JP2004298976A - ロボット装置及びロボット装置の認識制御方法 - Google Patents
ロボット装置及びロボット装置の認識制御方法 Download PDFInfo
- Publication number
- JP2004298976A JP2004298976A JP2003092349A JP2003092349A JP2004298976A JP 2004298976 A JP2004298976 A JP 2004298976A JP 2003092349 A JP2003092349 A JP 2003092349A JP 2003092349 A JP2003092349 A JP 2003092349A JP 2004298976 A JP2004298976 A JP 2004298976A
- Authority
- JP
- Japan
- Prior art keywords
- recognition
- action
- signal
- control
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Manipulator (AREA)
Abstract
【課題】演算処理による負荷を軽減し演算処理が自身の動作に影響を与えないようにする。
【解決手段】ロボット装置の認識制御処理系として、自身の行動を決定したり行動を選択したりする行動決定部201と、行動決定部201からコマンドを受けて認識部を制御する信号を生成する認識制御部202と、例えば、このロボット装置が実行可能な各種動作のための前処理や、そのための検出処理、及び動作を実行するための認識処理を行う複数の認識部とを備え、各認識部での演算量レベルを行動決定部201からの制御信号に応じて動的に変更する。
【選択図】 図1
【解決手段】ロボット装置の認識制御処理系として、自身の行動を決定したり行動を選択したりする行動決定部201と、行動決定部201からコマンドを受けて認識部を制御する信号を生成する認識制御部202と、例えば、このロボット装置が実行可能な各種動作のための前処理や、そのための検出処理、及び動作を実行するための認識処理を行う複数の認識部とを備え、各認識部での演算量レベルを行動決定部201からの制御信号に応じて動的に変更する。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、ロボット装置及びロボット装置の認識制御方法に関し、特に、状態認識の演算量を動的に変更するロボット装置及びこのロボット装置の認識制御方法に関する。
【0002】
【従来の技術】
最近では、人間のパートナーとして生活を支援する、すなわち住環境そのほかの日常生活上の様々な場面における人的活動を支援する実用ロボットの開発が進められている。このような実用ロボットは、産業用ロボットとは異なり、人間の生活環境の様々な局面において、個々に個性の相違した人間、又は様々な環境への適応方法を自ら学習する能力を備えている。例えば、犬、猫のように4足歩行の動物の身体メカニズムやその動作を模した「ペット型」ロボット、或いは足直立歩行を行う動物の身体メカニズムや動作をモデルにしてデザインされた「人間型」又は「人間形」ロボット(Humanoid Robot)等の脚式移動ロボットは、既に実用化されつつある。
【0003】
これらの脚式移動ロボットは、動物や人間により近い身体的形状を有する程、動物や人間に近い動作が実現でき、産業用ロボットと比較してエンターテインメント性を重視した様々な動作を行うことができる。そのため、エンターテインメントロボットと呼称されることがある。エンターテインメントロボットは、他のロボットや人間とコミュニケーションを交わしたり、身振り・手振りで内部状態を表現したり、ボールを探し出して蹴ったりできる。
【0004】
例えば、このようなロボット装置は、他のロボットや人間とコミュニケーションを交わす機能を実現するために、話し相手の顔を認識する顔認識機能、色検出機能、周囲の環境を認識する環境認識機能、音声認識機能等を備えている。また、ボールを探し出して蹴る動作を実現するために、色検出機能、周囲の環境を認識する環境認識機能、距離認識機能等を備えている。このようにロボット装置は、複数の動作を重複して実行できるようにするためには、複数の認識手段を備えることが必要である。通常、これらの認識手段は、常に一定の演算量レベルで並列的に動作している。
【0005】
【発明が解決しようとする課題】
ところが、上述したようなロボット装置の認識機能は、一般的に演算量が多いため、ロボット装置の行動のバリエーションを豊かにしようと様々な認識機能を追加するとロボット装置の行動を逆に圧迫し、自律行動性を著しく低下させかねない。従来のロボット装置は、常に全ての認識機能を動作させているため、行動の状況・場面によっては、不要な認識手段が働いてリソースを占有している場合があった。
【0006】
例えば、ロボット装置は、静止しながら対話していても障害物認識を行っていたり、接触検出器を駆動させていたりする。工業的に活用されるロボット装置であれば、機能の充実化に伴うリソース不足に対しては、これを次々と補うことで対応できるが、一般家庭用のロボット装置は、新たなリソースが必要になっても追加が困難であり、機体サイズや製造コストといった限られた制約のなかで、より高度な自己表現、自律動作、状況判断に基づく行動等を実現するためにはリソースの活用が求められる。
【0007】
そこで本発明は、このような従来の実情に鑑みて提案されたものであり、認識手段における演算量を動的に変更することにより演算処理による負荷を軽減し、演算処理が自身の動作に影響を与えないロボット装置及びロボット装置に認識結果に基づく動作を実行させる際、認識処理による負荷が軽減される認識制御方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上述した目的を達成するために、本発明に係るロボット装置は、外部情報、外部からの働きかけに応じた動作及び/又は内部状態に基づく自律的動作を実行するロボット装置において、外部情報及び外部からの働きかけを検出する検出手段と、検出手段からの検出信号を演算処理し外部情報及び外部からの働きかけを認識する複数の認識手段と、認識手段の各々にて認識された結果に基づいて自身の行動を選択する行動選択手段と、行動選択手段にて選択された行動を実行するための信号を生成する運動制御手段と、行動選択手段から送られる信号に基づいて各認識手段における演算量レベルを制御する信号を生成する認識制御手段とを備えることを特徴とする。
【0009】
ここで、認識制御手段は、行動選択手段からの信号に基づいて認識手段の各々に対して個別に演算量レベルを指定する信号を送信してもよい。また、行動選択手段から一括した制御信号を受け取り、該一括した制御信号に基づいて個々の認識手段の演算量レベルを決定することもできる。
【0010】
認識手段の個々の演算量レベルが当該ロボット装置の行動に応じて予め決定され、これらがモードとして記憶された記憶手段を有し、認識制御手段は、認識手段の各々における演算量レベルをモードにて指定することもできる。
【0011】
また、上述した目的を達成するために、本発明に係るロボット装置の認識制御方法は、外部情報、外部からの働きかけを認識し、該外部情報及び働きかけに応じた動作、若しくは内部状態に基づく自律的動作を実行するロボット装置の認識制御方法において、外部情報及び外部からの働きかけを検出する検出工程と、検出工程にて検出された検出信号を演算処理し外部情報及び外部からの働きかけを認識する複数の認識工程と、複数の認識工程にて認識された結果に基づいてロボット装置の行動を選択する行動選択工程と、行動選択工程にて選択された行動を実行するための信号を生成する運動制御工程と、行動選択工程から送られる信号に基づいて認識工程のそれぞれにおける演算量レベルを制御する信号を生成する認識制御工程を有することを特徴とする。
【0012】
ここで、認識制御工程は、行動選択工程からの信号に基づいて各認識工程に対して個別に演算量レベルを指定する信号を送信してもよい。また、行動選択工程から一括した制御信号を受け取り、該一括した制御信号に基づいて各認識工程の演算量レベルを決定することもできる。
【0013】
この認識制御方法では、認識工程毎の演算量レベルが当該ロボット装置の行動に応じてモードとして予め決定されており、認識制御工程は、各認識工程における演算量レベルをモードにて指定することもできる。
【0014】
【発明の実施の形態】
本発明に係るロボット装置は、外部情報、外部からの働きかけに応じた動作及び/又は内部状態に基づく自律的動作を実行するロボット装置であって、各動作のための各種認識処理における演算量レベルを自らが実行している動作に応じて動的に変化させることによって、限られたソフトウェア資源及びハードウェア資源といったリソースを有効に活用できるようにしたロボット装置である。
【0015】
以下、本発明に係る認識制御処理系について、図面を参照して説明する。本具体例として示すロボット装置1は、認識制御処理系として図1に示す構成を備えている。認識制御処理系200は、ロボット装置自身の行動を決定したり行動を選択したりするための行動決定部201と、行動決定部201からコマンドを受けて認識部を制御する信号を生成する認識制御部202と、例えば、このロボット装置が実行可能な各種動作のための前処理や、そのための検出処理、及び動作を実行するための認識処理を行う複数の認識部2031,2032,2033,・・・,203nとを備えている。
【0016】
行動決定部201は、ロボット装置1に対する外部からの働きかけや内部状態に応じてロボット装置1の行動を決定する部分であって、実際には、外部からの働きかけや内部状態に応じて決定されるパラメータに応じて複数の行動モデルのなかからその時々にあった行動を選択する手法を採っている。そのため「行動の決定」を「行動の選択」と記す場合もある。行動決定部201は、ロボット装置1の行動を選択するほか、ロボット装置の置かれた環境や動作場面(コンテクスト)に応じて、認識制御部202に対して制御コマンドを発行する。この制御コマンドは、選択されたロボット装置1の行動に関係する認識部を効率的に動作させるよう指示するコマンドである。図1の例では、このコマンドは、行動決定部201が個々の認識部に対して演算量レベルを個別に指示するコマンドである。
【0017】
認識制御部202は、行動決定部201からの制御コマンドを受けて各認識部203に対して演算量レベルを変更する信号を送る。図1の例では、行動決定部201からのコマンドを受けて、認識部2022に対して演算量レベルの変更を指示する信号を送信している。
【0018】
認識部203は、例えばロボット装置の視覚系であれば、特定色を検出して所定の対象物を認識する構成や、ステレオ視カメラにより平面や障害物を認識する構成、またロボット装置の聴覚系であれば、マイクロフォンにて採集した外部音声から発話を抽出して音声認識する構成、話者の特徴を抽出して話者を認識する構成、音声源の方向を認識する構成等である。本具体例で示す演算量レベルとは、各認識部203における処理によってそれぞれ異なるが、画像処理(視覚系)であれば、画像サンプリングレートの変更であったり、画像処理対象とするピクセルの変更であったりする。また、音声処理(聴覚系)であれば、マイクロフォンからの音声サンプリングのオンオフやサンプリングレートの変更であったりする。
【0019】
このとき認識制御処理系200における各認識部の制御処理を図3に示す。先ず、行動決定部201は、ステップS1において、ロボット装置の置かれた環境や動作場面(コンテクスト)に応じて、各認識部203のうち制御しようとする認識部(ここでは、認識部2032)に対する制御コマンドを認識制御部202に対して通知する。ステップS2において、認識制御部202は、指示された認識部2032に対して演算量レベル変更の制御信号を送信する。ステップS3において、認識部2032は、制御信号に応じて演算量レベルを変更する。
【0020】
また、本具体例では、他の方法として、行動決定部201から認識制御部202に対して一括した制御コマンドを送ることもできる。この場合、図2に示すように、ロボット装置の行動決定部201は、認識制御部202に対して一括した制御コマンドを送信する。一括した制御コマンドとは、ロボット装置1の環境や動作場面(コンテクスト)を抽象化した信号を含んでおり、例えば、ロボット装置1が睡眠中のときは睡眠状態にあることを示す信号、歩行しているときは歩行状態にあることを示す信号等を示す。中でも、何かを探しながら歩行しているときは「歩行状態A」、会話しながら歩行しているときは「歩行状態B」のように、ロボット装置の状態のみを単純に表す情報が含まれた信号である。
【0021】
このとき認識制御処理系200における各認識部の制御処理を図4に示す。行動決定部201は、ステップS11において、ロボット装置1の環境や動作場面(コンテクスト)を抽象化した信号を含む一括制御コマンドを認識制御部202に送る。ステップS12において、認識制御部202は、行動決定部201から一括制御コマンドを受け取ると、この一括制御コマンドを認識部毎の制御信号に分解し各認識部に対して送信する。ステップS13において、個々の認識部は、制御信号に応じて演算量レベルを変更する。
【0022】
特に、図2及び図4に示す例の場合、ロボット装置1のコンテクストに応じた各認識部の演算量レベルを制御モードとして予めメモリに記憶しておき、行動決定部201は、認識制御部202に対してこの制御モードを指定するようにもできる。
【0023】
例えば、「睡眠モード」時には、視覚系の認識部、聴覚系の認識部、触覚系の認識部の演算量レベルを全て0%にしたり、「対話モード」時には、視覚系の認識部のなかでも相手の顔認識を行う認識部の演算量レベルを100%、障害物認識を行う認識部の演算量レベルを20%、聴覚系の認識部の演算量レベルを100%のようにすることが挙げられる。
【0024】
また、ロボット装置1の機体の状態に応じてモードを決めることもできる。例えば、ロボット装置1の視点が足下付近にある場合の「視線モード」に対応して、相手の顔認識を行う顔認識の演算量レベルを30%と決めたり、機能が歩行のみに集中しているような場合を「歩行モード」とし、このとき聴覚系の認識部の演算量レベルを10%に落とすようにしたりすることが挙げられる。
【0025】
なお、ここで、演算量レベルが100%,30%なる表現は、個々に複雑な認識処理を実行している認識部の動作を抽象的に表現したものであって、実際は、音声及び画像のサンプリングレートを通常処理に対して高める若しくは減じることであったり、画像処理におけるフレームレートを通常処理に対して高める若しくは減じることであったりする。
【0026】
図1及び図2にて説明したように、ロボット装置1の行動に応じて、必要な認識部の演算量レベル(負荷)を動的に変更することによって、現在選択されている行動下では必要としていない認識部の演算量レベルを低下させ、重要な認識部の演算量レベルを保持又は高める。これにより、ロボット装置1のリソースを効率的に使用できるため、限られたリソースを活用して行動のバリエーションをより豊かにすることができる。
【0027】
以下、本発明の具体例として示す2足歩行タイプのロボット装置について、図面を参照して詳細に説明する。
【0028】
図5に示すように、ロボット装置1は、体幹部ユニット2の所定の位置に頭部ユニット3が連結されるとともに、左右2つの腕部ユニット4R/Lと、左右2つの脚部ユニット5R/Lが連結されて構成されている(ただし、R及びLの各々は、右及び左の各々を示す接尾辞である。以下において同じ。)。この人間型のロボット装置は、住環境そのほかの日常生活上の様々な場面における人的活動を支援する実用ロボットであり、内部状態(怒り、悲しみ、喜び、楽しみ等)に応じて行動できるほか、人間が行う基本的な動作を表出できるエンターテインメントロボットである。
【0029】
図6に、このロボット装置1の関節自由度構成を示す。頭部ユニット3を支持する首関節は、首関節ヨー軸101と、首関節ピッチ軸102と、首関節ロール軸103という3自由度を有している。
【0030】
また、上肢を構成する各々の腕部ユニット4R/Lは、肩関節ピッチ軸107と、肩関節ロール軸108と、上腕ヨー軸109と、肘関節ピッチ軸110と、前腕ヨー軸111と、手首関節ピッチ軸112と、手首関節ロール軸113と、手部114とで構成される。手部114は、実際には、複数本の指を含む多関節・多自由度構造体である。ただし、手部114の動作は、ロボット装置1の姿勢制御や歩行制御に対する寄与や影響が少ないので、本明細書ではゼロ自由度と仮定する。したがって、各腕部は7自由度を有するとする。
【0031】
また、体幹部ユニット2は、体幹ピッチ軸104と、体幹ロール軸105と、体幹ヨー軸106という3自由度を有する。
【0032】
また、下肢を構成する各々の脚部ユニット5R/Lは、股関節ヨー軸115と、股関節ピッチ軸116と、股関節ロール軸117と、膝関節ピッチ軸118と、足首関節ピッチ軸119と、足首関節ロール軸120と、足部121とで構成される。本明細書中では、股関節ピッチ軸116と股関節ロール軸117の交点は、ロボット装置1の股関節位置を定義する。人体の足部121は、実際には多関節・多自由度の足底を含んだ構造体であるが、ロボット装置1の足底は、ゼロ自由度とする。したがって、各脚部は、6自由度で構成される。
【0033】
以上を総括すれば、ロボット装置1全体としては、合計で3+7×2+3+6×2=32自由度を有することになる。ただし、エンターテインメント向けのロボット装置1が必ずしも32自由度に限定されるわけではない。設計・制作上の制約条件や要求仕様等に応じて、自由度すなわち関節数を適宜増減することができることはいうまでもない。
【0034】
上述したようなロボット装置1がもつ各自由度は、実際にはアクチュエータを用いて実装される。外観上で余分な膨らみを排してヒトの自然体形状に近似させること、2足歩行という不安定構造体に対して姿勢制御を行うことなどの要請から、アクチュエータは小型且つ軽量であることが好ましい。
【0035】
図7には、ロボット装置1の制御システム構成を模式的に示している。同図に示すように、ロボット装置1は、ヒトの四肢を表現した体幹部ユニット2,頭部ユニット3,腕部ユニット4R/L,脚部ユニット5R/Lと、各ユニット間の協調動作を実現するための適応制御を行う制御ユニット10とで構成される。
【0036】
ロボット装置1全体の動作は、制御ユニット10によって統括的に制御される。制御ユニット10は、CPU(Central Processing Unit)や、DRAM、フラッシュROM等の主要回路コンポーネント(図示しない)で構成される主制御部11と、電源回路やロボット装置1の各構成要素とのデータやコマンドの授受を行うインターフェイス(何れも図示しない)などを含んだ周辺回路12とで構成される。
【0037】
また、図1及び図2に示したロボット装置1の認識制御処理系も制御ユニット10に含まれる。若しくは、これらは制御ユニット10にて実現される一機能であってもよい。例えば、行動決定部は、主制御部11の一機能として用意され、認識制御部202及び各認識部203は、周辺回路12に含まれるものとする。ロボット装置1における認識部制御のためのさらに具体的な構成に関しては後述する。
【0038】
本発明を実現するうえで、この制御ユニット10の設置場所は、特に限定されない。図7では体幹部ユニット2に搭載されているが、頭部ユニット3に搭載してもよい。或いは、ロボット装置外に制御ユニット10を配備して、ロボット装置1の機体とは有線又は無線で交信するようにしてもよい。
【0039】
図6に示したロボット装置1内の各関節自由度は、それぞれに対応するアクチュエータによって実現される。すなわち、頭部ユニット3には、首関節ヨー軸101、首関節ピッチ軸102、首関節ロール軸103の各々を表現する首関節ヨー軸アクチュエータA2、首関節ピッチ軸アクチュエータA3、首関節ロール軸アクチュエータA4が配設されている。
【0040】
また、頭部ユニット3には、外部の状況を撮像するためのCCD(Charge Coupled Device)カメラが設けられているほか、前方に位置する物体までの距離を測定するための距離センサ、外部音を集音するためのマイクロフォン、音声を出力するためのスピーカ、使用者からの「撫でる」や「叩く」といった物理的な働きかけにより受けた圧力を検出するためのタッチセンサ等が配設されている。
【0041】
また、体幹部ユニット2には、体幹ピッチ軸104、体幹ロール軸105、体幹ヨー軸106の各々を表現する体幹ピッチ軸アクチュエータA5、体幹ロール軸アクチュエータA6、体幹ヨー軸アクチュエータA7が配設されている。また、体幹部ユニット2には、このロボット装置1の起動電源となるバッテリを備えている。このバッテリは、充放電可能な電池によって構成されている。
【0042】
また、腕部ユニット4R/Lは、上腕ユニット41R/Lと、肘関節ユニット42R/Lと、前腕ユニット43R/Lに細分化されるが、肩関節ピッチ軸107、肩関節ロール軸108、上腕ヨー軸109、肘関節ピッチ軸110、前腕ヨー軸111、手首関節ピッチ軸112、手首関節ロール軸113の各々表現する肩関節ピッチ軸アクチュエータA8、肩関節ロール軸アクチュエータA9、上腕ヨー軸アクチュエータA10、肘関節ピッチ軸アクチュエータA11、肘関節ロール軸アクチュエータA12、手首関節ピッチ軸アクチュエータA13、手首関節ロール軸アクチュエータA14が配備されている。
【0043】
また、脚部ユニット5R/Lは、大腿部ユニット51R/Lと、膝ユニット52R/Lと、脛部ユニット53R/Lに細分化されるが、股関節ヨー軸115、股関節ピッチ軸116、股関節ロール軸117、膝関節ピッチ軸118、足首関節ピッチ軸119、足首関節ロール軸120の各々を表現する股関節ヨー軸アクチュエータA16、股関節ピッチ軸アクチュエータA17、股関節ロール軸アクチュエータA18、膝関節ピッチ軸アクチュエータA19、足首関節ピッチ軸アクチュエータA20、足首関節ロール軸アクチュエータA21が配備されている。各関節に用いられるアクチュエータA2,A3・・・は、より好ましくは、ギア直結型で旦つサーボ制御系をワンチップ化してモータ・ユニット内に搭載したタイプの小型ACサーボ・アクチュエータで構成することができる。
【0044】
体幹部ユニット2、頭部ユニット3、各腕部ユニット4R/L、各脚部ユニット5R/Lなどの各機構ユニット毎に、アクチュエータ駆動制御部の副制御部20,21,22R/L,23R/Lが配備されている。さらに、各脚部ユニット5R/Lの足底が着床したか否かを検出する接地確認センサ30R/Lを装着するとともに、体幹部ユニット2内には、姿勢を計測する姿勢センサ31を装備している。
【0045】
接地確認センサ30R/Lは、例えば足底に設置された近接センサ又はマイクロ・スイッチなどで構成される。また、姿勢センサ31は、例えば、加速度センサとジャイロ・センサの組み合わせによって構成される。
【0046】
接地確認センサ30R/Lの出力によって、歩行・走行などの動作期間中において、左右の各脚部が現在立脚又は遊脚何れの状態であるかを判別することができる。また、姿勢センサ31の出力により、体幹部分の傾きや姿勢を検出することができる。
【0047】
主制御部11は、各センサ30R/L,31の出力に応答して制御目標をダイナミックに補正することができる。より具体的には、副制御部20,21,22R/L,23R/Lの各々に対して適応的な制御を行い、ロボット装置1の上肢、体幹、及び下肢が協調して駆動する全身運動パターンを実現できる。
【0048】
ロボット装置1の機体上での全身運動は、足部運動、ZMP(Zero Moment Point)軌道、体幹運動、上肢運動、腰部高さなどを設定するとともに、これらの設定内容にしたがった動作を指示するコマンドを各副制御部20,21,22R/L,23R/Lに転送する。そして、各々の副制御部20,21,・・・等では、主制御部11からの受信コマンドを解釈して、各アクチュエータA2,A3・・・等に対して駆動制御信号を出力する。ここでいう「ZMP」とは、歩行中の床反力によるモーメントがゼロとなる床面上の点のことであり、また、「ZMP軌道」とは、例えばロボット装置1の歩行動作期間中にZMPが動く軌跡を意味する。なお、ZMPの概念並びにZMPを歩行ロボットの安定度判別規範に適用する点については、Miomir Vukobratovic著“LEGGED LOCOMOTION ROBOTS”(加藤一郎外著『歩行ロボットと人工の足』(日刊工業新聞社))に記載されている。
【0049】
以上のように、ロボット装置1は、各々の副制御部20,21,・・・等が、主制御部11からの受信コマンドを解釈して、各アクチュエータA2,A3・・・に対して駆動制御信号を出力し、各ユニットの駆動を制御している。これにより、ロボット装置1は、目標の姿勢に安定して遷移し、安定した姿勢で歩行できる。
【0050】
また、ロボット装置1における制御ユニット10では、上述したような姿勢制御のほかに、加速度センサ、タッチセンサ、接地確認センサ等の各種センサ、及びCCDカメラからの画像情報、マイクロフォンからの音声情報等を統括して処理している。制御ユニット10では、図示しないが加速度センサ、ジャイロ・センサ、タッチセンサ、距離センサ、マイクロフォン、スピーカなどの各種センサ、各アクチュエータ、CCDカメラ及びバッテリが各々対応するハブを介して主制御部11と接続されている。
【0051】
主制御部11は、上述の各センサから供給されるセンサデータや画像データ及び音声データを順次取り込み、これらをそれぞれ内部インターフェイスを介してDRAM内の所定位置に順次格納する。また、主制御部11は、バッテリから供給されるバッテリ残量を表すバッテリ残量データを順次取り込み、これをDRAM内の所定位置に格納する。DRAMに格納された各センサデータ、画像データ、音声データ及びバッテリ残量データは、主制御部11がこのロボット装置1の動作制御を行う際に利用される。
【0052】
主制御部11は、ロボット装置1の電源が投入された初期時、制御プログラムを読み出し、これをDRAMに格納する。また、主制御部11は、上述のように主制御部11よりDRAMに順次格納される各センサデータ、画像データ、音声データ及びバッテリ残量データに基づいて自己及び周囲の状況や、使用者からの指示及び働きかけの有無などを判断する。さらに、主制御部11は、この判断結果及びDRAMに格納した制御プログラムに基づいて自己の状況に応じて行動を決定するとともに、当該決定結果に基づいて必要なアクチュエータを駆動させることによりロボット装置1に、「身振り」、「手振り」といった行動をとらせる。
【0053】
このロボット装置1の認識制御処理系200について、図8を用いて説明する。上述したように、図1及び図2にて示した認識制御処理系200は、制御ユニット10に含まれている。図8には、制御ユニット10に備えられる各認識部の具体例が示されている。
【0054】
制御ユニット10は、視覚系認識ユニット151と、聴覚系認識ユニット152と、触覚系認識ユニット153と、これらユニットにおける認識結果に応じて行動を選択する行動選択部154とを備えている。行動選択部154は、選択された行動に関する情報を運動制御部155に対して送る。運動制御部155は、各アクチュエータ1561,1562,1563,・・・,156nに対して、これらを実際に駆動するための駆動信号を送る。各アクチュエータが駆動信号にしたがって駆動することにより、ロボット装置の実際の動作が表出される。ここで、行動選択部154は、選択した行動に応じて制御コマンドを認識制御部157に送信する。認識制御部157では、受け取った制御コマンドによって、各認識部を制御する信号を認識部に対してフィードバックしている(図中点線矢印)。なお、図8における行動選択部154は、図1及び図2における行動決定部201に相当し、認識制御部157は、認識制御部202に相当する。また、アクチュエータ1561,1562,・・・は、図7に示すアクチュエータA1,A2,・・・に相当する。
【0055】
視覚系認識ユニット151は、ロボット装置の目に相当しステレオ画像を撮像できるCCDカメラ161a,161bを備えている。また、このCCDカメラ161a,161bによって撮像された撮像データを入力し顔部分を検出する顔検出部162と、検出された顔部分の画像データからこの顔が誰のものかを認識する顔認識部163とからなる顔認識ユニット164を備えている。
【0056】
また、視覚系認識ユニット151は、CCDカメラ161a,161bから撮像データを入力しステレオ視により目標物までの距離を計測する距離計測部165と、ステレオ視画像に基づいてロボット装置周囲の足場平面を認識する平面検出及び障害物検出部166とからなる環境認識ユニット167を備えている。
【0057】
さらに、視覚系認識ユニット151は、CCDカメラ161a,161bによって撮像された画像データを入力し画像中の色を検出する色検出部168と、色検出部168によって検出された特徴色からランドマークを検出するランドマーク検出部169と、また、色検出部168によって検出された特徴色から周囲と肌の色とを認識する肌検出部170とからなる色認識ユニット171とを備えている。
【0058】
聴覚系認識ユニット152は、ロボット装置1の耳に相当し、外部音声を採集するスピーカ172と、採集された音声データから発話を検出する発話検出部173と、検出された発話か音声及び発話内容を認識する音声認識部174と、音源若しくは話者の方向を認識する方向認識部175と、検出された発話から話者を識別する話者識別部176とを備えている。
【0059】
また、触覚系認識ユニット153は、使用者からの「撫でる」や「叩く」といった物理的な働きかけにより受けた圧力を検出するためのタッチセンサ、ロボット装置1の動きを検出するための加速度センサ、ジャイロ・センサといったセンサ類1801,1802,・・・,180nと、これらセンサ180における検出結果に基づいて接触を認識する接触認識部177とを備える。
【0060】
このような構成を有する制御ユニット10における認識制御処理としては、例えば、「睡眠モード」時には、視覚系認識ユニット151、聴覚系認識ユニット152、触覚系認識ユニット153における各認識部の演算量レベルを全て0%にする。
【0061】
また、「対話モード」時には、視覚系の認識部のなかでも相手の顔認識を行う顔認識ユニット164の演算量レベルを100%、障害物認識を行う環境認識ユニット167の演算量レベルを20%、聴覚系認識ユニット152の演算量レベルを100%のようにする。
【0062】
このように、ロボット装置1は、行動のコンテクストに応じて、認識部における演算量レベルを変更することで認識部の負荷を変化させることができるため、必要な演算処理以外を排除できる。これにより、各認識部の処理速度を向上することができ、例えば、物体をトラッキングする等の時系列認識を行う場合に認識精度が向上する。
【0063】
続いて、ロボット装置1における制御プログラムのソフトウェア構成例について図9乃至図14を用いて説明する。ロボット装置1による各種の表現動作は、ここに例示するソフトウェア構成によって実現される。また、認識制御処理系200として示す動作を以下に例示するソフトウェア構成によって実現することもできる。
【0064】
図9において、デバイス・ドライバ・レイヤ40は、制御プログラムの最下位層に位置し、複数のデバイス・ドライバからなるデバイス・ドライバ・セット41から構成されている。この場合、各デバイス・ドライバは、CCDカメラやタイマ等の通常のコンピュータで用いられるハードウェアに直接アクセスすることを許されたオブジェクトであり、対応するハードウェアからの割り込みを受けて処理を行う。
【0065】
また、ロボティック・サーバ・オブジェクト42は、デバイス・ドライバ・レイヤ40の最下位層に位置し、例えば上述の各種センサやアクチュエータA2,A3・・・等のハードウェアにアクセスするためのインターフェイスを提供するソフトウェア群でなるバーチャル・ロボット43と、電源の切換えなどを管理するソフトウェア群でなるパワーマネージャ44と、他の種々のデバイス・ドライバを管理するソフトウェア群でなるデバイス・ドライバ・マネージャ45と、ロボット装置1の機構を管理するソフトウェア群でなるデザインド・ロボット46とから構成されている。
【0066】
マネージャ・オブジェクト47は、オブジェクト・マネージャ48及びサービス・マネージャ49から構成されている。オブジェクト・マネージャ48は、ロボティック・サーバ・オブジェクト42、ミドル・ウェア・レイヤ50、及びアプリケーション・レイヤ51に含まれる各ソフトウェア群の起動や終了を管理するソフトウェア群であり、サービス・マネージャ49は、メモリカードに格納されたコネクションファイルに記述されている各オブジェクト間の接続情報に基づいて各オブジェクトの接続を管理するソフトウェア群である。
【0067】
ミドル・ウェア・レイヤ50は、ロボティック・サーバ・オブジェクト42の上位層に位置し、画像処理や音声処理などのこのロボット装置1の基本的な機能を提供するソフトウェア群から構成されている。また、アプリケーション・レイヤ51は、ミドル・ウェア・レイヤ50の上位層に位置し、当該ミドル・ウェア・レイヤ50を構成する各ソフトウェア群によって処理された処理結果に基づいてロボット装置1の行動を決定するためのソフトウェア群から構成されている。
【0068】
なお、ミドル・ウェア・レイヤ50及びアプリケーション・レイヤ51の具体なソフトウェア構成をそれぞれ図10に示す。
【0069】
ミドル・ウェア・レイヤ50は、図10に示すように、騒音検出用、温度検出用、明るさ検出用、音階認識用、距離検出用、姿勢検出用、タッチセンサ用、動き検出用及び色認識用の各信号処理モジュール60〜68並びに入力セマンティクスコンバータモジュール69などを有する認識系70と、出力セマンティクスコンバータモジュール78並びに姿勢管理用、トラッキング用、モーション再生用、歩行用、転倒復帰用、LED点灯用及び音再生用の各信号処理モジュール71〜77などを有する出力系79とから構成されている。
【0070】
認識系70の各信号処理モジュール60〜68は、ロボティック・サーバ・オブジェクト42のバーチャル・ロボット43によりDRAMから読み出される各センサデータや画像データ及び音声データのうちの対応するデータを取り込み、当該データに基づいて所定の処理を施して、処理結果を入力セマンティクスコンバータモジュール69に与える。ここで、例えば、バーチャル・ロボット43は、所定の通信規約によって、信号の授受或いは変換をする部分として構成されている。
【0071】
入力セマンティクスコンバータモジュール69は、これら各信号処理モジュール60〜68から与えられる処理結果に基づいて、「うるさい」、「暑い」、「明るい」、「ボールを検出した」、「転倒を検出した」、「撫でられた」、「叩かれた」、「ドミソの音階が聞こえた」、「動く物体を検出した」又は「障害物を検出した」などの自己及び周囲の状況や、使用者からの指令及び働きかけを認識し、認識結果をアプリケーション・レイヤ51に出力する。
【0072】
アプリケーション・レイヤ51は、図11に示すように、行動モデルライブラリ80、行動切換モジュール81、学習モジュール82、感情モデル83及び本能モデル84の5つのモジュールから構成されている。
【0073】
行動モデルライブラリ80には、図12に示すように、「転倒復帰する」、「障害物を回避する場合」、「感情を表現する場合」、「ボールを検出した場合」などの予め選択されたいくつかの条件項目にそれぞれ対応させて、それぞれ独立した行動モデルが設けられている。
【0074】
そして、これら行動モデルは、図11に示すように、それぞれ入力セマンティクスコンバータモジュール69から認識結果が与えられたときや、最後の認識結果が与えられてから一定時間が経過したときなどに、必要に応じて後述のように感情モデル83に保持されている対応する情動のパラメータ値や、本能モデル84に保持されている対応する欲求のパラメータ値を参照しながら続く行動をそれぞれ決定し、決定結果を行動切換モジュール81に出力する。
【0075】
なお、この具体例の場合、各行動モデルは、次の行動を決定する手法として、図13に示すような1つのノード(状態)NODE0〜NODEnから他のどのノードNODE0〜NODEnに遷移するかを各ノードNODE0〜NODEnの間を接続するアークARC1〜ARCn1に対してそれぞれ設定された遷移確率P1〜Pnに基づいて確率的に決定する有限確率オートマトンと呼ばれるアルゴリズムを用いる。
【0076】
具体的に、各行動モデルは、それぞれ自己の行動モデルを形成するノードNODE0〜NODEnにそれぞれ対応させて、これらノードNODE0〜NODEn毎に図14に示すような状態遷移表90を有している。
【0077】
この状態遷移表90では、そのノードNODE0〜NODEnにおいて遷移条件とする入力イベント(認識結果)が「入力イベント名」の列に優先順に列記され、その遷移条件についてのさらなる条件が「データ名」及び「データ範囲」の列における対応する行に記述されている。
【0078】
したがって、図14の状態遷移表90で表されるノードNODE100では、「ボールを検出(BALL)」という認識結果が与えられた場合に、当該認識結果とともに与えられるそのボールの「大きさ(SIZE)」が「0から1000」の範囲であることや、「障害物を検出(OBSTACLE)」という認識結果が与えられた場合に、当該認識結果とともに与えられるその障害物までの「距離(DISTANCE)」が「0から100」の範囲であることが他のノードに遷移するための条件となっている。
【0079】
また、このノードNODE100では、認識結果の入力がない場合においても、行動モデルが周期的に参照する感情モデル83及び本能モデル84にそれぞれ保持された各情動及び各欲求のパラメータ値のうち、感情モデル83に保持された「喜び(Joy)」、「驚き(Surprise)」又は「悲しみ(Sadness)」の何れかのパラメータ値が「50から100」の範囲であるときには他のノードに遷移することができるようになっている。
【0080】
また、状態遷移表90では、「他のノードヘの遷移確率」の欄における「遷移先ノード」の行にそのノードNODE0〜NODEnから遷移できるノード名が列記されているとともに、「入力イベント名」、「データ名」及び「データの範囲」の列に記述された全ての条件が揃ったときに遷移できるほかの各ノードNODE0〜NODEnへの遷移確率が「他のノードヘの遷移確率」の欄内の対応する箇所にそれぞれ記述され、そのノードNODE0〜NODEnに遷移する際に出力すべき行動が「他のノードヘの遷移確率」の欄における「出力行動」の行に記述されている。なお、「他のノードヘの遷移確率」の欄における各行の確率の和は100[%]となっている。
【0081】
したがって、図14の状態遷移表90で表されるノードNODE100では、例えば「ボールを検出(BALL)」し、そのボールの「SIZE(大きさ)」が「0から1000」の範囲であるという認識結果が与えられた場合には、「30[%]」の確率で「ノードNODE120(node 120)」に遷移でき、そのとき「ACTION1」の行動が出力されることとなる。
【0082】
各行動モデルは、それぞれこのような状態遷移表90として記述されたノードNODE0〜NODEnが幾つも繋がるようにして構成されており、入力セマンティクスコンバータモジュール69から認識結果が与えられたときなどに、対応するノードNODE0〜NODEnの状態遷移表を利用して確率的に次の行動を決定し、決定結果を行動切換モジュール81に出力するようになされている。
【0083】
図11に示す行動切換モジュール81は、行動モデルライブラリ80の各行動モデルからそれぞれ出力される行動のうち、予め定められた優先順位の高い行動モデルから出力された行動を選択し、当該行動を実行すべき旨のコマンド(以下、行動コマンドという。)をミドル・ウェア・レイヤ50の出力セマンティクスコンバータモジュール78に送出する。なお、本具体例では、図12にて下側に表記された行動モデルほど優先順位が高く設定されている。
【0084】
また、行動切換モジュール81は、行動完了後に出力セマンティクスコンバータモジュール78から与えられる行動完了情報に基づいて、その行動が完了したことを学習モジュール82、感情モデル83及び本能モデル84に通知する。
【0085】
一方、学習モジュール82は、入力セマンティクスコンバータモジュール69から与えられる認識結果のうち、「叩かれた」や「撫でられた」など、使用者からの働きかけとして受けた教示の認識結果を入力する。
【0086】
そして、学習モジュール82は、この認識結果及び行動切換えモジュール71からの通知に基づいて、「叩かれた(叱られた)」ときにはその行動の発現確率を低下させ、「撫でられた(誉められた)」ときにはその行動の発現確率を上昇させるように、行動モデルライブラリ70における対応する行動モデルの対応する遷移確率を変更する。
【0087】
他方、感情モデル83は、「喜び(Joy)」、「悲しみ(Sadness)」、「怒り(Anger)」、「驚き(Surprise)」、「嫌悪(Disgust)」及び「恐れ(Fear)」の合計6つの情動について、各情動毎にその情動の強さを表すパラメータを保持している。そして、感情モデル83は、これら各情動のパラメータ値を、それぞれ入力セマンティクスコンバータモジュール69から与えられる「叩かれた」及び「撫でられた」などの特定の認識結果や、経過時間及び行動切換モジュール81からの通知などに基づいて周期的に更新する。
【0088】
具体的には、感情モデル83は、入力セマンティクスコンバータモジュール69から与えられる認識結果と、そのときのロボット装置1の行動と、前回更新してからの経過時間となどに基づいて所定の演算式により算出されるそのときのその情動の変動量をΔE[t]、現在のその情動のパラメータ値をE[t]、その情動の感度を表す係数をkeとして、(1)式によって次の周期におけるその情動のパラメータ値E[t+1]を算出し、これを現在のその情動のパラメータ値E[t]と置き換えるようにしてその情動のパラメータ値を更新する。また、感情モデル83は、これと同様にして全ての情動のパラメータ値を更新する。
【0089】
【数1】
【0090】
なお、各認識結果や出力セマンティクスコンバータモジュール78からの通知が各情動のパラメータ値の変動量ΔE[t]にどの程度の影響を与えるかは予め決められており、例えば「叩かれた」といった認識結果は「怒り」の情動のパラメータ値の変動量ΔE[t]に大きな影響を与え、「撫でられた」といった認識結果は「喜び」の情動のパラメータ値の変動量ΔE[t]に大きな影響を与えるようになっている。
【0091】
ここで、出力セマンティクスコンバータモジュール78からの通知とは、いわゆる行動のフィードバック情報(行動完了情報)であり、行動の出現結果の情報であり、感情モデル83は、このような情報によっても感情を変化させる。これは、例えば、「叫ぶ」といった行動により怒りの感情レベルが下がるといったようなことである。なお、出力セマンティクスコンバータモジュール78からの通知は、上述した学習モジュール82にも入力されており、学習モジュール82は、その通知に基づいて行動モデルの対応する遷移確率を変更する。
【0092】
なお、行動結果のフィードバックは、行動切換モジュール81の出力(感情が付加された行動)によりなされるものであってもよい。
【0093】
一方、本能モデル84は、「運動欲(exercise)」、「愛情欲(affection)」、「食欲(appetite)」及び「好奇心(curiosity)」の互いに独立した4つの欲求について、これら欲求毎にその欲求の強さを表すパラメータを保持している。そして、本能モデル84は、これらの欲求のパラメータ値を、それぞれ入力セマンティクスコンバータモジュール69から与えられる認識結果や、経過時間及び行動切換モジュール81からの通知などに基づいて周期的に更新する。
【0094】
具体的には、本能モデル84は、「運動欲」、「愛情欲」及び「好奇心」については、認識結果、経過時間及び出力セマンティクスコンバータモジュール78からの通知などに基づいて所定の演算式により算出されるそのときのその欲求の変動量をΔI[k]、現在のその欲求のパラメータ値をI[k]、その欲求の感度を表す係数kiとして、所定周期で(2)式を用いて次の周期におけるその欲求のパラメータ値I[k+1]を算出し、この演算結果を現在のその欲求のパラメータ値I[k]と置き換えるようにしてその欲求のパラメータ値を更新する。また、本能モデル84は、これと同様にして「食欲」を除く各欲求のパラメータ値を更新する。
【0095】
【数2】
【0096】
なお、認識結果及び出力セマンティクスコンバータモジュール78からの通知などが各欲求のパラメータ値の変動量ΔI[k]にどの程度の影響を与えるかは予め決められており、例えば出力セマンティクスコンバータモジュール78からの通知は、「疲れ」のパラメータ値の変動量ΔI[k]に大きな影響を与えるようになっている。
【0097】
なお、本具体例では、各情動及び各欲求(本能)のパラメータ値がそれぞれ0から100までの範囲で変動するように規制されており、また係数ke、kiの値も各情動及び各欲求毎に個別に設定されている。
【0098】
一方、ミドル・ウェア・レイヤ50の出力セマンティクスコンバータモジュール78は、図10に示すように、上述のようにしてアプリケーション・レイヤ51の行動切換モジュール81から与えられる「前進」、「喜ぶ」、「鳴く」又は「トラッキング(ボールを追いかける)」といった抽象的な行動コマンドを出力系79の対応する信号処理モジュール71〜77に与える。
【0099】
そしてこれら信号処理モジュール71〜77は、行動コマンドが与えられると当該行動コマンドに基づいて、その行動をするために対応するアクチュエータに与えるべきサーボ指令値や、スピーカから出力する音の音声データ及び又はLEDに与える駆動データを生成し、これらのデータをロボティック・サーバ・オブジェクト42のバーチャル・ロボット43及び信号処理回路を順次介して対応するアクチュエータ又はスピーカ又はLEDに順次送出する。
【0100】
したがって、ロボット装置1は、上述した制御プログラムに基づいて、自己(内部)及び周囲(外部)の状況や、使用者からの指示及び働きかけに応じた自律的な行動ができる。
【0101】
本具体例として示すロボット装置1では、行動切換モジュール81が行動モデルライブラリのなかから選択した(切り換えた)行動に応じて、認識係70を制御していることになる。
【0102】
上述したように、ロボット装置1によれば、演算処理が自身の動作に影響を与えることなく、各動作のための各種認識処理における演算量レベルを自らが実行している動作に応じて動的に変化させることによって、演算処理による負荷を軽減し、限られたソフトウェア資源及びハードウェア資源といったリソースを有効に活用できる。
【0103】
上述したロボット装置1の制御プログラムは、このロボット装置が読取可能な形式で記録された記録媒体を介して提供される。制御プログラムを記録する記録媒体としては、磁気読取方式の記録媒体(例えば、磁気テープ、フレキシブルディスク、磁気カード)、光学読取方式の記録媒体(例えば、CD−ROM、MO、CD−R、DVD)等が考えられる。記録媒体には、半導体メモリ(いわゆるメモリカード(矩形型、正方形型など形状は問わない。)、ICカード)等の記憶媒体も含まれる。また、制御プログラムは、いわゆるインターネット等を介して提供されてもよい。
【0104】
これらの制御プログラムは、専用の読込ドライバ装置、又はパーソナルコンピュータ等を介して再生され、有線又は無線接続によってロボット装置1に伝送されて読み込まれる。また、ロボット装置1は、半導体メモリ、又はICカード等の小型化された記憶媒体のドライブ装置を備える場合、これら記憶媒体から制御プログラムを直接読み込むこともできる。
【0105】
【発明の効果】
以上詳細に説明したように、本発明に係るロボット装置は、認識制御手段によって、行動選択手段から送られる信号に基づいて各認識手段における演算量レベルを制御する信号を生成することにより、演算処理による認識手段の負荷を軽減し、演算処理が自身の動作に悪影響を与えないようにできる。また、各動作のための各種認識処理における演算量レベルを自らが実行している動作に応じて動的に変化させることによって、限られたソフトウェア資源及びハードウェア資源といったリソースを有効に活用できる。
【0106】
また、本発明に係るロボット装置の認識制御方法は、認識制御工程にて、行動選択工程から送られる信号に基づいて認識工程のそれぞれにおける演算量レベルを制御する信号を生成することにより、認識工程における演算処理の負荷を軽減し、演算処理がロボット装置の動作に悪影響を与えないようにできる。また、各動作のための各種認識処理における演算量レベルを自らが実行している動作に応じて動的に変化させることによって、限られたソフトウェア資源及びハードウェア資源といったリソースを有効に活用できる。
【図面の簡単な説明】
【図1】本発明の具体例として示す認識制御処理系を説明する構成図である。
【図2】上記認識制御処理系において、行動決定部から一括した制御コマンドが送られる場合を説明する構成図である。
【図3】上記図1の認識制御処理を説明するフローチャートである。
【図4】上記図2の認識制御処理を説明するフローチャートである。
【図5】本発明の具体例として示すロボット装置の外観を説明する斜視図である。
【図6】同ロボット装置の自由度構成モデルを模式的に示す図である。
【図7】同ロボット装置の回路構成を示すブロック図である。
【図8】同ロボット装置の制御ユニットに備えられる各認識部の具体例を説明する構成図である。
【図9】同ロボット装置のソフトウェア構成を示すブロック図である。
【図10】同ロボット装置のソフトウェア構成におけるミドル・ウェア・レイヤの構成を示すブロック図である。
【図11】同ロボット装置のソフトウェア構成におけるアプリケーション・レイヤの構成を示すブロック図である。
【図12】アプリケーション・レイヤの行動モデルライブラリの構成を示すブロック図である。
【図13】同ロボット装置の行動決定のための情報となる有限確率オートマトンを説明する図である。
【図14】有限確率オートマトンの各ノードに用意された状態遷移表を示す図である。
【符号の説明】
1 ロボット装置、200 認識制御処理系、201 行動決定部、202 認識制御部、203 認識部
【発明の属する技術分野】
本発明は、ロボット装置及びロボット装置の認識制御方法に関し、特に、状態認識の演算量を動的に変更するロボット装置及びこのロボット装置の認識制御方法に関する。
【0002】
【従来の技術】
最近では、人間のパートナーとして生活を支援する、すなわち住環境そのほかの日常生活上の様々な場面における人的活動を支援する実用ロボットの開発が進められている。このような実用ロボットは、産業用ロボットとは異なり、人間の生活環境の様々な局面において、個々に個性の相違した人間、又は様々な環境への適応方法を自ら学習する能力を備えている。例えば、犬、猫のように4足歩行の動物の身体メカニズムやその動作を模した「ペット型」ロボット、或いは足直立歩行を行う動物の身体メカニズムや動作をモデルにしてデザインされた「人間型」又は「人間形」ロボット(Humanoid Robot)等の脚式移動ロボットは、既に実用化されつつある。
【0003】
これらの脚式移動ロボットは、動物や人間により近い身体的形状を有する程、動物や人間に近い動作が実現でき、産業用ロボットと比較してエンターテインメント性を重視した様々な動作を行うことができる。そのため、エンターテインメントロボットと呼称されることがある。エンターテインメントロボットは、他のロボットや人間とコミュニケーションを交わしたり、身振り・手振りで内部状態を表現したり、ボールを探し出して蹴ったりできる。
【0004】
例えば、このようなロボット装置は、他のロボットや人間とコミュニケーションを交わす機能を実現するために、話し相手の顔を認識する顔認識機能、色検出機能、周囲の環境を認識する環境認識機能、音声認識機能等を備えている。また、ボールを探し出して蹴る動作を実現するために、色検出機能、周囲の環境を認識する環境認識機能、距離認識機能等を備えている。このようにロボット装置は、複数の動作を重複して実行できるようにするためには、複数の認識手段を備えることが必要である。通常、これらの認識手段は、常に一定の演算量レベルで並列的に動作している。
【0005】
【発明が解決しようとする課題】
ところが、上述したようなロボット装置の認識機能は、一般的に演算量が多いため、ロボット装置の行動のバリエーションを豊かにしようと様々な認識機能を追加するとロボット装置の行動を逆に圧迫し、自律行動性を著しく低下させかねない。従来のロボット装置は、常に全ての認識機能を動作させているため、行動の状況・場面によっては、不要な認識手段が働いてリソースを占有している場合があった。
【0006】
例えば、ロボット装置は、静止しながら対話していても障害物認識を行っていたり、接触検出器を駆動させていたりする。工業的に活用されるロボット装置であれば、機能の充実化に伴うリソース不足に対しては、これを次々と補うことで対応できるが、一般家庭用のロボット装置は、新たなリソースが必要になっても追加が困難であり、機体サイズや製造コストといった限られた制約のなかで、より高度な自己表現、自律動作、状況判断に基づく行動等を実現するためにはリソースの活用が求められる。
【0007】
そこで本発明は、このような従来の実情に鑑みて提案されたものであり、認識手段における演算量を動的に変更することにより演算処理による負荷を軽減し、演算処理が自身の動作に影響を与えないロボット装置及びロボット装置に認識結果に基づく動作を実行させる際、認識処理による負荷が軽減される認識制御方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上述した目的を達成するために、本発明に係るロボット装置は、外部情報、外部からの働きかけに応じた動作及び/又は内部状態に基づく自律的動作を実行するロボット装置において、外部情報及び外部からの働きかけを検出する検出手段と、検出手段からの検出信号を演算処理し外部情報及び外部からの働きかけを認識する複数の認識手段と、認識手段の各々にて認識された結果に基づいて自身の行動を選択する行動選択手段と、行動選択手段にて選択された行動を実行するための信号を生成する運動制御手段と、行動選択手段から送られる信号に基づいて各認識手段における演算量レベルを制御する信号を生成する認識制御手段とを備えることを特徴とする。
【0009】
ここで、認識制御手段は、行動選択手段からの信号に基づいて認識手段の各々に対して個別に演算量レベルを指定する信号を送信してもよい。また、行動選択手段から一括した制御信号を受け取り、該一括した制御信号に基づいて個々の認識手段の演算量レベルを決定することもできる。
【0010】
認識手段の個々の演算量レベルが当該ロボット装置の行動に応じて予め決定され、これらがモードとして記憶された記憶手段を有し、認識制御手段は、認識手段の各々における演算量レベルをモードにて指定することもできる。
【0011】
また、上述した目的を達成するために、本発明に係るロボット装置の認識制御方法は、外部情報、外部からの働きかけを認識し、該外部情報及び働きかけに応じた動作、若しくは内部状態に基づく自律的動作を実行するロボット装置の認識制御方法において、外部情報及び外部からの働きかけを検出する検出工程と、検出工程にて検出された検出信号を演算処理し外部情報及び外部からの働きかけを認識する複数の認識工程と、複数の認識工程にて認識された結果に基づいてロボット装置の行動を選択する行動選択工程と、行動選択工程にて選択された行動を実行するための信号を生成する運動制御工程と、行動選択工程から送られる信号に基づいて認識工程のそれぞれにおける演算量レベルを制御する信号を生成する認識制御工程を有することを特徴とする。
【0012】
ここで、認識制御工程は、行動選択工程からの信号に基づいて各認識工程に対して個別に演算量レベルを指定する信号を送信してもよい。また、行動選択工程から一括した制御信号を受け取り、該一括した制御信号に基づいて各認識工程の演算量レベルを決定することもできる。
【0013】
この認識制御方法では、認識工程毎の演算量レベルが当該ロボット装置の行動に応じてモードとして予め決定されており、認識制御工程は、各認識工程における演算量レベルをモードにて指定することもできる。
【0014】
【発明の実施の形態】
本発明に係るロボット装置は、外部情報、外部からの働きかけに応じた動作及び/又は内部状態に基づく自律的動作を実行するロボット装置であって、各動作のための各種認識処理における演算量レベルを自らが実行している動作に応じて動的に変化させることによって、限られたソフトウェア資源及びハードウェア資源といったリソースを有効に活用できるようにしたロボット装置である。
【0015】
以下、本発明に係る認識制御処理系について、図面を参照して説明する。本具体例として示すロボット装置1は、認識制御処理系として図1に示す構成を備えている。認識制御処理系200は、ロボット装置自身の行動を決定したり行動を選択したりするための行動決定部201と、行動決定部201からコマンドを受けて認識部を制御する信号を生成する認識制御部202と、例えば、このロボット装置が実行可能な各種動作のための前処理や、そのための検出処理、及び動作を実行するための認識処理を行う複数の認識部2031,2032,2033,・・・,203nとを備えている。
【0016】
行動決定部201は、ロボット装置1に対する外部からの働きかけや内部状態に応じてロボット装置1の行動を決定する部分であって、実際には、外部からの働きかけや内部状態に応じて決定されるパラメータに応じて複数の行動モデルのなかからその時々にあった行動を選択する手法を採っている。そのため「行動の決定」を「行動の選択」と記す場合もある。行動決定部201は、ロボット装置1の行動を選択するほか、ロボット装置の置かれた環境や動作場面(コンテクスト)に応じて、認識制御部202に対して制御コマンドを発行する。この制御コマンドは、選択されたロボット装置1の行動に関係する認識部を効率的に動作させるよう指示するコマンドである。図1の例では、このコマンドは、行動決定部201が個々の認識部に対して演算量レベルを個別に指示するコマンドである。
【0017】
認識制御部202は、行動決定部201からの制御コマンドを受けて各認識部203に対して演算量レベルを変更する信号を送る。図1の例では、行動決定部201からのコマンドを受けて、認識部2022に対して演算量レベルの変更を指示する信号を送信している。
【0018】
認識部203は、例えばロボット装置の視覚系であれば、特定色を検出して所定の対象物を認識する構成や、ステレオ視カメラにより平面や障害物を認識する構成、またロボット装置の聴覚系であれば、マイクロフォンにて採集した外部音声から発話を抽出して音声認識する構成、話者の特徴を抽出して話者を認識する構成、音声源の方向を認識する構成等である。本具体例で示す演算量レベルとは、各認識部203における処理によってそれぞれ異なるが、画像処理(視覚系)であれば、画像サンプリングレートの変更であったり、画像処理対象とするピクセルの変更であったりする。また、音声処理(聴覚系)であれば、マイクロフォンからの音声サンプリングのオンオフやサンプリングレートの変更であったりする。
【0019】
このとき認識制御処理系200における各認識部の制御処理を図3に示す。先ず、行動決定部201は、ステップS1において、ロボット装置の置かれた環境や動作場面(コンテクスト)に応じて、各認識部203のうち制御しようとする認識部(ここでは、認識部2032)に対する制御コマンドを認識制御部202に対して通知する。ステップS2において、認識制御部202は、指示された認識部2032に対して演算量レベル変更の制御信号を送信する。ステップS3において、認識部2032は、制御信号に応じて演算量レベルを変更する。
【0020】
また、本具体例では、他の方法として、行動決定部201から認識制御部202に対して一括した制御コマンドを送ることもできる。この場合、図2に示すように、ロボット装置の行動決定部201は、認識制御部202に対して一括した制御コマンドを送信する。一括した制御コマンドとは、ロボット装置1の環境や動作場面(コンテクスト)を抽象化した信号を含んでおり、例えば、ロボット装置1が睡眠中のときは睡眠状態にあることを示す信号、歩行しているときは歩行状態にあることを示す信号等を示す。中でも、何かを探しながら歩行しているときは「歩行状態A」、会話しながら歩行しているときは「歩行状態B」のように、ロボット装置の状態のみを単純に表す情報が含まれた信号である。
【0021】
このとき認識制御処理系200における各認識部の制御処理を図4に示す。行動決定部201は、ステップS11において、ロボット装置1の環境や動作場面(コンテクスト)を抽象化した信号を含む一括制御コマンドを認識制御部202に送る。ステップS12において、認識制御部202は、行動決定部201から一括制御コマンドを受け取ると、この一括制御コマンドを認識部毎の制御信号に分解し各認識部に対して送信する。ステップS13において、個々の認識部は、制御信号に応じて演算量レベルを変更する。
【0022】
特に、図2及び図4に示す例の場合、ロボット装置1のコンテクストに応じた各認識部の演算量レベルを制御モードとして予めメモリに記憶しておき、行動決定部201は、認識制御部202に対してこの制御モードを指定するようにもできる。
【0023】
例えば、「睡眠モード」時には、視覚系の認識部、聴覚系の認識部、触覚系の認識部の演算量レベルを全て0%にしたり、「対話モード」時には、視覚系の認識部のなかでも相手の顔認識を行う認識部の演算量レベルを100%、障害物認識を行う認識部の演算量レベルを20%、聴覚系の認識部の演算量レベルを100%のようにすることが挙げられる。
【0024】
また、ロボット装置1の機体の状態に応じてモードを決めることもできる。例えば、ロボット装置1の視点が足下付近にある場合の「視線モード」に対応して、相手の顔認識を行う顔認識の演算量レベルを30%と決めたり、機能が歩行のみに集中しているような場合を「歩行モード」とし、このとき聴覚系の認識部の演算量レベルを10%に落とすようにしたりすることが挙げられる。
【0025】
なお、ここで、演算量レベルが100%,30%なる表現は、個々に複雑な認識処理を実行している認識部の動作を抽象的に表現したものであって、実際は、音声及び画像のサンプリングレートを通常処理に対して高める若しくは減じることであったり、画像処理におけるフレームレートを通常処理に対して高める若しくは減じることであったりする。
【0026】
図1及び図2にて説明したように、ロボット装置1の行動に応じて、必要な認識部の演算量レベル(負荷)を動的に変更することによって、現在選択されている行動下では必要としていない認識部の演算量レベルを低下させ、重要な認識部の演算量レベルを保持又は高める。これにより、ロボット装置1のリソースを効率的に使用できるため、限られたリソースを活用して行動のバリエーションをより豊かにすることができる。
【0027】
以下、本発明の具体例として示す2足歩行タイプのロボット装置について、図面を参照して詳細に説明する。
【0028】
図5に示すように、ロボット装置1は、体幹部ユニット2の所定の位置に頭部ユニット3が連結されるとともに、左右2つの腕部ユニット4R/Lと、左右2つの脚部ユニット5R/Lが連結されて構成されている(ただし、R及びLの各々は、右及び左の各々を示す接尾辞である。以下において同じ。)。この人間型のロボット装置は、住環境そのほかの日常生活上の様々な場面における人的活動を支援する実用ロボットであり、内部状態(怒り、悲しみ、喜び、楽しみ等)に応じて行動できるほか、人間が行う基本的な動作を表出できるエンターテインメントロボットである。
【0029】
図6に、このロボット装置1の関節自由度構成を示す。頭部ユニット3を支持する首関節は、首関節ヨー軸101と、首関節ピッチ軸102と、首関節ロール軸103という3自由度を有している。
【0030】
また、上肢を構成する各々の腕部ユニット4R/Lは、肩関節ピッチ軸107と、肩関節ロール軸108と、上腕ヨー軸109と、肘関節ピッチ軸110と、前腕ヨー軸111と、手首関節ピッチ軸112と、手首関節ロール軸113と、手部114とで構成される。手部114は、実際には、複数本の指を含む多関節・多自由度構造体である。ただし、手部114の動作は、ロボット装置1の姿勢制御や歩行制御に対する寄与や影響が少ないので、本明細書ではゼロ自由度と仮定する。したがって、各腕部は7自由度を有するとする。
【0031】
また、体幹部ユニット2は、体幹ピッチ軸104と、体幹ロール軸105と、体幹ヨー軸106という3自由度を有する。
【0032】
また、下肢を構成する各々の脚部ユニット5R/Lは、股関節ヨー軸115と、股関節ピッチ軸116と、股関節ロール軸117と、膝関節ピッチ軸118と、足首関節ピッチ軸119と、足首関節ロール軸120と、足部121とで構成される。本明細書中では、股関節ピッチ軸116と股関節ロール軸117の交点は、ロボット装置1の股関節位置を定義する。人体の足部121は、実際には多関節・多自由度の足底を含んだ構造体であるが、ロボット装置1の足底は、ゼロ自由度とする。したがって、各脚部は、6自由度で構成される。
【0033】
以上を総括すれば、ロボット装置1全体としては、合計で3+7×2+3+6×2=32自由度を有することになる。ただし、エンターテインメント向けのロボット装置1が必ずしも32自由度に限定されるわけではない。設計・制作上の制約条件や要求仕様等に応じて、自由度すなわち関節数を適宜増減することができることはいうまでもない。
【0034】
上述したようなロボット装置1がもつ各自由度は、実際にはアクチュエータを用いて実装される。外観上で余分な膨らみを排してヒトの自然体形状に近似させること、2足歩行という不安定構造体に対して姿勢制御を行うことなどの要請から、アクチュエータは小型且つ軽量であることが好ましい。
【0035】
図7には、ロボット装置1の制御システム構成を模式的に示している。同図に示すように、ロボット装置1は、ヒトの四肢を表現した体幹部ユニット2,頭部ユニット3,腕部ユニット4R/L,脚部ユニット5R/Lと、各ユニット間の協調動作を実現するための適応制御を行う制御ユニット10とで構成される。
【0036】
ロボット装置1全体の動作は、制御ユニット10によって統括的に制御される。制御ユニット10は、CPU(Central Processing Unit)や、DRAM、フラッシュROM等の主要回路コンポーネント(図示しない)で構成される主制御部11と、電源回路やロボット装置1の各構成要素とのデータやコマンドの授受を行うインターフェイス(何れも図示しない)などを含んだ周辺回路12とで構成される。
【0037】
また、図1及び図2に示したロボット装置1の認識制御処理系も制御ユニット10に含まれる。若しくは、これらは制御ユニット10にて実現される一機能であってもよい。例えば、行動決定部は、主制御部11の一機能として用意され、認識制御部202及び各認識部203は、周辺回路12に含まれるものとする。ロボット装置1における認識部制御のためのさらに具体的な構成に関しては後述する。
【0038】
本発明を実現するうえで、この制御ユニット10の設置場所は、特に限定されない。図7では体幹部ユニット2に搭載されているが、頭部ユニット3に搭載してもよい。或いは、ロボット装置外に制御ユニット10を配備して、ロボット装置1の機体とは有線又は無線で交信するようにしてもよい。
【0039】
図6に示したロボット装置1内の各関節自由度は、それぞれに対応するアクチュエータによって実現される。すなわち、頭部ユニット3には、首関節ヨー軸101、首関節ピッチ軸102、首関節ロール軸103の各々を表現する首関節ヨー軸アクチュエータA2、首関節ピッチ軸アクチュエータA3、首関節ロール軸アクチュエータA4が配設されている。
【0040】
また、頭部ユニット3には、外部の状況を撮像するためのCCD(Charge Coupled Device)カメラが設けられているほか、前方に位置する物体までの距離を測定するための距離センサ、外部音を集音するためのマイクロフォン、音声を出力するためのスピーカ、使用者からの「撫でる」や「叩く」といった物理的な働きかけにより受けた圧力を検出するためのタッチセンサ等が配設されている。
【0041】
また、体幹部ユニット2には、体幹ピッチ軸104、体幹ロール軸105、体幹ヨー軸106の各々を表現する体幹ピッチ軸アクチュエータA5、体幹ロール軸アクチュエータA6、体幹ヨー軸アクチュエータA7が配設されている。また、体幹部ユニット2には、このロボット装置1の起動電源となるバッテリを備えている。このバッテリは、充放電可能な電池によって構成されている。
【0042】
また、腕部ユニット4R/Lは、上腕ユニット41R/Lと、肘関節ユニット42R/Lと、前腕ユニット43R/Lに細分化されるが、肩関節ピッチ軸107、肩関節ロール軸108、上腕ヨー軸109、肘関節ピッチ軸110、前腕ヨー軸111、手首関節ピッチ軸112、手首関節ロール軸113の各々表現する肩関節ピッチ軸アクチュエータA8、肩関節ロール軸アクチュエータA9、上腕ヨー軸アクチュエータA10、肘関節ピッチ軸アクチュエータA11、肘関節ロール軸アクチュエータA12、手首関節ピッチ軸アクチュエータA13、手首関節ロール軸アクチュエータA14が配備されている。
【0043】
また、脚部ユニット5R/Lは、大腿部ユニット51R/Lと、膝ユニット52R/Lと、脛部ユニット53R/Lに細分化されるが、股関節ヨー軸115、股関節ピッチ軸116、股関節ロール軸117、膝関節ピッチ軸118、足首関節ピッチ軸119、足首関節ロール軸120の各々を表現する股関節ヨー軸アクチュエータA16、股関節ピッチ軸アクチュエータA17、股関節ロール軸アクチュエータA18、膝関節ピッチ軸アクチュエータA19、足首関節ピッチ軸アクチュエータA20、足首関節ロール軸アクチュエータA21が配備されている。各関節に用いられるアクチュエータA2,A3・・・は、より好ましくは、ギア直結型で旦つサーボ制御系をワンチップ化してモータ・ユニット内に搭載したタイプの小型ACサーボ・アクチュエータで構成することができる。
【0044】
体幹部ユニット2、頭部ユニット3、各腕部ユニット4R/L、各脚部ユニット5R/Lなどの各機構ユニット毎に、アクチュエータ駆動制御部の副制御部20,21,22R/L,23R/Lが配備されている。さらに、各脚部ユニット5R/Lの足底が着床したか否かを検出する接地確認センサ30R/Lを装着するとともに、体幹部ユニット2内には、姿勢を計測する姿勢センサ31を装備している。
【0045】
接地確認センサ30R/Lは、例えば足底に設置された近接センサ又はマイクロ・スイッチなどで構成される。また、姿勢センサ31は、例えば、加速度センサとジャイロ・センサの組み合わせによって構成される。
【0046】
接地確認センサ30R/Lの出力によって、歩行・走行などの動作期間中において、左右の各脚部が現在立脚又は遊脚何れの状態であるかを判別することができる。また、姿勢センサ31の出力により、体幹部分の傾きや姿勢を検出することができる。
【0047】
主制御部11は、各センサ30R/L,31の出力に応答して制御目標をダイナミックに補正することができる。より具体的には、副制御部20,21,22R/L,23R/Lの各々に対して適応的な制御を行い、ロボット装置1の上肢、体幹、及び下肢が協調して駆動する全身運動パターンを実現できる。
【0048】
ロボット装置1の機体上での全身運動は、足部運動、ZMP(Zero Moment Point)軌道、体幹運動、上肢運動、腰部高さなどを設定するとともに、これらの設定内容にしたがった動作を指示するコマンドを各副制御部20,21,22R/L,23R/Lに転送する。そして、各々の副制御部20,21,・・・等では、主制御部11からの受信コマンドを解釈して、各アクチュエータA2,A3・・・等に対して駆動制御信号を出力する。ここでいう「ZMP」とは、歩行中の床反力によるモーメントがゼロとなる床面上の点のことであり、また、「ZMP軌道」とは、例えばロボット装置1の歩行動作期間中にZMPが動く軌跡を意味する。なお、ZMPの概念並びにZMPを歩行ロボットの安定度判別規範に適用する点については、Miomir Vukobratovic著“LEGGED LOCOMOTION ROBOTS”(加藤一郎外著『歩行ロボットと人工の足』(日刊工業新聞社))に記載されている。
【0049】
以上のように、ロボット装置1は、各々の副制御部20,21,・・・等が、主制御部11からの受信コマンドを解釈して、各アクチュエータA2,A3・・・に対して駆動制御信号を出力し、各ユニットの駆動を制御している。これにより、ロボット装置1は、目標の姿勢に安定して遷移し、安定した姿勢で歩行できる。
【0050】
また、ロボット装置1における制御ユニット10では、上述したような姿勢制御のほかに、加速度センサ、タッチセンサ、接地確認センサ等の各種センサ、及びCCDカメラからの画像情報、マイクロフォンからの音声情報等を統括して処理している。制御ユニット10では、図示しないが加速度センサ、ジャイロ・センサ、タッチセンサ、距離センサ、マイクロフォン、スピーカなどの各種センサ、各アクチュエータ、CCDカメラ及びバッテリが各々対応するハブを介して主制御部11と接続されている。
【0051】
主制御部11は、上述の各センサから供給されるセンサデータや画像データ及び音声データを順次取り込み、これらをそれぞれ内部インターフェイスを介してDRAM内の所定位置に順次格納する。また、主制御部11は、バッテリから供給されるバッテリ残量を表すバッテリ残量データを順次取り込み、これをDRAM内の所定位置に格納する。DRAMに格納された各センサデータ、画像データ、音声データ及びバッテリ残量データは、主制御部11がこのロボット装置1の動作制御を行う際に利用される。
【0052】
主制御部11は、ロボット装置1の電源が投入された初期時、制御プログラムを読み出し、これをDRAMに格納する。また、主制御部11は、上述のように主制御部11よりDRAMに順次格納される各センサデータ、画像データ、音声データ及びバッテリ残量データに基づいて自己及び周囲の状況や、使用者からの指示及び働きかけの有無などを判断する。さらに、主制御部11は、この判断結果及びDRAMに格納した制御プログラムに基づいて自己の状況に応じて行動を決定するとともに、当該決定結果に基づいて必要なアクチュエータを駆動させることによりロボット装置1に、「身振り」、「手振り」といった行動をとらせる。
【0053】
このロボット装置1の認識制御処理系200について、図8を用いて説明する。上述したように、図1及び図2にて示した認識制御処理系200は、制御ユニット10に含まれている。図8には、制御ユニット10に備えられる各認識部の具体例が示されている。
【0054】
制御ユニット10は、視覚系認識ユニット151と、聴覚系認識ユニット152と、触覚系認識ユニット153と、これらユニットにおける認識結果に応じて行動を選択する行動選択部154とを備えている。行動選択部154は、選択された行動に関する情報を運動制御部155に対して送る。運動制御部155は、各アクチュエータ1561,1562,1563,・・・,156nに対して、これらを実際に駆動するための駆動信号を送る。各アクチュエータが駆動信号にしたがって駆動することにより、ロボット装置の実際の動作が表出される。ここで、行動選択部154は、選択した行動に応じて制御コマンドを認識制御部157に送信する。認識制御部157では、受け取った制御コマンドによって、各認識部を制御する信号を認識部に対してフィードバックしている(図中点線矢印)。なお、図8における行動選択部154は、図1及び図2における行動決定部201に相当し、認識制御部157は、認識制御部202に相当する。また、アクチュエータ1561,1562,・・・は、図7に示すアクチュエータA1,A2,・・・に相当する。
【0055】
視覚系認識ユニット151は、ロボット装置の目に相当しステレオ画像を撮像できるCCDカメラ161a,161bを備えている。また、このCCDカメラ161a,161bによって撮像された撮像データを入力し顔部分を検出する顔検出部162と、検出された顔部分の画像データからこの顔が誰のものかを認識する顔認識部163とからなる顔認識ユニット164を備えている。
【0056】
また、視覚系認識ユニット151は、CCDカメラ161a,161bから撮像データを入力しステレオ視により目標物までの距離を計測する距離計測部165と、ステレオ視画像に基づいてロボット装置周囲の足場平面を認識する平面検出及び障害物検出部166とからなる環境認識ユニット167を備えている。
【0057】
さらに、視覚系認識ユニット151は、CCDカメラ161a,161bによって撮像された画像データを入力し画像中の色を検出する色検出部168と、色検出部168によって検出された特徴色からランドマークを検出するランドマーク検出部169と、また、色検出部168によって検出された特徴色から周囲と肌の色とを認識する肌検出部170とからなる色認識ユニット171とを備えている。
【0058】
聴覚系認識ユニット152は、ロボット装置1の耳に相当し、外部音声を採集するスピーカ172と、採集された音声データから発話を検出する発話検出部173と、検出された発話か音声及び発話内容を認識する音声認識部174と、音源若しくは話者の方向を認識する方向認識部175と、検出された発話から話者を識別する話者識別部176とを備えている。
【0059】
また、触覚系認識ユニット153は、使用者からの「撫でる」や「叩く」といった物理的な働きかけにより受けた圧力を検出するためのタッチセンサ、ロボット装置1の動きを検出するための加速度センサ、ジャイロ・センサといったセンサ類1801,1802,・・・,180nと、これらセンサ180における検出結果に基づいて接触を認識する接触認識部177とを備える。
【0060】
このような構成を有する制御ユニット10における認識制御処理としては、例えば、「睡眠モード」時には、視覚系認識ユニット151、聴覚系認識ユニット152、触覚系認識ユニット153における各認識部の演算量レベルを全て0%にする。
【0061】
また、「対話モード」時には、視覚系の認識部のなかでも相手の顔認識を行う顔認識ユニット164の演算量レベルを100%、障害物認識を行う環境認識ユニット167の演算量レベルを20%、聴覚系認識ユニット152の演算量レベルを100%のようにする。
【0062】
このように、ロボット装置1は、行動のコンテクストに応じて、認識部における演算量レベルを変更することで認識部の負荷を変化させることができるため、必要な演算処理以外を排除できる。これにより、各認識部の処理速度を向上することができ、例えば、物体をトラッキングする等の時系列認識を行う場合に認識精度が向上する。
【0063】
続いて、ロボット装置1における制御プログラムのソフトウェア構成例について図9乃至図14を用いて説明する。ロボット装置1による各種の表現動作は、ここに例示するソフトウェア構成によって実現される。また、認識制御処理系200として示す動作を以下に例示するソフトウェア構成によって実現することもできる。
【0064】
図9において、デバイス・ドライバ・レイヤ40は、制御プログラムの最下位層に位置し、複数のデバイス・ドライバからなるデバイス・ドライバ・セット41から構成されている。この場合、各デバイス・ドライバは、CCDカメラやタイマ等の通常のコンピュータで用いられるハードウェアに直接アクセスすることを許されたオブジェクトであり、対応するハードウェアからの割り込みを受けて処理を行う。
【0065】
また、ロボティック・サーバ・オブジェクト42は、デバイス・ドライバ・レイヤ40の最下位層に位置し、例えば上述の各種センサやアクチュエータA2,A3・・・等のハードウェアにアクセスするためのインターフェイスを提供するソフトウェア群でなるバーチャル・ロボット43と、電源の切換えなどを管理するソフトウェア群でなるパワーマネージャ44と、他の種々のデバイス・ドライバを管理するソフトウェア群でなるデバイス・ドライバ・マネージャ45と、ロボット装置1の機構を管理するソフトウェア群でなるデザインド・ロボット46とから構成されている。
【0066】
マネージャ・オブジェクト47は、オブジェクト・マネージャ48及びサービス・マネージャ49から構成されている。オブジェクト・マネージャ48は、ロボティック・サーバ・オブジェクト42、ミドル・ウェア・レイヤ50、及びアプリケーション・レイヤ51に含まれる各ソフトウェア群の起動や終了を管理するソフトウェア群であり、サービス・マネージャ49は、メモリカードに格納されたコネクションファイルに記述されている各オブジェクト間の接続情報に基づいて各オブジェクトの接続を管理するソフトウェア群である。
【0067】
ミドル・ウェア・レイヤ50は、ロボティック・サーバ・オブジェクト42の上位層に位置し、画像処理や音声処理などのこのロボット装置1の基本的な機能を提供するソフトウェア群から構成されている。また、アプリケーション・レイヤ51は、ミドル・ウェア・レイヤ50の上位層に位置し、当該ミドル・ウェア・レイヤ50を構成する各ソフトウェア群によって処理された処理結果に基づいてロボット装置1の行動を決定するためのソフトウェア群から構成されている。
【0068】
なお、ミドル・ウェア・レイヤ50及びアプリケーション・レイヤ51の具体なソフトウェア構成をそれぞれ図10に示す。
【0069】
ミドル・ウェア・レイヤ50は、図10に示すように、騒音検出用、温度検出用、明るさ検出用、音階認識用、距離検出用、姿勢検出用、タッチセンサ用、動き検出用及び色認識用の各信号処理モジュール60〜68並びに入力セマンティクスコンバータモジュール69などを有する認識系70と、出力セマンティクスコンバータモジュール78並びに姿勢管理用、トラッキング用、モーション再生用、歩行用、転倒復帰用、LED点灯用及び音再生用の各信号処理モジュール71〜77などを有する出力系79とから構成されている。
【0070】
認識系70の各信号処理モジュール60〜68は、ロボティック・サーバ・オブジェクト42のバーチャル・ロボット43によりDRAMから読み出される各センサデータや画像データ及び音声データのうちの対応するデータを取り込み、当該データに基づいて所定の処理を施して、処理結果を入力セマンティクスコンバータモジュール69に与える。ここで、例えば、バーチャル・ロボット43は、所定の通信規約によって、信号の授受或いは変換をする部分として構成されている。
【0071】
入力セマンティクスコンバータモジュール69は、これら各信号処理モジュール60〜68から与えられる処理結果に基づいて、「うるさい」、「暑い」、「明るい」、「ボールを検出した」、「転倒を検出した」、「撫でられた」、「叩かれた」、「ドミソの音階が聞こえた」、「動く物体を検出した」又は「障害物を検出した」などの自己及び周囲の状況や、使用者からの指令及び働きかけを認識し、認識結果をアプリケーション・レイヤ51に出力する。
【0072】
アプリケーション・レイヤ51は、図11に示すように、行動モデルライブラリ80、行動切換モジュール81、学習モジュール82、感情モデル83及び本能モデル84の5つのモジュールから構成されている。
【0073】
行動モデルライブラリ80には、図12に示すように、「転倒復帰する」、「障害物を回避する場合」、「感情を表現する場合」、「ボールを検出した場合」などの予め選択されたいくつかの条件項目にそれぞれ対応させて、それぞれ独立した行動モデルが設けられている。
【0074】
そして、これら行動モデルは、図11に示すように、それぞれ入力セマンティクスコンバータモジュール69から認識結果が与えられたときや、最後の認識結果が与えられてから一定時間が経過したときなどに、必要に応じて後述のように感情モデル83に保持されている対応する情動のパラメータ値や、本能モデル84に保持されている対応する欲求のパラメータ値を参照しながら続く行動をそれぞれ決定し、決定結果を行動切換モジュール81に出力する。
【0075】
なお、この具体例の場合、各行動モデルは、次の行動を決定する手法として、図13に示すような1つのノード(状態)NODE0〜NODEnから他のどのノードNODE0〜NODEnに遷移するかを各ノードNODE0〜NODEnの間を接続するアークARC1〜ARCn1に対してそれぞれ設定された遷移確率P1〜Pnに基づいて確率的に決定する有限確率オートマトンと呼ばれるアルゴリズムを用いる。
【0076】
具体的に、各行動モデルは、それぞれ自己の行動モデルを形成するノードNODE0〜NODEnにそれぞれ対応させて、これらノードNODE0〜NODEn毎に図14に示すような状態遷移表90を有している。
【0077】
この状態遷移表90では、そのノードNODE0〜NODEnにおいて遷移条件とする入力イベント(認識結果)が「入力イベント名」の列に優先順に列記され、その遷移条件についてのさらなる条件が「データ名」及び「データ範囲」の列における対応する行に記述されている。
【0078】
したがって、図14の状態遷移表90で表されるノードNODE100では、「ボールを検出(BALL)」という認識結果が与えられた場合に、当該認識結果とともに与えられるそのボールの「大きさ(SIZE)」が「0から1000」の範囲であることや、「障害物を検出(OBSTACLE)」という認識結果が与えられた場合に、当該認識結果とともに与えられるその障害物までの「距離(DISTANCE)」が「0から100」の範囲であることが他のノードに遷移するための条件となっている。
【0079】
また、このノードNODE100では、認識結果の入力がない場合においても、行動モデルが周期的に参照する感情モデル83及び本能モデル84にそれぞれ保持された各情動及び各欲求のパラメータ値のうち、感情モデル83に保持された「喜び(Joy)」、「驚き(Surprise)」又は「悲しみ(Sadness)」の何れかのパラメータ値が「50から100」の範囲であるときには他のノードに遷移することができるようになっている。
【0080】
また、状態遷移表90では、「他のノードヘの遷移確率」の欄における「遷移先ノード」の行にそのノードNODE0〜NODEnから遷移できるノード名が列記されているとともに、「入力イベント名」、「データ名」及び「データの範囲」の列に記述された全ての条件が揃ったときに遷移できるほかの各ノードNODE0〜NODEnへの遷移確率が「他のノードヘの遷移確率」の欄内の対応する箇所にそれぞれ記述され、そのノードNODE0〜NODEnに遷移する際に出力すべき行動が「他のノードヘの遷移確率」の欄における「出力行動」の行に記述されている。なお、「他のノードヘの遷移確率」の欄における各行の確率の和は100[%]となっている。
【0081】
したがって、図14の状態遷移表90で表されるノードNODE100では、例えば「ボールを検出(BALL)」し、そのボールの「SIZE(大きさ)」が「0から1000」の範囲であるという認識結果が与えられた場合には、「30[%]」の確率で「ノードNODE120(node 120)」に遷移でき、そのとき「ACTION1」の行動が出力されることとなる。
【0082】
各行動モデルは、それぞれこのような状態遷移表90として記述されたノードNODE0〜NODEnが幾つも繋がるようにして構成されており、入力セマンティクスコンバータモジュール69から認識結果が与えられたときなどに、対応するノードNODE0〜NODEnの状態遷移表を利用して確率的に次の行動を決定し、決定結果を行動切換モジュール81に出力するようになされている。
【0083】
図11に示す行動切換モジュール81は、行動モデルライブラリ80の各行動モデルからそれぞれ出力される行動のうち、予め定められた優先順位の高い行動モデルから出力された行動を選択し、当該行動を実行すべき旨のコマンド(以下、行動コマンドという。)をミドル・ウェア・レイヤ50の出力セマンティクスコンバータモジュール78に送出する。なお、本具体例では、図12にて下側に表記された行動モデルほど優先順位が高く設定されている。
【0084】
また、行動切換モジュール81は、行動完了後に出力セマンティクスコンバータモジュール78から与えられる行動完了情報に基づいて、その行動が完了したことを学習モジュール82、感情モデル83及び本能モデル84に通知する。
【0085】
一方、学習モジュール82は、入力セマンティクスコンバータモジュール69から与えられる認識結果のうち、「叩かれた」や「撫でられた」など、使用者からの働きかけとして受けた教示の認識結果を入力する。
【0086】
そして、学習モジュール82は、この認識結果及び行動切換えモジュール71からの通知に基づいて、「叩かれた(叱られた)」ときにはその行動の発現確率を低下させ、「撫でられた(誉められた)」ときにはその行動の発現確率を上昇させるように、行動モデルライブラリ70における対応する行動モデルの対応する遷移確率を変更する。
【0087】
他方、感情モデル83は、「喜び(Joy)」、「悲しみ(Sadness)」、「怒り(Anger)」、「驚き(Surprise)」、「嫌悪(Disgust)」及び「恐れ(Fear)」の合計6つの情動について、各情動毎にその情動の強さを表すパラメータを保持している。そして、感情モデル83は、これら各情動のパラメータ値を、それぞれ入力セマンティクスコンバータモジュール69から与えられる「叩かれた」及び「撫でられた」などの特定の認識結果や、経過時間及び行動切換モジュール81からの通知などに基づいて周期的に更新する。
【0088】
具体的には、感情モデル83は、入力セマンティクスコンバータモジュール69から与えられる認識結果と、そのときのロボット装置1の行動と、前回更新してからの経過時間となどに基づいて所定の演算式により算出されるそのときのその情動の変動量をΔE[t]、現在のその情動のパラメータ値をE[t]、その情動の感度を表す係数をkeとして、(1)式によって次の周期におけるその情動のパラメータ値E[t+1]を算出し、これを現在のその情動のパラメータ値E[t]と置き換えるようにしてその情動のパラメータ値を更新する。また、感情モデル83は、これと同様にして全ての情動のパラメータ値を更新する。
【0089】
【数1】
【0090】
なお、各認識結果や出力セマンティクスコンバータモジュール78からの通知が各情動のパラメータ値の変動量ΔE[t]にどの程度の影響を与えるかは予め決められており、例えば「叩かれた」といった認識結果は「怒り」の情動のパラメータ値の変動量ΔE[t]に大きな影響を与え、「撫でられた」といった認識結果は「喜び」の情動のパラメータ値の変動量ΔE[t]に大きな影響を与えるようになっている。
【0091】
ここで、出力セマンティクスコンバータモジュール78からの通知とは、いわゆる行動のフィードバック情報(行動完了情報)であり、行動の出現結果の情報であり、感情モデル83は、このような情報によっても感情を変化させる。これは、例えば、「叫ぶ」といった行動により怒りの感情レベルが下がるといったようなことである。なお、出力セマンティクスコンバータモジュール78からの通知は、上述した学習モジュール82にも入力されており、学習モジュール82は、その通知に基づいて行動モデルの対応する遷移確率を変更する。
【0092】
なお、行動結果のフィードバックは、行動切換モジュール81の出力(感情が付加された行動)によりなされるものであってもよい。
【0093】
一方、本能モデル84は、「運動欲(exercise)」、「愛情欲(affection)」、「食欲(appetite)」及び「好奇心(curiosity)」の互いに独立した4つの欲求について、これら欲求毎にその欲求の強さを表すパラメータを保持している。そして、本能モデル84は、これらの欲求のパラメータ値を、それぞれ入力セマンティクスコンバータモジュール69から与えられる認識結果や、経過時間及び行動切換モジュール81からの通知などに基づいて周期的に更新する。
【0094】
具体的には、本能モデル84は、「運動欲」、「愛情欲」及び「好奇心」については、認識結果、経過時間及び出力セマンティクスコンバータモジュール78からの通知などに基づいて所定の演算式により算出されるそのときのその欲求の変動量をΔI[k]、現在のその欲求のパラメータ値をI[k]、その欲求の感度を表す係数kiとして、所定周期で(2)式を用いて次の周期におけるその欲求のパラメータ値I[k+1]を算出し、この演算結果を現在のその欲求のパラメータ値I[k]と置き換えるようにしてその欲求のパラメータ値を更新する。また、本能モデル84は、これと同様にして「食欲」を除く各欲求のパラメータ値を更新する。
【0095】
【数2】
【0096】
なお、認識結果及び出力セマンティクスコンバータモジュール78からの通知などが各欲求のパラメータ値の変動量ΔI[k]にどの程度の影響を与えるかは予め決められており、例えば出力セマンティクスコンバータモジュール78からの通知は、「疲れ」のパラメータ値の変動量ΔI[k]に大きな影響を与えるようになっている。
【0097】
なお、本具体例では、各情動及び各欲求(本能)のパラメータ値がそれぞれ0から100までの範囲で変動するように規制されており、また係数ke、kiの値も各情動及び各欲求毎に個別に設定されている。
【0098】
一方、ミドル・ウェア・レイヤ50の出力セマンティクスコンバータモジュール78は、図10に示すように、上述のようにしてアプリケーション・レイヤ51の行動切換モジュール81から与えられる「前進」、「喜ぶ」、「鳴く」又は「トラッキング(ボールを追いかける)」といった抽象的な行動コマンドを出力系79の対応する信号処理モジュール71〜77に与える。
【0099】
そしてこれら信号処理モジュール71〜77は、行動コマンドが与えられると当該行動コマンドに基づいて、その行動をするために対応するアクチュエータに与えるべきサーボ指令値や、スピーカから出力する音の音声データ及び又はLEDに与える駆動データを生成し、これらのデータをロボティック・サーバ・オブジェクト42のバーチャル・ロボット43及び信号処理回路を順次介して対応するアクチュエータ又はスピーカ又はLEDに順次送出する。
【0100】
したがって、ロボット装置1は、上述した制御プログラムに基づいて、自己(内部)及び周囲(外部)の状況や、使用者からの指示及び働きかけに応じた自律的な行動ができる。
【0101】
本具体例として示すロボット装置1では、行動切換モジュール81が行動モデルライブラリのなかから選択した(切り換えた)行動に応じて、認識係70を制御していることになる。
【0102】
上述したように、ロボット装置1によれば、演算処理が自身の動作に影響を与えることなく、各動作のための各種認識処理における演算量レベルを自らが実行している動作に応じて動的に変化させることによって、演算処理による負荷を軽減し、限られたソフトウェア資源及びハードウェア資源といったリソースを有効に活用できる。
【0103】
上述したロボット装置1の制御プログラムは、このロボット装置が読取可能な形式で記録された記録媒体を介して提供される。制御プログラムを記録する記録媒体としては、磁気読取方式の記録媒体(例えば、磁気テープ、フレキシブルディスク、磁気カード)、光学読取方式の記録媒体(例えば、CD−ROM、MO、CD−R、DVD)等が考えられる。記録媒体には、半導体メモリ(いわゆるメモリカード(矩形型、正方形型など形状は問わない。)、ICカード)等の記憶媒体も含まれる。また、制御プログラムは、いわゆるインターネット等を介して提供されてもよい。
【0104】
これらの制御プログラムは、専用の読込ドライバ装置、又はパーソナルコンピュータ等を介して再生され、有線又は無線接続によってロボット装置1に伝送されて読み込まれる。また、ロボット装置1は、半導体メモリ、又はICカード等の小型化された記憶媒体のドライブ装置を備える場合、これら記憶媒体から制御プログラムを直接読み込むこともできる。
【0105】
【発明の効果】
以上詳細に説明したように、本発明に係るロボット装置は、認識制御手段によって、行動選択手段から送られる信号に基づいて各認識手段における演算量レベルを制御する信号を生成することにより、演算処理による認識手段の負荷を軽減し、演算処理が自身の動作に悪影響を与えないようにできる。また、各動作のための各種認識処理における演算量レベルを自らが実行している動作に応じて動的に変化させることによって、限られたソフトウェア資源及びハードウェア資源といったリソースを有効に活用できる。
【0106】
また、本発明に係るロボット装置の認識制御方法は、認識制御工程にて、行動選択工程から送られる信号に基づいて認識工程のそれぞれにおける演算量レベルを制御する信号を生成することにより、認識工程における演算処理の負荷を軽減し、演算処理がロボット装置の動作に悪影響を与えないようにできる。また、各動作のための各種認識処理における演算量レベルを自らが実行している動作に応じて動的に変化させることによって、限られたソフトウェア資源及びハードウェア資源といったリソースを有効に活用できる。
【図面の簡単な説明】
【図1】本発明の具体例として示す認識制御処理系を説明する構成図である。
【図2】上記認識制御処理系において、行動決定部から一括した制御コマンドが送られる場合を説明する構成図である。
【図3】上記図1の認識制御処理を説明するフローチャートである。
【図4】上記図2の認識制御処理を説明するフローチャートである。
【図5】本発明の具体例として示すロボット装置の外観を説明する斜視図である。
【図6】同ロボット装置の自由度構成モデルを模式的に示す図である。
【図7】同ロボット装置の回路構成を示すブロック図である。
【図8】同ロボット装置の制御ユニットに備えられる各認識部の具体例を説明する構成図である。
【図9】同ロボット装置のソフトウェア構成を示すブロック図である。
【図10】同ロボット装置のソフトウェア構成におけるミドル・ウェア・レイヤの構成を示すブロック図である。
【図11】同ロボット装置のソフトウェア構成におけるアプリケーション・レイヤの構成を示すブロック図である。
【図12】アプリケーション・レイヤの行動モデルライブラリの構成を示すブロック図である。
【図13】同ロボット装置の行動決定のための情報となる有限確率オートマトンを説明する図である。
【図14】有限確率オートマトンの各ノードに用意された状態遷移表を示す図である。
【符号の説明】
1 ロボット装置、200 認識制御処理系、201 行動決定部、202 認識制御部、203 認識部
Claims (8)
- 外部情報、外部からの働きかけに応じた動作及び/又は内部状態に基づく自律的動作を実行するロボット装置において、
外部情報及び外部からの働きかけを検出する検出手段と、
上記検出手段からの検出信号を演算処理し外部情報及び外部からの働きかけを認識する複数の認識手段と、
上記認識手段の各々にて認識された結果に基づいて自身の行動を選択する行動選択手段と、
上記行動選択手段にて選択された行動を実行するための信号を生成する運動制御手段と、
上記行動選択手段から送られる信号に基づいて各認識手段における演算量レベルを制御する信号を生成する認識制御手段と
を備えることを特徴とするロボット装置。 - 上記認識制御手段は、上記行動選択手段からの信号に基づいて認識手段の各々に対して個別に演算量レベルを指定する信号を送信することを特徴とする請求項1記載のロボット装置。
- 上記認識制御手段は、上記行動選択手段から一括した制御信号を受け取り、該一括した制御信号に基づいて個々の認識手段の演算量レベルを決定することを特徴とする請求項1記載のロボット装置。
- 上記認識手段の個々の演算量レベルが当該ロボット装置の行動に応じて予め決定され、これらがモードとして記憶された記憶手段を有し、
上記認識制御手段は、認識手段の各々における演算量レベルを上記モードにて指定することを特徴とする請求項3記載のロボット装置。 - 外部情報、外部からの働きかけを認識し、該外部情報及び働きかけに応じた動作、若しくは内部状態に基づく自律的動作を実行するロボット装置の認識制御方法において、
外部情報及び外部からの働きかけを検出する検出工程と、
上記検出工程にて検出された検出信号を演算処理し外部情報及び外部からの働きかけを認識する複数の認識工程と、
上記複数の認識工程にて認識された結果に基づいて上記ロボット装置の行動を選択する行動選択工程と、
上記行動選択工程にて選択された行動を実行するための信号を生成する運動制御工程と、
上記行動選択工程から送られる信号に基づいて上記認識工程のそれぞれにおける演算量レベルを制御する信号を生成する認識制御工程と
を有することを特徴とするロボット装置の認識制御方法。 - 上記認識制御工程は、上記行動選択工程からの信号に基づいて各認識工程に対して個別に演算量レベルを指定することを特徴とする請求項5記載のロボット装置の認識制御方法。
- 上記認識制御工程は、上記行動選択工程から一括した制御信号を受け取り、該一括した制御信号に基づいて各認識工程の演算量レベルを決定することを特徴とする請求項5記載のロボット装置の認識制御方法。
- 上記認識工程毎の演算量レベルが当該ロボット装置の行動に応じてモードとして予め決定されており、
上記認識制御工程は、各認識工程における演算量レベルを上記モードにて指定することを特徴とする請求項7記載のロボット装置の認識制御方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003092349A JP2004298976A (ja) | 2003-03-28 | 2003-03-28 | ロボット装置及びロボット装置の認識制御方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003092349A JP2004298976A (ja) | 2003-03-28 | 2003-03-28 | ロボット装置及びロボット装置の認識制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004298976A true JP2004298976A (ja) | 2004-10-28 |
Family
ID=33405472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003092349A Withdrawn JP2004298976A (ja) | 2003-03-28 | 2003-03-28 | ロボット装置及びロボット装置の認識制御方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004298976A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006192562A (ja) * | 2004-12-14 | 2006-07-27 | Honda Motor Co Ltd | 自律移動ロボット |
JP2014504958A (ja) * | 2010-12-17 | 2014-02-27 | アルデバラン ロボティクス エス、ア | 物理的および仮想的資源の管理プログラムを備えるヒューマノイドロボット、使用方法、およびプログラミング方法 |
-
2003
- 2003-03-28 JP JP2003092349A patent/JP2004298976A/ja not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006192562A (ja) * | 2004-12-14 | 2006-07-27 | Honda Motor Co Ltd | 自律移動ロボット |
JP4564447B2 (ja) * | 2004-12-14 | 2010-10-20 | 本田技研工業株式会社 | 自律移動ロボット |
US7933684B2 (en) | 2004-12-14 | 2011-04-26 | Honda Motor Co., Ltd. | Autonomous mobile robot |
JP2014504958A (ja) * | 2010-12-17 | 2014-02-27 | アルデバラン ロボティクス エス、ア | 物理的および仮想的資源の管理プログラムを備えるヒューマノイドロボット、使用方法、およびプログラミング方法 |
US9975246B2 (en) | 2010-12-17 | 2018-05-22 | Softbank Robotics Europe | Humanoid robot provided with a manager for the physical and virtual resources thereof, and methods for use and programming |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3714268B2 (ja) | ロボット装置 | |
JP3855812B2 (ja) | 距離計測方法、その装置、そのプログラム、その記録媒体及び距離計測装置搭載型ロボット装置 | |
JP4239635B2 (ja) | ロボット装置、その動作制御方法、及びプログラム | |
US6539283B2 (en) | Robot and action deciding method for robot | |
JP2004298977A (ja) | 行動制御装置、行動制御方法及び行動制御プログラム、並びに移動型ロボット装置 | |
JP2004133637A (ja) | 顔検出装置、顔検出方法及びプログラム、並びにロボット装置 | |
JP2002239963A (ja) | ロボット装置、ロボット装置の動作制御方法、プログラム及び記録媒体 | |
JP2002301674A (ja) | 脚式移動ロボット及びその運動教示方法、並びに記憶媒体 | |
JP2006082150A (ja) | ロボット装置及びその行動制御方法 | |
JP2004110802A (ja) | 環境同定装置、環境同定方法、プログラム及び記録媒体、並びにロボット装置 | |
JP4179230B2 (ja) | ロボット装置及びその動作制御方法 | |
JP2004302644A (ja) | 顔識別装置、顔識別方法、記録媒体、及びロボット装置 | |
JP2004298975A (ja) | ロボット装置、障害物探索方法 | |
JP2003271958A (ja) | 画像処理方法、その装置、そのプログラム、その記録媒体及び画像処理装置搭載型ロボット装置 | |
JP2004130427A (ja) | ロボット装置及びロボット装置の動作制御方法 | |
JP4281286B2 (ja) | ロボット装置及びその制御方法 | |
JP2003136456A (ja) | ロボット装置、ロボット装置の明るさ検出方法、明るさ検出プログラム及び記録媒体 | |
JP4449372B2 (ja) | ロボット装置及びその行動制御方法 | |
JP2002239952A (ja) | ロボット装置、ロボット装置の行動制御方法、プログラム及び記録媒体 | |
JP2002059384A (ja) | ロボットのための学習システム及び学習方法 | |
JP2004298976A (ja) | ロボット装置及びロボット装置の認識制御方法 | |
JP4379052B2 (ja) | 動体検出装置、動体検出方法、及びロボット装置 | |
JP2003266350A (ja) | ロボット装置及び内部状態表出装置 | |
JP4193098B2 (ja) | トラッキング装置、トラッキング装置のトラッキング方法及びロボット装置 | |
JP2001157980A (ja) | ロボット装置及びその制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20060606 |