JP2004299920A - Method for manufacturing tubular single crystal zinc oxide whisker - Google Patents

Method for manufacturing tubular single crystal zinc oxide whisker Download PDF

Info

Publication number
JP2004299920A
JP2004299920A JP2003091626A JP2003091626A JP2004299920A JP 2004299920 A JP2004299920 A JP 2004299920A JP 2003091626 A JP2003091626 A JP 2003091626A JP 2003091626 A JP2003091626 A JP 2003091626A JP 2004299920 A JP2004299920 A JP 2004299920A
Authority
JP
Japan
Prior art keywords
zinc oxide
single crystal
whiskers
zinc
manufacturing tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003091626A
Other languages
Japanese (ja)
Other versions
JP3837540B2 (en
Inventor
Yoshio Bando
義雄 板東
Ko Shunsei
胡 俊青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2003091626A priority Critical patent/JP3837540B2/en
Publication of JP2004299920A publication Critical patent/JP2004299920A/en
Application granted granted Critical
Publication of JP3837540B2 publication Critical patent/JP3837540B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing tubular single crystal zinc oxide whiskers which are excellent in electron mobility or light emission intensity in comparison with conventional polycrystalline zinc oxide. <P>SOLUTION: The method for manufacturing tubular single crystal zinc oxide whiskers comprizes heating a zinc sulfide powder and an activated carbon powder at 1,100-1,200°C in a gaseous argon stream for 2-4 h, and heating them at 1,100-1,200°C for 1-3 h after switching from the gaseous argon to gaseous oxygen. By this method, a single crystal of zinc oxide is obtained although only polycrystalline bodies of zinc oxide are obtained by the conventional method. The whiskers are highly expected to be utilized in electronic devices, that is, light emitting diodes, diode laser or the like because the electron mobility or light emission intensity of the single crystal is more excellent than that of the polycrystalline bodies. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、青色や紫外領域の発光ダイオードやダイオードレーザのような光学デバイスへの応用や複合材料の強化材として有用な単結晶のチューブ状酸化亜鉛ウィスカーの製造方法に関する。
【0002】
【従来の技術】
II−VI族の化合物半導体である酸化亜鉛は発光ダイオードやダイオードレーザのような青色や紫外領域での光学分野への応用が期待されている。さらに、酸化亜鉛ウィスカーは高温強度、硬度、化学的安定性に優れているので、複合材料の強化材等の分野でも注目されている。酸化亜鉛ウィスカーは通常金属亜鉛粉末の気相酸化で製造されている。例えば、反応触媒としてゼオライトと酸化亜鉛の混合物で被覆した金属亜鉛粒子を酸化することにより酸化亜鉛ウィスカーを製造している(例えば、非特許文献1参照)。また、最近では、中空部を有する酸化亜鉛ナノチューブやチューブ状ウィスカーの製造方法も報告されている ( 例えば、非特許文献2,3参照)。これらの方法によって製造されたナノチューブやチューブ状ウィスカーの結晶構造は単結晶ではなく、多結晶である。
【0003】
【非特許文献1】
T.Yoshida、ほか、アプライド・フィジックス・レターズ(APPl.Phys.Rett.)64巻、3243頁、1994年
【非特許文献2】
J.Zhang, ほか、ケミカル・コミュニケーションズ(Chem.Commun.)3号、 262頁、2002年
【非特許文献3】
J.J.Wu,ほか、アプライド・フィジックス・レターズ(Appl.Phys.Rett.)81 巻、1312頁、2002年
【0004】
【発明が解決しようとする課題】
本発明は、従来の多結晶の酸化亜鉛に比べて、電子移動度や発光強度が優れている単結晶のチューブ状酸化亜鉛ウィスカーを製造することを解決すべき課題としている。
【0005】
【課題を解決するための手段】
本発明は、硫化亜鉛粉末と活性炭粉末とをアルゴン気流中、1100〜1200℃に、2〜4時間加熱して、一旦亜鉛を生成させた後、引き続き、アルゴンを酸素に切り替えて、1100〜1200℃で、1〜3時間加熱することにより、酸化反応を行わせて単結晶のチューブ状酸化亜鉛ウィスカーを製造する方法である。
【0006】
上記の方法で得られる大部分のウィスカーは直径400nmであり、長さは15μmであるが、直径150nm、長さ数マイクロメートルを有する少量のウィスカーも含まれている。大部分のウィスカーは中空部を有するチューブ状である。その壁の厚さは100〜150nmである。本発明の方法で得られた単結晶チューブ状酸化亜鉛ウィスカーは、青色、紫外領域での発光ダイオード、ダイオードレーザ等への応用や複合材料の強化材として期待される。
【0007】
【発明の実施の形態】
本発明の製造方法における条件について以下に説明する。
加熱装置は、抵抗加熱炉、高周波誘導加熱炉等本発明の方法における温度条件が満たされれば特に限定されない。
まず、硫化亜鉛粉末と活性炭粉末とをアルゴン気流中、1100〜1200℃に、2〜4時間加熱して、一旦亜鉛を生成させる。原料粉末は、粒子径10ミクロン程度とする。アルゴンガスの他の希ガスの混合も可能である。温度は、1100〜1200℃とする。硫化亜鉛の昇華温度が1185℃付近なので、この近傍で反応活性が出始める。温度が高すぎると、系外へ逸散してしまう。加熱時間は、2〜4時間とする。反応温度の下限に近いところで、行っているので、生成物が十分に生じるのに、2時間、4時間以上行っても、あまり変化がない。
【0008】
引き続き、酸素気流中で高温での熱酸化反応を行う。酸素気流は、希ガスとの混合でも問題ない。温度は、1100〜1200℃とする。あまり高温にすると、生成物が逸散する。反応は、前段で生成した液状亜鉛と酸素が反応して酸化亜鉛の結晶が生成する。
【0009】
【実施例】
実施例1
硫化亜鉛粉末(粒子径10μm以下;アルドリッチ社製)3.0gと活性炭粉末(100メッシュ;アルドリッチ社製)0.2gの混合物をアルミナ製のボートに入れ、このボートを外径42mm、長さ80cmの石英管の中心部に配置した。石英管を抵抗加熱炉の中に水平に置いた。石英管に蓋をして、10℃/minの昇温速度で加熱して1100℃まで温度を上げた。このとき、80sccmの流速でアルゴンガスを流し、3時間この温度に保った。
【0010】
上記の方法で亜鉛前駆物を製造し、引き続きアルゴンガスを同じ流速の酸素ガスに切り替えて、2時間、1100℃に温度を維持した。その後、10℃/minの下降速度で室温まで冷却した。白色の生成物が石英管の内壁に堆積していた。生成物の収率は硫化亜鉛を基準として20〜30%であった。
【0011】
生成物のX線回折のパターンを図1に示す。得られた回折ピークを見ると、既知の六方晶系酸化亜鉛のピークとよく一致し、その格子定数はa=0.325nm、c=0.521nmであり、硫化亜鉛や金属亜鉛に基づくピークは観測されなかった。
【0012】
図2(a)に、生成物の走査型電子顕微鏡像の写真を載せたが、直線状のウィスカーが大部分で、粒子状や他の形状は見られない。大部分のウィスカーは直径400nmであり、長さは15μmであるが、直径150nm、長さ数マイクロメートルを有する少量のウィスカーも含まれている。
【0013】
図2(b)に、高倍率の走査型電子顕微鏡像を示したが、大部分のウィスカーは中空部を有するチューブ状であることが分かった。その壁の厚さは100〜150nmである。
【0014】
図3に、X線エネルギー拡散スペクトルを示したが、その化学組成は亜鉛と酸素からなり、その元素比は、1:1.05であり、化学量論的な酸化亜鉛が生成されていることが分かった。また、電子線回折のパターンからは格子定数a=0.32nm、c=0.52nmで、前述のX線回折のパターンから得られた六方晶系の酸化亜鉛の値と同じであった。別の場所から採取したサンプルも同じ値を示し、単結晶構造であることが確認された。
【0015】
図4に、チューブ状酸化亜鉛ウィスカーの室温におけるフォトルミネッセンススベクトルを示す。381nmの強い鋭い発光ピークと583nmの弱い幅の広いピークが存在し、381nmのピークはバルクの酸化亜鉛のバンドギャップと一致することが確認された。
【0016】
【発明の効果】
本発明の方法により、従来の方法では、多結晶体しか得られなかった酸化亜鉛が、単結晶が得られるようになった。このことにより、電子移動度や発光強度が多結晶体よりもすぐれているので、電子デバイスへの応用に際して、大いに期待される。
【図面の簡単な説明】
【図1】単結晶チューブ状酸化亜鉛ウィスカーのX線回折のパターンである。
【図2】図2(a)は、単結晶チューブ状酸化亜鉛ウィスカーの低倍率走査型電子顕微鏡像を示す図面代用写真である。図2(b)は、単結晶チューブ状酸化亜鉛ウィスカーの高倍率走査型電子顕微鏡像を示す図面代用写真である。
【図3】図3は、単結晶チューブ状酸化亜鉛ウィスカーのX線エネルギー拡散スペクトルの図である。
【図4】図4は、単結晶チューブ状酸化亜鉛ウィスカーの室温におけるフォトルミネッセンススペクトルの図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a single-crystal tubular zinc oxide whisker useful for application to optical devices such as light-emitting diodes and diode lasers in the blue and ultraviolet regions and as a reinforcing material for composite materials.
[0002]
[Prior art]
Zinc oxide, which is a II-VI group compound semiconductor, is expected to be applied to optical fields in the blue and ultraviolet regions such as light-emitting diodes and diode lasers. Further, zinc oxide whiskers have been attracting attention in the field of reinforcing materials for composite materials and the like because of their excellent high-temperature strength, hardness and chemical stability. Zinc oxide whiskers are usually produced by gas phase oxidation of zinc metal powder. For example, zinc oxide whiskers are manufactured by oxidizing metal zinc particles coated with a mixture of zeolite and zinc oxide as a reaction catalyst (for example, see Non-Patent Document 1). Recently, methods for producing zinc oxide nanotubes and tubular whiskers having a hollow portion have also been reported (for example, see Non-Patent Documents 2 and 3). The crystal structure of nanotubes and tubular whiskers manufactured by these methods is not single crystal but polycrystal.
[0003]
[Non-patent document 1]
T. Yoshida et al., Applied Physics Letters (APP1. Phys. Rett.) 64, 3243, 1994 [Non-Patent Document 2]
J. Zhang, et al., Chemical Communications (Chem. Commun.) No. 3, p. 262, 2002 [Non-Patent Document 3]
J. J. Wu, et al., Applied Physics Letters (Appl. Phys. Rett.) 81, 1312, 2002.
[Problems to be solved by the invention]
An object of the present invention is to provide a method for manufacturing a single-crystal tubular zinc oxide whisker having excellent electron mobility and emission intensity as compared with conventional polycrystalline zinc oxide.
[0005]
[Means for Solving the Problems]
In the present invention, zinc sulfide powder and activated carbon powder are heated in an argon stream to 1100 to 1200 ° C. for 2 to 4 hours to generate zinc once, and then argon is switched to oxygen to 1100 to 1200. This is a method of producing a single-crystal tubular zinc oxide whisker by heating at 1 ° C. for 1 to 3 hours to cause an oxidation reaction.
[0006]
Most whiskers obtained by the above method are 400 nm in diameter and 15 μm in length, but also include small amounts of whiskers having a diameter of 150 nm and a few micrometers in length. Most whiskers are tubular with hollows. Its wall thickness is 100-150 nm. The single-crystal tubular zinc oxide whiskers obtained by the method of the present invention are expected to be applied to light-emitting diodes and diode lasers in the blue and ultraviolet regions and to be used as reinforcing materials for composite materials.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The conditions in the manufacturing method of the present invention will be described below.
The heating device is not particularly limited as long as the temperature conditions in the method of the present invention such as a resistance heating furnace and a high-frequency induction heating furnace are satisfied.
First, zinc sulfide powder and activated carbon powder are heated to 1100 to 1200 ° C. in an argon stream for 2 to 4 hours to once generate zinc. The raw material powder has a particle diameter of about 10 microns. Mixing of other rare gases other than argon gas is also possible. The temperature is between 1100 and 1200 ° C. Since the sublimation temperature of zinc sulfide is around 1185 ° C., the reaction activity starts to appear near this temperature. If the temperature is too high, it will escape out of the system. The heating time is 2 to 4 hours. Since the reaction is performed at a temperature near the lower limit of the reaction temperature, there is not much change even when the reaction is performed for 2 hours or 4 hours or more so that the product is sufficiently generated.
[0008]
Subsequently, a thermal oxidation reaction is performed at a high temperature in an oxygen stream. The oxygen gas flow can be mixed with a rare gas without any problem. The temperature is between 1100 and 1200 ° C. At too high a temperature, the product escapes. In the reaction, the liquid zinc produced in the preceding stage reacts with oxygen to produce zinc oxide crystals.
[0009]
【Example】
Example 1
A mixture of 3.0 g of zinc sulfide powder (particle size: 10 μm or less; manufactured by Aldrich) and 0.2 g of activated carbon powder (100 mesh; manufactured by Aldrich) is placed in an alumina boat, and the boat is 42 mm in outer diameter and 80 cm in length. At the center of the quartz tube. The quartz tube was placed horizontally in a resistance heating furnace. The quartz tube was capped and heated at a heating rate of 10 ° C./min to raise the temperature to 1100 ° C. At this time, argon gas was flowed at a flow rate of 80 sccm, and the temperature was maintained at this temperature for 3 hours.
[0010]
A zinc precursor was produced by the above method, and the temperature was maintained at 1100 ° C. for 2 hours while switching the argon gas to oxygen gas at the same flow rate. Then, it was cooled to room temperature at a rate of 10 ° C./min. A white product was deposited on the inner wall of the quartz tube. The product yield was 20-30% based on zinc sulfide.
[0011]
The X-ray diffraction pattern of the product is shown in FIG. Looking at the obtained diffraction peaks, the peaks well agree with those of the known hexagonal zinc oxide, and the lattice constants are a = 0.325 nm and c = 0.521 nm. Not observed.
[0012]
FIG. 2 (a) shows a photograph of a scanning electron microscope image of the product. Most of the whiskers are linear, and no particles or other shapes are observed. Most whiskers are 400 nm in diameter and 15 μm in length, but also include small amounts of whiskers having a diameter of 150 nm and a few micrometers in length.
[0013]
FIG. 2B shows a scanning electron microscope image at a high magnification, and it was found that most of the whiskers were tubular with a hollow portion. Its wall thickness is 100-150 nm.
[0014]
FIG. 3 shows the X-ray energy diffusion spectrum. Its chemical composition is composed of zinc and oxygen, the element ratio is 1: 1.05, and stoichiometric zinc oxide is produced. I understood. The lattice constants a = 0.32 nm and c = 0.52 nm from the electron diffraction pattern were the same as those of the hexagonal zinc oxide obtained from the above-mentioned X-ray diffraction pattern. A sample taken from another place showed the same value, and it was confirmed that the sample had a single crystal structure.
[0015]
FIG. 4 shows the photoluminescence vector of a tubular zinc oxide whisker at room temperature. There was a strong sharp emission peak at 381 nm and a weak broad peak at 583 nm, and it was confirmed that the peak at 381 nm coincided with the band gap of bulk zinc oxide.
[0016]
【The invention's effect】
According to the method of the present invention, a single crystal can be obtained from zinc oxide, which could be obtained only in a polycrystalline form by the conventional method. As a result, the electron mobility and the emission intensity are better than those of the polycrystalline material, so that they are expected to be greatly applied when applied to electronic devices.
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction pattern of a single-crystal tubular zinc oxide whisker.
FIG. 2A is a drawing substitute photograph showing a low-magnification scanning electron microscope image of a single-crystal tubular zinc oxide whisker. FIG. 2B is a drawing substitute photograph showing a high-magnification scanning electron microscope image of a single-crystal tubular zinc oxide whisker.
FIG. 3 is an X-ray energy diffusion spectrum of a single-crystal tubular zinc oxide whisker.
FIG. 4 is a diagram of a photoluminescence spectrum of a single-crystal tubular zinc oxide whisker at room temperature.

Claims (1)

硫化亜鉛粉末と活性炭粉末とをアルゴン気流中、1100〜1200℃に、2〜4時間加熱した後、アルゴンを酸素に切り替えて、1100〜1200℃で、1〜3時間加熱することを特徴とする単結晶のチューブ状酸化亜鉛ウィスカーの製造方法。After heating zinc sulfide powder and activated carbon powder to 1100 to 1200 ° C. for 2 to 4 hours in an argon stream, argon is switched to oxygen, and heating is performed at 1100 to 1200 ° C. for 1 to 3 hours. A method for producing a single-crystal tubular zinc oxide whisker.
JP2003091626A 2003-03-28 2003-03-28 Method for producing single crystal tubular zinc oxide whisker Expired - Lifetime JP3837540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003091626A JP3837540B2 (en) 2003-03-28 2003-03-28 Method for producing single crystal tubular zinc oxide whisker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003091626A JP3837540B2 (en) 2003-03-28 2003-03-28 Method for producing single crystal tubular zinc oxide whisker

Publications (2)

Publication Number Publication Date
JP2004299920A true JP2004299920A (en) 2004-10-28
JP3837540B2 JP3837540B2 (en) 2006-10-25

Family

ID=33404952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003091626A Expired - Lifetime JP3837540B2 (en) 2003-03-28 2003-03-28 Method for producing single crystal tubular zinc oxide whisker

Country Status (1)

Country Link
JP (1) JP3837540B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362841A (en) * 2003-06-02 2004-12-24 National Institute For Materials Science Manufacturing method of zinc sulfide nano-cable containing zinc
JP2008120674A (en) * 2007-10-18 2008-05-29 National Institute For Materials Science Zinc sulfide nano-cable
JP2008251341A (en) * 2007-03-30 2008-10-16 Nagaoka Univ Of Technology X-ray generator
CN101899708A (en) * 2010-07-23 2010-12-01 北京航空航天大学 Tetrapod-like zinc oxide/ferrite film material and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362841A (en) * 2003-06-02 2004-12-24 National Institute For Materials Science Manufacturing method of zinc sulfide nano-cable containing zinc
JP4538620B2 (en) * 2003-06-02 2010-09-08 独立行政法人物質・材料研究機構 Method for producing zinc sulfide nanocable containing zinc
JP2008251341A (en) * 2007-03-30 2008-10-16 Nagaoka Univ Of Technology X-ray generator
JP2008120674A (en) * 2007-10-18 2008-05-29 National Institute For Materials Science Zinc sulfide nano-cable
CN101899708A (en) * 2010-07-23 2010-12-01 北京航空航天大学 Tetrapod-like zinc oxide/ferrite film material and preparation method thereof

Also Published As

Publication number Publication date
JP3837540B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
Hu et al. Growth and optical properties of single-crystal tubular ZnO whiskers
Rao et al. Carbon-assisted synthesis of inorganic nanowires
Xu et al. Synthesis and characterization of high purity GaN nanowires
Zhang et al. ZnO microrod arrays grown on a curved sphere surface and their optical properties
Lu et al. Synthesis and optical properties of well-aligned ZnS nanowires on Si substrate
JP2009096700A (en) Method for producing zinc oxide fine wire in large quantity
JP2009013028A (en) Aluminum oxide-gallium oxide solid solution and method for producing the same
JP3837540B2 (en) Method for producing single crystal tubular zinc oxide whisker
KR20130012767A (en) Method of manufacturing zno nanostructures
Kim et al. Catalyst-free synthesis of ZnO nanorods by thermal oxidation of Zn films at various temperatures and their characterization
JP4431745B2 (en) Method for producing aluminum nitride nanoribbon
KR20060009734A (en) Zno nano-structure and the method of fabricating the same
JP2004182546A (en) beta-Ga2O3 NANO WHISKER AND ITS MANUFACTURING METHOD
JP3873124B2 (en) Single crystal indium oxide nanotubes containing metal indium and method for producing the same
JP2004210562A (en) Silicon carbide nanowire or silicon nitride nanowire coated with boron nitride, and production method therefor
JP2005349515A (en) Aluminum nitride nano tube whose outer wall and inner wall are covered with carbon film and manufacturing method thereof
Mensah et al. ZnO nanosquids: Branching nanowires from nanotubes and nanorods
Chen et al. Characterization of ZnO nanowires grown on Si (100) with and without Au catalyst
JP2004283961A (en) Zinc sulfide nano belt and its manufacturing method
JP3918063B2 (en) Method for producing single crystal zinc oxide nanosheet
Mousavi et al. Formation and characterization of zinc oxide nanowires grown on hexagonal-prism microstructures
JP4072622B2 (en) Method for producing single crystal β-type silicon nitride nanoribbon
JP4576604B2 (en) Method for producing single crystal indium nitride nanotube
Xue et al. Growth of GaN nanowires through nitridation Ga2O3 films deposited by electrophoresis
JP2004339020A (en) Method for manufacturing gallium nitride nanotube

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

R150 Certificate of patent or registration of utility model

Ref document number: 3837540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term