WO2004026762A1 - Ultra-fine metal oxide particle suspension and ultra-fine metal oxide particle thin film - Google Patents

Ultra-fine metal oxide particle suspension and ultra-fine metal oxide particle thin film Download PDF

Info

Publication number
WO2004026762A1
WO2004026762A1 PCT/JP2003/011821 JP0311821W WO2004026762A1 WO 2004026762 A1 WO2004026762 A1 WO 2004026762A1 JP 0311821 W JP0311821 W JP 0311821W WO 2004026762 A1 WO2004026762 A1 WO 2004026762A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
thin film
solution
ultrafine
water
Prior art date
Application number
PCT/JP2003/011821
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhisa Yamashita
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to AU2003264459A priority Critical patent/AU2003264459A1/en
Publication of WO2004026762A1 publication Critical patent/WO2004026762A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
    • C01B13/328Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process by processes making use of emulsions, e.g. the kerosine process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/02Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/10Metal-oxide dielectrics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5481Monomodal

Definitions

  • the present invention relates to a metal oxide ultrafine particle dispersion solution in which metal oxide ultrafine particles are dispersed, in particular, a metal oxide ultrafine particle dispersion solution suitable for producing a composite metal oxide ultrafine particle thin film, and a nano-sized metal oxide ultrafine particle.
  • the present invention relates to a metal oxide ultrafine particle thin film comprising fine particles and having excellent dielectric properties. Disclosure of invention
  • composite metal oxides such as barium titanate and lead zirconate titanate are widely used in multilayer capacitor actuators and the like because of their excellent dielectric properties and piezoelectric properties.
  • thinning of the element is indispensable.
  • ferroelectric materials are said to lose ferroelectricity at a certain critical grain size due to the size effect.
  • the ferroelectricity disappears at about 50 nm. It cannot be applied to electronic devices as a dielectric.
  • barium titanate of about 50 nm synthesized by a hydrolysis method for example, is grown to 100 nm or more by heat treatment to improve the crystallinity. It is manufactured by mixing and pulverizing with an agent and the like, forming a slurry, forming a sheet, stacking these, and further removing the binder and firing.
  • the thickness of the multilayer capacitor has been reduced to about 1 m, and in this case, in order to obtain sufficient reliability, for example, 10 Therefore, miniaturization to about 100 nm per particle is required.
  • the critical particle size of the thin film sample may be changed as compared with the powder sample due to the influence of stress from the substrate surface and the like.
  • MBE molecular beam epitaxy
  • CVD chemical vapor synthesis
  • PVD physical vapor deposition
  • thin film formation using a liquid phase method represented by a sol-gel method is more advantageous than a gas phase method from the viewpoints of composition controllability and cost, and has been extensively studied.
  • a precursor solution obtained by partially hydrolyzing a metal alkoxide solution as a raw material without adding K or adding a small amount of water is used. After the adjustment, the film is formed by spin coating or dip coating.
  • the film formed in this manner is generally amorphous containing an organic compound. To obtain a crystalline film, it is necessary to further bake the film after forming the film.
  • the amorphous phase of the film may form an intermediate phase during firing, causing problems such as an increase in surface roughness that hindered densification, and the formation of a different phase at the interface with the substrate. And deteriorated the characteristics.
  • the firing since it is necessary to perform the firing at a relatively high temperature, the firing causes grain growth, and it has been difficult to obtain a dense thin film while maintaining a sufficiently small particle size.
  • a film is formed by using the prepared dispersion solution, for example, by spin coating, dried, and then subjected to a heat treatment at a relatively low temperature, thereby forming a dense thin film while maintaining a sufficiently fine particle size. Can be obtained.
  • the key is to synthesize the ultrafine composite metal oxide particles with high crystallinity first, and then to keep the ultrafine particles once synthesized in a dispersed state without agglomeration.
  • Japanese Patent Application Laid-Open No. 2001-163617 discloses recently reported metals such as a metal colloid method, a microemulsion method (reverse micelle method), a polymer complex method, a metal alcohol hydrolysis method, and a Grignard method.
  • metals such as a metal colloid method, a microemulsion method (reverse micelle method), a polymer complex method, a metal alcohol hydrolysis method, and a Grignard method.
  • the production methods of the oxide ultrafine particles are listed.
  • the WZO (Water in Oil) microemulsion method involves adding water together with a surfactant to a hydrophobic liquid to disperse it as micro water droplets, and introducing the water by a reaction such as hydrolysis in these water droplets. This is a method of reacting raw materials to obtain ultrafine metal oxide particles. .
  • the target fine particles are separated and obtained by washing the mixture of the fine particles, which are the sediment, and the surfactant with an organic solvent or the like (see JP-A-9-1255331).
  • ultrafine particles synthesized by the microemulsion method can be dispersed in a solution without coagulation, they can be used as a solution for forming a thin film of metal oxide ultrafine particles. Can be.
  • the water droplets of the emulsion are thermodynamically stable and dispersed. However, as shown in Fig. 2, the individual droplets 1 and 1 repeat binding and dissociation.
  • the composite metal oxide ultrafine particles are synthesized by the microemulsion method, while the above-described bonding and dissociation are repeated, the synthesized fine particles gradually aggregate and precipitate.
  • the present invention has been made in view of the above points, and has a metal oxide superfine particle having a uniform composition, a uniform particle size and shape, and highly dispersed crystallized ultrafine metal oxide particles.
  • the main purpose is to provide a fine particle dispersion solution, and to provide a fine metal oxide ultrafine particle thin film having a small particle size by using the obtained composite metal oxide ultrafine particle dispersion solution. It is an object of the present invention to provide a thin film of nano-sized metal oxide ultrafine particles having excellent characteristics. Disclosure of the invention
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, when synthesizing ultrafine metal oxide particles by the microemulsion method, as a raw material that consumes water in the emulsion during the reaction process, for example, A metal alkoxide is used.
  • a metal alkoxide is used as a raw material that consumes water in the emulsion during the reaction process.
  • the metal oxide ultrafine particle dispersion solution of the present invention is a metal oxide ultrafine particle produced by a hydrolysis reaction of a raw material in a microemulsion containing a dispersion medium that is a hydrophobic liquid, water, and a surfactant.
  • the amount of water used is 0.95 times or more and 3 times or less the amount of water required for hydrolysis of the raw material.
  • the ultrafine particles refer to, for example, particles having an average particle diameter of 100 nm or less.
  • the amount of water contained in the microemulsion is set to 0.95 times or more the guess required for the hydrolysis of the raw material, so that the undecomposed raw material without hydrolysis and the crystallinity are sufficient. It is possible to reduce the ratio of amorphous ultrafine particles that are not minute. Furthermore, since the amount of water contained in the microemulsion is less than three times the amount of water required for hydrolysis of the raw materials, aggregation of the metal oxide ultrafine particles generated after the reaction is suppressed, and highly dispersed transparent metal oxide It becomes an ultrafine particle dispersion solution.
  • the metal alkoxide solution serving as the raw material solution is a composite metal alkoxide solution in which a plurality of metal alkoxides are compounded, so that the ultrafine particles generated are very fine, have a uniform composition, and It becomes fine particles of a single phase composite metal oxide crystallized and uniform in diameter and shape.
  • At least one of the plurality of metal alkoxides is a barium alkoxide
  • the composite metal alkoxide solution contains a polymerization inhibitor that suppresses polymerization of the barium alkoxide.
  • polymerization inhibitor for example, benzene is preferable.
  • a polymerization inhibitor such as benzene that suppresses the polymerization of barium alkoxide is contained, polymerization of barium alkoxide is suppressed, and a homogeneous composite metal alkoxide of barium alkoxide and another metal alkoxide can be obtained. Can be.
  • the metal oxide ultrafine particle thin film according to the present invention is manufactured using the metal oxide ultrafine particle dispersion prepared by the method of the present invention.
  • a dense metal oxide ultrafine particle thin film having a small particle diameter can be obtained.
  • the metal oxide ultrafine particle film according to the present invention is ⁇ average particle diameter 1 5 nm or more 50 nm or less of the metal oxide ultrafine particles in the residual polarization (P r), 2P "mosquito 2 0 0 2 It has the above ferroelectric characteristics, and has a relative dielectric constant of 300 or more at a measurement frequency of 1 kHz.
  • the average particle diameter is 50 nm or less, it is possible to further reduce the thickness.
  • 2Pr is 2 ⁇ CZcm2.
  • An excellent thin film having the above ferroelectric properties and a relative dielectric constant of 300 or more at a measurement frequency of 1 kHz can be obtained.
  • the metal oxide ultrafine particles constituting the metal oxide ultrafine particle thin film of the present invention are a perovskite-type oxide containing titanium and barium.
  • a composite oxide such as a bevelskite-type oxide containing titanium and barium has an average particle diameter of 50 nm or less.
  • ferroelectric properties of 2 Pr of 2 Ccm2 or more and a relative dielectric constant of 300 or more at a measurement frequency of 1 kHz even if it is composed of ultrafine particles of 1550 nm. Can be.
  • the present invention since the amount of water contained in the microemulsion is limited, It is possible to easily obtain a metal oxide ultrafine particle dispersion in which the composition is uniform, the particle diameter and the shape are uniform, and the crystallized ultrafine metal oxide particles are highly dispersed.
  • the composite metal alkoxide is used as a raw material, it is possible to obtain a composite metal oxide ultrafine particle dispersion solution in which the composite metal oxide ultrafine particles are highly dispersed and a thin composite metal oxide ultrafine particle thin film having a small particle diameter. it can.
  • the average particle size is 50 nm or less, so that when used for a device, it is possible to reduce the size and thickness of the device and to reduce the size effect. It is possible to obtain excellent dielectric properties by suppressing the above.
  • Figure 1 is a schematic diagram of the mode of aggregation of ceramic fine particles via water.
  • FIG. 2 is a schematic diagram of a dispersion association mode of emulsion water droplets in a dispersion medium.
  • FIG. 3 is a schematic diagram of the ultrafine particle dispersion mode after microemulsion and hydrolysis.
  • FIG. 4 is a cross-sectional view showing a manufacturing process of a laminated condenser using the metal oxide ultrafine particle thin film of the present invention.
  • FIG. 5 is a sectional view of a thin film element using the present invention.
  • FIG. 6 is a particle size distribution diagram showing the particle size distribution of Example B of the present invention.
  • FIG. 7 is a SEM photograph of the example of the present invention.
  • FIG. 8 is a cross-sectional view of the measurement sample.
  • FIG. 9 is a diagram showing the hysteresis characteristics of the example of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the microemulsion according to the present invention is a W / O microemulsion comprising a dispersion medium, which is a hydrophobic liquid, water, and a surfactant.
  • dispersion medium that is a hydrophobic liquid
  • examples of the dispersion medium that is a hydrophobic liquid include petroleum hydrocarbons such as kerosene, nonpolar hydrocarbons such as cyclohexane, hexane, cyclopentane, benzene, and octane, and ethers such as getyl ether and isopropyl ether.
  • petroleum hydrocarbons such as kerosene
  • nonpolar hydrocarbons such as cyclohexane, hexane, cyclopentane, benzene, and octane
  • ethers such as getyl ether and isopropyl ether.
  • AOT sodium bis (2-ethylhexyl) sulfosucciate
  • the raw material of the present invention is a composite metal alkoxide.
  • This composite metal alkoxide is usually obtained by mixing a plurality of single metal alkoxides in an alcohol to form a composite. It can also be obtained by mixing and mixing a plurality of composite metal alkoxides—single metal alkoxide and composite metal alkoxide in alcohol. '
  • Examples of the single metal alkoxide include, but are not limited to, barium methoxide, barium methoxide, barium propoxide, barium butoxide, titanium methoxide, titanoxide, and titanium propoxide.
  • This alcohol includes ethanol, propanol, butanol, isopropyl alcohol and the like.
  • the composite metal alkoxide is not particularly limited. Magnesium methoxide, magnesium titanium ethoxide and the like. Composite metal alkoxides
  • the amount of water in the microemulsion of the present invention is preferably 0.95 times or more and 3 times or less the amount of water required for hydrolyzing the metal alkoxide as a raw material.
  • the amount of water required for hydrolysis is defined by a chemical reaction formula, for example, a hydrolysis reaction of barium isopropoxide Ba (isop) 2 and titanium isopropoxide T i (isop) 4 Then, it becomes as follows.
  • the amount of water contained in the microemulsion must be 0.95 times or more and 3 times or less of the amount of water required for hydrolysis, that is, 2.85moI or more and 9moI or less. .
  • the amount of water When the amount of water is less than 1 time, water is completely consumed after the reaction, so that a very clear dispersion solution can be obtained.In addition, the solution remains without hydrolysis after the reaction or is amorphous and crystalline. Some of the fine particles that are not sufficient are included. However, since these phases may enter between the super-dispersed particles that form a film during film formation and increase the film density or act as a sintering aid, the amount of water is adjusted to 1 times or less and undecomposed. Or it may be better to adjust to include the amorphous part.
  • a composite metal oxide ultrafine particle dispersion solution which is clear, has high dispersion and high crystallinity.
  • the B a Z Ti ratio in a substance is an important factor in the properties, but it is known that in water, a part of lime is eluted.
  • the synthesis is carried out by the hydrolysis method, the synthesis is carried out using raw materials that have been adjusted in excess of vacuum.
  • barium ions do not dissolve into water, so that it is possible to obtain uniform ultrafine particles of interest with the adjusted raw material composition. it can.
  • the amount of water contained in the microemulsion is reduced to 0.95 times or more and 3 times or less, preferably 1.05 times or more and 1.2 times or less of the amount of water required for hydrolysis.
  • Also has the advantage that compositional deviations due to the remaining easily soluble components in the water can be almost eliminated.
  • microemulsion it is preferable to add one or more alcohols as another surfactant, so-called cosurfactant.
  • FIG. 3 is a schematic diagram showing the microemulsion solution and the vicinity of a part of the droplets in an enlarged manner, and also showing the state after the hydrolysis reaction with the addition of the composite metal alkoxide.
  • 2 is a surfactant
  • 3 is a cosurfactant
  • 4 is water
  • 5 is a reaction product
  • 6 is a dispersion medium such as cyclohexane.
  • E indicates the complex alkoxide
  • F indicates the hydrolysis
  • G indicates after the hydrolysis reaction.
  • the composite metal oxide enters between the interface of the composite oxide and the surfactant, and the surfactant remains around the composite oxide ultrafine particles.
  • the synthesized composite ultrafine particles can be stably dispersed in the same manner as in the case of water because they can exist in the form of surrounding water.
  • the cosurfactant has an effect of entering the hydrophilic portion of the surfactant, lowering the interfacial energy with water, and reducing the steric hindrance of the long carbon chain of the hydrophilic portion of the surfactant.
  • the carbon number of an appropriate alcohol depends on the length of the carbon chain of the hydrophilic part of the surfactant, but is preferably about 4 to 10.
  • the hydrophilicity is too high, so it is considered that it is dissolved in water and does not exist only at the water-surfactant interface.
  • a metal alkoxide is used as a raw material, and that each metal alkoxide is mixed and complexed before hydrolysis.
  • Paragraphs 5939-5942 state that crystals of BaTi (OCH (CH3) 2) -C6H6 can be obtained by aging an iso-propanol solution of barium and titanium in benzene. ing.
  • benzene hardly dissolves the metal alkoxide, helps stabilize and precipitate Ba T i (OCH (CH3) 2) -C6H6 crystals, and has the effect of suppressing the polymerization of barium alkoxide. Is suggested.
  • the metal oxide ultrafine particle thin film of the present invention is manufactured using the metal oxide ultrafine particle dispersion prepared by the method of the present invention.
  • ultra-fine particles of the metal oxide ultra-fine particle dispersion solution have high crystallinity, relatively low temperature, for example,
  • Heat treatment can be performed at 600 ° C. or less.
  • the metal oxide ultrafine particle thin film of the present invention is composed of metal oxide ultrafine particles having an average particle size of 15 nm or more and 50 nm or less and has ferroelectric properties.
  • 2 Pr has a ferroelectric property of 2 jU C / cm 2 or more in remanent polarization (P r), and the relative dielectric constant at a measurement frequency of 1 kHz (room temperature). Is 3 It is preferably at least oo.
  • a metal oxide ultrafine particle thin film composed of ultrafine particles of 15 to 50; Um as in the present invention, wherein 2 Pr is 2 jW CZ cm 2 or more in remanent polarization (P r). If it has ferroelectric characteristics and has a relative permittivity of 300 or more, it functions sufficiently as a ferroelectric device such as a thin film capacitor or a multilayer capacitor.
  • the metal oxide ultrafine particle thin film of the present invention when used as a thin film capacitor, it is composed of fine particles of 15 to 50 nm, so that the number of particles per layer can be increased and reliability is improved. In addition to being able to greatly improve, it is possible to further reduce the thickness and size.
  • the metal oxide ultrafine particle thin film of the present invention is obtained by synthesizing ultrafine and crystallized metal oxide ultrafine particles, for example, ceramic nanoparticles composed of a perovskite-type oxide containing titanate. Keeping it in a highly dispersed state as it is, forming a film on the substrate, then growing the grains to 15 nm or more and 50 nm or less by adding energy such as heat treatment, and further promoting densification and crystallization Manufactured.
  • ultrafine and crystallized metal oxide ultrafine particles for example, ceramic nanoparticles composed of a perovskite-type oxide containing titanate. Keeping it in a highly dispersed state as it is, forming a film on the substrate, then growing the grains to 15 nm or more and 50 nm or less by adding energy such as heat treatment, and further promoting densification and crystallization Manufactured.
  • Examples of such a film forming method include a solution in which ultrafine metal oxide particles having a uniform particle size distribution are kept in a highly dispersed state as they are, for example, from the microemulsion (ME) method.
  • a metal oxide ultrafine particle dispersion solution as a raw material solution, a thin film is prepared by a method of forming a film directly by spin coating, etc., and this is further heat-treated using an RTA (Rapid Thermal Annealing) furnace or the like. Can be manufactured.
  • RTA Rapid Thermal Annealing
  • the metal oxide ultrafine particle thin film of the present invention has an average particle diameter of, for example, 30 nm or less, for example, a ceramic oxide nanoparticle made of a perovskite-type oxide containing titanate.
  • a ceramic nanoparticle produced by a series of processes of synthesizing, maintaining the synthesized ceramic nanoparticles in a medium in a highly dispersed state, and forming a film of the highly dispersed ceramic nanoparticles on a substrate.
  • the thin film is manufactured by further grain growth of 15 nm to 50 nm by adding energy such as heat treatment.
  • ceramic fine particles that is, ceramic nanoparticles
  • ceramic nanoparticles are highly agglomerated, and once agglomerated, it is extremely difficult to redisperse them separately.-After synthesizing ceramic nanoparticles, It must be kept in a highly dispersed state in the medium.
  • wo Microemulsion is composed of a hydrophobic liquid dispersion medium, water, and a surfactant, and a water droplet having a diameter of several nm to several 10 nm is thermally dispersed in a hydrophobic solvent. Can be dispersed stably.
  • a Ba, Ti composite alkoxide raw material solution is dropped into the crystallized titanate, which is very fine and has a uniform particle size corresponding to the water droplet diameter.
  • Barium nanoparticles can be synthesized.
  • the synthesized barium titanate nanoparticles can be prevented from aggregating. A stable dispersed state can be obtained as it is.
  • the synthesized nanoparticles need to be subsequently grown to a particle size of 50 nm or less by heat treatment, so the synthesized nanoparticles are preferably as small as possible and the average particle size is small. It is preferably at least 30 nm or less, more preferably 10 nm or less.
  • the nanoparticle dispersion solution prepared in this manner is applied to a substrate by using, for example, a spin coating method, a dip coating method, a screen printing method, and the like.
  • a heat treatment step and a heat treatment step are performed to produce a dense barium titanate nanoparticle thin film.
  • Adjustment of the average particle size after film formation can be performed using an electric furnace, an infrared furnace, an RTA furnace, or the like.
  • infrared furnace RTA furnace high-speed temperature rise is possible, and high-speed temperature rise and short-time heat treatment are preferable because grain growth can be suppressed even at the same temperature.
  • Ultrafine metal oxide particles synthesized by the microemulsion method are deposited in a highly dispersed state, so even if they are nanoparticles, they are formed into dense thin films.
  • the formation of an intermediate layer does not hinder densification and does not greatly increase the surface roughness.
  • the finest and crystallized nanoparticles are grown as small as possible by heat treatment or the like, densification and crystallization are progressing even if the average particle size is as small as 50 nm or less. Excellent dielectric properties and reliability can be expected.
  • the metal oxide ultrafine particle thin film obtained in this way may be a nanoparticle having an average particle size smaller than the generally known critical size due to the influence of stress from the substrate. May exhibit ferroelectricity.
  • the metal oxide ultrafine particle thin film obtained by the production method of the present invention exhibited ferroelectricity even when the average particle diameter was 50 nm or less, and also had excellent dielectric properties.
  • the metal oxide ultrafine particle thin film formed in this manner is formed in a series of steps from synthesis to dispersion and film formation, it does not involve multiple steps, and the apparatus and the manufacturing process are not complicated. It also has points.
  • FIG. 4 shows an example of a configuration when applied to a multilayer capacitor.
  • a ceramic layer 8 is formed on a substrate 7 such as the alumina substrate shown in FIG. 1A, as shown in FIG. 2B, and a first-layer conductor electrode 9a is formed thereon. Then, a ceramic layer 8 is formed thereon, a second-layer conductor electrode 9b is further formed, a ceramic layer 8 is further formed, and a third-layer conductor electrode 9a is formed thereon. You.
  • a plurality of conductor electrodes 9a and 9b and a plurality of ceramic layers 8 are alternately laminated on the surface of the substrate 7, and a plurality of conductor electrodes 9a and 9b are formed.
  • a ceramic-metal laminate 10 including a plurality of ceramic layers 8 is formed.
  • each ceramic layer 8 is formed by the method for producing a metal oxide ultrafine particle thin film of the present invention, and each of the conductor electrodes 9 a and 9 b is formed by any one of a CVD method, a vapor deposition method, and a sputtering method.
  • the thickness of each ceramic layer 8 and each conductor electrode 9a, 9b is, for example, 1; Um or less.
  • the conductor electrodes 9a and 9b serving as internal electrodes are patterned by using a mask, and the odd-numbered conductor electrodes 9a and the even-numbered conductor electrodes 9b are alternately opposite. Side end.
  • the odd-numbered conductor electrodes 9a conduct with one external electrode 11a, and the even-numbered conductive electrodes 9a.
  • the body electrode 9b is electrically connected to the other external electrode 11b, and an ultra-small multilayer ceramic capacitor 12 as shown in FIG.
  • FIG. 5 shows an example of a configuration in which the metal oxide ultrafine particle thin film of the present invention is applied to a dielectric thin film element.
  • a substrate 13 constituting a lower layer of a dielectric thin film element and a platinum film 14 as a lower electrode formed thereon were prepared as follows.
  • the surface of the silicon plate 15 is forcibly oxidized to prevent silicon from diffusing into the platinum film 14 serving as the lower electrode.
  • an aluminum oxide film 17 was formed by 1000 ⁇ sputtering to improve the adhesion between the silicon plate 15 and the platinum film 14.
  • a platinum film 14 as a lower electrode was formed by sputtering 300 ⁇ on a substrate 13 composed of the silicon plate 15, the silicon oxide film 16, and the aluminum oxide film 17 thus formed. .
  • a dielectric thin film 18 composed of ultrafine metal oxide particles having an average particle size of 15 to 50 nm of the present invention was formed.
  • the WZO microemulsion solution contains cyclohexane as a dispersion medium and NP-10 as a surfactant: (p-C9H19) -C6H4-O- (CH2CH2O) 10CH2CH20H
  • the mixture was mixed at a ratio of 1 to obtain a W / O microemulsion solution.
  • the barium-titanium composite alkoxide is added to the prepared microemulsion solution so that the amount of water in the microemulsion becomes 0.95 times, 1.2 times, and 3 times the amount of water required for hydrolysis of the barium-titanium composite alkoxide.
  • the solutions were each fractionated using a micropip, and introduced into each microemulsion solution using a tube pump.
  • the resulting dispersion of ultrafine particles of barium titanate is light-brown and transparent, and is hydrolyzed. It was confirmed that the generated barium titanate ultrafine particles were highly dispersed.
  • the ultrafine particle dispersion solution is highly dispersed in crystallized ultrafine particles of about 8 nm. It was found to have applicability.
  • the ultrafine particle dispersion solution can freely adjust the concentration of the ultrafine particles in the liquid by adding an organic dispersion medium occupying a volume ratio of about 90% by partially evaporating with an evaporator or the like, or conversely. Can be adjusted.
  • the SEM photograph of the surface of the barium titanate ultrafine particle thin film confirmed that ultrafine particles of parium titanate of about 1 Onm were formed at a high density.
  • Example 2 a palladium-titanium composite alkoxide solution prepared in the same manner as in Example 1 was added to these two microemulsion solutions so that the water amount of the microemulsion was three times the water amount required for hydrolysis of the alkoxide raw material.
  • the microemulsion solution and introduced into each microemulsion solution using a tube pump.
  • the mixture was stirred and mixed for 1 day in a glove box under an Ar atmosphere to obtain a dispersion solution of barium titanate ultrafine particles.
  • microemulsion solution uses a micropipet with a barium-titanium composite alkoxide solution such that the amount of water in the microemulsion is five times the amount of water required for hydrolysis of the barium-titanium composite alkoxide.
  • the fractions were collected and introduced into each of the mic mouth emulsion solutions using a tube pump.
  • the mixture was stirred and mixed for 1 day in a glove box in an Ar atmosphere to obtain a dispersion of ultrafine particles of barium titanate.
  • a barium-titanium composite alkoxide solution was added to each of the prepared microemulsion solutions using a micropipet so that the amount of water in the microemulsion was 50 times the amount of water required for the hydrolysis of the barium-titanium composite alkoxide. It was separated and introduced into each microemulsion solution using a tube pump.
  • the mixture was stirred and mixed for 1 day in a glove box in an Ar atmosphere to obtain a dispersion of ultrafine particles of barium titanate.
  • a barium-titanium composite alkoxide solution is added to the prepared microemulsion solution using a micropipet so that the amount of water in the microemulsion becomes 0.75 times the amount of water required for hydrolysis of the barium-titanium composite alkoxide. , And introduced into each microemulsion solution using a tube pump.
  • the mixture was stirred and mixed for 1 day in a glove box in an Ar atmosphere to obtain a dispersion of ultrafine particles of barium titanate.
  • the barium acetate powder was dissolved in water to prepare a 0.1 mo I / I barium acetate aqueous solution.
  • the adjusted barium acetate aqueous solution: 1-octanol: NP-10: cyclohexane 5: 9: 7.5: 150 was mixed to obtain a W / O microemulsion solution.
  • the mixture was stirred and mixed in a glove box in an Ar atmosphere to obtain a titanic acid / lithium ultrafine particle dispersion solution.
  • a barium-titanium composite alkoxide solution prepared in the same manner as in Example 1 was added to the microemulsion solution so that the amount of water in the microemulsion was 50 times the amount of water required for hydrolysis of the alkoxide raw material.
  • the solution was collected by a pipette and introduced into each microemulsion solution using a tube pump.
  • Table 1 shows the dispersion state and crystal phase of the obtained barium titanate ultrafine particle dispersion solution.
  • the evaluation of the dispersion state is a visual evaluation, where ⁇ indicates a completely transparent state, ⁇ indicates a transparent state, indicates a cloudy state, and X indicates a state where precipitation has occurred. and that c first, by using the raw material solution was combined alkoxide of the produced by adjusting the W / O micro Emar Ji below 3 times 0.9 5 times more water necessary for hydrolysis of the raw material solution Gyotsu Examples of the dispersion solution of ultrafine particles of barium titanate are shown in Examples 1 and 2.
  • the generated ultrafine particles are very fine, have a uniform composition, and have a uniform particle size and shape and are crystallized single-phase ultrafine particles of a composite metal oxide. On the other hand, when the amount of water is larger than that, as shown in Comparative Example 1, the generated ultrafine particles aggregate and precipitate.
  • the sample subjected to heat treatment after centrifugation and washing was confirmed to be composed of a BaTi03 phase and a BaTi204 phase, and was found to be in excess of titanium.
  • the barium-titanium composite alkoxide solution was introduced into the microemulsion solution so that the amount of water in the microemulsion was adjusted to 1.5 times the amount of water required for hydrolysis of the lium-titanium composite alkoxide.
  • the mixture was stirred and mixed in a glove box in an Ar atmosphere to obtain a dispersion solution of ultrafine particles of barium titanate. It was confirmed by TEM observation that the titanium titanate in the dispersion solution was crystallized fine nanoparticles of about 8 nm.
  • Example A is a barium titanate ultrafine particle thin film having an average particle size of 15.2 nm subjected to heat treatment at 600 ° C.
  • Example B is an average particle size
  • Example C is a barium titanate ultrafine particle thin film having an average particle size of 48.9 nm, which was heat-treated at 900 ° C.
  • the average particle size of the obtained ultrafine particle of barium titanate was determined from a digitizer measurement of 100 particles from a SEM photograph of the surface of the thin film, and obtained from the average.
  • FIG. 6 is a particle size distribution diagram showing the particle size distribution of Example B.
  • This particle size distribution is obtained by measuring the particle size of arbitrary 100 particles from an SEM photograph and calculating the standard deviation ( ⁇ ) from the distribution.
  • the standard deviation (b) at 800 ° C. and the average particle size of the heat treatment temperature at 19.6 nm is as narrow as 1.21.
  • FIG. 7 shows an S-photograph of Example II.
  • XRD measurement confirmed that the thin film was a crystalline titanic acid / cream single phase.
  • an upper electrode was fabricated by Pt sputtering on the surface of the obtained barium titanate nanoparticles, and the relative permittivity and dielectric loss at room temperature and a measurement frequency of 1 kHz were measured with an LCR meter. The ferroelectricity was evaluated by hysteresis measurement.
  • the withstand voltage was evaluated by using the sample used for dielectric loss measurement, applying a current from the electrode and applying 200 kV / cm to the sample. If not, it was marked as ⁇ .
  • Figure 8 shows the configuration of the sample used for the evaluation of the electrical characteristics.
  • Si 02 is laminated on Si as an insulating layer, and AI 203 is laminated as a buffer layer. Further, the above-mentioned SiZSi02 / AI203 / Pt substrate 20 on which Pt21 was laminated as a lower electrode was used.
  • a dispersion of ultrafine particles of barium titanate was obtained in the same manner as in Example A.
  • the obtained barium titanate ultrafine particle dispersion solution was spin-coated on a Si ZSi 02ZA I 203 / Pt substrate several times, and heat-treated at 300 ° C in air. Thereafter, heat treatment was performed in an RTA furnace at 500 ° C. to obtain an ultrafine particle of parium titanate ultrafine particles of Comparative Example A having an average particle size of 12.6 nm.
  • the obtained barium titanate ultrafine particle thin film was confirmed to be a dense nanoparticle thin film having a small surface roughness according to the observations of 3 31 ⁇ 1 and 31 ⁇ 1.
  • Comparative Example B was an ultrafine fine particle of barium titanate having an average particle diameter of 33.2 nm that had been subjected to heat treatment at 500 ° C, and Comparative Example C had an average particle diameter of 450 that had been heat treated at 700 ° C. . 6 nm ultra-fine particle of barium titanate.
  • the thin film that had been heat-treated at 500 ° C. had only a halo peak and was not crystallized.
  • the thin film subjected to the heat treatment at 00 ° C. was confirmed to have a peak due to titanium titanate, a halo peak was also observed, indicating that an amorphous phase was included.
  • the resulting solution was aged for 3 days while stirring in the presence of steam to produce a partially hydrolyzed raw material solution.
  • Table 2 shows the surface state, dielectric properties, and crystal phase of the obtained ultrafine particle of barium titanate.
  • Table 3 shows the relative permittivity, dielectric loss, and residual polarization P r X of each sample at room temperature. 2 is shown.
  • the film is formed from the metal oxide ultrafine particle dispersion maintained in a highly dispersed state. Therefore, even if it is a nanoparticle, it becomes a homogeneous and dense thin film, and since it has already been well crystallized, the surface roughness will increase greatly due to the reaction even after heat treatment, and cracks will be formed. Is not significantly reduced, but rather, heat treatment is performed to grow fine nanoparticles, so that densification and crystallization are further promoted.
  • a thin film device using such a thin film as a device has a good dielectric property with a dielectric loss of less than 4%.
  • the withstand voltage is preferably 200 kV cm or more, which is preferable.
  • Comparative Example A having an average particle diameter of 15 nm or less, ferroelectric properties were not obtained at 2 Pr ⁇ 2.0 ⁇ CZ cm2, and the relative dielectric constant was 300 or less. No ferroelectric characteristics were obtained.
  • Comparative Examples B and C when a film was formed by a general sol-gel method, there was a problem in crystallinity, and in Comparative Example C where heat treatment was performed at 500 ° C. It is an amorphous phase.
  • Comparative Example B which was heat-treated at 700 ° C., the crystallinity was poor, and although some still contained an amorphous phase, the crystallized barium titanate was formed. The cracks were observed in some places and the film quality was greatly reduced.
  • Comparative Example D in which a film was formed using a raw material solution that had been partially hydrolyzed in advance by the sol-gel method, the reaction volume after film formation was reduced, or slight improvement in surface roughness was observed. Both become barium titanate single phase after heat treatment at 700 ° C, but the dispersion and crystallinity of nanoparticles generated by partial hydrolysis are still not enough, as shown in Examples A to C. The dielectric loss is large and the relative dielectric constant is as small as 300 or less, probably because the surface roughness is larger than that of the thin film and the low dielectric constant phase is included as in Comparative Examples B and C. became. Industrial applicability
  • the metal oxide ultrafine particle dispersion according to the present invention and the metal oxide ultrafine particles
  • the element thin film is useful as a thin film part of an electronic device such as a multilayer capacitor actuator, and is particularly suitable for use in a thin film part of an electronic device that requires both miniaturization and ferroelectric characteristics.

Abstract

An ultra-fine metal oxide particle suspension which has been prepared by the hydrolysis reaction of a raw material in a micro-emulsion containing a hydrophobic disperse medium (6), water (4) and a surfactant (2), wherein the raw material comprises a composite metal alkoxide, and the amount of water contained in the micro-emulsion is 0.95 to 3 times that required for the hydrolysis of the composite metal alkoxide; and an ultra-fine metal oxide particle thin film formed by using the ultra-fine metal oxide particle suspension. The suspension has ultra-fine metal oxide particles which are nearly uniform in composition, particle diameter and shape, are crystallized, and are highly dispersed in the medium, and the metal oxide particle thin film has particles having a reduced particle diameter and being densely packed.

Description

明 細 書 金属酸化物超微粒子分散溶液、 及び金属酸化物超微粒子薄膜 技術分野  Description Ultrafine metal oxide dispersion solution and ultrafine metal oxide thin film
本発明は、 金属酸化物超微粒子が分散した金属酸化物超微粒子分散溶液、 特に、 複合 金属酸化物超微粒子薄膜の製造に好適な金属酸化物超微粒子分散溶液、 及びナノサイズの 金属酸化物超微粒子からなる誘電特性に優れた金属酸化物超微粒子薄膜に関する。 景技術 発明の開示  The present invention relates to a metal oxide ultrafine particle dispersion solution in which metal oxide ultrafine particles are dispersed, in particular, a metal oxide ultrafine particle dispersion solution suitable for producing a composite metal oxide ultrafine particle thin film, and a nano-sized metal oxide ultrafine particle. The present invention relates to a metal oxide ultrafine particle thin film comprising fine particles and having excellent dielectric properties. Disclosure of invention
近年、 デバイスの小型化の要求に伴い、 ますます高機能なデバイスの研究開発が精力 的に行われている。  In recent years, with the demand for miniaturization of devices, research and development of increasingly sophisticated devices have been energetically performed.
例えば、 チタン酸バリウムやチタン酸ジルコン酸鉛等の複合金属酸化物は、 誘電性、 圧電性に優れていることから、積層コンデンサゃァクチユエータ等に広く利用されている。  For example, composite metal oxides such as barium titanate and lead zirconate titanate are widely used in multilayer capacitor actuators and the like because of their excellent dielectric properties and piezoelectric properties.
さらなる小型化、高性能化のためには、素子の薄膜化が不可欠であり、このためには、 よリファインな超微粒子からなる高品質な薄膜製造技術の確立を行うことが重要である。  For further miniaturization and higher performance, thinning of the element is indispensable. For this purpose, it is important to establish a high-quality thin-film manufacturing technology consisting of finer ultrafine particles.
しかしながら、 一方で、 強誘電体材料は、 サイズ効果により、 或る臨界粒径で強誘電 性が消滅するといわれている。  However, on the other hand, ferroelectric materials are said to lose ferroelectricity at a certain critical grain size due to the size effect.
例えば積層コンデンサに用いられるチタン酸バリウムの場合では、 5 0 n m程度で強 誘電性が消滅するといわれており、 これ以下の粒径においては、 比誘電率が大幅に低下す ると^に、 強誘電体として電子デバイスに応用することはできなくなる。  For example, in the case of barium titanate used in multilayer capacitors, it is said that the ferroelectricity disappears at about 50 nm. It cannot be applied to electronic devices as a dielectric.
従って、 一般的に積層コンデンサでは、 例えば加水分解法により合成された 5 0 n m 程度のチタン酸バリウムを熱処理により 1 0 0 n m以上まで粒成長させ、 結晶性を向上さ せた上でバインダー、 分散剤等と共に混合'粉砕し、 スラリー化した後、 シート成形し、 これらを積み重ね、 さらに脱バインダー工程、 本焼工程を経て作製されている。  Therefore, in multilayer capacitors, for example, barium titanate of about 50 nm synthesized by a hydrolysis method, for example, is grown to 100 nm or more by heat treatment to improve the crystallinity. It is manufactured by mixing and pulverizing with an agent and the like, forming a slurry, forming a sheet, stacking these, and further removing the binder and firing.
しかしな力《ら、 積層コンデンサにおいては、 素子厚 1 m程度まで薄層化が進んでお リ、 この場合、 充分な信頼性を得るため、 一層あたリに例えば厚み方向で十個の粒子を想 定すると、 一粒子あたり 1 0 0 n m程度までの微小化が必要となる。  However, in multilayer capacitors, the thickness of the multilayer capacitor has been reduced to about 1 m, and in this case, in order to obtain sufficient reliability, for example, 10 Therefore, miniaturization to about 100 nm per particle is required.
さらに次世代の積層コンデンサとして、素子厚 0 . 5 mを想定した場合では、 5 0 η m程度まで粒子の微小化が必要となる。  Furthermore, assuming an element thickness of 0.5 m as a next-generation multilayer capacitor, it is necessary to reduce the particle size to about 50 ηm.
即ち、 薄層化による粒子の微粒化を求める一方で、 サイズ効果をその限界まで抑える ことが求められている。 That is, while seeking for finer particles by thinning, the size effect is suppressed to its limit. Is required.
但し、 実際のところ、 このようなナノレベルの粒子サイズにおける正確な実験データ は得られておらず、 ナノ領域における強誘電特性は殆ど明らかになっていないのが実状で ある。  However, as a matter of fact, accurate experimental data at such a nano-level particle size has not been obtained, and ferroelectric properties in the nano-range are hardly clarified.
これは、 1 ) 微細で粒度分布が狭くかつ結晶性の高いセラミックスナノ粒子を得るの が困難であったこと 2 ) 微細な粒径を保ったまま緻密な試料を得るのが困難であったこと に起因している。  This is because 1) it was difficult to obtain fine, narrow grain size distribution and highly crystalline ceramic nanoparticles 2) it was difficult to obtain a dense sample while maintaining the fine particle size Attributed to
また、 同じ粒径であっても粉末試料と薄膜試料とを比較した場合、 薄膜試料では、 基 板表面からのストレス等の影響から粉末試料に比べて臨界粒径が変化する可能性がある。  Also, when the powder sample and the thin film sample are compared even if they have the same particle size, the critical particle size of the thin film sample may be changed as compared with the powder sample due to the influence of stress from the substrate surface and the like.
実際、 ナノ粒子レベルでいくつか強誘電特性を示すセラミックスナノ粒子薄膜の報告 はあるものの、 実用レベルにある作製法により平均粒径 5 0 n m以下でかつ強誘電性を示 し、 十分良好な誘電特性を持つセラミックスナノ粒子薄膜は得られていなかった。  In fact, although there have been reports of ceramic nanoparticle thin films that exhibit some ferroelectric properties at the nanoparticle level, they show ferroelectricity with an average particle size of 50 nm or less and ferroelectricity by a practical production method. A ceramic nanoparticle thin film having characteristics has not been obtained.
薄膜の製法としては、 まず、 配向性の優れたセラミックス薄膜の形成方法として、 分 子線エピタキシー法 (M B E)、 化学気相合成法 (C V D)、 物理気相成長法 (P V D ) 等 の気相法が知られている。  First, as a method of forming a ceramic thin film with excellent orientation, gas phase methods such as molecular beam epitaxy (MBE), chemical vapor synthesis (CVD), and physical vapor deposition (PVD) are used. The law is known.
しかしながら、 これらの方法では多大なコストがかさむ。 そして 2種類以上の複合金 属酸化物超微粒子を製造する場合においては、 金属毎の蒸気圧、 昇華性、 化学反応性の違 いなどのために、組成を合わせ込むのが難しく、実用化には至っていないのが実状である。  However, these methods are very costly. When producing two or more types of composite metal oxide ultrafine particles, it is difficult to match the composition due to differences in the vapor pressure, sublimability, and chemical reactivity of each metal. The fact is that it has not been reached.
一方、 ゾルゲル法に代表される液相法を用いた薄膜形成は、 組成制御性及びコストの 観点から気相法より有利であり、 広く研究がなされている。  On the other hand, thin film formation using a liquid phase method represented by a sol-gel method is more advantageous than a gas phase method from the viewpoints of composition controllability and cost, and has been extensively studied.
ここで、 ゾルゲル法で薄膜形成を行う場合、 一般には、 金属アルコキシド溶液を原料 に用い、 フ Kを添加しないか、 または、 少量の水を添加して部分加水分解を行った前駆体溶 液を調整し、 スピンコーティング法やディップコ一ティング法によリ成膜が行われる。  Here, when a thin film is formed by the sol-gel method, generally, a precursor solution obtained by partially hydrolyzing a metal alkoxide solution as a raw material without adding K or adding a small amount of water is used. After the adjustment, the film is formed by spin coating or dip coating.
しかしながらゾルゲル法により得られたこれらのゲル薄膜は、 成膜後、 非常にゆつく りと加水分解反応を進行させて目的の酸化物とする必要がある。 その為、 急激に加水分解 を行うと膜の収縮のために多くのひび割れが形成され、 良質な薄膜が得られない。  However, it is necessary for these gel thin films obtained by the sol-gel method to very slowly progress the hydrolysis reaction to form the target oxide after film formation. Therefore, when hydrolysis is performed rapidly, many cracks are formed due to shrinkage of the film, and a good quality thin film cannot be obtained.
従って、 ひび割れのない良質な薄膜を得るためには、 長時間エージングを行う必要が あつに。  Therefore, it is necessary to perform aging for a long time to obtain a good quality thin film without cracks.
. また、 このようにして形成された膜は、 一般に有機化合物を含む非晶質であり、 結晶 性の膜を得るためには成膜後、 さらに焼成を行う必要がある。  The film formed in this manner is generally amorphous containing an organic compound. To obtain a crystalline film, it is necessary to further bake the film after forming the film.
しかしながら、この場合、膜の非晶質相は、焼成の際に中間相を形成することがあり、 緻密化を阻害したリ表面粗さが増すなどの問題や、 基板との界面で異相を形成して特性を 劣化させるなどの問題があった。 また、 この場合、 比較的高温で焼成を行う必要があるため、 焼成により粒成長が起こ リ、 十分に細かな粒径を保ったまま緻密な薄膜を得るのは難しかった。 However, in this case, the amorphous phase of the film may form an intermediate phase during firing, causing problems such as an increase in surface roughness that hindered densification, and the formation of a different phase at the interface with the substrate. And deteriorated the characteristics. In this case, since it is necessary to perform the firing at a relatively high temperature, the firing causes grain growth, and it has been difficult to obtain a dense thin film while maintaining a sufficiently small particle size.
そこで、 これらの問題は、 結晶化した複合金属酸化物超微粒子が高度に溶媒内に分散 した複合金属酸化物超微粒子分散溶液を作製することで解決できる。  Therefore, these problems can be solved by preparing a composite metal oxide ultrafine particle dispersion in which crystallized ultrafine composite metal oxide particles are highly dispersed in a solvent.
具体的には、 作製した分散溶液を用いて、 例えばスピンコーティング法により成膜を 行い、 乾燥後、 比較的低温で熱処理を行うことにより、 十分に細かな粒径を保ったまま緻 密な薄膜を得ることができる。  Specifically, a film is formed by using the prepared dispersion solution, for example, by spin coating, dried, and then subjected to a heat treatment at a relatively low temperature, thereby forming a dense thin film while maintaining a sufficiently fine particle size. Can be obtained.
このような複合金属酸化物超微粒子分散溶液を作製するには、 組成が均質で、 粒子径 が揃い且つ結晶化した複合金属酸化物超微粒子を合成すること、 及びそれを溶媒内に高度 に分散させることが必要となる。  In order to prepare such a composite metal oxide ultrafine particle dispersion solution, it is necessary to synthesize ultrafine composite metal oxide particles having a uniform composition, a uniform particle diameter, and crystallized, and to disperse them in a solvent to a high degree. It is necessary to make it.
しかしながら、微細化が進むにつれ、セラミックス微粒子は凝集の制御が難しくなリ、 水が存在することによつて硬い凝集を起こすと言われている (化学工業、 1995年 4月号 45 項参照)。  However, as the miniaturization progresses, it is said that the control of agglomeration of ceramic fine particles becomes difficult, and that the presence of water causes hard agglomeration (see Chemical Industry, April 1995, Item 45).
すなわち、 粉末表面に水が存在すると、 図 1に示されるように、 水を介した水素結合 により隣接微粒子が架橋して凝集が進行する。 そして水がとれて、 一旦微粒子間の酸素を 介した架橋による凝集が生じてしまうと、 凝集したセラミックス微粒子を解砕して再び高 度に分散させることは非常に困難となる。  That is, when water is present on the powder surface, as shown in FIG. 1, adjacent fine particles are cross-linked by hydrogen bonding via water, and aggregation proceeds. Then, once the water is removed and once aggregated due to crosslinking between the fine particles via oxygen, it becomes very difficult to crush the aggregated ceramic fine particles and re-disperse them at a high level.
従って、 まず結晶性の高い複合金属酸化物超微粒子の凝集を避けて合成すること、 次 に、 一度合成された超微粒子を凝集させずに分散した状態に保つことが鍵となる。  Therefore, the key is to synthesize the ultrafine composite metal oxide particles with high crystallinity first, and then to keep the ultrafine particles once synthesized in a dispersed state without agglomeration.
ここで、特開 2001— 163617号公報には、金属コロイド法、マイクロエマルジヨン法(逆 ミセル法)、高分子錯体法、メタルアルコラ一卜の加水分解法、グリニャール法など、最近 報告されている金属酸化物超微粒子の製造方法が列記されている。  Here, Japanese Patent Application Laid-Open No. 2001-163617 discloses recently reported metals such as a metal colloid method, a microemulsion method (reverse micelle method), a polymer complex method, a metal alcohol hydrolysis method, and a Grignard method. The production methods of the oxide ultrafine particles are listed.
この中で、 WZO (Water in Oil) マイクロエマルジヨン法は、 疎水性液体中に水を 界面活性剤と共に加えて微小水滴として分散させ、 この微小水滴中で加水分解等の反応に よって、 導入した原料を反応させて金属酸化物超微粒子を得る方法である。 .  Among these, the WZO (Water in Oil) microemulsion method involves adding water together with a surfactant to a hydrophobic liquid to disperse it as micro water droplets, and introducing the water by a reaction such as hydrolysis in these water droplets. This is a method of reacting raw materials to obtain ultrafine metal oxide particles. .
この WZOマイクロエマルジヨン法では、 金属酸化物微粒子の粒径、 表面構造がナノ スケール制御されていることが知られている (Chem.Phys丄 ett.l25、 299項等参照)。  In the WZO microemulsion method, it is known that the particle size and the surface structure of the metal oxide fine particles are controlled on a nano-scale (see Chem. Phys. Ett. 125, 299, etc.).
ただし、 一般には、 合成後、 さらに沈殿剤等を加えて得られた微粒子を完全に沈殿さ せ、 遠心分離機によリ沈殿物を取リ出す。  However, generally, after the synthesis, fine particles obtained by further adding a precipitant or the like are completely precipitated, and the precipitate is removed by a centrifuge.
取り出した沈殿物である微粒子と界面活性剤との混合物を有機溶剤等によリ洗浄する ことによって、 目的の微粒子を分離して得ている (特開平 9一 255331号公報参照)。  The target fine particles are separated and obtained by washing the mixture of the fine particles, which are the sediment, and the surfactant with an organic solvent or the like (see JP-A-9-1255331).
ここで、 マイクロエマルジョン法で合成された超微粒子をそのまま凝集させることな く溶液中に分散させることができれば、 金属酸化物超微粒子薄膜の成膜用の溶液として用 いることができる。 Here, if ultrafine particles synthesized by the microemulsion method can be dispersed in a solution without coagulation, they can be used as a solution for forming a thin film of metal oxide ultrafine particles. Can be.
該ェマルジヨンの水滴は熱力学的に安定であり分散して存在している。しかしながら、 個々の液滴 1, 1は、 図 2に示すように、 結合、 解離を繰り返している。  The water droplets of the emulsion are thermodynamically stable and dispersed. However, as shown in Fig. 2, the individual droplets 1 and 1 repeat binding and dissociation.
従って、 該マイクロエマルジヨン法で複合金属酸化物超微粒子の合成を行った場合、 上述の結合、 解離を繰り返しているうちに、 徐々に合成された微粒子の凝集が進み沈殿を 生じる。  Therefore, when the composite metal oxide ultrafine particles are synthesized by the microemulsion method, while the above-described bonding and dissociation are repeated, the synthesized fine particles gradually aggregate and precipitate.
また、 誘電体デバイスに用いる金属酸化物超微粒子薄膜では、 上述のように、 結晶粒 径を小さくすると、 ある臨界粒径で強誘電特性が消失するという問題がある。  Further, in the ultrafine metal oxide thin film used for a dielectric device, as described above, there is a problem that when the crystal grain size is reduced, the ferroelectric characteristics disappear at a certain critical grain size.
そのため、 サイズによつて強誘電特性が消失するというサイズ効果をその限界まで抑 制しつつ、 更なる薄層化を行い、 高性能化を図ることが求められている。  For this reason, there is a need to further reduce the thickness and improve the performance while suppressing the size effect that the ferroelectric properties disappear depending on the size to its limit.
本発明は、 上述のような点に鑑みて為されたものであって、 組成が均質で、 粒子径及 び形状が揃い且つ結晶化した金属酸化物超微粒子が高度に分散した金属酸化物超微粒子分 散溶液を提供するととともに、 得られた複合金属酸化物超微粒子分散溶液を用いて、 粒径 が小さくかつ緻密な金属酸化物超微立子薄膜を提供することを主たる目的とし、 さらに、 誘電特性に優れたナノ粒子サイズの金属酸化物超微粒子の薄膜を提供することを目的とす る。 発明の開示  The present invention has been made in view of the above points, and has a metal oxide superfine particle having a uniform composition, a uniform particle size and shape, and highly dispersed crystallized ultrafine metal oxide particles. The main purpose is to provide a fine particle dispersion solution, and to provide a fine metal oxide ultrafine particle thin film having a small particle size by using the obtained composite metal oxide ultrafine particle dispersion solution. It is an object of the present invention to provide a thin film of nano-sized metal oxide ultrafine particles having excellent characteristics. Disclosure of the invention
そこで、 本件発明者は、 上記目的を達成するために鋭意検討した結果、 マイクロエマ ルジョン法による金属酸化物超微粒子を合成する際に、 反応過程でェマルジヨン中の水を 消費する原料として、 例えば、 金属アルコキシドを用いる。 そしてマイクロエマルジヨン 溶液の水量を極力少なくすることにより反応後はほぼ水が消費され、 合成された金属酸化 物超微粒子が反応後の溶媒中に高度に分散した溶液を得ることができることを見出し本発 明を完成した。  Therefore, the present inventors have conducted intensive studies to achieve the above object, and as a result, when synthesizing ultrafine metal oxide particles by the microemulsion method, as a raw material that consumes water in the emulsion during the reaction process, for example, A metal alkoxide is used. By reducing the amount of water in the microemulsion solution as much as possible, almost all water is consumed after the reaction, and it is possible to obtain a solution in which the synthesized ultrafine metal oxide particles are highly dispersed in the solvent after the reaction. The invention has been completed.
すなわち、 本発明の金属酸化物超微粒子分散溶液は、 疎水性液体である分散媒、 水お よび界面活性剤を含むマイクロエマルジヨン中での原料の加水分解反応によって作製され る金属酸化物超微粒子分散溶液であって、 前記原料は複数の金属アルコキシドをアルコ一 ル中で混合して複合化した複合金属アルコキシド溶液からなリ、 前記原料は複合金属アル コキシドからなリ、 前記マイクロエマルジヨンに含まれる水量が、 前記原料の加水分解に 必要な水量の 0 . 9 5倍以上 3倍以下である。  That is, the metal oxide ultrafine particle dispersion solution of the present invention is a metal oxide ultrafine particle produced by a hydrolysis reaction of a raw material in a microemulsion containing a dispersion medium that is a hydrophobic liquid, water, and a surfactant. A dispersion solution, wherein the raw material is a composite metal alkoxide solution obtained by mixing and complexing a plurality of metal alkoxides in an alcohol; the raw material is a composite metal alkoxide; and the microemulsion is included in the microemulsion. The amount of water used is 0.95 times or more and 3 times or less the amount of water required for hydrolysis of the raw material.
ここで、 超微粒子とは、 例えば、 平均粒径が 1 0 0 n m以下の粒子をいう。  Here, the ultrafine particles refer to, for example, particles having an average particle diameter of 100 nm or less.
本発明によると、 マイクロエマルジヨンに含まれる水量を原料の加水分解に必要な推 量の 0. 9 5倍以上としたので、 加水分解が行われないままの未分解の原料や結晶性が十 分でない非晶質の超微粒子の割合を少なく出来る。 さらに、 マイクロエマルジヨンに含ま れる水量が原料の加水分解に必要な水量の 3倍以下としているので、 反応後に生成した金 属酸化物超微粒子の凝集が抑えられ、 高度に分散した透明な金属酸化物超微粒子分散溶液 となる。 According to the present invention, the amount of water contained in the microemulsion is set to 0.95 times or more the guess required for the hydrolysis of the raw material, so that the undecomposed raw material without hydrolysis and the crystallinity are sufficient. It is possible to reduce the ratio of amorphous ultrafine particles that are not minute. Furthermore, since the amount of water contained in the microemulsion is less than three times the amount of water required for hydrolysis of the raw materials, aggregation of the metal oxide ultrafine particles generated after the reaction is suppressed, and highly dispersed transparent metal oxide It becomes an ultrafine particle dispersion solution.
また、 本発明によると、 原料溶液となる金属アルコキシド溶液は、 複数の金属アルコ キシドを複合化した複合金属アルコキシド溶液であるので、 生成した超微粒子は、 非常に 微細で組成が均質で、 しかも粒子径及び形状が揃い且つ結晶化した複合金属酸化物単相の 微粒子となる。  Further, according to the present invention, the metal alkoxide solution serving as the raw material solution is a composite metal alkoxide solution in which a plurality of metal alkoxides are compounded, so that the ultrafine particles generated are very fine, have a uniform composition, and It becomes fine particles of a single phase composite metal oxide crystallized and uniform in diameter and shape.
本発明の更に他の実施態様においては、 前記複数の金属アルコキシドの少なくとも一 つがバリゥムアルコキシドであって、 前記複合金属アルコキシド溶液は、 前記バリゥムァ ルコキシドの重合を抑制する重合抑制剤を含むものである。  In still another embodiment of the present invention, at least one of the plurality of metal alkoxides is a barium alkoxide, and the composite metal alkoxide solution contains a polymerization inhibitor that suppresses polymerization of the barium alkoxide.
重合抑制剤としては、 例えば、 ベンゼンが好ましい。  As the polymerization inhibitor, for example, benzene is preferable.
本発明によれば、 バリウムアルコキシドの重合を抑制するベンゼンなどの重合抑制剤 を含んでいるので、 バリウムアルコキシドの重合が抑制され、 バリウムアルコキシドと他 の金属アルコキシドとの均質な複合金属アルコキシドを得ることができる。  According to the present invention, since a polymerization inhibitor such as benzene that suppresses the polymerization of barium alkoxide is contained, polymerization of barium alkoxide is suppressed, and a homogeneous composite metal alkoxide of barium alkoxide and another metal alkoxide can be obtained. Can be.
本発明に係る金属酸化物超微粒子薄膜は、 本発明方法で作製された金属酸化物超微粒 子分散溶液を用いて製造されたものである。  The metal oxide ultrafine particle thin film according to the present invention is manufactured using the metal oxide ultrafine particle dispersion prepared by the method of the present invention.
本発明によると、 粒径が小さくかつ緻密な金属酸化物超微粒子薄膜を得ることができ る。  According to the present invention, a dense metal oxide ultrafine particle thin film having a small particle diameter can be obtained.
また、 本発明に係る金属酸化物超微粒子薄膜は、 平均粒径 1 5 n m以上 50 n m以下 の金属酸化物超微粒子から檎成され、残留分極(P r) において、 2P「カ 2 0 0 2 以上の強誘電特性を有し、 測定周波数 1 kH zにおける比誘電率が 300以上である。 The metal oxide ultrafine particle film according to the present invention is檎成average particle diameter 1 5 nm or more 50 nm or less of the metal oxide ultrafine particles in the residual polarization (P r), 2P "mosquito 2 0 0 2 It has the above ferroelectric characteristics, and has a relative dielectric constant of 300 or more at a measurement frequency of 1 kHz.
本発明によると、 平均粒径 50 nm以下であるので、 よりいつそうの薄層化を図るこ とができる一方、 1 5~50 nmの超微粒子から構成されても、 2P rが 2〃CZcm2 以上の強誘電特性を有し、 測定周波数 1 kH zにおける比誘電率が 300以上の優れた薄 膜を得ることができる。  According to the present invention, since the average particle diameter is 50 nm or less, it is possible to further reduce the thickness.On the other hand, even if the particles are composed of ultrafine particles of 15 to 50 nm, 2Pr is 2〃CZcm2. An excellent thin film having the above ferroelectric properties and a relative dielectric constant of 300 or more at a measurement frequency of 1 kHz can be obtained.
また、 本発明の金属酸化物超微粒子薄膜を構成する前記金属酸化物超微粒子が、 チタ ンおよびバリウムを含むベロブスカイト型酸化物であることが好ましい。 このようにチタ ン及バリウムを含むベロブスカイ卜型酸化物のような複合酸化物であっても、 平均粒径 5 0 nm以下であるので、 よりいつそうの薄層化を図ることができる一方、 1 5 50 nm の超微粒子から構成されても、 2 P rが 2 C c m2以上の強誘電特性を有し 測定周 波数 1 k H zにおける比誘電率が 300以上の優れた薄膜を得ることができる。  In addition, it is preferable that the metal oxide ultrafine particles constituting the metal oxide ultrafine particle thin film of the present invention are a perovskite-type oxide containing titanium and barium. As described above, even a composite oxide such as a bevelskite-type oxide containing titanium and barium has an average particle diameter of 50 nm or less. To obtain an excellent thin film with ferroelectric properties of 2 Pr of 2 Ccm2 or more and a relative dielectric constant of 300 or more at a measurement frequency of 1 kHz, even if it is composed of ultrafine particles of 1550 nm. Can be.
以上のように本発明によれば、マイクロエマルジヨンに含まれる水量を制限したので、 組成が均質で、 粒子径及ぴ形状が揃い且つ結晶化した金属酸化物超微粒子が高度に分散し た金属酸化物超微粒子分散溶液を容易に得ることができる。 As described above, according to the present invention, since the amount of water contained in the microemulsion is limited, It is possible to easily obtain a metal oxide ultrafine particle dispersion in which the composition is uniform, the particle diameter and the shape are uniform, and the crystallized ultrafine metal oxide particles are highly dispersed.
また、 得られた金属酸化物超微粒子分散溶液を用いて、 粒径が小さくかつ緻密な金属 酸化物超微粒子薄膜、 特に金属酸化物超微粒子薄膜を製造することができる。  Further, using the obtained dispersion solution of ultrafine metal oxide particles, it is possible to produce a fine metal oxide ultrafine particle thin film having a small particle diameter, particularly a metal oxide ultrafine particle thin film.
また、複合金属アルコキシドを原料とするので、 複合金属酸化物超微粒子が高度に分 散した複合金属酸化物超微粒子分散溶液および粒径が小さくかつ緻密な複合金属酸化物超 微粒子薄膜を得ることができる。  In addition, since the composite metal alkoxide is used as a raw material, it is possible to obtain a composite metal oxide ultrafine particle dispersion solution in which the composite metal oxide ultrafine particles are highly dispersed and a thin composite metal oxide ultrafine particle thin film having a small particle diameter. it can.
また、 本発明の金属酸化物超微粒子薄膜によれば、 平均粒径が 50 nm以下であるの で、 デバイスに用いた場合に、 小型化、 薄層化を図ることができるとともに、 サイズ効果 を抑制して優れた誘電特性を得ることができる。 図面の簡単な説明  In addition, according to the metal oxide ultrafine particle thin film of the present invention, the average particle size is 50 nm or less, so that when used for a device, it is possible to reduce the size and thickness of the device and to reduce the size effect. It is possible to obtain excellent dielectric properties by suppressing the above. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 水を介したセラミックス微粒子の凝集様式の模式図である。  Figure 1 is a schematic diagram of the mode of aggregation of ceramic fine particles via water.
図 2は、 分散媒中ェマルジョン水滴の分散会合様式の摸式図である。  FIG. 2 is a schematic diagram of a dispersion association mode of emulsion water droplets in a dispersion medium.
図 3は、 マイクロエマルジヨンび加水分解後の超微粒子分散様式の模式図である。 図 4は、 本発明の金属酸化物超微粒子薄膜を用いた積層コンデンザの製造工程を示す 断面図である。  FIG. 3 is a schematic diagram of the ultrafine particle dispersion mode after microemulsion and hydrolysis. FIG. 4 is a cross-sectional view showing a manufacturing process of a laminated condenser using the metal oxide ultrafine particle thin film of the present invention.
図 5は、 本発明を用いた薄膜素子の断面図である。  FIG. 5 is a sectional view of a thin film element using the present invention.
図 6は、 本発明の実施例 Bの粒度分布を示す粒度分布図である。  FIG. 6 is a particle size distribution diagram showing the particle size distribution of Example B of the present invention.
図 7は、 本発明の実施例の S EM写真である。  FIG. 7 is a SEM photograph of the example of the present invention.
図 8は、 測定試料の断面図である。  FIG. 8 is a cross-sectional view of the measurement sample.
図 9は、 本発明の実施例のヒステリシス特性を示す図である。 発明を実施する為の最良の形態  FIG. 9 is a diagram showing the hysteresis characteristics of the example of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明にづいて更に詳細に説明する。  Hereinafter, the present invention will be described in more detail.
本発明におけるマイクロエマルジヨンは、 疎水性液体である分散媒、 水、 界面活性剤 によりなる W/Oマイクロエマルジヨンである。  The microemulsion according to the present invention is a W / O microemulsion comprising a dispersion medium, which is a hydrophobic liquid, water, and a surfactant.
疎水性液体である分散媒としては、ケロシンなどの石油系炭化水素、シク口へキサン、 へキサン、 シクロペンタン、 ベンゼン、 オクタンなどの無極性炭化水素、 ジェチルエーテ ル、 イソプロピルエーテルなどのエーテルなどが挙げられる。  Examples of the dispersion medium that is a hydrophobic liquid include petroleum hydrocarbons such as kerosene, nonpolar hydrocarbons such as cyclohexane, hexane, cyclopentane, benzene, and octane, and ethers such as getyl ether and isopropyl ether. Can be
また、 界面活性剤は、 AOT (sodium bis (2 - ethylhexyl) sulfosucciate)や S D S: CH3(CH2)110S03N aなどのイオン性界面活性剤の他、 ΝΡ - η (π = 1〜1 0): (ρ - C9H19) - C6H4 - Ο - (C H2C H20)nC H2C H20 Hや polyoxyethyle n e(n)lauiylether: C12H25(0 C H2C H2)nO Hなどの非イオン性界面活性剤のいずれも用 いることができるが、 ィォン性界面活性剤の場合には、 膜成分に余分な成分が残存するの で、 非イオン性の界面活性剤の方が好ましい。 Surfactants include ionic surfactants such as AOT (sodium bis (2-ethylhexyl) sulfosucciate) and SDS: CH3 (CH2) 110S03Na, and ΝΡ-η (π = 1 to 10): ( ρ-C9H19)-C6H4-Ο-(C H2C H20) nC H2C H20 H or polyoxyethyle n e (n) lauiylether: Any of nonionic surfactants such as C12H25 (0CH2CH2) nOH can be used, but in the case of anionic surfactant, an extra component is added to the membrane component. Nonionic surfactants are preferred because they remain.
本発明の原料は、 複合金属アルコキシドである。  The raw material of the present invention is a composite metal alkoxide.
この複合金属アルコキシドは、 通常複数の単一金属アルコキシドをアルコール中で混 合して複合化することによって得られる。 また、 複数の複合金属アルコキシドゃ単一金属 アルコキシドと複合金属アルコキシドをアルコール中で混合して混合化することによって も得られる。 '  This composite metal alkoxide is usually obtained by mixing a plurality of single metal alkoxides in an alcohol to form a composite. It can also be obtained by mixing and mixing a plurality of composite metal alkoxides—single metal alkoxide and composite metal alkoxide in alcohol. '
この単一金属アルコキシドとしては、 特に限定はない力 バリウムメトキシド、 バリ ゥムェトキシド、 バリウムプロポキシド、 バリウムブトキシド、 チタンメトキシド、 チタ ンェ卜キシド、 チタンプロポキシドなどが挙げられる。  Examples of the single metal alkoxide include, but are not limited to, barium methoxide, barium methoxide, barium propoxide, barium butoxide, titanium methoxide, titanoxide, and titanium propoxide.
このアルコールとしては、 エタノール、 プロパノール、 ブタノール、 イソプロピルァ ルコールなどが挙げられる。  This alcohol includes ethanol, propanol, butanol, isopropyl alcohol and the like.
この複合金属アルコキシドとしては、 特に限定はないが、例えば、 バリウムチタンメ トキシド、 バリウムチタンェ卜キシド、 バリウムチタンプロポキシド、 バリウムチタンブ 卜キシド、 ストロンチウムチタンメトキシド、 ストロウチウ厶チタンェ卜キシド、 マグネ シゥ厶チタンメトキシド、 マグネシウムチタンェトキシドなどが挙げられる。 複合金属アルコキシドは  The composite metal alkoxide is not particularly limited. Magnesium methoxide, magnesium titanium ethoxide and the like. Composite metal alkoxides
また、 本発明のマイクロエマルジヨン中の水量は、 原料である金属アルコキシドの加 水分解に必要な水量の 0. 95倍以上 3倍以下であることが好ましい。  The amount of water in the microemulsion of the present invention is preferably 0.95 times or more and 3 times or less the amount of water required for hydrolyzing the metal alkoxide as a raw material.
加水分解に必要な水量は、 化学反応式より規定されるものであり、 例えば、 バリウム イソプロポキシド B a ( i s o p) 2とチタンイソプロポキシド T i ( i s o p) 4との加 水分解反応を例にとると、 次のようになる。  The amount of water required for hydrolysis is defined by a chemical reaction formula, for example, a hydrolysis reaction of barium isopropoxide Ba (isop) 2 and titanium isopropoxide T i (isop) 4 Then, it becomes as follows.
B a ( i s o p) 2+T i ( i s o p) 4+3H20→Ba T i 03+6 i s o p r o p a n o I したがって、 この場合には、 バリウムイソプロポキシドとチタンイソプロポキシ ドの各 1 mo Iに対して、 3mo Iの水が加水分解に必要となる。  B a (isop) 2 + T i (isop) 4 + 3H20 → Ba T i 03 + 6 isopropano I Therefore, in this case, 3mo for each 1 mo I of barium isopropoxide and titanium isopropoxide I water is required for hydrolysis.
そして、 この場合のマイクロエマルジヨン中に含まれる水量は、 加水分解に必要な水 の量の 0. 95倍以上 3倍以下、 すなわち、 2. 85mo I以上 9mo I以下であること が必要となる。  In this case, the amount of water contained in the microemulsion must be 0.95 times or more and 3 times or less of the amount of water required for hydrolysis, that is, 2.85moI or more and 9moI or less. .
水量が 1倍以下の場合、 反応後に水は完全に消費されるため、 非常にクリア一な分散 溶液が得られる他、 反応後も加水分解が行われないまま残るかまたは非晶質で結晶性が十 分でない微粒子が一部含まれることになる。 しかしながら、 これらの相が成膜時に膜を形成する超散粒子間に入り、 膜密度の向上 や焼結助剤的な働きをする場合もあるため、 1倍以下に水量を調整し、 未分解または非晶 質部を含むように調整することがよい場合もある。 When the amount of water is less than 1 time, water is completely consumed after the reaction, so that a very clear dispersion solution can be obtained.In addition, the solution remains without hydrolysis after the reaction or is amorphous and crystalline. Some of the fine particles that are not sufficient are included. However, since these phases may enter between the super-dispersed particles that form a film during film formation and increase the film density or act as a sintering aid, the amount of water is adjusted to 1 times or less and undecomposed. Or it may be better to adjust to include the amorphous part.
但し、未分解または非結晶相が増すにつれ、結晶相の割合が減るため、少なくとも 0. 9 5倍の水を含む方が好ましい。  However, since the proportion of the crystalline phase decreases as the undecomposed or non-crystalline phase increases, it is preferable to contain water at least 0.95 times.
さらに水量が、 1 . 0 5倍以上1 . 2倍以下であれば、 クリア一で分 |¾性が高く且つ 結晶性の高い複合金属酸化物超微粒子分散溶液が得られるため一層好ましい。  Further, when the amount of water is 1.05 times or more and 1.2 times or less, it is more preferable to obtain a composite metal oxide ultrafine particle dispersion solution which is clear, has high dispersion and high crystallinity.
反応後の残留水量を極力少なくすることによって、 合成された複合金属酸化物の組成 のずれを防ぐ効果も有する。  By minimizing the amount of residual water after the reaction, it also has the effect of preventing the composition of the synthesized composite metal oxide from shifting.
例えば、 チタン酸バリウムでは、 物質中の B a Z Ti比は特性上重要な要素であるが、 水中では/ リゥムが一部溶出することが知られている。  For example, in barium titanate, the B a Z Ti ratio in a substance is an important factor in the properties, but it is known that in water, a part of lime is eluted.
一般的に加水分解法で合成を行う場合、 バリゥム過剰で調整を行った原料を用いて合 成されている。  In general, when the synthesis is carried out by the hydrolysis method, the synthesis is carried out using raw materials that have been adjusted in excess of vacuum.
—方、 本発明のように反応後に残留する水がほとんどない場合には、 バリウムイオン が水中に溶け出すことがないため、 調整した原料の組成のままで均質な目的の超微粒子を 得ることができる。  On the other hand, when there is almost no water remaining after the reaction as in the present invention, barium ions do not dissolve into water, so that it is possible to obtain uniform ultrafine particles of interest with the adjusted raw material composition. it can.
従って、 マイクロエマルジヨン中に含まれる水量を加水分解に必要な水量の 0. 9 5 倍以上 3倍以下、 好ましくは 1 · 0 5倍以上 1 . 2倍以下にするこどにより、 このような —部水中に溶解し易い成分が残ることによる組成のずれもほとんどなくすことができると いう利点も有する。  Therefore, the amount of water contained in the microemulsion is reduced to 0.95 times or more and 3 times or less, preferably 1.05 times or more and 1.2 times or less of the amount of water required for hydrolysis. —Also has the advantage that compositional deviations due to the remaining easily soluble components in the water can be almost eliminated.
また、 該マイクロエマルジヨンにおいて、 もう 1つの界面活性剤いわゆるコサーファ クタントとして、 1種類以上のアルコールを加えることが好ましい。  In the microemulsion, it is preferable to add one or more alcohols as another surfactant, so-called cosurfactant.
図 3は、マイクロエマルジョン溶液と、その一部の液滴付近を拡大して示すとともに、 複合金属アルコキシドを加えて加水分解反応後の状態を併せて示す模式図である。  FIG. 3 is a schematic diagram showing the microemulsion solution and the vicinity of a part of the droplets in an enlarged manner, and also showing the state after the hydrolysis reaction with the addition of the composite metal alkoxide.
同図において、 2は界面活性剤、 3はコサーファクタン卜、 4は水、 5は反応生成物、 In the figure, 2 is a surfactant, 3 is a cosurfactant, 4 is water, 5 is a reaction product,
6はシクロへキサンなどの分散媒である。 6 is a dispersion medium such as cyclohexane.
また、同図中 Eは複合アルコキシド、 Fは加水分解、 Gは加水分解反応後を意味する。 コサ一ファクタン卜として、 1種類以上のアルコールを加えることによって、 マイク ロェマルジヨン調整時において、 水滴をより安定化して存在させることができる。  In the same figure, E indicates the complex alkoxide, F indicates the hydrolysis, and G indicates after the hydrolysis reaction. By adding one or more types of alcohol as a corrosive factor, water droplets can be more stably present during microemulsion adjustment.
さらに、 反応後にェマルジヨン中の水が消費されて複合金属酸化物が生成した際は、 該複合酸化物界面と界面活性剤の間に入リ、 界面活性剤がそのまま複合酸化物超微粒子の '周囲を囲む形で存在できるために、 合成された複合酸化物超微粒子が水の場合と同様に安 定して分散を保つことができると考えられる。 コサーファクタントは、 界面活性剤の親水部に入り、 水との界面エネルギーを下げ、 また、 界面活性剤の親水部の炭素長鎖の立体障害を和らげる効果があると考えられる。 Further, when the water in the emulsion is consumed after the reaction to produce a composite metal oxide, the composite metal oxide enters between the interface of the composite oxide and the surfactant, and the surfactant remains around the composite oxide ultrafine particles. It can be considered that the synthesized composite ultrafine particles can be stably dispersed in the same manner as in the case of water because they can exist in the form of surrounding water. It is considered that the cosurfactant has an effect of entering the hydrophilic portion of the surfactant, lowering the interfacial energy with water, and reducing the steric hindrance of the long carbon chain of the hydrophilic portion of the surfactant.
適当なアルコールの炭素数は、 界面活性剤の親水部の炭素鎖の長さにも依存するが、 4〜 1 0程度が好ましい。  The carbon number of an appropriate alcohol depends on the length of the carbon chain of the hydrophilic part of the surfactant, but is preferably about 4 to 10.
4以下では、 親水性が上がり過ぎるため、 水内に溶け、 水-界面活性剤の界面だけに 存在しないと考えられる。  If it is 4 or less, the hydrophilicity is too high, so it is considered that it is dissolved in water and does not exist only at the water-surfactant interface.
また、 1 0以上に大きくなると、 疎水性が大きくなリ過ぎたリ、 立体障害が大きくな つたりするため、 あまり好ましくない。  On the other hand, if it is larger than 10, the hydrophobicity becomes too large, and the steric hindrance becomes large.
原料は、 金属アルコキシドを用い、 加水分解前に各金属アルコキシドは混合し、 複合 化しておくことが好ましい。  It is preferable that a metal alkoxide is used as a raw material, and that each metal alkoxide is mixed and complexed before hydrolysis.
また、 バリウムアルコキシドは、 アルコール中で重合しやすいことが知られている。 ここで、 J. Am. Ceram. Soc, 77 [2] 603 - 605項及び Jpn. J. Appl. Phys. Vol36, Barium alkoxide is known to be easily polymerized in alcohol. Here, J. Am. Ceram. Soc, 77 [2] paragraphs 603-605 and Jpn. J. Appl. Phys. Vol36,
5 939 - 5942項では、バリウム及びチタンのイソ -プロパノール溶液をベンゼン中で熟成さ せることにより、 B a T i (O C H( C H3)2) - C6 H 6の結晶を得られることが述べられて いる。 Paragraphs 5939-5942 state that crystals of BaTi (OCH (CH3) 2) -C6H6 can be obtained by aging an iso-propanol solution of barium and titanium in benzene. ing.
また、この中でベンゼンは、金属アルコキシドをほとんど溶解せず B a T i (O C H ( C H3)2) - C6H6結晶の安定化及び析出の助けとなると同時に、 バリウムアルコキシドの重 合を抑制する効果が示唆されている。  In this, benzene hardly dissolves the metal alkoxide, helps stabilize and precipitate Ba T i (OCH (CH3) 2) -C6H6 crystals, and has the effect of suppressing the polymerization of barium alkoxide. Is suggested.
したがって、 結晶が析出しない範囲でベンゼンを加えることにより、 バリウムアルコ キシドの重合が抑えられ、 均質なバリゥ厶チタンダブルアルコキシドが得やすくなると考 えられる。  Therefore, it is considered that by adding benzene within a range in which crystals do not precipitate, polymerization of barium alkoxide is suppressed, and a uniform barium titanium double alkoxide is easily obtained.
このため、 バリウムアルコキシドの重合を抑制する働きを有するベンゼンを、 アルコ ール溶剤中に一部加えてバリウム含有複合アルコキシド原料溶液を調整して用いるのが、 均質なパリゥ厶含有複合酸化物超微粒子を得るためには好ましい。  For this reason, it is necessary to adjust the barium-containing composite alkoxide raw material solution by partially adding benzene, which has a function of suppressing the polymerization of barium alkoxide, to an alcohol solvent and use the same. Is preferred to obtain
なお、 同種の効果を有するものであればベンゼンに限らず用いることができる。 本発明の金属酸化物超微粒子薄膜は、 本発明方法で作製された金属酸化物超微粒子分 散溶液を用いて製造されるものである。  In addition, as long as it has the same kind of effect, it can be used without being limited to benzene. The metal oxide ultrafine particle thin film of the present invention is manufactured using the metal oxide ultrafine particle dispersion prepared by the method of the present invention.
金属酸化物超微粒子分散溶液の超微粒子は、結晶性が高いので、比較的低温、例えば、 Since ultra-fine particles of the metal oxide ultra-fine particle dispersion solution have high crystallinity, relatively low temperature, for example,
6 0 0 °C以下で熱処理することができる。 Heat treatment can be performed at 600 ° C. or less.
本発明の金属酸化物超微粒子薄膜は、 平均粒径 1 5 n m以上 5 0 n m以下の金属酸化 物超微粒子から構成され、 強誘電特性を有するものである。  The metal oxide ultrafine particle thin film of the present invention is composed of metal oxide ultrafine particles having an average particle size of 15 nm or more and 50 nm or less and has ferroelectric properties.
強誘電特性として、 残留分極 (P r ) において、 2 P rが 2 jU C/ c m2以上の強誘 電特性を有するのが好ましく、 また、 測定周波数 1 k H z (室温) における比誘電率が 3 o o以上であるのが好ましい。 As the ferroelectric properties, it is preferable that 2 Pr has a ferroelectric property of 2 jU C / cm 2 or more in remanent polarization (P r), and the relative dielectric constant at a measurement frequency of 1 kHz (room temperature). Is 3 It is preferably at least oo.
本発明のような、 1 5〜 5 0 ;U mの超微粒子から構成される金属酸化物超微粒子薄膜 であって、残留分極 (P r ) において、 2 P rが 2 jW CZ c m2以上の強誘電特性を有し、 かつ比誘電率が 3 0 0以上であれば、 薄膜コンデンサまたは積層コンデンサといった強誘 電特性デバイスとして十分に機能する。  A metal oxide ultrafine particle thin film composed of ultrafine particles of 15 to 50; Um as in the present invention, wherein 2 Pr is 2 jW CZ cm 2 or more in remanent polarization (P r). If it has ferroelectric characteristics and has a relative permittivity of 300 or more, it functions sufficiently as a ferroelectric device such as a thin film capacitor or a multilayer capacitor.
このため、 本発明のような 1 5 ~ 5 0 n mの超微粒子から構成される金属酸化物超微 粒子薄膜を用いることによって、 よりいつそうの薄層化、 小型化を図ることができる。  Therefore, by using a metal oxide ultrafine particle thin film composed of ultrafine particles of 15 to 50 nm as in the present invention, it is possible to further reduce the thickness and size.
また、 本発明の金属酸化物超微粒子薄膜を、 薄膜コンデンサとして用いた場合、 1 5 ~ 5 0 n mの微細な粒子から構成されるため、 一層あたりの粒子数を増やすことができ、 信頼性を大きく向上させることができるほか、 さらなる薄層化、 小型化を図ることができ る。  In addition, when the metal oxide ultrafine particle thin film of the present invention is used as a thin film capacitor, it is composed of fine particles of 15 to 50 nm, so that the number of particles per layer can be increased and reliability is improved. In addition to being able to greatly improve, it is possible to further reduce the thickness and size.
本発明の金属酸化物超微粒子薄膜は、 可能な限リ微細でかつ結晶化した金属酸化物超 微粒子、 例えば、 チタン酸塩を含むベロブスカイト型酸化物からなるセラミックスナノ粒 子を合成した後、 そのまま高分散状態に保ち、 これを基板上に成膜し、 次に熱処理等のェ ネルギー添加により 1 5 n m以上 5 0 n m以下に粒成長させ、 緻密化、 結晶化をさらに促 進させることにより製造される。  The metal oxide ultrafine particle thin film of the present invention is obtained by synthesizing ultrafine and crystallized metal oxide ultrafine particles, for example, ceramic nanoparticles composed of a perovskite-type oxide containing titanate. Keeping it in a highly dispersed state as it is, forming a film on the substrate, then growing the grains to 15 nm or more and 50 nm or less by adding energy such as heat treatment, and further promoting densification and crystallization Manufactured.
このような成膜方法としては、 例えばマイクロエマルジヨン (M E ) 法よりナノサイ Xで粒度分布の揃つた金属酸化物超微粒子がそのまま高度に分散した状態に保たれた溶液、 例えば、 本発朋の金属酸化物超微粒子分散溶液を原料溶液に用いて、 スピンコーティング 法等で直接成膜を行なう方法により薄膜を作製し、 これをさらに R T A ( Rapid Thermal Annealing) 炉等を用いて熱処理を行なうことにより製造することができる。  Examples of such a film forming method include a solution in which ultrafine metal oxide particles having a uniform particle size distribution are kept in a highly dispersed state as they are, for example, from the microemulsion (ME) method. Using a metal oxide ultrafine particle dispersion solution as a raw material solution, a thin film is prepared by a method of forming a film directly by spin coating, etc., and this is further heat-treated using an RTA (Rapid Thermal Annealing) furnace or the like. Can be manufactured.
また、 本発明の金属酸化物超微粒子薄膜は、 平均粒径が、 例えば、 3 0 n m以下の金 属酸化物超微粒子、 例えば、 チタン酸塩を含むベロブスカイト型酸化物からなるセラミツ クスナノ粒子の合成過程と、 合成されたセラミックスナノ粒子をそのまま媒質中に高分散 状態で保つ過程と、 該高分散状態のセラミックスナノ粒子を基板上に成膜する一連の過程 によリ作製されたセラミックスナノ粒子薄膜を、 さらに熱処理等のエネルギー添加によリ 1 5 n m~ 5 0 n mに粒成長させることにより製造される。  In addition, the metal oxide ultrafine particle thin film of the present invention has an average particle diameter of, for example, 30 nm or less, for example, a ceramic oxide nanoparticle made of a perovskite-type oxide containing titanate. A ceramic nanoparticle produced by a series of processes of synthesizing, maintaining the synthesized ceramic nanoparticles in a medium in a highly dispersed state, and forming a film of the highly dispersed ceramic nanoparticles on a substrate. The thin film is manufactured by further grain growth of 15 nm to 50 nm by adding energy such as heat treatment.
上述のようにセラミックス微粒子、すなわち、セラミックスナノ粒子は凝集が激しく、 また、 一度凝集してしまうとこれをバラバラに再分散することは極めて困難となるため、 - セラミックスナノ粒子を合成した後、 そのまま媒質中に高分散状態に保つ必要がある。  As described above, ceramic fine particles, that is, ceramic nanoparticles, are highly agglomerated, and once agglomerated, it is extremely difficult to redisperse them separately.-After synthesizing ceramic nanoparticles, It must be kept in a highly dispersed state in the medium.
このためには、 媒質中にナノサイズで区画された微細な反応空間で原料を反応させる ことにより目的のナノ粒子を作製し、 そのまま凝集させない状態に保つ必要がある、 この ような方法として、 上述のマイクロエマルジヨン法は、 望ましい方法である。 w oマイクロエマルジヨンは、 上述のように、 疎水性液体である分散媒、 水、 界面 活性剤によリなり、 疎水性溶媒中に液滴径が数 n m〜数 1 0 n mの水滴を熱的に安定に分 散させることができる。 For this purpose, it is necessary to produce the desired nanoparticles by reacting the raw materials in a fine reaction space partitioned into nano-sizes in a medium, and to keep them in a state in which they are not aggregated. The microemulsion method is a preferred method. wo Microemulsion, as described above, is composed of a hydrophobic liquid dispersion medium, water, and a surfactant, and a water droplet having a diameter of several nm to several 10 nm is thermally dispersed in a hydrophobic solvent. Can be dispersed stably.
例えば、 積層コンデンサに用いられるチタン酸バリウムの場合、 この中に B a , T i 複合アルコキシド原料溶液を滴下することにより水滴径に対応した非常に微細でかつ粒径 の揃った結晶化したチタン酸バリウムナノ粒子を合成することができる。  For example, in the case of barium titanate used in a multilayer capacitor, a Ba, Ti composite alkoxide raw material solution is dropped into the crystallized titanate, which is very fine and has a uniform particle size corresponding to the water droplet diameter. Barium nanoparticles can be synthesized.
また、上述のようにマイクロェマルジョン組成中の水量を加水分解に必要な水量の 0. 9 5倍以上 3倍以下で調整を行なうことにより、 合成されたチタン酸バリウムナノ粒子が 凝集することなくそのまま安定に分散した状態が得られる。  In addition, by adjusting the amount of water in the microemulsion composition to 0.95 times or more and 3 times or less the amount of water required for hydrolysis as described above, the synthesized barium titanate nanoparticles can be prevented from aggregating. A stable dispersed state can be obtained as it is.
ここで、 合成されたナノ粒子は、 その後熱処理により 5 0 n m以下の粒径で粒成長さ せる必要があるため、 合成されたナノ粒子は可能な限り小さい方がよく、 平均粒径が、 少 なくとも 3 0 n m以下であるのが好ましく、 より好ましくは、 1 0 n m以下である。  Here, the synthesized nanoparticles need to be subsequently grown to a particle size of 50 nm or less by heat treatment, so the synthesized nanoparticles are preferably as small as possible and the average particle size is small. It is preferably at least 30 nm or less, more preferably 10 nm or less.
このようにして調整されたナノ粒子分散溶液は、 基板に、 例えば、 スピンコ一ティン グ法、 ディップコーティング法、 スクリーン印刷法などの手法を用いて塗布する工程と、 有機溶媒を除去するとともに、 結晶性を高めるために、 熱処理を行なう工程と、 を行い緻 密なチタン酸バリゥムナノ粒子薄膜が作製される。  The nanoparticle dispersion solution prepared in this manner is applied to a substrate by using, for example, a spin coating method, a dip coating method, a screen printing method, and the like. In order to enhance the properties, a heat treatment step and a heat treatment step are performed to produce a dense barium titanate nanoparticle thin film.
成膜後の平均粒径の調整は、 電気炉や赤外炉、 R T A炉等を用いて行なうこどができ る。  Adjustment of the average particle size after film formation can be performed using an electric furnace, an infrared furnace, an RTA furnace, or the like.
特に赤外炉ゃ R T A炉では、 高速昇温が可能であり、 高速昇温、 短時間熱処理により 同一温度であつても粒成長を小さく抑えることができるため望ましい。  In particular, in the infrared furnace RTA furnace, high-speed temperature rise is possible, and high-speed temperature rise and short-time heat treatment are preferable because grain growth can be suppressed even at the same temperature.
マイクロェマルジョン法で合成された金属酸化物超微粒子は、 高分散状態で成膜され るため、ナノ粒子であっても緻密な薄膜と成っており、また、すでに結晶化しているため、 熱処理等を行なっても中間層を形成することもなく、 緻密化を阻害したり、 表面粗さが大 きく増すことがない。  Ultrafine metal oxide particles synthesized by the microemulsion method are deposited in a highly dispersed state, so even if they are nanoparticles, they are formed into dense thin films. The formation of an intermediate layer does not hinder densification and does not greatly increase the surface roughness.
また、 基板との界面で異相を形成して電気特性を劣化させることもない。  Further, there is no possibility that a different phase is formed at the interface with the substrate to deteriorate the electric characteristics.
さらに、 可能な限り微細でかつ結晶化したナノ粒子を熱処理等によリ粒成長させてい る為、 平均粒径が 5 0 n m以下と微細であっても緻密化、 結晶化が進んでおり、 優れた誘 電特性及び信頼性が期待できる。  Furthermore, since the finest and crystallized nanoparticles are grown as small as possible by heat treatment or the like, densification and crystallization are progressing even if the average particle size is as small as 50 nm or less. Excellent dielectric properties and reliability can be expected.
また、 このようにして得られた金属酸化物超微粒子薄膜は、 粉末試料と違い、 基板か らのストレス等の影響により、 一般に言われている臨界サイズよりも小さい平均粒径から なるナノ粒子でも強誘電性を示す可能性がある。  Also, unlike the powder sample, the metal oxide ultrafine particle thin film obtained in this way may be a nanoparticle having an average particle size smaller than the generally known critical size due to the influence of stress from the substrate. May exhibit ferroelectricity.
実際に本発明の製造方法によって得られた金属酸化物超微粒子薄膜は、 平均粒径が 5 0 n m以下であっても強誘電性を示すとともに、優れた誘電特性を持つことが確認された。 また、 このようにして作成される金属酸化物超微粒子薄膜は、 合成→分散—成膜の一 連の工程で成膜されるため多工程とならず、 装置及び製造過程が煩雑にならないという利 点も有している。 Actually, it was confirmed that the metal oxide ultrafine particle thin film obtained by the production method of the present invention exhibited ferroelectricity even when the average particle diameter was 50 nm or less, and also had excellent dielectric properties. In addition, since the metal oxide ultrafine particle thin film formed in this manner is formed in a series of steps from synthesis to dispersion and film formation, it does not involve multiple steps, and the apparatus and the manufacturing process are not complicated. It also has points.
次に、 本発明の金属酸化物超微粒子薄膜を電子デバイスに適用した例を示す。  Next, an example in which the metal oxide ultrafine particle thin film of the present invention is applied to an electronic device will be described.
本発明の金属酸化物超微粒子薄膜は、 種々の電子デバイスに使用できるものであり、 例えば、 図 4は、 積層コンデンサに適用した場合の構成の一例を示している。  The metal oxide ultrafine particle thin film of the present invention can be used for various electronic devices. For example, FIG. 4 shows an example of a configuration when applied to a multilayer capacitor.
同図 (a ) に示されるアルミナ基板などの基板 7上に、 同図 (b ) に示すように、 セ ラミック層 8が形成され、 その上に 1層目の導電体電極 9 aが形成され、 その上にセラミ ック層 8が形成され、 さらに 2層目の導電体電極 9 bが形成され、 さらにセラミック層 8 が形成され、 その上に 3層目の導電体電極 9 aが形成される。  A ceramic layer 8 is formed on a substrate 7 such as the alumina substrate shown in FIG. 1A, as shown in FIG. 2B, and a first-layer conductor electrode 9a is formed thereon. Then, a ceramic layer 8 is formed thereon, a second-layer conductor electrode 9b is further formed, a ceramic layer 8 is further formed, and a third-layer conductor electrode 9a is formed thereon. You.
このような工程を繰り返すことにより、 基板 7の表面には導電体電極 9 a、 9 bとセ ラミック層 8とが交互に複数層ずつ積層され、 複数層の導電体電極 9 a , 9 bと複数層の セラミック層 8とからなるセラミック一金属積層体 1 0が形成される。  By repeating such a process, a plurality of conductor electrodes 9a and 9b and a plurality of ceramic layers 8 are alternately laminated on the surface of the substrate 7, and a plurality of conductor electrodes 9a and 9b are formed. A ceramic-metal laminate 10 including a plurality of ceramic layers 8 is formed.
ここで、 各セラミック層 8は、 本発明の金属酸化物超微粒子薄膜の製造方法によって 形成され、 各導電体電極 9 a , 9 bは、 C V D法、 蒸着法もしくはスパッタ法のうちいず れかの方法を用いて形成されており、 各セラミック層 8及び各導電体電極 9 a, 9 bの厚 みは、 例えば、 1; U m以下である。  Here, each ceramic layer 8 is formed by the method for producing a metal oxide ultrafine particle thin film of the present invention, and each of the conductor electrodes 9 a and 9 b is formed by any one of a CVD method, a vapor deposition method, and a sputtering method. The thickness of each ceramic layer 8 and each conductor electrode 9a, 9b is, for example, 1; Um or less.
また、内部電極となる導電体電極 9 a , 9 bはマスクを用いてパターン化されており, 奇数層目の導電体電極 9 aと偶数層目の導電体電極 9 bとは、 交互に反対側の端部へ引き 出されている。  The conductor electrodes 9a and 9b serving as internal electrodes are patterned by using a mask, and the odd-numbered conductor electrodes 9a and the even-numbered conductor electrodes 9b are alternately opposite. Side end.
この後、 基板 7をエッチング等によって選択的に除去すると, 同図 (c ) に示すよう なセラミック一金属積層体 1 0だけが残る。  Thereafter, when the substrate 7 is selectively removed by etching or the like, only the ceramic-metal laminate 10 as shown in FIG.
ついで、 デイツピングゃスパッタ等によって両端に外部電極 1 1 a , 1 1 bを形成す ると、 奇数層目の導電体電極 9 aが一方の外部電極 1 1 aと導通し、 偶数層目の導電体電 極 9 bが他方の外部電極 1 1 bと導通し、 同図 (d ) に示すような超小型の積層セラミツ クコンデンサ 1 2を得ることができる。  Next, when external electrodes 11a and 11b are formed at both ends by dipping and sputtering, the odd-numbered conductor electrodes 9a conduct with one external electrode 11a, and the even-numbered conductive electrodes 9a. The body electrode 9b is electrically connected to the other external electrode 11b, and an ultra-small multilayer ceramic capacitor 12 as shown in FIG.
また、 図 5は、 本発明の金属酸化物超微粒子薄膜を、 誘電体薄膜素子に適用した場合 の構成の一例を示している。  FIG. 5 shows an example of a configuration in which the metal oxide ultrafine particle thin film of the present invention is applied to a dielectric thin film element.
まず、 誘電体薄膜素子の下部層を構成する基板 1 3とその上に形成される下部電極と しての白金膜 1 4を次のように準備した。  First, a substrate 13 constituting a lower layer of a dielectric thin film element and a platinum film 14 as a lower electrode formed thereon were prepared as follows.
単結晶のシリコン板 1 5の上に、 バッファ層として、 下部電極となる白金膜 1 4への シリコンの拡散を防止するために、 シリコン板 1 5の表面を強制酸化して酸化シリコン膜 1 6を形成した。 そしてその上に、 シリコン板 1 5と白金膜 1 4との密着性を向上させるため、 酸化ァ ルミ二ゥム膜 1 7を 1 0 0 0オングストロームスパッタリングして形成した。 On the single-crystal silicon plate 15, as a buffer layer, the surface of the silicon plate 15 is forcibly oxidized to prevent silicon from diffusing into the platinum film 14 serving as the lower electrode. Was formed. On top of that, an aluminum oxide film 17 was formed by 1000 Å sputtering to improve the adhesion between the silicon plate 15 and the platinum film 14.
このようにして形成したシリコン板 1 5、 酸化シリコン膜 1 6、 酸化アルミニウム膜 1 7よりなる基板 1 3の上に、 下部電極としての白金膜 1 4を 3 0 0 0オングストローム スパッタリングして形成した。  A platinum film 14 as a lower electrode was formed by sputtering 300 Å on a substrate 13 composed of the silicon plate 15, the silicon oxide film 16, and the aluminum oxide film 17 thus formed. .
次に、 この白金膜 1 4の上に、 本発明の平均粒径 1 5 ~ 5 0 n mの金属酸化物超微粒 子から構成される誘電体薄膜 1 8を形成した。  Next, on this platinum film 14, a dielectric thin film 18 composed of ultrafine metal oxide particles having an average particle size of 15 to 50 nm of the present invention was formed.
そしてこの上に、 上部電極として白金電極 1 9をスパッタリングによって設けた。 次に、 本発明を実施例によって更に具体的に説明するが、 本発明は、 これら実施例に よって、 何ら限定されるものではない。  On this, a platinum electrode 19 was provided as an upper electrode by sputtering. Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
(実施例 1 )  (Example 1)
以下の実施例では、 本発明の金属酸化物超微粒子薄膜を作製する際に用いられる、 チ タン酸バリゥムの超微粒子分散溶液の作製法および該分散溶液により製造したチタン酸バ リゥム超微粒子薄膜を例にとって具体的に説明する。  In the following examples, a method for preparing an ultrafine particle dispersion solution of barium titanate, which is used when preparing the metal oxide ultrafine particle thin film of the present invention, and a barium titanate ultrafine particle thin film produced by the dispersion solution are described. This will be described specifically for an example.
まず、 原料アルコキシド溶液の調整として、 A r雰囲気のグローブボックス中でパリ ゥムイソプロポキシド 4 gをイソプロピルアルコール 1 6 0 m I、 ベンゼン 4 0 m Iの混 合溶媒に混合して溶解し、 バリウムアルコキシド溶液とした後、 これに等モルのチタンィ ソプロポキシド溶液を滴下して一晩混合し、 淡黄色透明のバリゥ厶 -チタン複合アルコキ シド原料溶液を得た。  First, as a preparation of the raw material alkoxide solution, 4 g of palladium isopropoxide was mixed and dissolved in a mixed solvent of 160 ml of isopropyl alcohol and 40 ml of benzene in a glove box in an Ar atmosphere. After a barium alkoxide solution, an equimolar titanium isopropyloxide solution was added dropwise thereto and mixed overnight to obtain a pale yellow transparent raw material solution of a barium-titanium composite alkoxide.
なお、 複合金属アルコキシドを生成する場合、 金属アルコキシドの種類に対応したァ ルコールを用いることが好ましい。  When producing a composite metal alkoxide, it is preferable to use an alcohol corresponding to the type of the metal alkoxide.
次に、 WZOマイクロエマルジヨン溶液は、 分散媒にシクロへキサン、 界面活性剤に N P - 1 0: (p - C9H 19) - C6 H4 - O - (C H2 C H2O)10 C H2 C H20 H、 コサーファ クタントとして 1—ォクタノールを用い A rガスでパブリングを行いながら、水: 1—ォク タノ一ル: N P - 1 0:シクロへキサン = 0 . 2 : 9 : 7 . 5 : 1 5 0の比で混合して W/ Oマイクロエマルジヨン溶液とした。  Next, the WZO microemulsion solution contains cyclohexane as a dispersion medium and NP-10 as a surfactant: (p-C9H19) -C6H4-O- (CH2CH2O) 10CH2CH20H Water: 1-octanol: NP-10: cyclohexane = 0.2: 9: 7.5: 150 while publishing with Ar gas using 1-octanol as a cosurfactant The mixture was mixed at a ratio of 1 to obtain a W / O microemulsion solution.
調整したマイクロエマルジヨン溶液に、 マイクロエマルジヨン中の水量がバリウム - チタン複合アルコキシドの加水分解に必要な水量の 0. 9 5倍、 1 . 2倍、 3倍になるよ うにバリウム -チタン複合アルコキシド溶液をマイクロピぺットを用いてそれぞれ分取し、 チューブポンプを用いてそれぞれのマイクロエマルジヨン溶液中に導入した。  The barium-titanium composite alkoxide is added to the prepared microemulsion solution so that the amount of water in the microemulsion becomes 0.95 times, 1.2 times, and 3 times the amount of water required for hydrolysis of the barium-titanium composite alkoxide. The solutions were each fractionated using a micropip, and introduced into each microemulsion solution using a tube pump.
そのまま 1曰、 A r雰囲気のグローブボックス中で攪袢混合を行い、 チタン酸バリウ ム超微粒子分散溶液を得た。  As it was 1, stirring and mixing were performed in a glove box in an Ar atmosphere to obtain a dispersion solution of barium titanate ultrafine particles.
得られたチタン酸バリゥム超微粒子分散溶液は、 淡褐色透明であリ、 加水分解によリ 生成したチタン酸バリウム超微粒子が高度に分散していることが確認された。 The resulting dispersion of ultrafine particles of barium titanate is light-brown and transparent, and is hydrolyzed. It was confirmed that the generated barium titanate ultrafine particles were highly dispersed.
また、該分散溶液の一部を分取し、ァセトンを加えて沈殿させ、遠心分離を行った後、 有機溶媒で洗浄を行った試料の結晶相を粉末 X線回折法によリ同定したところ、 結晶化し たチタン酸 Zパリゥムの単相であることが確認された。  Further, a part of the dispersion solution was collected, precipitated by adding acetone, centrifuged, and then the crystal phase of the sample washed with an organic solvent was re-identified by powder X-ray diffraction. It was confirmed that it was a single phase of crystallized Z-palladium titanate.
また、 高分解能 SEMにより、 粒子形状の観察を行ったところ、 8nm程度と非常に 微細でしかも粒度分布の揃つた超微粒子であった。  Observation of the particle shape with a high-resolution SEM revealed that the particles were very fine, about 8 nm, and had a uniform particle size distribution.
次に、 得られたチタン酸バリゥ厶超微粒子分散溶液を用いてスピンコート法によリチ タン酸バリゥ厶超微粒子薄膜の作製を試みた。  Next, using the obtained dispersion solution of ultrafine fine particles of barium titanate, an attempt was made to produce a thin film of ultrafine fine particles of barium titanate by spin coating.
該超微粒子分散溶液は、 上記粉末 X線回折結果および SEM観察結果から 8nm程度 の結晶化した超微粒子が高度に分散しているため、 可視光域で透明となっており、 凝集の ない均質な塗布性を有することがわかった。  According to the powder X-ray diffraction results and the SEM observation results, the ultrafine particle dispersion solution is highly dispersed in crystallized ultrafine particles of about 8 nm. It was found to have applicability.
また、 該超微粒子分散溶液は、 90%程度の体積比を占める有機分散媒をエバポレー ター等により一部蒸発させたリ、 逆に加えたりすることにより自由に液中の超微粒子の濃 度を調整することができる。  In addition, the ultrafine particle dispersion solution can freely adjust the concentration of the ultrafine particles in the liquid by adding an organic dispersion medium occupying a volume ratio of about 90% by partially evaporating with an evaporator or the like, or conversely. Can be adjusted.
濃度 0. 07mo I 1のチタン酸バリウム超微粒子分散溶液を用いて、 スピンコ一 ティングを行った後、 空気中 450°Cで熱処理を行ってチタン酸バリゥム超微粒子薄膜を 得た。  After spin coating was performed using a barium titanate ultrafine particle dispersion solution having a concentration of 0.07 mol I1, heat treatment was performed at 450 ° C. in air to obtain a barium titanate ultrafine particle thin film.
このチタン酸バリウム超微粒子薄膜の表面の SEM写真によって、 1 Onm程度の微 細なチタン酸パリゥム超微粒子が高密度で成膜されている様子が確認された。  The SEM photograph of the surface of the barium titanate ultrafine particle thin film confirmed that ultrafine particles of parium titanate of about 1 Onm were formed at a high density.
さらに 600°Cで熱処理を行うことにより、 20 nm程度に粒成長した同様に高密度 な薄膜が得られることが確認された。  Furthermore, it was confirmed that a similar high-density thin film with grain growth of about 20 nm could be obtained by heat treatment at 600 ° C.
(実施例 2)  (Example 2)
A rガスでバブリングを行いながら、水: 1ーォクタノール: NP - 4:シクロへキサ ン =0. 2 : 9 : 7. 5 : 1 50の比でそれぞれ混合して WZOマイクロエマルジヨン溶 液とした。  While bubbling with Ar gas, water: 1-octanol: NP-4: cyclohexane = 0.2: 9: 7.5: 150 was mixed to obtain a WZO microemulsion solution. .
次にこれら 2つのマイクロエマルジヨン溶液に実施例 1と同様の方法で調整したパリ ゥム -チタン複合アルコキシド溶液をマイクロエマルジヨンの水量がアルコキシド原料の 加水分解に必要な水量の 3倍となるようにマイクロピぺットで分取し、 チューブポンプを 用いてそれぞれのマイクロエマルジヨン溶液中に導入した。  Next, a palladium-titanium composite alkoxide solution prepared in the same manner as in Example 1 was added to these two microemulsion solutions so that the water amount of the microemulsion was three times the water amount required for hydrolysis of the alkoxide raw material. Of the microemulsion solution and introduced into each microemulsion solution using a tube pump.
そのまま 1日、 A r雰囲気のグローブボックス中で攪拌混合を行い、 チタン酸バリウ ム超微粒子分散溶液を得た。  The mixture was stirred and mixed for 1 day in a glove box under an Ar atmosphere to obtain a dispersion solution of barium titanate ultrafine particles.
(比較例 1 )  (Comparative Example 1)
実施例 1と同様の方法でバリゥム -チタン複合アルコキシド溶液及び、 マイクロエマ ルジョン溶液の調整を行った。 In the same manner as in Example 1, a barium-titanium composite alkoxide solution and Adjustment of the solution was performed.
調整したマイクロエマルジヨン溶液に、 マイクロエマルジヨン中の水量がバリゥム - チタン複合アルコキシドの加水分解に必要な水量の 5倍になるようにバリゥム一チタン複 合アルコキシド溶液をマイクロピぺットを用いてそれぞれ分取し、 チューブポンプを用い てそれぞれのマイク口ェマルジョン溶液中に導入した。  Using the prepared microemulsion solution, use a micropipet with a barium-titanium composite alkoxide solution such that the amount of water in the microemulsion is five times the amount of water required for hydrolysis of the barium-titanium composite alkoxide. The fractions were collected and introduced into each of the mic mouth emulsion solutions using a tube pump.
そのまま 1日、 A r雰囲気のグローブボックス中で攪拌混合をを行い、 チタン酸バリ ゥム超微粒子分散溶液を得た。  The mixture was stirred and mixed for 1 day in a glove box in an Ar atmosphere to obtain a dispersion of ultrafine particles of barium titanate.
(比較例 2)  (Comparative Example 2)
A rガスでバブリングを行いながら、水: 1ーォクタノール: NP - 1 0:シクロへキ サン =5 : 9 : 7. 5 : 1 50の比で混合して WZOマイクロエマルジヨン溶液とした。  While bubbling with Ar gas, the mixture was mixed at a ratio of water: 1-octanol: NP-10: cyclohexane = 5: 9: 7.5: 150 to obtain a WZO microemulsion solution.
調整したマイクロエマルジヨン溶液に、 マイクロエマルジヨン中の水量がバリウム - チタン複合アルコキシドの加水分解に必要な水量の 50倍になるようにバリゥ厶-チタン 複合アルコキシド溶液をマイクロピぺットを用いてそれぞれ分取し、 チューブポンプを用 いてそれぞれのマイクロエマルジヨン溶液中に導入した。  Using the prepared microemulsion solution, a barium-titanium composite alkoxide solution was added to each of the prepared microemulsion solutions using a micropipet so that the amount of water in the microemulsion was 50 times the amount of water required for the hydrolysis of the barium-titanium composite alkoxide. It was separated and introduced into each microemulsion solution using a tube pump.
そのまま 1日、 A r雰囲気のグローブボックス中で攪拌混合をを行い、 チタン酸バリ ゥム超微粒子分散溶液を得た。  The mixture was stirred and mixed for 1 day in a glove box in an Ar atmosphere to obtain a dispersion of ultrafine particles of barium titanate.
(比較例 3)  (Comparative Example 3)
A rガスでバブリングを行いながら、水: 1ーォクタノール: NP - 1 0:シクロへキ サン =5 : 9 : 7. 5 : 1 50の比で混合して WZOマイクロエマルジヨン溶液とした。  While bubbling with Ar gas, the mixture was mixed at a ratio of water: 1-octanol: NP-10: cyclohexane = 5: 9: 7.5: 150 to obtain a WZO microemulsion solution.
調整したマイクロエマルジヨン溶液に、 マイクロエマルジヨン中の水量がバリウム- チタン複合アルコキシドの加水分解に必要な水量の 0. 75倍になるようにバリウム-チ タン複合アルコキシド溶液をマイクロピぺットを用いてそれぞれ分取し、 チューブポンプ を用いてそれぞれのマイクロエマルジヨン溶液中に導入した。  A barium-titanium composite alkoxide solution is added to the prepared microemulsion solution using a micropipet so that the amount of water in the microemulsion becomes 0.75 times the amount of water required for hydrolysis of the barium-titanium composite alkoxide. , And introduced into each microemulsion solution using a tube pump.
そのまま 1日、 A r雰囲気のグローブボックス中で攪拌混合をを行い、 チタン酸バリ ゥム超微粒子分散溶液を得た。  The mixture was stirred and mixed for 1 day in a glove box in an Ar atmosphere to obtain a dispersion of ultrafine particles of barium titanate.
(比較例 4)  (Comparative Example 4)
酢酸バリウム粉末を水に溶解させ 0. 1 mo I / Iの酢酸バリウム水溶液を調整した。 調整した酢酸バリウム水溶液: 1ーォクタノール: NP - 1 0:シクロへキサン =5: 9 : 7. 5 : 1 50の比で混合して W/Oマイクロエマルジヨン溶液とした。  The barium acetate powder was dissolved in water to prepare a 0.1 mo I / I barium acetate aqueous solution. The adjusted barium acetate aqueous solution: 1-octanol: NP-10: cyclohexane = 5: 9: 7.5: 150 was mixed to obtain a W / O microemulsion solution.
これに当量のチタンイソプロポキシドをマイクロピペットで滴下し、 そのまま 1日、 To this, an equivalent amount of titanium isopropoxide was added dropwise using a micropipette.
A r雰囲気のグローブボックス中で攪拌混合を行い、 チタン酸/ リゥム超微粒子分散溶液 を得た。 The mixture was stirred and mixed in a glove box in an Ar atmosphere to obtain a titanic acid / lithium ultrafine particle dispersion solution.
(比較例 5) A rガスでバブリングを行いながら、 水: N P - 4:シクロへキサン = 5 : 7 . 5 : 1 5 0の比でそれぞれ混合して W/Oマイクロエマルジヨン溶液とした。 (Comparative Example 5) While performing bubbling with Ar gas, water / NP-4: cyclohexane = 5: 7.5: 150 were mixed respectively to obtain a W / O microemulsion solution.
次にこのマイクロエマルジヨン溶液に実施例 1と同様の方法で調整したバリウム-チ タン複合アルコキシド溶液をマイク口ェマルジョンの水量がアルコキシド原料の加水分解 に必要な水量の 5 0倍となるようにマイクロピぺッ卜で分取し、 チューブポンプを用いて それぞれのマイクロエマルジヨン溶液中に導入した。  Next, a barium-titanium composite alkoxide solution prepared in the same manner as in Example 1 was added to the microemulsion solution so that the amount of water in the microemulsion was 50 times the amount of water required for hydrolysis of the alkoxide raw material. The solution was collected by a pipette and introduced into each microemulsion solution using a tube pump.
そのまま 1曰、 A r雰囲気のグローブボックス中で攪拌混合を行い、 チタン酸バリウ 厶超微粒子分散溶液を得た。  As it was 1, stirring and mixing were performed in a glove box in an Ar atmosphere to obtain a dispersion of ultrafine particles of barium titanate.
表 1に、 得られたチタン酸バリウム超微粒子分散溶液の分散状態及び結晶相について 示している。  Table 1 shows the dispersion state and crystal phase of the obtained barium titanate ultrafine particle dispersion solution.
Figure imgf000018_0001
表 1において、分散状態の評価は、目視による評価であって、◎は完全透明な状態を、 〇は透明な状態を、 厶は白濁した状態を、 Xは、 沈殿が生じた状態をそれぞれ示している c まず、 複合アルコキシド化を行った原料溶液を用いて、 原料溶液の加水分解に必要な 水量の 0. 9 5倍以上 3倍以下で調整した W/Oマイクロエマルジヨンにより作製を行つ たチタン酸バリゥ厶超微粒子分散溶液の例が実施例 1、 2に示されている。
Figure imgf000018_0001
In Table 1, the evaluation of the dispersion state is a visual evaluation, where ◎ indicates a completely transparent state, 〇 indicates a transparent state, indicates a cloudy state, and X indicates a state where precipitation has occurred. and that c first, by using the raw material solution was combined alkoxide of the produced by adjusting the W / O micro Emar Ji below 3 times 0.9 5 times more water necessary for hydrolysis of the raw material solution Gyotsu Examples of the dispersion solution of ultrafine particles of barium titanate are shown in Examples 1 and 2.
このように、 水量をアルコキシド加水分解に必要な水量の 0. 9 5倍以上 3倍以下に することにより、 反応後に生成した複合金属酸化物超微粒子の凝集が抑えられ、 高度に分 散した透明な複合金属酸化物超微粒子分散溶液を得ることができる。  In this way, by making the amount of water 0.95 times or more and 3 times or less the amount of water required for alkoxide hydrolysis, the aggregation of the composite metal oxide ultrafine particles generated after the reaction is suppressed, and the highly dispersed transparent A complex metal oxide ultrafine particle dispersion solution can be obtained.
また、 生成した超微粒子は、 非常に微細で組成が均質で、 しかも粒子径及び形状が揃 い且つ結晶化した複合金属酸化物単相の超微粒子となっている。 一方で、 それ以上の水量では、 比較例 1に示したとおり、 生成した超微粒子の凝集が 起こり、 沈殿が生じる。 The generated ultrafine particles are very fine, have a uniform composition, and have a uniform particle size and shape and are crystallized single-phase ultrafine particles of a composite metal oxide. On the other hand, when the amount of water is larger than that, as shown in Comparative Example 1, the generated ultrafine particles aggregate and precipitate.
さらに水量が 50倍となると、 凝集による沈殿が起こる。 .  When the amount of water further increases by 50 times, sedimentation due to aggregation occurs. .
また、 水量が 0. 75倍であると、 十分に加水分解されないため、 超微粒子に非晶質 相が生成されることがわかった。  Also, it was found that when the water content was 0.75 times, the hydrolysis was not sufficiently performed, so that an amorphous phase was generated in the ultrafine particles.
また、 比較例 2, 5では、 チタン酸バリウム相の他に、 炭酸バリウム相が粉末 X線回 折により確認されており、 複合金属酸化物の構成元素の水中への溶解度が高い場合、 一部 水中に残るため、 組成ずれや組成均一性の低下が起こる。  In Comparative Examples 2 and 5, in addition to the barium titanate phase, a barium carbonate phase was confirmed by powder X-ray diffraction, and when the solubility of the constituent elements of the composite metal oxide in water was high, some were found. Since it remains in water, composition deviation and reduction in composition uniformity occur.
さらに原料の複合アルコキシド化を行わない場合、 比較例 4に示されている通り反応 後は非晶質相が得られており、 結晶化していない。  Further, when the complex alkoxide conversion of the raw material was not performed, as shown in Comparative Example 4, an amorphous phase was obtained after the reaction, and was not crystallized.
また、遠心分離及び洗浄後熱処理を行った試料は、粉末 X線回折の結果、 B a T i 03 相と BaT i 204相からなり、 チタン過剰となっていることが確認された。  In addition, as a result of powder X-ray diffraction, the sample subjected to heat treatment after centrifugation and washing was confirmed to be composed of a BaTi03 phase and a BaTi204 phase, and was found to be in excess of titanium.
すなわち、 この場合、 洗浄の際に水中に残っていたバリウムが除去されたためにチタ ン過剰となったものと考えられ、 結晶相が得られないだけでなく、 組成ずれ及び均一性の 面でも問題となる。  That is, in this case, it is considered that titanium was excessive due to the removal of barium remaining in the water at the time of washing, and not only a crystal phase could not be obtained, but also a problem in terms of composition deviation and uniformity. It becomes.
次に、 本発明の金属酸化物超微粒子薄膜の実施例について説明する。  Next, examples of the metal oxide ultrafine particle thin film of the present invention will be described.
(実施例 A〜C) 以下の実施例では、 上述のマイクロエマルジヨンにより合成したチ タン酸バリゥ厶分散溶液を用いて作製したチタン酸バリゥム超微粒子薄膜を例にとリ具体 的に説明する。  (Examples A to C) In the following examples, the ultrafine particle thin film of barium titanate produced by using the dispersion solution of barium titanate synthesized by the microemulsion described above will be specifically described.
まず、 原料アルコキシド溶液の調整として、 A r雰囲気のグローブボックス中でバリ ゥムイソプロポキシド 4 gをイソプロピルアルコール 1 60m I、 ベンゼン 40m Iの混 合溶媒に混合して溶解し、 バリウムアルコキシド溶液とした後, これに等モルのチタンィ ソプロポキシド溶液を滴下して一晩混合し、 淡黄色透明のバリゥム一チタン複合アルコキ シド原料溶液を得た。  First, as a preparation of the raw material alkoxide solution, 4 g of barium isopropoxide was mixed and dissolved in a mixed solvent of isopropyl alcohol (160 ml) and benzene (40 ml) in a glove box in an Ar atmosphere, and dissolved in a barium alkoxide solution. After that, an equimolar titanium isopropoxide solution was added dropwise thereto and mixed overnight, to obtain a pale yellow transparent raw material solution of a composite powder of a barium-titanium composite alkoxide.
次に、 W/Oマイクロエマルジヨン溶液は、 分散媒にシクロへキサン、 界面活性剤に N P-1 0: (p-C9H19) -C6H4-0- (CH2CH20) 10CH2CH2OH、 コサーファク タントとして 1一才クタノールを用い A rガスでバブリングを行ないながら、 水:ォクタ ノール: N P-1 0 :シク口へキサン =0. 2 : 9 : 7.5 : 1 50の比で混合して WZO マイクロエマルジヨン溶液とした。  Next, the W / O microemulsion solution was prepared using cyclohexane as the dispersion medium and N P-10 as a surfactant: (p-C9H19) -C6H4-0- (CH2CH20) While bubbling with Ar gas using octanol, water: octanol: NP-10: mix mouth hexane = 0.2: 9: 7.5: 150 and mixed with WZO microemulsion solution. did.
調整したマイクロエマルジヨン溶液にマイクロエマルジヨン中の水量が/ リウムーチ タン複合アルコキシドの加水分解に必要な水量の 1. 5倍になるようにバリウム一チタン 複合アルコキシド溶液をマイクロエマルジヨン溶液中に導入、 A r雰囲気のグローブボッ クス中での攪拌混合を行い、 チタン酸バリゥム超微粒子分散溶液を得た。 分散溶液中のチタン酸バリゥ厶は T EM観察よリ 8 n m程度の結晶化した微細なナノ 粒子であることが確認された。 The barium-titanium composite alkoxide solution was introduced into the microemulsion solution so that the amount of water in the microemulsion was adjusted to 1.5 times the amount of water required for hydrolysis of the lium-titanium composite alkoxide. The mixture was stirred and mixed in a glove box in an Ar atmosphere to obtain a dispersion solution of ultrafine particles of barium titanate. It was confirmed by TEM observation that the titanium titanate in the dispersion solution was crystallized fine nanoparticles of about 8 nm.
次に得られたチタン酸バリゥム超微粒子分散溶液を用いて、 スピンコート法により、 後述の S i /S i 02/ A I 203/P t基板上に数回塗布し、空気中 450°Cで熱処理を行 なった後、 R T A炉により 600°C~ 900°Cの間で熱処理を行い、 それぞれ平均粒径 1 5. 2 nm、 1 9. 6 nm、 48. 9 n mから成る実施例 A〜Cのチタン酸バリウム超微 粒子薄膜を得た。  Next, using the obtained dispersion solution of ultrafine particles of barium titanate, spin-coating is applied several times onto a Si / Si02 / AI203 / Pt substrate described below and heat-treated at 450 ° C in air. After that, heat treatment was performed at 600 ° C to 900 ° C in an RTA furnace, and Examples A to C having average particle diameters of 15.2 nm, 19.6 nm, and 48.9 nm, respectively. A barium titanate ultrafine particle thin film was obtained.
すなわち、 実施例 Aは、 600°Cの熱処理を行った平均粒径 1 5. 2 nmのチタン酸 バリウム超微粒子薄膜であり、 実施例 Bは、 800°Cで熱処理を行った平均粒径 1 9. 6 nmのチタン酸バリウム超微粒子薄膜であり、 実施例 Cは、 900°Cで熱処理を行った平 均粒径 48. 9 n mのチタン酸バリゥム超微粒子薄膜である。  That is, Example A is a barium titanate ultrafine particle thin film having an average particle size of 15.2 nm subjected to heat treatment at 600 ° C., and Example B is an average particle size Example C is a barium titanate ultrafine particle thin film having an average particle size of 48.9 nm, which was heat-treated at 900 ° C.
得られたチタン酸バリゥム超微粒子薄膜の平均粒径は、 薄膜表面の S EM写真から 1 00粒子のディジタイザ一測定を行い、 その平均から求めた。  The average particle size of the obtained ultrafine particle of barium titanate was determined from a digitizer measurement of 100 particles from a SEM photograph of the surface of the thin film, and obtained from the average.
また、 図 6は実施例 Bの粒度分布を示す粒度分布図である。  FIG. 6 is a particle size distribution diagram showing the particle size distribution of Example B.
この粒度分布は、 SEM写真から任意の 1 00粒子の粒径を測定し、 その分布から標 準偏差 (σ) を算出したものである。  This particle size distribution is obtained by measuring the particle size of arbitrary 100 particles from an SEM photograph and calculating the standard deviation (σ) from the distribution.
図 6からも分かるように、 800°Cで熱処理温度平均粒径が 1 9. 6 nmである場合 の標準偏差 (び) =1. 21と狭いことがわかる。  As can be seen from FIG. 6, the standard deviation (b) at 800 ° C. and the average particle size of the heat treatment temperature at 19.6 nm is as narrow as 1.21.
実施例 Α、 実施例 Cについても、 標準偏差 (σ) は 1. 24-1. 33と狭いことが わかった。  It was also found that the standard deviation (σ) of Examples I and C was as narrow as 1. 24-1.3.33.
また、 SEM観察および SPM観察により、 表面粗さの小さい緻密なナノ粒子薄膜と なっていることが確認された。  In addition, SEM observation and SPM observation confirmed that a dense nanoparticle thin film with small surface roughness was obtained.
なお、 図 7に、 実施例 Βの S ΕΜ写真を示す。  FIG. 7 shows an S-photograph of Example II.
また、 X R D測定により、薄膜は結晶チタン酸/くリゥム単相であることが確認された。 電気特性評価は、 得られたチタン酸バリウムナノ粒子表面に P tスパッタリングによ リ上部電極を作製し、 LCRメータにより室温、 1 kH zの測定周波数における比誘電率 及び誘電損失の測定を行なうとともに、 ヒステリシス測定により、 強誘電性の評価を行な つた。  Further, XRD measurement confirmed that the thin film was a crystalline titanic acid / cream single phase. For the evaluation of electrical characteristics, an upper electrode was fabricated by Pt sputtering on the surface of the obtained barium titanate nanoparticles, and the relative permittivity and dielectric loss at room temperature and a measurement frequency of 1 kHz were measured with an LCR meter. The ferroelectricity was evaluated by hysteresis measurement.
また、 耐電圧の評価は、 誘電損失の測定に用いた試料を用いて、 電極から電流を流し て、 試料に 200 k V/ c m印加した際に、 試料が破壊される場合を X、 破壊されなかつ た場合を〇とした。  In addition, the withstand voltage was evaluated by using the sample used for dielectric loss measurement, applying a current from the electrode and applying 200 kV / cm to the sample. If not, it was marked as 〇.
図 8に電気特性評価に用いた試料の構成を示す。  Figure 8 shows the configuration of the sample used for the evaluation of the electrical characteristics.
基板には、 S i上に絶縁層として S i 02を、 バッファ層として A I 203を積層し、 さらに、下部電極として P t 21を積層した上述の S i ZS i 02/ A I 203/P t基板 2 0を用いた。 On the substrate, Si 02 is laminated on Si as an insulating layer, and AI 203 is laminated as a buffer layer. Further, the above-mentioned SiZSi02 / AI203 / Pt substrate 20 on which Pt21 was laminated as a lower electrode was used.
この S i /S i 02/ A I 203 P t基板 20上に、スピンコーティングによる成膜及 び熱処理によリチタン酸バリゥム超微粒子薄膜 22を作製し、 さらに上部電極として 0. 5 φの P t 23をスパッタリングによって形成して試料を作製した。  On this S i / S i 02 / AI 203 Pt substrate 20, spin-coating film formation and heat treatment were used to form a lithium titanate ultrafine particle thin film 22, and a 0.5 φ Pt 23 was used as the upper electrode. Was formed by sputtering to prepare a sample.
(比較例 A)  (Comparative Example A)
実施例 Aと同様の方法でチタン酸バリゥ厶超微粒子分散溶液を得た。  A dispersion of ultrafine particles of barium titanate was obtained in the same manner as in Example A.
次に得られたチタン酸バリゥ厶超微粒子分散溶液を用いてスピンコート法によリ S i ZS i 02ZA I 203/P t基板上に数回塗布し、空気中 300°Cで熱処理を行なった後、 RTA炉により 500°Cの間で熱処理を行い、 平均粒径 1 2. 6 nmから成る比較例 Aの チタン酸パリゥム超微粒子薄膜を得た。  Next, the obtained barium titanate ultrafine particle dispersion solution was spin-coated on a Si ZSi 02ZA I 203 / Pt substrate several times, and heat-treated at 300 ° C in air. Thereafter, heat treatment was performed in an RTA furnace at 500 ° C. to obtain an ultrafine particle of parium titanate ultrafine particles of Comparative Example A having an average particle size of 12.6 nm.
得られたチタン酸バリウム超微粒子薄膜は、 3£1\1観察及び3 1\1観察にょリ、 表面 粗さの小さい緻密なナノ粒子薄膜となっていることが確認された。  The obtained barium titanate ultrafine particle thin film was confirmed to be a dense nanoparticle thin film having a small surface roughness according to the observations of 3 31 \ 1 and 31 \ 1.
また、 X R D測定によリ、 薄膜はチタン酸バリゥム単相であることが確認された。 (比較例 B, C) 実施例 Aと同様の方法でバリゥム一チタン複合アルコキシド原料溶 液を得た後、直接ドライ雰囲気下でスピンコート法により S i ZS i 02/ A I 203/P t 基板上に塗布し、 1 20°Cで 1 5分間乾燥を行なった。  Also, XRD measurement confirmed that the thin film was a single phase of barium titanate. (Comparative Examples B and C) After obtaining a raw material solution of a barium-titanium composite alkoxide in the same manner as in Example A, directly on a SiZSi02 / AI203 / Pt substrate by spin coating in a dry atmosphere. And dried at 120 ° C. for 15 minutes.
このスピンコ一ト及び乾燥を数回繰り返した後、 RT A炉により 500°C及び 70 0°Cで熱処理を行い、それぞれ平均粒径 33. 2门0!及び45. 6 nmからなる比較例 B, Cのチタン酸バリゥ厶超微粒子薄膜を得た。  After repeating this spin coating and drying several times, heat treatment was performed at 500 ° C and 700 ° C in an RTA furnace, and Comparative Example B having average particle diameters of 33.2 门 0! And 45.6 nm, respectively. And C were obtained.
すなわち、 比較例 Bは、 500°Cの熱処理を行った平均粒径 33. 2 nmのチタン酸 バリゥム超微粒子薄膜であリ、 比較例 Cは、 700 °Cで熱処理を行った平均粒径 45. 6 n mのチタン酸バリゥム超微粒子薄膜である。  That is, Comparative Example B was an ultrafine fine particle of barium titanate having an average particle diameter of 33.2 nm that had been subjected to heat treatment at 500 ° C, and Comparative Example C had an average particle diameter of 450 that had been heat treated at 700 ° C. . 6 nm ultra-fine particle of barium titanate.
得られたチタン酸バリゥム超微粒子薄膜の S EM観察および S PM観察の結果、 実施 例 Aで作製された薄膜表面と比べ表面粗さは大きく、 また、 粒子間に多くの隙間が観察さ れ、 緻密度も小さいことが確認された。  As a result of SEM observation and SPM observation of the obtained ultrafine particle of barium titanate, the surface roughness was larger than that of the thin film surface prepared in Example A, and many gaps were observed between the particles. It was also confirmed that the compactness was small.
また X RD測定によリ、 500°Cで熱処理を行なった薄膜はハローピークのみが見ら れ結晶化していなかった。  According to the XRD measurement, the thin film that had been heat-treated at 500 ° C. had only a halo peak and was not crystallized.
また、 Ί 00°Cで熱処理を行なった薄膜はチタン酸バリゥムによるピークが確認され たものの、 ハローピークも見られ、 非晶質相も含まれていることが分かった。  In addition, although the thin film subjected to the heat treatment at 00 ° C. was confirmed to have a peak due to titanium titanate, a halo peak was also observed, indicating that an amorphous phase was included.
(比較例 D)  (Comparative Example D)
原料アルコキシド溶液の調整として、 A r雰囲気のグローブボックス中でバリウムィ ソプロボキシド 4 gを 2—メ卜キシエタノール 200m Iに混合して溶解し、 バリウムァ ルコキシド溶液とした後、 これに等モルのチタンィソプロポキシド溶液を滴下して一晩混 合し、 バリウム一チタン複合アルコキシド原料溶液を得た。 For the preparation of the raw material alkoxide solution, 4 g of barium isopropoxide was mixed and dissolved in 200 ml of 2-methoxyethanol in a glove box under an Ar atmosphere. After making a lucoxide solution, an equimolar titanium ispropoxide solution was added dropwise and mixed overnight to obtain a barium-titanium composite alkoxide raw material solution.
得られた溶液を水蒸気存在下で攪拌を行いながら 3日間エージングを行い部分的に加 水分解された原料溶液を作製した。  The resulting solution was aged for 3 days while stirring in the presence of steam to produce a partially hydrolyzed raw material solution.
この原料溶液を用いてスピンコート法により S i ZS i 02/ A I 203/ P t基板上 に数回塗布し、 空気中 4 5 0 °Cで熱処理を行なった後、 さらに、 丁 炉にょリ 7 0 0 °〇 で熱処理を行い、 平均粒径 4 8 . 9 n mのチタン酸バリゥム超微粒子薄膜を得た。  Using this raw material solution, spin-coating is applied several times on SiZSi02 / AI203 / Pt substrate, heat-treated at 450 ° C in air, and then filtered. Heat treatment was performed at 00 ° C. to obtain a barium titanate ultrafine particle thin film having an average particle size of 48.9 nm.
表 2には、 得られたチタン酸バリゥ厶超微粒子薄膜の表面状態、 誘電特性および結晶 相について、 また表 3には、 各試料における室温での比誘電率、 誘電損失及び残留分極 P r X 2を示している。 表 2  Table 2 shows the surface state, dielectric properties, and crystal phase of the obtained ultrafine particle of barium titanate. Table 3 shows the relative permittivity, dielectric loss, and residual polarization P r X of each sample at room temperature. 2 is shown. Table 2
Figure imgf000022_0001
表 3
Figure imgf000022_0001
Table 3
Figure imgf000022_0002
まず、 マイクロエマルジヨン (M E ) 法により合成したチタン酸バリウム超微粒子が 高分散状態に保たれた透明原料溶液を用いて成膜を行い、 その後熱処理により粒成長させ て、 平均粒径を 1 5〜 5 0 n mに調整されたチタン酸バリゥム超微粒子薄膜が、 実施例 A 〜Cに示されている。
Figure imgf000022_0002
First, film formation was performed using a transparent raw material solution in which barium titanate ultrafine particles synthesized by the microemulsion (ME) method were maintained in a highly dispersed state, and then the particles were grown by heat treatment to reduce the average particle diameter to 15%. Ultrafine particulate titanium titanate thin films tuned to ~ 50 nm are shown in Examples A-C.
このように、 高分散状態に保たれた金属酸化物超微粒子分散溶液から成膜されること により、 ナノ粒子であっても均質で緻密な薄膜となり、 また、 既によく結晶化しているた め、 その後熱処理を行っても反応により表面粗さが大きく増したり、 亀裂が入るなどによ リ膜質が大きく低下することがなく、 むしろ熱処理によリ微細なナノ粒子を粒成長させて いるため、 さらに緻密化及び結晶化が促進される。 As described above, the film is formed from the metal oxide ultrafine particle dispersion maintained in a highly dispersed state. Therefore, even if it is a nanoparticle, it becomes a homogeneous and dense thin film, and since it has already been well crystallized, the surface roughness will increase greatly due to the reaction even after heat treatment, and cracks will be formed. Is not significantly reduced, but rather, heat treatment is performed to grow fine nanoparticles, so that densification and crystallization are further promoted.
また、 電気特性も十分に得られている。  In addition, electrical characteristics have been sufficiently obtained.
従って、 平均粒径 1 5 n m以上に^!立成長させた粒子からなるチタン酸バリウム超微粒 子薄膜では、 図 9の実施例 Bのヒステリシス曲線からも分かるように 2 P r > 2 . 0〃C Z c m2で強誘電性を示し、 また、 比誘電率 3 0 0以上のものが得られている。  Therefore, in the barium titanate ultrafine particle thin film composed of particles grown upright to an average particle diameter of 15 nm or more, as can be seen from the hysteresis curve of Example B in FIG. 9, 2 Pr> 2.0〃. CZ cm2 shows ferroelectricity and a dielectric constant of 300 or more is obtained.
また、 このような薄膜を素子として用いた薄膜素子は、 誘電損失 4 %未満の良好な誘 電特性を示している。  In addition, a thin film device using such a thin film as a device has a good dielectric property with a dielectric loss of less than 4%.
また、 耐電圧も 2 0 0 k V c m以上であり、 好ましい。  Also, the withstand voltage is preferably 200 kV cm or more, which is preferable.
一方、 平均粒径が、 1 5 n m以下である比較例 Aでは、 2 P r < 2 . 0〃CZ c m2 で強誘電特性が得られず、 比誘電率も 3 0 0以下となり、.十分な強誘電特性が得られなか つた。  On the other hand, in Comparative Example A having an average particle diameter of 15 nm or less, ferroelectric properties were not obtained at 2 Pr <2.0〃CZ cm2, and the relative dielectric constant was 300 or less. No ferroelectric characteristics were obtained.
次に比較例 B, Cに示されているように、 一般的なゾルゲル法により成膜を行なった 場合、結晶性に問題があリ、 5 0 0 °Cで熱処理を行った比較例 Cでは、 非晶質相である。  Next, as shown in Comparative Examples B and C, when a film was formed by a general sol-gel method, there was a problem in crystallinity, and in Comparative Example C where heat treatment was performed at 500 ° C. It is an amorphous phase.
また、 電気測定不能であった。  Also, it was not possible to measure electricity.
7 0 0 °Cで熱処理を行った比較例 Bであっても結晶性が悪く、一部まだ非晶質相を含 むものの結晶化したチタン酸バリウムとなるが、 一連の反応により、 表面粗さが大きく増 すと共に所々に亀裂が見られ膜質が大きく低下した。  Even in Comparative Example B, which was heat-treated at 700 ° C., the crystallinity was poor, and although some still contained an amorphous phase, the crystallized barium titanate was formed. The cracks were observed in some places and the film quality was greatly reduced.
また、亀裂のためか漏れ電流が大きくなリ、誘電体的なヒス亍リシス曲線が得られず、 非晶質相が基板と反応して低誘電率の中間相を形成するためか、 比誘電率も 3 0 0以下と 小さくなつた。  Also, because of a crack or a large leakage current, a dielectric hysteresis curve cannot be obtained, or because the amorphous phase reacts with the substrate to form a low dielectric constant intermediate phase, The rate also decreased to less than 300.
その結果、 誘電損失も大きく、 耐電圧が十分に得られないことがわかった。  As a result, it was found that the dielectric loss was large and the withstand voltage was not sufficiently obtained.
さらに、 ゾルゲル法であらかじめ部分加水分解させた原料溶液を用いて成膜を行なつ た比較例 Dの場合、成膜後の反応量が減るためか、表面粗さに若干の改善が見られると共 に、 7 0 0 °C熱処理後はチタン酸バリウム単相となるが、 やはり、 部分加水分解により生 成したナノ粒子の分散及び結晶性もまだ十分でないためか、 実施例 A〜 Cに示した薄膜と 比べ、 表面粗さが大きくなリ、 また、 比較例 B, Cと同様に低誘電率相を含むためか、 誘 電損失が大き〈なり、 比誘電率も 3 0 0以下と小さくなった。 産業上の利用可能性  Furthermore, in the case of Comparative Example D, in which a film was formed using a raw material solution that had been partially hydrolyzed in advance by the sol-gel method, the reaction volume after film formation was reduced, or slight improvement in surface roughness was observed. Both become barium titanate single phase after heat treatment at 700 ° C, but the dispersion and crystallinity of nanoparticles generated by partial hydrolysis are still not enough, as shown in Examples A to C. The dielectric loss is large and the relative dielectric constant is as small as 300 or less, probably because the surface roughness is larger than that of the thin film and the low dielectric constant phase is included as in Comparative Examples B and C. became. Industrial applicability
以上のように、 本発明にかかる金属酸化物超微粒子分散溶液、 及び金属酸化物超微粒 子薄膜は、積層コンデンサゃァクチユエータ等の電子デバイスの薄膜部として有用であり、 特に小型化と強誘電特性の双方を要求する電子デバイスの薄膜部に用いるのに適している < As described above, the metal oxide ultrafine particle dispersion according to the present invention, and the metal oxide ultrafine particles The element thin film is useful as a thin film part of an electronic device such as a multilayer capacitor actuator, and is particularly suitable for use in a thin film part of an electronic device that requires both miniaturization and ferroelectric characteristics.

Claims

請 求 の 範 囲 The scope of the claims
1 - 疎水性 体である分散媒、 水および界面活性剤を含むマイクロエマルジヨン中での原 料を加水分解反応によって作製される金属酸化物超微粒子分散溶液であって、 前記原 料は複数の金属アルコキシドをアルコール中で混合して複合化した複合金属アルコキ シド溶液からなり、 前記マイクロエマルジヨンに含まれる水量が、 前記原料の加水分 解に必要な水量の 0 . 9 5倍以上 3倍以下であることを特徴とする金属酸化物超微粒 子分散溶液。 1-A metal oxide ultrafine particle dispersion prepared by hydrolyzing a raw material in a microemulsion containing a dispersion medium which is a hydrophobic body, water and a surfactant, wherein the raw material is a plurality of fine particles. It consists of a complex metal alkoxide solution in which metal alkoxide is mixed in alcohol to form a complex, and the amount of water contained in the microemulsion is 0.95 times or more and 3 times or less of the amount of water required for hydrolysis of the raw material. A metal oxide ultrafine particle dispersion solution, characterized in that:
2 . 前記複数の金属アルコキシドの少なくとも一つがバリウムアルコキシドであって、 前 記複合金属アルコキシド溶液は、 前記バリゥムアルコキシドの重合を抑制する重合抑 制剤を含む請求項 1に記載の金属酸化物超微粒子分散溶液。  2. The metal oxide according to claim 1, wherein at least one of the plurality of metal alkoxides is a barium alkoxide, and the composite metal alkoxide solution contains a polymerization inhibitor that suppresses polymerization of the barium alkoxide. Ultrafine particle dispersion solution.
3 . 請求項 1または請求項 2の金属酸化物超微粒子分散溶液を用いて得られた金属酸化物 超微粒子薄膜。  3. A metal oxide ultrafine particle thin film obtained by using the metal oxide ultrafine particle dispersion solution according to claim 1 or 2.
4.平均粒径 1 5 n m以上 5 0 n m以下の金属酸化物超微粒子から構成され、残留分極(P r ) において、 2 P rが 2 C c m2以上の強誘電特性を有し、 測定周波数 1 k H zにおける比誘電率が 3 0 0以上であることを特徴とする金属酸化物超微粒子薄膜。  4. Consisting of ultrafine metal oxide particles with an average particle size of 15 nm or more and 50 nm or less, having a remanent polarization (P r) of 2 Pr or more with a ferroelectric property of 2 C cm2 or more. A metal oxide ultrafine particle thin film having a relative dielectric constant at 1 kHz of 300 or more.
5 . 前記金属酸化物超微粒子が、 チタンおよびバリウムを含むぺロブスカイ卜型酸化物で ある請求項 4記載の金属酸化物超微粒子薄膜。  5. The ultrafine metal oxide thin film according to claim 4, wherein the ultrafine metal oxide particles are perovskite-type oxides containing titanium and barium.
PCT/JP2003/011821 2002-09-20 2003-09-17 Ultra-fine metal oxide particle suspension and ultra-fine metal oxide particle thin film WO2004026762A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003264459A AU2003264459A1 (en) 2002-09-20 2003-09-17 Ultra-fine metal oxide particle suspension and ultra-fine metal oxide particle thin film

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002/274598 2002-09-20
JP2002274598 2002-09-20
JP2003/77651 2003-03-20
JP2003077651 2003-03-20
JP2003/313463 2003-09-05
JP2003313463A JP4311134B2 (en) 2002-09-20 2003-09-05 Metal oxide ultrafine particle dispersion solution and metal oxide ultrafine particle thin film

Publications (1)

Publication Number Publication Date
WO2004026762A1 true WO2004026762A1 (en) 2004-04-01

Family

ID=32034074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011821 WO2004026762A1 (en) 2002-09-20 2003-09-17 Ultra-fine metal oxide particle suspension and ultra-fine metal oxide particle thin film

Country Status (3)

Country Link
JP (1) JP4311134B2 (en)
AU (1) AU2003264459A1 (en)
WO (1) WO2004026762A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100746067B1 (en) * 2002-11-13 2007-08-03 닛뽕소다 가부시키가이샤 Dispersoid having metal-oxygen bond, metal oxide film, and monomolecular film
JP4946163B2 (en) * 2005-07-21 2012-06-06 ソニー株式会社 Method for producing metal oxide nanoparticles
DE102006025770A1 (en) * 2006-05-31 2007-12-13 Jürgen Dr. Dornseiffer Production of coating solutions together with manufactured products
WO2009107674A1 (en) 2008-02-28 2009-09-03 株式会社 村田製作所 Ultrafine zinc oxide particle dispersion, method for manufacturing the same, and zinc oxide membrane
JP2009280416A (en) * 2008-05-19 2009-12-03 Taiyo Yuden Co Ltd Method for manufacturing dielectric thin film and thin film electronic component
JP5338175B2 (en) * 2008-07-28 2013-11-13 株式会社村田製作所 Method for producing metal oxide ultrafine particles
JP5575609B2 (en) * 2010-11-02 2014-08-20 日本碍子株式会社 Lead-based piezoelectric material and manufacturing method thereof
JP7145650B2 (en) * 2018-05-31 2022-10-03 昭和電工株式会社 Heat exchanger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233505A (en) * 1989-03-06 1990-09-17 Ricoh Co Ltd Production of ultrasonic powder of metal oxide composition
JPH0369506A (en) * 1989-08-07 1991-03-25 Ricoh Co Ltd Multiple metal oxide superfine grains
JPH0346401B2 (en) * 1983-04-15 1991-07-16 Kanegafuchi Chemical Ind

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346401B2 (en) * 1983-04-15 1991-07-16 Kanegafuchi Chemical Ind
JPH02233505A (en) * 1989-03-06 1990-09-17 Ricoh Co Ltd Production of ultrasonic powder of metal oxide composition
JPH0369506A (en) * 1989-08-07 1991-03-25 Ricoh Co Ltd Multiple metal oxide superfine grains

Also Published As

Publication number Publication date
JP4311134B2 (en) 2009-08-12
AU2003264459A1 (en) 2004-04-08
JP2004300013A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
Pithan et al. Progress in the synthesis of nanocrystalline BaTiO3 powders for MLCC
Caruntu et al. Solvothermal synthesis and controlled self-assembly of monodisperse titanium-based perovskite colloidal nanocrystals
Huang et al. Barium titanate nanocrystals and nanocrystal thin films: Synthesis, ferroelectricity, and dielectric properties
US9214279B2 (en) Ultrafine metal oxide particle dispersion liquid and ultrafine metal oxide particle thin film
TWI301477B (en) Barium titanate, and manufacturing method therefor, dielectric ceramic, and ceramic electronic component
JP5562673B2 (en) Ferroelectric material, ferroelectric thin film, ferroelectric material manufacturing method, and ferroelectric element
US8937030B2 (en) Preparation of perovskite nanocrystals via reverse micelles
EP2417063A2 (en) Process
Schneller et al. Nanocomposite thin films for miniaturized multi-layer ceramic capacitors prepared from barium titanate nanoparticle based hybrid solutions
US10943733B2 (en) Ceramic dielectric and method of manufacturing the same and ceramic electronic component and electronic device
WO2004026762A1 (en) Ultra-fine metal oxide particle suspension and ultra-fine metal oxide particle thin film
Ahmad et al. Structural and dielectric characterization of nanocrystalline (Ba, Pb) ZrO3 developed by reverse micellar synthesis
JP2002234771A (en) Oxide powder having tetragonal perovskite structure, method for producing the same, dielectric ceramic and multilayer ceramic capacitor
WO2004097854A1 (en) Liquid composition for forming ferroelectric thin film and method for forming ferroelectric thin film
JP4384419B2 (en) Oxide ceramic nanosheet and method for producing the same
Ng et al. Processing and Characterization of Microemulsion‐Derived Lead Magnesium Niobate
JP2005306691A (en) Barium titanate powder and method of manufacturing the same
Calzada Sol–gel electroceramic thin films
JP2009538948A (en) Preparation and production of coating solutions
OHNO et al. Preparation of Barium Titanate Nanocoated Silica Nanoparticles by Chemical Solution Deposition
JPH06309925A (en) Dielectric composition, its manufacture, manufacture of its thin film, and thin-film capacitor
Du et al. Effect of polyvinylpyrrolidone on the formation of perovskite phase and rosette-like structure in sol-gel–derived PLZT films
JP3389370B2 (en) Ceramic capacitors
JPS5939724A (en) Manufacture of dielectric powder for thick film
JPH08290964A (en) Dielectric composition, its production and its use

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase