are highly agglomerated, and once aggregated, it is extremely difficult to re-disperse them separately. It is necessary to keep a high dispersion state inside. For this purpose, it is necessary to produce the desired nanoparticles by reacting the raw materials in a fine reaction space partitioned into nano-sizes in a medium, and to keep them in a state where they are not aggregated. Is a desirable method. As described above, the W / O microemulsion is composed of a dispersion medium, which is a hydrophobic liquid, water, and a surfactant, and thermally stabilizes water droplets having a droplet diameter of several nm to several tens nm in a hydrophobic solvent. Can be dispersed.

例えば、積層コンデンサに用いられるチタン酸バリウムの場合、この中にBa,Ti複合アルコキシド原料溶液を滴下することにより水滴径に対応した非常に微細でかつ粒径の揃った結晶化したチタン酸バリウムナノ粒子を合成することができる。   For example, in the case of barium titanate used for a multilayer capacitor, a crystallized barium titanate nanometer having a very fine and uniform particle size corresponding to a water droplet diameter is dropped by dropping a Ba, Ti composite alkoxide raw material solution therein. Particles can be synthesized.

また、上述のようにマイクロエマルジョン組成中の水量を加水分解に必要な水量の0.95倍以上3倍以下で調整を行なうことにより、合成されたチタン酸バリウムナノ粒子が凝集することなくそのまま安定に分散した状態が得られる。   In addition, by adjusting the amount of water in the microemulsion composition to 0.95 times or more and 3 times or less the amount of water required for hydrolysis as described above, the synthesized barium titanate nanoparticles are stable without aggregation. Is obtained.

ここで、合成されたナノ粒子は、その後熱処理により50nm以下の粒径で粒成長させる必要があるため、合成されたナノ粒子は可能な限り小さい方がよく、平均粒径が、少なくとも30nm以下であるのが好ましく、より好ましくは、10nm以下である。このようにして調整されたナノ粒子分散溶液は、基板に、例えば、スピンコーティング法、ディップコーティング法、スクリーン印刷法などの手法を用いて塗布する工程と、有機溶媒を除去するとともに、結晶性を高めるために、熱処理を行なう工程と、を行い緻密なチタン酸バリウムナノ粒子薄膜が作製される。   Here, since the synthesized nanoparticles need to be subsequently grown to a particle size of 50 nm or less by heat treatment, the synthesized nanoparticles should be as small as possible, and the average particle size should be at least 30 nm or less. Preferably, it is 10 nm or less. The nanoparticle dispersion solution prepared in this manner is applied to a substrate by using, for example, a spin coating method, a dip coating method, a screen printing method, and the like. In order to increase the density, a step of performing a heat treatment is performed to produce a dense barium titanate nanoparticle thin film.

成膜後の平均粒径の調整は、電気炉や赤外炉、RTA炉等を用いて行なうことができる。特に赤外炉やRTA炉では、高速昇温が可能であり、高速昇温、短時間熱処理により同一温度であっても粒成長を小さく抑えることができるため望ましい。   Adjustment of the average particle size after film formation can be performed using an electric furnace, an infrared furnace, an RTA furnace, or the like. In particular, in an infrared furnace or an RTA furnace, high-speed temperature rise is possible, and grain growth can be suppressed to a small value even at the same temperature by high-speed temperature rise and short-time heat treatment.

マイクロエマルジョン法で合成された金属酸化物超微粒子は、高分散状態で成膜されるため、ナノ粒子であっても緻密な薄膜と成っており、また、すでに結晶化しているため、熱処理等を行なっても中間層を形成することもなく、緻密化を阻害したり、表面粗さが大きく増すことがない。また、基板との界面で異相を形成して電気特性を劣化させることもない。さらに、可能な限り微細でかつ結晶化したナノ粒子を熱処理等により粒成長させている為、平均粒径が50nm以下と微細であっても緻密化、結晶化が進んでおり、優れた誘電特性及び信頼性が期待できる。   Ultrafine metal oxide particles synthesized by the microemulsion method are deposited in a highly dispersed state, so that even a nanoparticle is a dense thin film, and since it has already been crystallized, heat treatment etc. Even if it is performed, no intermediate layer is formed, and densification is not hindered, and the surface roughness does not greatly increase. Further, there is no possibility that a different phase is formed at the interface with the substrate to deteriorate the electric characteristics. Furthermore, since the nanoparticles that are as fine and crystallized as possible are grown by heat treatment or the like, even if the average particle diameter is as small as 50 nm or less, the densification and crystallization are progressing, and excellent dielectric properties are achieved. And reliability can be expected.

また、このようにして得られた金属酸化物超微粒子薄膜は、粉末試料と違い、基板からのストレス等の影響により、一般に言われている臨界サイズよりも小さい平均粒径からなるナノ粒子でも強誘電性を示す可能性がある。実際に得られた本発明の金属酸化物超微粒子薄膜は、平均粒径が50nm以下であっても強誘電性を示すとともに、優れた誘電特性を持つことが確認された。   In addition, unlike the powder sample, the thus obtained metal oxide ultrafine particle thin film is strong even with nanoparticles having an average particle size smaller than the generally known critical size due to the influence of stress from the substrate and the like. May exhibit dielectric properties. It was confirmed that the metal oxide ultrafine particle thin film of the present invention actually obtained exhibited ferroelectricity even when the average particle diameter was 50 nm or less, and had excellent dielectric properties.

また、このようにして作成される金属酸化物超微粒子薄膜は、合成→分散→成膜の一連の工程で成膜されるため多工程とならず、装置及び製造過程が煩雑にならないという利点も有している。   In addition, since the metal oxide ultrafine particle thin film formed in this manner is formed in a series of steps of synthesis → dispersion → film formation, there is an advantage that the steps are not multi-step, and the apparatus and the manufacturing process are not complicated. Have.

次に、本発明の金属酸化物超微粒子薄膜を電子デバイスに適用した例を示す。
本発明の金属酸化物超微粒子薄膜は、種々の電子デバイスに使用できるものであり、例えば、図4は、積層コンデンサに適用した場合の構成の一例を示している。
Next, an example in which the metal oxide ultrafine particle thin film of the present invention is applied to an electronic device will be described.
The metal oxide ultrafine particle thin film of the present invention can be used for various electronic devices. For example, FIG. 4 shows an example of a configuration when applied to a multilayer capacitor.

同図(a)に示されるアルミナ基板などの基板7上に、同図(b)に示すように、セラミック層8が形成され、その上に1層目の導電体電極9aが形成され、その上にセラミック層8が形成され、さらに2層目の導電体電極9bが形成され、さらにセラミック層8が形成され、その上に3層目の導電体電極9aが形成される。
このような工程を繰り返すことにより、基板7の表面には導電体電極9a、9bとセラミック層8 とが交互に複数層ずつ積層され、複数層の導電体電極9a,9bと複数層のセラミック層8とからなるセラミック−金属積層体10が形成される。
As shown in FIG. 2B, a ceramic layer 8 is formed on a substrate 7 such as an alumina substrate shown in FIG. 2A, and a first-layer conductor electrode 9a is formed thereon. A ceramic layer 8 is formed thereon, a second-layer conductor electrode 9b is further formed, a ceramic layer 8 is further formed, and a third-layer conductor electrode 9a is formed thereon.
By repeating such a process, the conductor electrodes 9a and 9b and the ceramic layer 8 are alternately stacked on the surface of the substrate 7 by a plurality of layers, respectively, and the plurality of conductor electrodes 9a and 9b and the plurality of ceramic layers are stacked. 8 is formed.

ここで、各セラミック層8は、本発明の金属酸化物超微粒子薄膜の製造方法によって形成され、各導電体電極9a,9bは、CVD法、蒸着法もしくはスパッタ法のうちいずれかの方法を用いて形成されており、各セラミック層8及び各導電体電極9a,9bの厚みは、例えば、1μm以下である。また、内部電極となる導電体電極9a,9bはマスクを用いてパターン化されており,奇数層目の導電体電極9aと偶数層目の導電体電極9bとは、交互に反対側の端部へ引き出されている。   Here, each of the ceramic layers 8 is formed by the method for producing a metal oxide ultrafine particle thin film of the present invention, and each of the conductor electrodes 9a and 9b is formed by using any one of a CVD method, a vapor deposition method, and a sputtering method. The thickness of each ceramic layer 8 and each conductor electrode 9a, 9b is, for example, 1 μm or less. The conductor electrodes 9a and 9b serving as internal electrodes are patterned using a mask, and the conductor electrodes 9a of the odd-numbered layers and the conductor electrodes 9b of the even-numbered layers are alternately arranged at opposite ends. Has been pulled out to.

この後、基板7をエッチング等によって選択的に除去すると,同図(c)に示すようなセラミック−金属積層体10だけが残る。ついで、ディッピングやスパッタ等によって両端に外部電極11a,11bを形成すると、奇数層目の導電体電極9aが一方の外部電極11aと導通し、偶数層目の導電体電極9bが他方の外部電極11bと導通し、同図(d)に示すような超小型の積層セラミックコンデンサ12を得ることができる。   Thereafter, when the substrate 7 is selectively removed by etching or the like, only the ceramic-metal laminate 10 as shown in FIG. Next, when the external electrodes 11a and 11b are formed at both ends by dipping, sputtering, or the like, the odd-numbered-layer conductor electrodes 9a are electrically connected to one of the external electrodes 11a, and the even-numbered-layer conductor electrodes 9b are connected to the other external electrodes 11b. , And an ultra-compact multilayer ceramic capacitor 12 as shown in FIG.

また、図5は、本発明の金属酸化物超微粒子薄膜を、誘電体薄膜素子に適用した場合の構成の一例を示している。   FIG. 5 shows an example of a configuration in which the metal oxide ultrafine particle thin film of the present invention is applied to a dielectric thin film element.

まず、誘電体薄膜素子の下部層を構成する基板13とその上に形成される下部電極としての白金膜14を次のように準備した。単結晶のシリコン板15の上に、バッファ層として、下部電極となる白金膜14へのシリコンの拡散を防止するために、シリコン板15の表面を強制酸化して酸化シリコン膜16を形成した。そしてその上に、シリコン板15と白金膜14との密着性を向上させるため、酸化アルミニウム膜17を1000オングストロームスパッタリングして形成した。このようにして形成したシリコン板15、酸化シリコン膜16、酸化アルミニウム膜17よりなる基板13の上に、下部電極としての白金膜14を3000オングストロームスパッタリングして形成した。   First, a substrate 13 constituting a lower layer of a dielectric thin film element and a platinum film 14 as a lower electrode formed thereon were prepared as follows. On the single-crystal silicon plate 15, a silicon oxide film 16 was formed as a buffer layer by forcibly oxidizing the surface of the silicon plate 15 in order to prevent diffusion of silicon into the platinum film 14 serving as a lower electrode. Then, an aluminum oxide film 17 was formed thereon by 1000 angstrom sputtering in order to improve the adhesion between the silicon plate 15 and the platinum film 14. A platinum film 14 as a lower electrode was formed on the substrate 13 composed of the silicon plate 15, the silicon oxide film 16, and the aluminum oxide film 17 thus formed by sputtering at 3000 Å.

次に、この白金膜14の上に、本発明の平均粒径15〜50nmの金属酸化物超微粒子から構成される誘電体薄膜18を形成した。そしてこの上に、上部電極として白金電極19をスパッタリングによって設けた。   Next, on this platinum film 14, a dielectric thin film 18 composed of ultrafine metal oxide particles having an average particle diameter of 15 to 50 nm of the present invention was formed. On this, a platinum electrode 19 was provided as an upper electrode by sputtering.

次に、本発明を実施例によって更に具体的に説明するが、本発明は、これら実施例によって、何ら限定されるものではない。   Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

(実施例1)
以下の実施例では、本発明の金属酸化物超微粒子薄膜を作製する際に用いられる、チタン酸バリウムの超微粒子分散溶液の作製法および該分散溶液により製造したチタン酸バリウム超微粒子薄膜を例にとって具体的に説明する。
(Example 1)
In the following examples, a method for preparing an ultrafine particle dispersion solution of barium titanate used for producing the metal oxide ultrafine particle thin film of the present invention and a barium titanate ultrafine particle thin film produced by the dispersion solution are taken as examples. This will be specifically described.

まず、原料アルコキシド溶液の調整として、Ar雰囲気のグローブボックス中でバリウムイソプロポキシド4gをイソプロピルアルコール160ml、ベンゼン40mlの混合溶媒に混合して溶解し、バリウムアルコキシド溶液とした後、これに等モルのチタンイソプロポキシド溶液を滴下して一晩混合し、淡黄色透明のバリウム‐チタン複合アルコキシド原料溶液を得た。   First, as a preparation of a raw material alkoxide solution, 4 g of barium isopropoxide was mixed and dissolved in a mixed solvent of 160 ml of isopropyl alcohol and 40 ml of benzene in a glove box in an Ar atmosphere to form a barium alkoxide solution, and an equimolar amount thereof was added thereto. The titanium isopropoxide solution was added dropwise and mixed overnight to obtain a pale yellow transparent barium-titanium composite alkoxide raw material solution.

次に、W/Oマイクロエマルジョン溶液は、分散媒にシクロヘキサン、界面活性剤にNP‐10:(p‐C919)‐C64‐O‐(CH2CH2O)10CH2CH2OH、コサーファクタントとして1−オクタノールを用いArガスでバブリングを行いながら、水:1−オクタノール:NP‐10:シクロヘキサン=0.2:9:7.5:150の比で混合してW/Oマイクロエマルジョン溶液とした。 Next, the W / O microemulsion solution was prepared by using cyclohexane as a dispersion medium and NP-10: (p-C 9 H 19 ) -C 6 H 4 -O- (CH 2 CH 2 O) 10 CH 2 as a surfactant. CH 2 OH, using 1-octanol as a cosurfactant and bubbling with Ar gas, mixing at a ratio of water: 1-octanol: NP-10: cyclohexane = 0.2: 9: 7.5: 150 to W / O microemulsion solution.

調整したマイクロエマルジョン溶液に、マイクロエマルジョン中の水量がバリウム‐チタン複合アルコキシドの加水分解に必要な水量の0.95倍、1.2倍、3倍になるようにバリウム‐チタン複合アルコキシド溶液をマイクロピペットを用いてそれぞれ分取し、チューブポンプを用いてそれぞれのマイクロエマルジョン溶液中に導入した。そのまま1日、Ar雰囲気のグローブボックス中で攪拌混合を行い、チタン酸バリウム超微粒子分散溶液を得た。   The barium-titanium composite alkoxide solution was added to the prepared microemulsion solution so that the amount of water in the microemulsion was 0.95, 1.2, and 3 times the amount of water required for hydrolysis of the barium-titanium composite alkoxide. Each sample was collected using a pipette, and introduced into each microemulsion solution using a tube pump. The mixture was stirred and mixed for 1 day in a glove box in an Ar atmosphere to obtain a barium titanate ultrafine particle dispersion solution.

得られたチタン酸バリウム超微粒子分散溶液は、淡褐色透明であり、加水分解により生成したチタン酸バリウム超微粒子が高度に分散していることが確認された。また、該分散溶液の一部を分取し、アセトンを加えて沈殿させ、遠心分離を行った後、有機溶媒で洗浄を行った試料の結晶相を粉末X線回折法により同定したところ、結晶化したチタン酸/バリウムの単相であることが確認された。また、高分解能SEMにより、粒子形状の観察を行ったところ、8nm程度と非常に微細でしかも粒度分布の揃った超微粒子であった。   The obtained barium titanate ultrafine particle dispersion solution was light brown and transparent, and it was confirmed that the barium titanate ultrafine particles generated by hydrolysis were highly dispersed. Further, a part of the dispersion solution was collected, precipitated by adding acetone, centrifuged, and then the crystal phase of the sample washed with an organic solvent was identified by powder X-ray diffraction method. It was confirmed that the titanium oxide / barium was converted into a single phase. Further, when the particle shape was observed by high-resolution SEM, it was found to be ultrafine particles having a very fine size of about 8 nm and a uniform particle size distribution.

次に、得られたチタン酸バリウム超微粒子分散溶液を用いてスピンコート法によりチタン酸バリウム超微粒子薄膜の作製を試みた。該超微粒子分散溶液は、上記粉末X線回折結果およびSEM観察結果から8nm程度の結晶化した超微粒子が高度に分散しているため、可視光域で透明となっており、凝集のない均質な塗布性を有することがわかった。また、該超微粒子分散溶液は、90%程度の体積比を占める有機分散媒をエバポレーター等により一部蒸発させたり、逆に加えたりすることにより自由に液中の超微粒子の濃度を調整することができる。   Next, a barium titanate ultrafine particle thin film was prepared by spin coating using the obtained barium titanate ultrafine particle dispersion solution. The ultrafine particle dispersion solution is transparent in the visible light region because the ultrafine particles crystallized at about 8 nm are highly dispersed from the results of the powder X-ray diffraction and the results of SEM observation. It was found to have applicability. In addition, the concentration of ultrafine particles in the liquid can be freely adjusted by partially evaporating an organic dispersion medium occupying a volume ratio of about 90% using an evaporator or the like, or adding the organic dispersion medium in the reverse direction. Can be.

濃度0.07mol/lのチタン酸バリウム超微粒子分散溶液を用いて、スピンコーティングを行った後、空気中450℃で熱処理を行ってチタン酸バリウム超微粒子薄膜を得た。このチタン酸バリウム超微粒子薄膜の表面のSEM写真によって、10nm程度の微細なチタン酸バリウム超微粒子が高密度で成膜されている様子が確認された。さらに600℃で熱処理を行うことにより、20nm程度に粒成長した同様に高密度な薄膜が得られることが確認された。   After performing spin coating using a barium titanate ultrafine particle dispersion solution having a concentration of 0.07 mol / l, heat treatment was performed at 450 ° C. in air to obtain a barium titanate ultrafine particle thin film. From the SEM photograph of the surface of the barium titanate ultrafine particle thin film, it was confirmed that fine barium titanate ultrafine particles of about 10 nm were formed at a high density. Further, it was confirmed that by performing heat treatment at 600 ° C., a similarly high-density thin film having a grain growth of about 20 nm was obtained.

(実施例2)
Arガスでバブリングを行いながら、水:1−オクタノール:NP‐4:シクロヘキサン=0.2:9:7.5:150の比で混合してW/Oマイクロエマルジョン溶液とした。次にこのマイクロエマルジョン溶液に実施例1と同様の方法で調整したバリウム‐チタン複合アルコキシド溶液をマイクロエマルジョンの水量がアルコキシド原料の加水分解に必要な水量の3倍となるようにマイクロピペットで分取し、チューブポンプを用いてそれぞれのマイクロエマルジョン溶液中に導入した。そのまま1日、Ar雰囲気のグローブボックス中で攪拌混合を行い、チタン酸バリウム超微粒子分散溶液を得た。
(Example 2)
While performing bubbling with Ar gas, water / 1-octanol: NP-4: cyclohexane was mixed at a ratio of 0.2: 9: 7.5: 150 to obtain a W / O microemulsion solution. Next, a barium-titanium composite alkoxide solution prepared in the same manner as in Example 1 was dispensed into this microemulsion solution using a micropipette such that the amount of water in the microemulsion was three times the amount of water required for hydrolysis of the alkoxide raw material. Then, the mixture was introduced into each microemulsion solution using a tube pump. The mixture was stirred and mixed for 1 day in a glove box in an Ar atmosphere to obtain a barium titanate ultrafine particle dispersion solution.

(比較例1)
実施例1と同様の方法でバリウム‐チタン複合アルコキシド溶液及び、マイクロエマルジョン溶液の調整を行った。調整したマイクロエマルジョン溶液に、マイクロエマルジョン中の水量がバリウム‐チタン複合アルコキシドの加水分解に必要な水量の5倍になるようにバリウムーチタン複合アルコキシド溶液をマイクロピペットを用いて分取し、チューブポンプを用いてマイクロエマルジョン溶液中に導入した。そのまま1日、Ar雰囲気のグローブボックス中で攪拌混合をを行い、チタン酸バリウム超微粒子分散溶液を得た。
(Comparative Example 1)
A barium-titanium composite alkoxide solution and a microemulsion solution were prepared in the same manner as in Example 1. The barium-titanium composite alkoxide solution is separated into the prepared microemulsion solution using a micropipette such that the amount of water in the microemulsion is five times the amount of water required for hydrolysis of the barium-titanium composite alkoxide, and a tube pump is used. And introduced into the microemulsion solution. The mixture was stirred and mixed for 1 day in a glove box under an Ar atmosphere to obtain a barium titanate ultrafine particle dispersion solution.

(比較例2)
Arガスでバブリングを行いながら、水:1−オクタノール:NP‐10:シクロヘキサン=5:9:7.5:150の比で混合してW/Oマイクロエマルジョン溶液とした。調整したマイクロエマルジョン溶液に、マイクロエマルジョン中の水量がバリウム‐チタン複合アルコキシドの加水分解に必要な水量の50倍になるようにバリウム‐チタン複合アルコキシド溶液をマイクロピペットを用いて分取し、チューブポンプを用いてマイクロエマルジョン溶液中に導入した。そのまま1日、Ar雰囲気のグローブボックス中で攪拌混合をを行い、チタン酸バリウム超微粒子分散溶液を得た。
(比較例3)
Arガスでバブリングを行いながら、水:1−オクタノール:NP‐10:シクロヘキサン=0.2:9:7.5:150の比で混合してW/Oマイクロエマルジョン溶液とした。調整したマイクロエマルジョン溶液に、マイクロエマルジョン中の水量がバリウム‐チタン複合アルコキシドの加水分解に必要な水量の0.75倍になるようにバリウム‐チタン複合アルコキシド溶液をマイクロピペットを用いて分取し、チューブポンプを用いてマイクロエマルジョン溶液中に導入した。そのまま1日、Ar雰囲気のグローブボックス中で攪拌混合をを行い、チタン酸バリウム超微粒子分散溶液を得た。
(Comparative Example 2)
While performing bubbling with Ar gas, water / 1-octanol: NP-10: cyclohexane = 5: 9: 7.5: 150 was mixed to obtain a W / O microemulsion solution. The barium-titanium composite alkoxide solution is separated into the prepared microemulsion solution using a micropipette such that the amount of water in the microemulsion is 50 times the amount of water required for hydrolysis of the barium-titanium composite alkoxide, and a tube pump is used. And introduced into the microemulsion solution. The mixture was stirred and mixed for 1 day in a glove box under an Ar atmosphere to obtain a barium titanate ultrafine particle dispersion solution.
(Comparative Example 3)
While bubbling with Ar gas, water / 1-octanol: NP-10: cyclohexane = 0.2: 9: 7.5: 150 was mixed to obtain a W / O microemulsion solution. In the adjusted microemulsion solution, a barium-titanium composite alkoxide solution is fractionated using a micropipette such that the water amount in the microemulsion is 0.75 times the water amount required for hydrolysis of the barium-titanium composite alkoxide, It was introduced into the microemulsion solution using a tube pump. The mixture was stirred and mixed for 1 day in a glove box under an Ar atmosphere to obtain a barium titanate ultrafine particle dispersion solution.

(比較例4)
酢酸バリウム粉末を水に溶解させ0.1mol/lの酢酸バリウム水溶液を調整した。調整した酢酸バリウム水溶液:1−オクタノール:NP‐10:シクロヘキサン=5:9:7.5:150の比で混合してW/Oマイクロエマルジョン溶液とした。これに当量のチタンイソプロポキシドをマイクロピペットで滴下し、そのまま1日、Ar雰囲気のグローブボックス中で攪拌混合を行い、チタン酸バリウム超微粒子分散溶液を得た。
(Comparative Example 4)
Barium acetate powder was dissolved in water to prepare a 0.1 mol / l barium acetate aqueous solution. The adjusted barium acetate aqueous solution: 1-octanol: NP-10: cyclohexane = 5: 9: 7.5: 150 was mixed to obtain a W / O microemulsion solution. An equivalent amount of titanium isopropoxide was added dropwise with a micropipette, and the mixture was stirred and mixed for 1 day in a glove box under an Ar atmosphere to obtain a barium titanate ultrafine particle dispersion solution.

(比較例5)
Arガスでバブリングを行いながら、水:NP‐4:シクロヘキサン=5:7.5:150の比でそれぞれ混合してW/Oマイクロエマルジョン溶液とした。次にこのマイクロエマルジョン溶液に実施例1と同様の方法で調整したバリウム‐チタン複合アルコキシド溶液をマイクロエマルジョンの水量がアルコキシド原料の加水分解に必要な水量の50倍となるようにマイクロピペットで分取し、チューブポンプを用いてマイクロエマルジョン溶液中に導入した。そのまま1日、Ar雰囲気のグローブボックス中で攪拌混合を行い、チタン酸バリウム超微粒子分散溶液を得た。
(Comparative Example 5)
While bubbling with Ar gas, water / NP-4: cyclohexane was mixed at a ratio of 5: 7.5: 150 to form a W / O microemulsion solution. Next, a barium-titanium composite alkoxide solution prepared in the same manner as in Example 1 was dispensed into this microemulsion solution using a micropipette such that the amount of water in the microemulsion was 50 times the amount of water required for hydrolysis of the alkoxide raw material. Then, it was introduced into the microemulsion solution using a tube pump. The mixture was stirred and mixed for 1 day in a glove box under an Ar atmosphere to obtain a barium titanate ultrafine particle dispersion solution.

表1に、得られたチタン酸バリウム超微粒子分散溶液の分散状態及び結晶相について示している。   Table 1 shows the dispersion state and the crystal phase of the obtained barium titanate ultrafine particle dispersion solution.

Figure 2004300013
表1において、分散状態の評価は、目視による評価であって、◎は完全透明な状態を、○は透明な状態を、△は白濁した状態を、×は、沈殿が生じた状態をそれぞれ示している。
Figure 2004300013
In Table 1, the evaluation of the dispersion state is a visual evaluation, in which ◎ indicates a completely transparent state, は indicates a transparent state, Δ indicates a cloudy state, and × indicates a state in which precipitation occurs. ing.

まず、複合アルコキシド化を行った原料溶液を用いて、原料溶液の加水分解に必要な水量の0.95倍以上3倍以下で調整したW/Oマイクロエマルジョンにより作製を行ったチタン酸バリウム超微粒子分散溶液の例が実施例1,2に示されている。   First, barium titanate ultrafine particles prepared by using a raw material solution subjected to complex alkoxidation and using a W / O microemulsion adjusted to 0.95 times to 3 times the amount of water required for hydrolysis of the raw material solution Examples of the dispersion solution are shown in Examples 1 and 2.

このように、水量をアルコキシド加水分解に必要な水量の0.95倍以上3倍以下にすることにより、反応後に生成した複合金属酸化物超微粒子の凝集が抑えられ、高度に分散した透明な複合金属酸化物超微粒子分散溶液を得ることができる。また、生成した超微粒子は、非常に微細で組成が均質で、しかも粒子径及び形状が揃い且つ結晶化した複合金属酸化物単相の超微粒子となっている。   As described above, by setting the amount of water to be 0.95 times or more and 3 times or less the amount of water required for alkoxide hydrolysis, aggregation of the composite metal oxide ultrafine particles generated after the reaction is suppressed, and a highly dispersed transparent composite is obtained. A dispersion solution of ultrafine metal oxide particles can be obtained. The generated ultrafine particles are very fine and uniform in composition, and have a uniform particle diameter and shape and are crystallized single-phase ultrafine particles of a composite metal oxide.

一方で、それ以上の水量では、比較例1に示したとおり、生成した超微粒子の凝集が起こり、沈殿が生じる。さらに水量が50倍となると、凝集による沈殿が起こる。また、水量が0.75倍であると、十分に加水分解されないため、超微粒子に非晶質相が生成されることがわかった。また、比較例2,5では、チタン酸バリウム相の他に、炭酸バリウム相が粉末X線回折により確認されており、複合金属酸化物の構成元素の水中への溶解度が高い場合、一部水中に残るため、組成ずれや組成均一性の低下が起こる。   On the other hand, when the amount of water is larger than that, as shown in Comparative Example 1, the generated ultrafine particles aggregate and precipitate. Further, when the amount of water becomes 50 times, precipitation due to aggregation occurs. In addition, it was found that when the amount of water was 0.75 times, hydrolysis was not sufficiently performed, so that an amorphous phase was generated in the ultrafine particles. In Comparative Examples 2 and 5, the barium carbonate phase was confirmed by powder X-ray diffraction in addition to the barium titanate phase. When the solubility of the constituent elements of the composite metal oxide in water was high, some of Therefore, composition deviation and reduction in composition uniformity occur.

さらに原料の複合アルコキシド化を行わない場合、比較例4に示されている通り反応後は非晶質相が得られており、結晶化していない。また、遠心分離及び洗浄後熱処理を行った試料は、粉末X線回折の結果、BaTiO3相とBaTi24相からなり、チタン過剰となっていることが確認された。すなわち、この場合、洗浄の際に水中に残っていたバリウムが除去されたためにチタン過剰となったものと考えられ、結晶相が得られないだけでなく、組成ずれ及び均一性の面でも問題となる。 Further, when the composite material was not subjected to complex alkoxide conversion, as shown in Comparative Example 4, an amorphous phase was obtained after the reaction, and was not crystallized. The sample subjected to heat treatment after centrifugation and washing was confirmed to be composed of a BaTiO 3 phase and a BaTi 2 O 4 phase as a result of powder X-ray diffraction, and that titanium was excessive. That is, in this case, it is considered that titanium was excessive due to removal of barium remaining in water at the time of washing, and not only a crystal phase was not obtained, but also a problem in terms of composition deviation and uniformity. Become.

次に、本発明の金属酸化物超微粒子薄膜の実施例について説明する。   Next, examples of the metal oxide ultrafine particle thin film of the present invention will be described.

(実施例A〜C)
以下の実施例では、上述のマイクロエマルジョンにより合成したチタン酸バリウム分散溶液を用いて作製したチタン酸バリウム超微粒子薄膜を例にとり具体的に説明する。
(Examples A to C)
In the following examples, a barium titanate ultrafine particle thin film produced using a barium titanate dispersion solution synthesized by the above-described microemulsion will be specifically described.

まず、原料アルコキシド溶液の調整として、Ar雰囲気のグローブボックス中でバリウムイソプロポキシド4gをイソプロピルアルコール160ml、ベンゼン40mlの混合溶媒に混合して溶解し、バリウムアルコキシド溶液とした後、これに等モルのチタンイソプロポキシド溶液を滴下して一晩混合し、淡黄色透明のバリウム−チタン複合アルコキシド原料溶液を得た。   First, as a preparation of a raw material alkoxide solution, 4 g of barium isopropoxide was mixed and dissolved in a mixed solvent of 160 ml of isopropyl alcohol and 40 ml of benzene in a glove box in an Ar atmosphere to form a barium alkoxide solution, and an equimolar amount thereof was added thereto. The titanium isopropoxide solution was added dropwise and mixed overnight to obtain a pale yellow transparent barium-titanium composite alkoxide raw material solution.

次に、W/Oマイクロエマルジョン溶液は、分散媒にシクロヘキサン、界面活性剤にNP-10:(p-C919)-C64-O-(CH2CH2O)10CH2CH2OH、コサーファクタントとして1−オクタノールを用いArガスでバブリングを行ないながら、水:−オクタノール:NP-10:シクロヘキサン=0.2:9:7.5:150の比で混合してW/Oマイクロエマルジョン溶液とした。 Next, the W / O microemulsion solution is prepared by adding cyclohexane as a dispersion medium and NP-10: (p-C 9 H 19 ) -C 6 H 4 -O- (CH 2 CH 2 O) 10 CH 2 as a surfactant. CH 2 OH, 1-octanol as a cosurfactant, and bubbling with Ar gas, mixing at a ratio of water: -octanol: NP-10: cyclohexane = 0.2: 9: 7.5: 150 and W / An O microemulsion solution was obtained.

調整したマイクロエマルジョン溶液にマイクロエマルジョン中の水量がバリウム−チタン複合アルコキシドの加水分解に必要な水量の1.5倍になるようにバリウム−チタン複合アルコキシド溶液をマイクロエマルジョン溶液中に導入、Ar雰囲気のグローブボックス中での攪拌混合を行い、チタン酸バリウム超微粒子分散溶液を得た。分散溶液中のチタン酸バリウムはTEM観察より8nm程度の結晶化した微細なナノ粒子であることが確認された。   The barium-titanium composite alkoxide solution was introduced into the microemulsion solution so that the amount of water in the microemulsion was 1.5 times the amount of water required for the hydrolysis of the barium-titanium composite alkoxide. The mixture was stirred and mixed in a glove box to obtain a barium titanate ultrafine particle dispersion solution. Barium titanate in the dispersion solution was confirmed by TEM observation to be crystallized fine nanoparticles of about 8 nm.

次に得られたチタン酸バリウム超微粒子分散溶液を用いて、スピンコート法により、後述のSi/SiO2/Al23/Pt基板上に数回塗布し、空気中450℃で熱処理を行なった後、RTA炉により600℃〜900℃の間で熱処理を行い、それぞれ平均粒径15.2nm、19.6nm、48.9nmから成る実施例A〜Cのチタン酸バリウム超微粒子薄膜を得た。すなわち、実施例Aは、600℃の熱処理を行った平均粒径15.2nmのチタン酸バリウム超微粒子薄膜であり、実施例Bは、800℃で熱処理を行った平均粒径19.6nmのチタン酸バリウム超微粒子薄膜であり、実施例Cは、900℃で熱処理を行った平均粒径48.9nmのチタン酸バリウム超微粒子薄膜である。 Next, using the obtained barium titanate ultrafine particle dispersion solution, it is applied several times onto a Si / SiO 2 / Al 2 O 3 / Pt substrate to be described later by a spin coating method, and heat-treated at 450 ° C. in the air. After that, heat treatment was performed at 600 ° C. to 900 ° C. in an RTA furnace to obtain barium titanate ultrafine particle thin films of Examples A to C having average particle diameters of 15.2 nm, 19.6 nm, and 48.9 nm, respectively. . That is, Example A is a barium titanate ultrafine particle thin film having an average particle diameter of 15.2 nm that has been heat-treated at 600 ° C., and Example B is a titanium alloy having an average particle diameter of 19.6 nm that has been heat-treated at 800 ° C. Example C is a barium titanate ultrafine particle thin film having an average particle size of 48.9 nm, which was heat-treated at 900 ° C.

得られたチタン酸バリウム超微粒子薄膜の平均粒径は、薄膜表面のSEM写真から100粒子のディジタイザー測定を行い、その平均から求めた。また、図6は実施例Bの粒度分布を示す粒度分布図である。この粒度分布は、SEM写真から任意の100粒子の粒径を測定し、その分布から標準偏差(σ)を算出したものである。図6からも分かるように、800℃で熱処理温度平均粒径が19.6nmである場合の標準偏差(σ)=1.21と狭いことがわかる。実施例A、実施例Cについても、標準偏差(σ)は1.24〜1.33と狭いことがわかった。   The average particle size of the obtained barium titanate ultrafine particle thin film was determined from a digitizer measurement of 100 particles from a SEM photograph of the thin film surface, and obtained from the average. FIG. 6 is a particle size distribution diagram showing the particle size distribution of Example B. This particle size distribution is obtained by measuring the particle size of arbitrary 100 particles from an SEM photograph and calculating the standard deviation (σ) from the distribution. As can be seen from FIG. 6, the standard deviation (σ) when the heat treatment temperature average particle size at 800 ° C. is 19.6 nm is as narrow as 1.21. Also in Examples A and C, it was found that the standard deviation (σ) was as narrow as 1.24 to 1.33.

また、SEM観察およびSPM観察により、表面粗さの小さい緻密なナノ粒子薄膜となっていることが確認された。なお、図7に、実施例BのSEM写真を示す。   In addition, it was confirmed by SEM observation and SPM observation that a dense nanoparticle thin film having a small surface roughness was obtained. FIG. 7 shows an SEM photograph of Example B.

また、XRD測定により、薄膜は結晶チタン酸バリウム単相であることが確認された。   In addition, XRD measurement confirmed that the thin film was a crystalline barium titanate single phase.

電気特性評価は、得られたチタン酸バリウムナノ粒子表面にPtスパッタリングにより上部電極を作製し、LCRメータにより室温、1kHzの測定周波数における比誘電率及び誘電損失の測定を行なうとともに、ヒステリシス測定により、強誘電性の評価を行なった。また、耐電圧の評価は、誘電損失の測定に用いた試料を用いて、電極から電流を流して、試料に200kV/cm印加した際に、試料が破壊される場合を×、破壊されなかった場合を○とした。   The electrical characteristics were evaluated by forming an upper electrode on the surface of the obtained barium titanate nanoparticles by Pt sputtering, measuring the relative permittivity and dielectric loss at room temperature and a measurement frequency of 1 kHz with an LCR meter, and measuring the hysteresis by: Evaluation of ferroelectricity was performed. In the evaluation of the withstand voltage, when the sample used for the measurement of the dielectric loss was applied with a current of 200 kV / cm by applying a current from the electrode and the sample was destroyed, the sample was broken. The case was marked as ○.

図8に電気特性評価に用いた試料の構成を示す。   FIG. 8 shows the structure of the sample used for the evaluation of the electrical characteristics.

基板には、Si上に絶縁層としてSiO2を、バッファ層としてAl23を積層し、さらに、下部電極としてPt21を積層した上述のSi/SiO2/Al23/Pt基板20を用いた。このSi/SiO2/Al23/Pt基板20上に、スピンコーティングによる成膜及び熱処理によりチタン酸バリウム超微粒子薄膜22を作製し、さらに上部電極として0.5φのPt23をスパッタリングによって形成して試料を作製した。 The substrate with SiO 2 as an insulating layer on Si, the Al 2 O 3 was deposited as a buffer layer, further, the above laminated with Pt21 as a lower electrode Si / SiO 2 / Al 2 O 3 / Pt substrate 20 Using. A barium titanate ultrafine particle thin film 22 is formed on the Si / SiO 2 / Al 2 O 3 / Pt substrate 20 by film formation by spin coating and heat treatment, and Pt 23 of 0.5φ is formed as an upper electrode by sputtering. To prepare a sample.

(比較例A)
実施例Aと同様の方法でチタン酸バリウム超微粒子分散溶液を得た。次に得られたチタン酸バリウム超微粒子分散溶液を用いてスピンコート法によりSi/SiO2/Al23/Pt基板上に数回塗布し、空気中300℃で熱処理を行なった後、RTA炉により500℃で熱処理を行い、平均粒径12.6nmから成る比較例Aのチタン酸バリウム超微粒子薄膜を得た。
(Comparative Example A)
A barium titanate ultrafine particle dispersion solution was obtained in the same manner as in Example A. Next, the obtained barium titanate ultrafine particle dispersion solution is applied several times on a Si / SiO 2 / Al 2 O 3 / Pt substrate by a spin coating method, and heat-treated at 300 ° C. in air, and then RTA. Heat treatment was performed in a furnace at 500 ° C. to obtain a barium titanate ultrafine particle thin film of Comparative Example A having an average particle size of 12.6 nm.

得られたチタン酸バリウム超微粒子薄膜は、SEM観察及びSPM観察により、表面粗さの小さい緻密なナノ粒子薄膜となっていることが確認された。また、XRD測定により、薄膜はチタン酸バリウム単相であることが確認された。   The obtained barium titanate ultrafine particle thin film was confirmed by SEM observation and SPM observation to be a dense nanoparticle thin film having a small surface roughness. In addition, XRD measurement confirmed that the thin film was a barium titanate single phase.

(比較例B,C)
実施例Aと同様の方法でバリウム−チタン複合アルコキシド原料溶液を得た後、直接、ドライ雰囲気下でスピンコート法によりSi/SiO2/Al23/Pt基板上に塗布し、120℃で15分間乾燥を行なった。このスピンコート及び乾燥を数回繰り返した後、RTA炉により500℃及び700℃で熱処理を行い、それぞれ平均粒径33.2nm及び45.6nmからなる比較例B,Cのチタン酸バリウム超微粒子薄膜を得た。すなわち、比較例Bは、500℃の熱処理を行った平均粒径33.2nmのチタン酸バリウム超微粒子薄膜であり、比較例Cは、700℃で熱処理を行った平均粒径45.6nmのチタン酸バリウム超微粒子薄膜である。得られたチタン酸バリウム超微粒子薄膜のSEM観察およびSPM観察の結果、実施例Aで作製された薄膜表面と比べ表面粗さは大きく、また、粒子間に多くの隙間が観察され、緻密度も小さいことが確認された。またXRD測定により、500℃で熱処理を行なった薄膜はハローピークのみが見られ結晶化していなかった。また、700℃で熱処理を行なった薄膜はチタン酸バリウムによるピークが確認されたものの、ハローピークも見られ、非晶質相も含まれていることが分かった。
(Comparative Examples B and C)
After obtaining a barium-titanium composite alkoxide raw material solution in the same manner as in Example A, it was directly applied on a Si / SiO 2 / Al 2 O 3 / Pt substrate by a spin coat method in a dry atmosphere, and at 120 ° C. Drying was performed for 15 minutes. After repeating this spin coating and drying several times, heat treatment was performed in an RTA furnace at 500 ° C. and 700 ° C., and barium titanate ultrafine particle thin films of Comparative Examples B and C having average particle diameters of 33.2 nm and 45.6 nm, respectively. Got. That is, Comparative Example B is a barium titanate ultrafine particle thin film having an average particle size of 33.2 nm subjected to heat treatment at 500 ° C., and Comparative Example C is a titanium particle having an average particle size of 45.6 nm subjected to heat treatment at 700 ° C. It is a barium acid ultrafine particle thin film. As a result of SEM observation and SPM observation of the obtained barium titanate ultrafine particle thin film, the surface roughness was larger than that of the thin film surface prepared in Example A, and many gaps were observed between the particles, and the compactness was also high. It was confirmed that it was small. According to the XRD measurement, only the halo peak was observed in the thin film subjected to the heat treatment at 500 ° C., and the thin film was not crystallized. In addition, although the thin film subjected to the heat treatment at 700 ° C. had a peak due to barium titanate, a halo peak was also observed, indicating that the thin film also contained an amorphous phase.

(比較例D)
原料アルコキシド溶液の調整として、Ar雰囲気のグローブボックス中でバリウムイソプロポキシド4gを2−メトキシエタノール200mlに混合して溶解し、バリウムアルコキシド溶液とした後、これに等モルのチタンイソプロポキシド溶液を滴下して一晩混合し、バリウム−チタン複合アルコキシド原料溶液を得た。得られた溶液を水蒸気存在下で攪拌を行いながら3日間エージングを行い部分的に加水分解された原料溶液を作製した。この原料溶液を用いてスピンコート法によりSi/SiO2/Al23/Pt基板上に数回塗布し、空気中450℃で熱処理を行なった後、さらに、RTA炉により700℃で熱処理を行い、平均粒径48.9nmのチタン酸バリウム超微粒子薄膜を得た。
(Comparative Example D)
As an adjustment of the raw material alkoxide solution, 4 g of barium isopropoxide was mixed and dissolved in 200 ml of 2-methoxyethanol in a glove box under an Ar atmosphere to form a barium alkoxide solution, and an equimolar titanium isopropoxide solution was added thereto. The mixture was dropped and mixed overnight to obtain a barium-titanium composite alkoxide raw material solution. The obtained solution was aged for 3 days while stirring in the presence of steam to produce a partially hydrolyzed raw material solution. This raw material solution was applied several times on a Si / SiO 2 / Al 2 O 3 / Pt substrate by a spin coat method and heat-treated at 450 ° C. in air, and further heat-treated at 700 ° C. in an RTA furnace. As a result, a barium titanate ultrafine particle thin film having an average particle size of 48.9 nm was obtained.

表2には、得られたチタン酸バリウム超微粒子薄膜の表面状態、誘電特性および結晶相について、また表3には、各試料における室温での比誘電率、誘電損失及び残留分極Pr×2を示している。   Table 2 shows the surface state, dielectric properties and crystal phase of the obtained barium titanate ultrafine particle thin film, and Table 3 shows the relative dielectric constant, dielectric loss and remanent polarization Pr × 2 at room temperature of each sample. Is shown.

Figure 2004300013
Figure 2004300013

Figure 2004300013
まず、マイクロエマルジョン(ME)法により合成したチタン酸バリウム超微粒子が高分散状態に保たれた透明原料溶液を用いて成膜を行い、その後熱処理により粒成長させて、平均粒径を15〜50nmに調整されたチタン酸バリウム超微粒子薄膜が、実施例A〜Cに示されている。
Figure 2004300013
First, film formation is performed using a transparent raw material solution in which barium titanate ultrafine particles synthesized by a microemulsion (ME) method are kept in a highly dispersed state, and then the particles are grown by heat treatment to have an average particle diameter of 15 to 50 nm. Examples of the barium titanate ultrafine particle thin film adjusted to the above are shown in Examples A to C.

このように、高分散状態に保たれた金属酸化物超微粒子分散溶液から成膜されることにより、ナノ粒子であっても均質で緻密な薄膜となり、また、既によく結晶化しているため、その後熱処理を行っても反応により表面粗さが大きく増したり、亀裂が入るなどにより膜質が大きく低下することがなく、むしろ熱処理により微細なナノ粒子を粒成長させているため、さらに緻密化及び結晶化が促進される。   In this way, by forming a film from the metal oxide ultrafine particle dispersion solution kept in a highly dispersed state, even a nanoparticle becomes a uniform and dense thin film, and since it is already well crystallized, Even if heat treatment is performed, the surface roughness does not greatly increase due to the reaction, and the film quality does not significantly decrease due to cracks, etc. Rather, the heat treatment causes fine nanoparticles to grow, so further densification and crystallization Is promoted.

また、電気特性も十分に得られている。従って、平均粒径15nm以上に粒成長させた粒子からなるチタン酸バリウム超微粒子薄膜では、図9の実施例Bのヒステリシス曲線からも分かるように2Pr>2.0μC/cm2で強誘電性を示し、また、比誘電率300以上のものが得られている。また、このような薄膜を素子として用いた薄膜素子は、誘電損失4%未満の良好な誘電特性を示している。また、耐電圧も200kV/cm以上であり、好ましい。 In addition, the electrical characteristics are sufficiently obtained. Therefore, in the barium titanate ultrafine particle thin film composed of particles grown to have an average particle diameter of 15 nm or more, as can be seen from the hysteresis curve of Example B in FIG. 9, the ferroelectricity is 2 Pr> 2.0 μC / cm 2. As shown, a dielectric constant of 300 or more was obtained. In addition, a thin film element using such a thin film as an element shows good dielectric properties with a dielectric loss of less than 4%. Also, the withstand voltage is preferably 200 kV / cm or more, which is preferable.

一方、平均粒径が、15nm以下である比較例Aでは、2Pr<2.0μC/cm2で強誘電特性が得られず、比誘電率も300以下となり、十分な強誘電特性が得られなかった。 On the other hand, in Comparative Example A having an average particle size of 15 nm or less, ferroelectric properties were not obtained at 2 Pr <2.0 μC / cm 2 , and the relative dielectric constant was 300 or less, and sufficient ferroelectric properties were not obtained. Was.

次に比較例B,Cに示されているように、一般的なゾルゲル法により成膜を行なった場合、結晶性に問題があり、500℃で熱処理を行った比較例Cでは、非晶質相である。また、電気測定不能であった。700℃で熱処理を行った比較例Bであっても結晶性が悪く、一部まだ非晶質相を含むものの結晶化したチタン酸バリウムとなるが、一連の反応により、表面粗さが大きく増すと共に所々に亀裂が見られ膜質が大きく低下した。また、亀裂のためか漏れ電流が大きくなり、誘電体的なヒステリシス曲線が得られず、非晶質相が基板と反応して低誘電率の中間相を形成するためか、比誘電率も300以下と小さくなった。その結果、誘電損失も大きく、耐電圧が十分に得られないことがわかった。   Next, as shown in Comparative Examples B and C, when a film was formed by a general sol-gel method, there was a problem in crystallinity. In Comparative Example C in which heat treatment was performed at 500 ° C., amorphous Phase. In addition, electrical measurement was not possible. Even in Comparative Example B which was heat-treated at 700 ° C., the crystallinity was poor, and although partly still contained an amorphous phase, barium titanate was crystallized, but the series of reactions greatly increased the surface roughness. At the same time, cracks were observed in some places, and the film quality was greatly reduced. Also, due to cracks, the leakage current becomes large, a dielectric hysteresis curve cannot be obtained, and the amorphous phase reacts with the substrate to form a low dielectric constant intermediate phase. It became smaller as follows. As a result, it was found that the dielectric loss was large and the withstand voltage was not sufficiently obtained.

さらに、ゾルゲル法であらかじめ部分加水分解させた原料溶液を用いて成膜を行なった比較例Dの場合、成膜後の反応量が減るためか、表面粗さに若干の改善が見られると共に、700℃熱処理後はチタン酸バリウム単相となるが、やはり、部分加水分解により生成したナノ粒子の分散及び結晶性もまだ十分でないためか、実施例A〜Cに示した薄膜と比べ、表面粗さが大きくなり、また、比較例B,Cと同様に低誘電率相を含むためか、誘電損失が大きくなり、比誘電率も300以下と小さくなった。   Furthermore, in the case of Comparative Example D in which a film was formed using a raw material solution that had been partially hydrolyzed in advance by a sol-gel method, the reaction amount after film formation was reduced, or a slight improvement in surface roughness was observed, After the heat treatment at 700 ° C., the barium titanate becomes a single phase. However, the dispersion and the crystallinity of the nanoparticles generated by the partial hydrolysis are still insufficient, and the surface roughness is smaller than that of the thin films shown in Examples A to C. In addition, the dielectric loss was increased and the relative dielectric constant was reduced to 300 or less, probably due to the inclusion of the low dielectric constant phase as in Comparative Examples B and C.

水を介したセラミックス微粒子の凝集様式の模式図である。It is a schematic diagram of the aggregation mode of ceramic fine particles through water. 分散媒中エマルジョン水滴の分散会合様式の摸式図である。It is a schematic diagram of the dispersion association mode of the emulsion water droplet in a dispersion medium. マイクロエマルジョンび加水分解後の超微粒子分散様式の模式図である。It is a schematic diagram of a microemulsion and an ultrafine particle dispersion mode after hydrolysis. 本発明の金属酸化物超微粒子薄膜を用いた積層コンデンサの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the laminated capacitor using the metal oxide ultrafine particle thin film of this invention. 本発明を用いた薄膜素子の断面図である。FIG. 3 is a cross-sectional view of a thin film element using the present invention. 本発明の実施例Bの粒度分布を示す粒度分布図である。FIG. 3 is a particle size distribution diagram showing a particle size distribution of Example B of the present invention. 本発明の実施例のSEM写真である。4 is an SEM photograph of an example of the present invention. 測定試料の断面図である。It is sectional drawing of a measurement sample. 本発明の実施例のヒステリシス特性を示す図である。FIG. 4 is a diagram illustrating hysteresis characteristics of the example of the present invention.

符号の説明Explanation of reference numerals

1 液滴
2 界面活性剤
3 コサーファクタント
4 水
5 反応生成物
6 分散媒
7,13 基板
8 セラミック層
18 誘電体薄膜
20 Si/SiO2/Al23/Pt基板
1 drop 2 surfactant 3 cosurfactant 4 water 5 reaction product 6 dispersant 7,13 substrate 8 ceramic layer 18 dielectric film 20 Si / SiO 2 / Al 2 O 3 / Pt substrate

Claims (5)

疎水性液体である分散媒、水および界面活性剤を含むマイクロエマルジョン中での原料の加水分解反応によって作製される金属酸化物超微粒子分散溶液であって、
前記原料は複数の金属アルコキシドをアルコール中で混合して複合化した複合金属アルコキシド溶液からなり、
前記マイクロエマルジョンに含まれる水量が、前記原料の加水分解に必要な水量の0.95倍以上3倍以下であることを特徴とする金属酸化物超微粒子分散溶液。
A dispersion liquid of metal oxide ultrafine particles produced by a hydrolysis reaction of a raw material in a microemulsion containing a dispersion medium that is a hydrophobic liquid, water and a surfactant,
The raw material is a composite metal alkoxide solution in which a plurality of metal alkoxides are mixed in alcohol to form a composite,
A dispersion of ultrafine metal oxide particles, wherein the amount of water contained in the microemulsion is 0.95 times or more and 3 times or less the amount of water required for hydrolysis of the raw material.
前記複数の金属アルコキシドの少なくとも一つがバリウムアルコキシドであって、前記複合金属アルコキシド溶液は、前記バリウムアルコキシドの重合を抑制する重合抑制剤を含む請求項1に記載の金属酸化物超微粒子分散溶液。   The metal oxide ultrafine particle dispersion according to claim 1, wherein at least one of the plurality of metal alkoxides is a barium alkoxide, and the composite metal alkoxide solution includes a polymerization inhibitor that suppresses polymerization of the barium alkoxide. 請求項1または請求項2の金属酸化物超微粒子分散溶液を用いて得られた金属酸化物超微粒子薄膜。   A metal oxide ultrafine particle thin film obtained by using the metal oxide ultrafine particle dispersion solution according to claim 1 or 2. 平均粒径15nm以上50nm以下の金属酸化物超微粒子から構成され、残留分極(Pr)において、2Prが2μC/cm2以上の強誘電特性を有し、測定周波数1kHzにおける比誘電率が300以上であることを特徴とする金属酸化物超微粒子薄膜。 It is composed of ultrafine metal oxide particles having an average particle size of 15 nm or more and 50 nm or less, has 2Pr or more ferroelectric properties in remanent polarization (Pr) of 2 μC / cm 2 or more, and has a relative dielectric constant of 300 or more at a measurement frequency of 1 kHz. A metal oxide ultrafine particle thin film characterized by the following. 前記金属酸化物超微粒子が、チタンおよびバリウムを含むペロブスカイト型酸化物である請求項4記載の金属酸化物超微粒子薄膜。   The metal oxide ultrafine particle thin film according to claim 4, wherein the metal oxide ultrafine particles are a perovskite oxide containing titanium and barium.
JP2003313463A 2002-09-20 2003-09-05 Metal oxide ultrafine particle dispersion solution and metal oxide ultrafine particle thin film Expired - Fee Related JP4311134B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003313463A JP4311134B2 (en) 2002-09-20 2003-09-05 Metal oxide ultrafine particle dispersion solution and metal oxide ultrafine particle thin film
PCT/JP2003/011821 WO2004026762A1 (en) 2002-09-20 2003-09-17 Ultra-fine metal oxide particle suspension and ultra-fine metal oxide particle thin film
AU2003264459A AU2003264459A1 (en) 2002-09-20 2003-09-17 Ultra-fine metal oxide particle suspension and ultra-fine metal oxide particle thin film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002274598 2002-09-20
JP2003077651 2003-03-20
JP2003313463A JP4311134B2 (en) 2002-09-20 2003-09-05 Metal oxide ultrafine particle dispersion solution and metal oxide ultrafine particle thin film

Publications (2)

Publication Number Publication Date
JP2004300013A true JP2004300013A (en) 2004-10-28
JP4311134B2 JP4311134B2 (en) 2009-08-12

Family

ID=32034074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003313463A Expired - Fee Related JP4311134B2 (en) 2002-09-20 2003-09-05 Metal oxide ultrafine particle dispersion solution and metal oxide ultrafine particle thin film

Country Status (3)

Country Link
JP (1) JP4311134B2 (en)
AU (1) AU2003264459A1 (en)
WO (1) WO2004026762A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051053A (en) * 2005-07-21 2007-03-01 Sony Corp Metal oxide nanoparticle, method for producing the same, light-emitting element assembly, and optical material
JP2009538948A (en) * 2006-05-31 2009-11-12 ライニッシュ−ヴェストフェリッシェ・テクニッシェ・ホッホシューレ・アーヘン Preparation and production of coating solutions
JP2009280416A (en) * 2008-05-19 2009-12-03 Taiyo Yuden Co Ltd Method for manufacturing dielectric thin film and thin film electronic component
JP2010030821A (en) * 2008-07-28 2010-02-12 Murata Mfg Co Ltd Method for producing metal oxide ultrafine particles
JP2012096962A (en) * 2010-11-02 2012-05-24 Ngk Insulators Ltd Lead-based piezoelectric material and production method therefor
JP2012136428A (en) * 2002-11-13 2012-07-19 Nippon Soda Co Ltd Dispersoid having metal-oxygen bond
US9352975B2 (en) 2008-02-28 2016-05-31 Murata Manufacturing Co., Ltd. Ultrafine zinc oxide particle dispersion solution, method for producing the ultrafine zinc oxide particle dispersion solution, and zinc oxide thin film
JP2019211092A (en) * 2018-05-31 2019-12-12 昭和電工株式会社 Heat exchanger

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59195504A (en) * 1983-04-15 1984-11-06 Kanegafuchi Chem Ind Co Ltd Composite metallic solution
JPH02233505A (en) * 1989-03-06 1990-09-17 Ricoh Co Ltd Production of ultrasonic powder of metal oxide composition
JPH0369506A (en) * 1989-08-07 1991-03-25 Ricoh Co Ltd Multiple metal oxide superfine grains

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136428A (en) * 2002-11-13 2012-07-19 Nippon Soda Co Ltd Dispersoid having metal-oxygen bond
JP2007051053A (en) * 2005-07-21 2007-03-01 Sony Corp Metal oxide nanoparticle, method for producing the same, light-emitting element assembly, and optical material
JP2009538948A (en) * 2006-05-31 2009-11-12 ライニッシュ−ヴェストフェリッシェ・テクニッシェ・ホッホシューレ・アーヘン Preparation and production of coating solutions
US9352975B2 (en) 2008-02-28 2016-05-31 Murata Manufacturing Co., Ltd. Ultrafine zinc oxide particle dispersion solution, method for producing the ultrafine zinc oxide particle dispersion solution, and zinc oxide thin film
JP2009280416A (en) * 2008-05-19 2009-12-03 Taiyo Yuden Co Ltd Method for manufacturing dielectric thin film and thin film electronic component
JP2010030821A (en) * 2008-07-28 2010-02-12 Murata Mfg Co Ltd Method for producing metal oxide ultrafine particles
JP2012096962A (en) * 2010-11-02 2012-05-24 Ngk Insulators Ltd Lead-based piezoelectric material and production method therefor
JP2019211092A (en) * 2018-05-31 2019-12-12 昭和電工株式会社 Heat exchanger

Also Published As

Publication number Publication date
WO2004026762A1 (en) 2004-04-01
JP4311134B2 (en) 2009-08-12
AU2003264459A1 (en) 2004-04-08

Similar Documents

Publication Publication Date Title
US9214279B2 (en) Ultrafine metal oxide particle dispersion liquid and ultrafine metal oxide particle thin film
Pithan et al. Progress in the synthesis of nanocrystalline BaTiO3 powders for MLCC
Huang et al. Barium titanate nanocrystals and nanocrystal thin films: Synthesis, ferroelectricity, and dielectric properties
JP6623569B2 (en) Thin film dielectric and thin film capacitor element
US8487515B2 (en) Piezoelectric ceramic, process for producing the piezoelectric ceramic, and piezoelectric device
EP2417063B1 (en) Process for the preparation of niobium compounds
WO2008153585A1 (en) Preparation of perovskite nanocrystals via reverse micelles
KR20200099406A (en) Single crystal material and method of forming the same and stacked structure and ceramic electronic component and device
JP2010219509A (en) Ferroelectric material, ferroelectric thin film, method of manufacturing ferroelectric material, and ferroelectric element
Schneller et al. Nanocomposite thin films for miniaturized multi-layer ceramic capacitors prepared from barium titanate nanoparticle based hybrid solutions
JP4311134B2 (en) Metal oxide ultrafine particle dispersion solution and metal oxide ultrafine particle thin film
KR100474948B1 (en) Method for making raw ceramic powder, raw ceramic powder, dielectric ceramic produced using raw ceramic powder, and monolithic ceramic electronic component using dielectric ceramic
JP4766910B2 (en) Method for producing barium titanate powder, barium titanate powder, and barium titanate sintered body
Ahmad et al. Structural and dielectric characterization of nanocrystalline (Ba, Pb) ZrO3 developed by reverse micellar synthesis
Naji et al. Influence of sintering temperature on ferroelectric ba0. 7sr0. 3tio3 microstructure, grain size, and electrical properties
JP2010064938A (en) Nanoparticle dispersion solution of barium titanate and method for producing the same
JP2002234771A (en) Oxide powder having tetragonal perovskite structure, method for producing the same, dielectric ceramic and multilayer ceramic capacitor
JP4411483B2 (en) Method for producing barium titanate powder
JPH06309925A (en) Dielectric composition, its manufacture, manufacture of its thin film, and thin-film capacitor
JP2005289737A (en) Barium titanate minute particle and its manufacturing method
JP4671946B2 (en) Barium calcium titanate powder and production method thereof
KR20100022440A (en) Titan composite salt powder, method for producing the same and method for producing perovskite-typed titan composite oxide powder using the same
JPS5939724A (en) Manufacture of dielectric powder for thick film
JPH06318405A (en) Dielectric composition, manufacture thereof, and thin film capacitor
WO2005010895A1 (en) Liquid composition for ferroelectric thin film formation and process for producing ferroelectric thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090504

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4311134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees