JP2004130427A - ロボット装置及びロボット装置の動作制御方法 - Google Patents

ロボット装置及びロボット装置の動作制御方法 Download PDF

Info

Publication number
JP2004130427A
JP2004130427A JP2002296785A JP2002296785A JP2004130427A JP 2004130427 A JP2004130427 A JP 2004130427A JP 2002296785 A JP2002296785 A JP 2002296785A JP 2002296785 A JP2002296785 A JP 2002296785A JP 2004130427 A JP2004130427 A JP 2004130427A
Authority
JP
Japan
Prior art keywords
sound source
source direction
sound
detection
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002296785A
Other languages
English (en)
Inventor
Seiichi Takamura
高村 成一
Takayuki Shinohara
篠原 隆之
Hidehiko Morisada
森貞 英彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002296785A priority Critical patent/JP2004130427A/ja
Publication of JP2004130427A publication Critical patent/JP2004130427A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】対象物に対してより自然な動作を行えて、エンターテイメント性を向上したロボット装置及びロボット装置の行動制御方法を提供する。
【解決手段】ロボット装置1は、CCDカメラ22と、マイクロホン24と、画像データから動体を検出する動体検出モジュール32及び人物の顔を検出する顔検出モジュール33と、音声データから音源方向を推定する音源方向推定モジュール34と、上記動体検出結果に基づく動体方向、上記顔検出結果に基づく顔方向、及び上記推定された音源方向の何れかに移動するよう制御する制御手段とを有し、制御手段は、動体方向又は音源推定方向に歩行中に顔検出された場合、顔方向に移動するよう制御すると共に、顔検出対象となっている対象物に所定の範囲内に近づいたとき、歩行を停止するよう制御する。
【選択図】 図9

Description

【0001】
【発明の属する技術分野】
本発明は、2足又は4足等の脚部を備えて移動可能であって、自律的に動作するロボット装置及びその動作制御方法に関し、特に人間の顔、呼びかけ、又は動き等に反応して自律的に移動するようなロボット装置及びその動作制御方法に関する。
【0002】
【従来の技術】
電気的又は磁気的な作用を用いて人間(生物)の動作に似た運動を行う機械装置を「ロボット」という。我が国においてロボットが普及し始めたのは、1960年代末からであるが、その多くは、工場における生産作業の自動化・無人化等を目的としたマニピュレータや搬送ロボット等の産業用ロボット(Industrial Robot)であった。
【0003】
最近では、人間のパートナーとして生活を支援する、すなわち住環境その他の日常生活上の様々な場面における人的活動を支援する実用ロボットの開発が進められている。このような実用ロボットは、産業用ロボットとは異なり、人間の生活環境の様々な局面において、個々に個性の相違した人間、又は様々な環境への適応方法を自ら学習する能力を備えている。例えば、犬、猫のように4足歩行の動物の身体メカニズムやその動作を模した「ペット型」ロボット、或いは、2足直立歩行を行う動物の身体メカニズムや動作をモデルにしてデザインされた「人間型」又は「人間形」ロボット(Humanoid Robot)等の脚式移動ロボットは、既に実用化されつつある。
【0004】
これらの脚式移動ロボットは、産業用ロボットと比較して、エンターテインメント性を重視した様々な動作を行うことができるため、エンターテインメントロボットと呼称される場合もある。
【0005】
脚式移動ロボットは、動物や人間の容姿にできる限り近い外観形状とされ、動物や人間の動作にできる限り近い動作を行うように設計されている。例えば、上述した4足歩行の「ペット型」ロボットの場合は、一般家庭において飼育される犬や猫に似た外観形状を有し、ユーザ(飼い主)からの「叩く」や「撫でる」といった働きかけや、周囲の環境等に応じて自律的に行動する。例えば、自律的な行動として、実際の動物と同様に、「吠える」、「寝る」等といった行動をする。
【0006】
ところで、このようなエンターテイメント型のロボット装置において、画像内の動体を検出することにより、エンターテイメント性の向上を図ったロボット装置が下記特許文献1に開示されている。
【0007】
この特許文献1に記載のロボット装置は、外部を撮像する撮像手段と、撮像手段からの画像情報に基づく画像全体の移動を検出する第1の検出手段と、第1の検出手段の検出結果を考慮した所定の動き検出処理により、画像内の動きを検出する第2の検出手段とを備え、第2の検出手段の検出結果を上記行動に反映させるものである。この第1の検出手段は、画像情報に基づく現フレームの分割画像と、前フレームの対応する位置の分割画像とのマッチングスコアを算出し、この算出結果に基づき画像全体の移動量を検出するものであり、第2の検出手段は、検出した移動量が小さいときは画像内の動き検出の感度を上げて小さな動きでも検出可能とし、移動量が大きいときは、感度を低下させることにより、誤検出を低減しつつ、検出した動体検出結果を自身の動きに反映させる。即ち、例えば、大きな動きが突然検出された場合は、ロボット装置の行動生成モジュールにおける「驚き」のパラメータが上昇し、「驚き」の感情表出の行動が決定される等することにより、エンターテイメント性を向上させることができる。
【0008】
【特許文献1】
特開平14−251615号公報
【0009】
【発明が解決しようとする課題】
しかしながら、エンターテイメント型のロボット装置においては、特に人間等の特定の対象物のみの動きに反応させるようにしたい場合があり、そのような場合、上述の特許文献1に記載のロボット装置のように、検出された動体の動きのみを使用しても、例えば撮像された画像内に複数の動体が存在する場合、対象物が移動していない場合等に行動をとらせることが難しい。例えば、ロボット装置が動きのない対象物であっても対象物を検出でき、また、対象者の呼びかけ、動き等に敏感に反応して行動を実行するようにすれば、ペットらしさ、動物らしさが表出して更にエンターテイメント性が向上する。
【0010】
本発明は、このような従来の実情に鑑みて提案されたものであり、対象物に対してより自然な動作を行えて、エンターテイメント性を向上したロボット装置及びロボット装置の行動制御方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
上述した目的を達成するために、本発明に係るロボット装置は、外部からの働きかけに応じた動作及び/又は内部状態に基づく自律的な動作を実行するロボット装置において、音声を検出する音声検出手段と、上記音声検出手段により検出された音声データから音源方向を推定する音源方向推定手段と、上記音源方向推定手段により推定された音源方向に移動するよう制御する制御手段とを有し、上記音源方向推定手段は、過去に推定された音源方向に関する情報の履歴に基づき現在の音源方向を推定することを特徴とする。
【0012】
本発明においては、音声データに基づき音源方向を推定する際に、現在の音声データのみでは音源方向を推定できない場合があるが、その際、過去に推定された音源方向等の履歴を参照することにより、現在の音源方向の推定を行うことができる。
【0013】
また、上記音声検出手段は、胴体部に対して回転可能に接続された頭部に設けられ、上記制御手段は、上記過去に推定された音源方向に関する情報の履歴が存在しないときに、上記頭部を回転するよう制御し、上記音源方向推定手段は、回転前後に検出された音声データから音源方向を推定することができ、過去の音源方向の履歴がなくても、頭部を回転して検出した回転前後の音声データにより音源方向の推定を行うことができる。
【0014】
本発明に係るロボット装置は、外部からの働きかけに応じた動作及び/又は内部状態に基づく自律的な動作を実行するロボット装置において、撮像手段と、音声を検出する音声検出手段と、上記撮像手段により撮像された画像データから動体を検出する動体検出手段と、上記画像データから人物の顔を検出する顔検出手段と、上記音声検出手段により検出された音声データから音源方向を推定する音源方向推定手段と、少なくとも上記動体検出、上記顔検出、及び上記音源方向推定のうち、上記顔検出を優先して行うよう制御する制御手段とを有することを特徴とする。
【0015】
本発明においては、ロボット装置は、顔検出、動体検出、音声検出等の複数の処理を並行して行っている場合、顔検出を優先的に行い、これを行動に反映することにより、より対象物の特定率を向上する。
【0016】
【発明の実施の形態】
以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。この実施の形態は、本発明を周囲環境(或いは外部刺激)や内部状態に応じて自律行動をする自律型のロボット装置に適用したものである。
【0017】
本実施の形態では、先ず、ロボット装置の構成について説明して、その後、ロボット装置における本発明の適用部分について詳細に説明する。
【0018】
(1)本実施の形態によるロボット装置の構成
図1に示すように、本実施の形態におけるロボット装置1は、「犬」等の動物を模した形状のいわゆるペット型ロボットとされ、胴体部ユニット2の前後左右にそれぞれ脚部ユニット3A,3B,3C,3Dが連結されると共に、胴体部ユニット2の前端部に頭部ユニット4が連結されて構成されている。
【0019】
胴体部ユニット2には、図2に示すように、CPU(Central Processing Unit)10、DRAM(Dynamic Random Access Memory)11、フラッシュROM(Read Only Memory)12、PC(Personal Computer)カードインターフェイス回路13及び信号処理回路14が内部バス15を介して相互に接続されることにより形成されたコントロール部16と、このロボット装置1の動力源としてのバッテリ17とが収納されている。また、胴体部ユニット2には、ロボット装置1の向きや動きの加速度を検出するための角速度センサ18及び加速度センサ19が収納されている。また、胴体部ユニット2には、鳴き声等の音声又はメロディを出力するためのスピーカ20が、図1に示すように所定位置に配置されている。また、胴体部ユニット2の尻尾部5には、使用者からの操作入力を検出する検出機構としての操作スイッチ21が備えられている。操作スイッチ21は、使用者による操作の種類を検出できるスイッチであって、ロボット装置1は、操作スイッチ21によって検出される操作の種類に応じて、例えば「誉められた」か、「叱られた」かを認識する。
【0020】
頭部ユニット4には、ロボット装置1の「目」に相当し、外部の状況や対象物の色、形、動き等を撮像するためのCCD(Charge Coupled Device)カメラ22と、前方に位置する対象物までの距離を測定するための距離センサ23と、ロボット装置1の左右の「耳」に相当し、外部音を集音するためのマイクロホン24と、例えばLED(Light Emitting Diode)を備えた発光部25等が、図1に示すように所定位置にそれぞれ配置されている。ただし、発光部25は、構成の説明等においては、必要に応じてLED25と示す。また、頭部ユニット4内部には、図1には図示しないが、ユーザの頭部ユニット4に対する接触を間接的に検出するための検出機構として頭部スイッチ26が備えられている。頭部スイッチ26は、例えば、使用者の接触によって頭部が動かされた場合、その傾き方向を検出できるスイッチであって、ロボット装置1は、頭部スイッチ26によって検出される頭部の傾き方向に応じて、「誉められた」か「叱られた」かを認識する。
【0021】
各脚部ユニット3A〜3Dの関節部分、各脚部ユニット3A〜3Dと胴体部ユニット2との連結部分、頭部ユニット4と胴体部ユニット2との連結部分には、自由度数分のアクチュエータ28〜28及びポテンショメータ29〜29がそれぞれ配設されている。アクチュエータ28〜28は、例えば、サーボモータを備えている。サーボモータの駆動により、脚部ユニット3A〜3Dが制御されて目標の姿勢、或いは動作に遷移する。各脚部ユニット3A〜3Dの先端の「肉球」に相当する位置には、主としてユーザからの接触を検出する検出機構としての肉球スイッチ27A〜27Dが設けられ、ユーザによる接触等を検出できるようになっている。
【0022】
ロボット装置1は、この他にも、ここでは図示しないが、該ロボット装置1の内部状態とは別の動作状態(動作モード)を表すための発光部や、充電中、起動中、起動停止等、内部電源の状態を表す状態ランプ等を、適切な箇所に適宜備えていてもよい。
【0023】
そして、ロボット装置1において、操作スイッチ21、頭部スイッチ26及び肉球スイッチ27等の各種スイッチと、角速度センサ18、加速度センサ19、距離センサ23等の各種センサと、スピーカ20、マイクロホン24、発光部25、各アクチュエータ28〜28、各ポテンショメータ29〜29は、それぞれ対応するハブ30〜30を介してコントロール部16の信号処理回路14と接続されている。一方、CCDカメラ22及びバッテリ17は、それぞれ信号処理回路14と直接接続されている。
【0024】
信号処理回路14は、上述の各種スイッチから供給されるスイッチデータ、各種センサから供給されるセンサデータ、画像データ及び音声データを順次取り込み、これらをそれぞれ内部バス15を介してDRAM11内の所定位置に順次格納する。また信号処理回路14は、これとともにバッテリ17から供給されるバッテリ残量を表すバッテリ残量データを順次取り込み、DRAM11内の所定位置に格納する。
【0025】
このようにしてDRAM11に格納された各スイッチデータ、各センサデータ、画像データ、音声データ及びバッテリ残量データは、CPU10が当該ロボット装置1の動作制御を行う際に使用される。
【0026】
CPU10は、ロボット装置1の電源が投入された初期時において、フラッシュROM12に格納された制御プログラムを読み出して、DRAM11に格納する。又は、CPU10は、図1に図示しない胴体部ユニット2のPCカードスロットに装着された半導体メモリ装置、例えば、メモリカード31に格納された制御プログラムをPCカードインターフェイス回路13を介して読み出してDRAM11に格納する。
【0027】
CPU10は、上述のように信号処理回路14よりDRAM11に順次格納される各センサデータ、画像データ、音声データ、及びバッテリ残量データに基づいて自己及び周囲の状況や、使用者からの指示及び働きかけの有無を判断している。
【0028】
さらに、CPU10は、この判断結果及びDRAM11に格納した制御プログラムに基づいて続く行動を決定すると共に、当該決定結果に基づいて必要なアクチュエータ28〜28を駆動させることにより、頭部ユニット4を上下左右に振らせたり、各脚部ユニット3A〜3Dを駆動させて歩行させるなどの行動を行わせる。
【0029】
また、この際CPU10は、必要に応じて音声データを生成し、これを信号処理回路14を介して音声信号としてスピーカ20に与えることにより当該音声信号に基づく音声を外部に出力させたり、上述の発光部25におけるLEDの点灯及び消灯を指示する信号を生成し、発光部25を点灯したり消灯したりする。
【0030】
このようにしてこのロボット装置1においては、自己及び周囲の状況や、使用者からの指示及び働きかけに応じて自律的に行動し得るようになされている。
【0031】
(2)制御プログラムのソフトウェア構成
ここで、ロボット装置1における上述の制御プログラムのソフトウェア構成は、図3に示すようになる。この図3において、デバイス・ドライバ・レイヤ40は、この制御プログラムの最下位層に位置し、複数のデバイス・ドライバからなるデバイス・ドライバ・セット41から構成されている。この場合、各デバイス・ドライバは、CCDカメラ22(図2)やタイマ等の通常のコンピュータで用いられるハードウェアに直接アクセスすることを許されたオブジェクトであり、対応するハードウェアからの割り込みを受けて処理を行う。
【0032】
また、ロボティック・サーバ・オブジェクト42は、デバイス・ドライバ・レイヤ40の最下位層に位置し、例えば上述の各種センサやアクチュエータ28〜28等のハードウェアにアクセスするためのインターフェースを提供するソフトウェア群でなるバーチャル・ロボット43と、電源の切換えなどを管理するソフトウェア群でなるパワーマネージャ44と、他の種々のデバイス・ドライバを管理するソフトウェア群でなるデバイス・ドライバ・マネージャ45と、ロボット装置1の機構を管理するソフトウェア群でなるデザインド・ロボット46とから構成されている。
【0033】
マネージャ・オブジェクト47は、オブジェクト・マネージャ48及びサービス・マネージャ49から構成されている。オブジェクト・マネージャ48は、ロボティック・サーバ・オブジェクト42、ミドル・ウェア・レイヤ50、及びアプリケーション・レイヤ51に含まれる各ソフトウェア群の起動や終了を管理するソフトウェア群であり、サービス・マネージャ49は、メモリカード31(図2)に格納されたコネクションファイルに記述されている各オブジェクト間の接続情報に基づいて各オブジェクトの接続を管理するソフトウェア群である。
【0034】
ミドル・ウェア・レイヤ50は、ロボティック・サーバ・オブジェクト42の上位層に位置し、画像処理や音声処理などのこのロボット装置1の基本的な機能を提供するソフトウェア群から構成されている。また、アプリケーション・レイヤ51は、ミドル・ウェア・レイヤ50の上位層に位置し、当該ミドル・ウェア・レイヤ50を構成する各ソフトウェア群によって処理された処理結果に基づいてロボット装置1の行動を決定するためのソフトウェア群から構成されている。
【0035】
なお、ミドル・ウェア・レイヤ50及びアプリケーション・レイヤ51の具体なソフトウェア構成をそれぞれ図4に示す。
【0036】
ミドル・ウェア・レイヤ50は、図4に示すように、騒音検出用、温度検出用、明るさ検出用、音階認識用、距離検出用、姿勢検出用、接触検出用、操作入力検出用、動き検出用及び色認識用の各信号処理モジュール60〜69並びに入力セマンティクスコンバータモジュール70などを有する認識系71と、出力セマンティクスコンバータモジュール79並びに姿勢管理用、トラッキング用、モーション再生用、歩行用、転倒復帰用、LED点灯用及び音再生用の各信号処理モジュール72〜78などを有する出力系80とから構成されている。
【0037】
認識系71の各信号処理モジュール60〜69は、ロボティック・サーバ・オブジェクト42のバーチャル・ロボット43によりDRAM11(図2)から読み出される各センサデータや画像データ及び音声データのうちの対応するデータを取り込み、当該データに基づいて所定の処理を施して、処理結果を入力セマンティクスコンバータモジュール70に与える。ここで、例えば、バーチャル・ロボット43は、所定の通信規約によって、信号の授受或いは変換をする部分として構成されている。
【0038】
入力セマンティクスコンバータモジュール70は、これら各信号処理モジュール60〜69から与えられる処理結果に基づいて、「うるさい」、「暑い」、「明るい」、「ドミソの音階が聞こえた」、「障害物を検出した」、「転倒を検出した」、「叱られた」、「誉められた」、「動く物体を検出した」又は「ボールを検出した」などの自己及び周囲の状況や、使用者からの指令及び働きかけを認識し、認識結果をアプリケーション・レイヤ51(図2)に出力する。
【0039】
アプリケーション・レイヤ5lは、図5に示すように、行動モデルライブラリ90、行動切換モジュール91、学習モジュール92、感情モデル93及び本能モデル94の5つのモジュールから構成されている。
【0040】
行動モデルライブラリ90には、図6に示すように、「バッテリ残量が少なくなった場合」、「転倒復帰する」、「障害物を回避する場合」、「感情を表現する場合」、「ボールを検出した場合」などの予め選択されたいくつかの条件項目にそれぞれ対応させて、それぞれ独立した行動モデル90〜90が設けられている。
【0041】
そして、これら行動モデル90〜90は、それぞれ入力セマンティクスコンバータモジュール71から認識結果が与えられたときや、最後の認識結果が与えられてから一定時間が経過したときなどに、必要に応じて後述のように感情モデル93に保持されている対応する情動のパラメータ値や、本能モデル94に保持されている対応する欲求のパラメータ値を参照しながら続く行動をそれぞれ決定し、決定結果を行動切換モジュール91に出力する。
【0042】
なお、この実施の形態の場合、各行動モデル90〜90は、次の行動を決定する手法として、図7に示すような1つのノード(状態)NODE〜NODEから他のどのノードNODE〜NODEに遷移するかを各ノードNODE〜NODEに間を接続するアークARC〜ARCに対してそれぞれ設定された遷移確率P〜Pに基づいて確率的に決定する有限確率オートマトンと呼ばれるアルゴリズムを用いる。
【0043】
具体的に、各行動モデル90〜90は、それぞれ自己の行動モデル90〜90を形成するノードNODE〜NODEにそれぞれ対応させて、これらノードNODE〜NODEごとに図8に示すような状態遷移表100を有している。
【0044】
この状態遷移表100では、そのノードNODE〜NODEにおいて遷移条件とする入力イベント(認識結果)が「入力イベント名」の列に優先順に列記され、その遷移条件についてのさらなる条件が「データ名」及び「データ範囲」の列における対応する行に記述されている。
【0045】
したがって、図8の状態遷移表100で表されるノードNODE100では、「ボールを検出(BALL)」という認識結果が与えられた場合に、当該認識結果と共に与えられるそのボールの「大きさ(SIZE)」が「0から1000」の範囲であることや、「障害物を検出(OBSTACLE)」という認識結果が与えられた場合に、当該認識結果と共に与えられるその障害物までの「距離(DISTANCE)」が「0から100」の範囲であることが他のノードに遷移するための条件となっている。
【0046】
また、このノードNODE100では、認識結果の入力がない場合においても、行動モデル90〜90が周期的に参照する感情モデル93及び本能モデル94にそれぞれ保持された各情動及び各欲求のパラメータ値のうち、感情モデル93に保持された「喜び(JOY)」、「驚き(SURPRISE)」若しくは「悲しみ(SUDNESS)」のいずれかのパラメータ値が「50から100」の範囲であるときには他のノードに遷移することができるようになっている。
【0047】
また、状態遷移表100では、「他のノードヘの遷移確率」の欄における「遷移先ノード」の行にそのノードNODE〜 NODEから遷移できるノード名が列記されていると共に、「入力イベント名」、「データ値」及び「データの範囲」の列に記述された全ての条件が揃ったときに遷移できる他の各ノードNODE〜NODEへの遷移確率が「他のノードヘの遷移確率」の欄内の対応する箇所にそれぞれ記述され、そのノードNODE〜NODEに遷移する際に出力すべき行動が「他のノードヘの遷移確率」の欄における「出力行動」の行に記述されている。なお、「他のノードヘの遷移確率」の欄における各行の確率の和は100[%]となっている。
【0048】
したがって、図8の状態遷移表100で表されるノードNODE100では、例えば「ボールを検出(BALL)」し、そのボールの「SIZE(大きさ)」が「0から1000」の範囲であるという認識結果が与えられた場合には、「30[%]」の確率で「ノードNODE120(node 120)」に遷移でき、そのとき「ACTION1」の行動が出力されることとなる。
【0049】
各行動モデル90〜90は、それぞれこのような状態遷移表100として記述されたノードNODE〜NODEがいくつも繋がるようにして構成されており、入力セマンティクスコンバータモジュール71から認識結果が与えられたときなどに、対応するノードNODE〜NODEの状態遷移表を利用して確率的に次の行動を決定し、決定結果を行動切換モジュール91に出力するようになされている。
【0050】
図5に示す行動切換モジュール91は、行動モデルライブラリ90の各行動モデル90〜90からそれぞれ出力される行動のうち、予め定められた優先順位の高い行動モデル90〜90から出力された行動を選択し、当該行動を実行すべき旨のコマンド(以下、これを行動コマンドという。)をミドル・ウェア・レイヤ50の出力セマンティクスコンバータモジュール79に送出する。なお、この実施の形態においては、図6において下側に表記された行動モデル90〜90ほど優先順位が高く設定されている。
【0051】
また、行動切換モジュール91は、行動完了後に出力セマンティクスコンバータモジュール79から与えられる行動完了情報に基づいて、その行動が完了したことを学習モジュール92、感情モデル93及び本能モデル94に通知する。
【0052】
一方、学習モジュール92は、入力セマンティクスコンバータモジュール71から与えられる認識結果のうち、「叱られた」や「誉められた」など、使用者からの働きかけとして受けた教示の認識結果を入力する。そして、学習モジュール92は、この認識結果及び行動切換モジュール91からの通知に基づいて、「叱られた」ときにはその行動の発現確率を低下させ、「誉められた」ときにはその行動の発現確率を上昇させるように、行動モデルライブラリ90における対応する行動モデル90〜90の対応する遷移確率を変更する。
【0053】
他方、感情モデル93は、「喜び(joy)」、「悲しみ(sadness)」、「怒り(anger)」、「驚き(surprise)」、「嫌悪(disgust)」及び「恐れ(fear)」の合計6つの情動について、各情動ごとにその情動の強さを表すパラメータを保持している。そして、感情モデル93は、これら各情動のパラメータ値を、それぞれ入力セマンティクスコンバータモジュール71から与えられる「叱られた」及び「誉められた」などの特定の認識結果と、経過時間及び行動切換モジュール91からの通知などに基づいて周期的に更新する。
【0054】
具体的には、感情モデル93は、入力セマンティクスコンバータモジュール71から与えられる認識結果と、そのときのロボット装置1の行動と、前回更新してからの経過時間などに基づいて所定の演算式により算出されるそのときのその情動の変動量を△E[t]、現在のその情動のパラメータ値をE[t]、その情動の感度を表す係数をkとして、(1)式によって次の周期におけるその情動のパラメータ値E[t+1]を算出し、これを現在のその情動のパラメータ値E[t]と置き換えるようにしてその情動のパラメータ値を更新する。また、感情モデル73は、これと同様にして全ての情動のパラメータ値を更新する。
【0055】
【数1】
Figure 2004130427
【0056】
なお、各認識結果や出力セマンティクスコンバータモジュール79からの通知が各情動のパラメータ値の変動量△E[t]にどの程度の影響を与えるかは予め決められており、例えば「叩かれた」といった認識結果は「怒り」の情動のパラメータ値の変動量△E[t]に大きな影響を与え、「撫でられた」といった認識結果は「喜び」の情動のパラメータ値の変動量△E[t]に大きな影響を与えるようになっている。
【0057】
ここで、出力セマンティクスコンバータモジュール79からの通知とは、いわゆる行動のフィードバック情報(行動完了情報)であり、行動の出現結果の情報であり、感情モデル93は、このような情報によっても感情を変化させる。これは、例えば、「吠える」といった行動により怒りの感情レベルが下がるといったようなことである。なお、出力セマンティクスコンバータモジュール79からの通知は、上述した学習モジュール92にも入力されており、学習モジュール92は、その通知に基づいて行動モデル90〜90の対応する遷移確率を変更する。
【0058】
なお、行動結果のフィードバックは、行動切換モジュール91の出力(感情が付加された行動)によりなされるものであってもよい。
【0059】
一方、本能モデル94は、「運動欲(exercise)」、「愛情欲(affection)」、「食欲(appetite)」及び「好奇心(curiosity)」の互いに独立した4つの欲求について、これら欲求ごとにその欲求の強さを表すパラメータを保持している。そして、本能モデル94は、これらの欲求のパラメータ値を、それぞれ入力セマンティクスコンバータモジュール71から与えられる認識結果や、経過時間及び行動切換モジュール91からの通知などに基づいて周期的に更新する。
【0060】
具体的には、本能モデル94は、「運動欲」、「愛情欲」及び「好奇心」については、認識結果、経過時間及び出力セマンティクスコンバータモジュール68からの通知などに基づいて所定の演算式により算出されるそのときのその欲求の変動量をΔI[k]、現在のその欲求のパラメータ値をI[k]、その欲求の感度を表す係数kとして、所定周期で(2)式を用いて次の周期におけるその欲求のパラメータ値I[k+1]を算出し、この演算結果を現在のその欲求のパラメータ値I[k]と置き換えるようにしてその欲求のパラメータ値を更新する。また、本能モデル94は、これと同様にして「食欲」を除く各欲求のパラメータ値を更新する。
【0061】
【数2】
Figure 2004130427
【0062】
なお、認識結果及び出力セマンティクスコンバータモジュール79からの通知などが各欲求のパラメータ値の変動量△I[k]にどの程度の影響を与えるかは予め決められており、例えば出力セマンティクスコンバータモジュール79からの通知は、「疲れ」のパラメータ値の変動量△I[k]に大きな影響を与えるようになっている。
【0063】
なお、本実施の形態においては、各情動及び各欲求(本能)のパラメータ値がそれぞれ0から100までの範囲で変動するように規制されており、また係数k、kの値も各情動及び各欲求ごとに個別に設定されている。
【0064】
一方、ミドル・ウェア・レイヤ50の出力セマンティクスコンバータモジュール79は、図4に示すように、上述のようにしてアプリケーション・レイヤ51の行動切換モジュール91から与えられる「前進」、「喜ぶ」、「鳴く」又は「トラッキング(ボールを追いかける)」といった抽象的な行動コマンドを出力系80の対応する信号処理モジュール72〜78に与える。
【0065】
そしてこれら信号処理モジュール72〜78は、行動コマンドが与えられると当該行動コマンドに基づいて、その行動を行うために対応するアクチュエータ28〜28(図2)に与えるべきサーボ指令値や、スピーカ20(図2)から出力する音の音声データ及び/又は発光部25(図2)のLEDに与える駆動データを生成し、これらのデータをロボティック・サーバ・オブジェクト42のバーチャル・ロボット43及び信号処理回路14(図2)を順次介して対応するアクチュエータ28〜28、スピーカ20又は発光部25に順次送出する。
【0066】
このようにしてロボット装置1においては、制御プログラムに基づいて、自己(内部)及び周囲(外部)の状況や、使用者からの指示及び働きかけに応じた自律的な行動を行うことができるようになされている。
【0067】
(3)ロボット装置における行動制御方法
ここで、上述したような構造を有するロボット装置1において、対象者の音声、顔、動き等を検出し、これらの検出結果に基づき行動を実行するロボット装置の行動制御方法について説明する。本実施の形態におけるロボット装置は、図1に示す音声検出手段であるマイクロホン24により、対象者の音声を検出し、その音声データに基づきその音源方向を推定する。また、図1に示す撮像手段によるCCDカメラ22により取得された画像データに基づき、対象物の顔を検出する。更に、画像データに基づき、動体検出を行う。そして、推定された音源方向、顔検出結果に基づく顔方向、動体検出結果に基づく動体方向のいずれかの方向にロボット装置自身が移動を開始し、例えば対象物にある程度近づいた場合等の所定の条件により、その移動を停止するものである。ここで、本実施の形態においては、音声、顔、及び動体が検出された場合、顔検出結果を優先的に使用してその行動に反映させるものである。これは、顔検出が最も高精度に検出可能であるためであるが、更に音声検出及び動体検出結果を利用することにより、検出効率を向上し、検出結果をロボット装置の動作に反映させて更にエンターテイメント性を向上させるものである。
【0068】
図9は、図2乃至図6に示すロボット装置において、音声、顔、動体検出により、その行動を制御するために必要な構成部分を抽出して示すブロック図である。図9に示すように、CCDカメラ22により撮像された画像データ、及びマイクロホン24により検出された音声データは、DRAM11の所定の場所に格納され、ロボティック・サーバ・オブジェクト42におけるバーチャル・ロボット43に供給される。このバーチャル・ロボット43は、画像データをDRAM11から読み出し、ミドル・ウェア・レイヤ50における動体検出モジュール32及び顔検出モジュール33に供給し、音声データを読み出し、音源方向推定モジュール34に供給する。各モジュールでは、後述する動体検出処理、顔検出処理、音源方向推定処理がなされ、その検出処理結果がアプリケーション・レイヤ51における行動モデルライブラリ90に供給される。
【0069】
行動モデルライブラリ90は、必要に応じて情動のパラメータ値や欲求のパラメータ値を参照しながら続く行動を決定し、決定結果を行動切換モジュール91に与える。そして、行動切換モジュール91は、当該決定結果に基づく行動コマンドをミドル・ウェア・レイヤ50の出力系80におけるトラッキング用信号処理モジュール73、歩行モジュール75に送出する。
【0070】
トラッキング用信号処理モジュール73、歩行モジュール75は、行動コマンドが与えられると当該行動コマンドに基づいて、その行動を行うために対応するアクチュエータ28〜28に与えるべきサーボ指令値を生成し、このデータをロボティック・サーバ・オブジェクト42のバーチャル・ロボット43及び信号処理回路14(図2)を順次介して対応するアクチュエータ28〜28に順次送出する。この結果、ロボット装置1の行動が制御され、例えば対象物に対して近づく等の行動を発現する。
【0071】
先ず、顔検出モジュール33における顔検出処理について具体的に説明する。顔検出モジュール33では、例えば平均的な正面顔のテンプレート画像を使用し、入力画像と、テンプレート画像との相関を求めることにより、顔検出を行うことができる。
【0072】
顔検出モジュール33は、CCDカメラ等の撮像手段による撮像結果として得られるフレーム画像を入力画像とし、この入力画像と平均的な顔画像を示す所定サイズのテンプレート画像との相関を求めるテンプレートマッチング部(図示せず)と、相関に基づき、該入力画像に顔画像が含まれるか否かを判定する判定部(図示せず)と、顔画像が含まれると判定された場合に、該顔画像を抽出する顔抽出部(図示せず)とから構成される。
【0073】
テンプレートマッチング部に供給される入力画像は、用意されたテンプレート画像における顔の大きさと一致させるため、フレーム画像を例えば複数のスケールに変換した後、所定の大きさに切り出した画像とすることができ、テンプレートマッチング部は、各スケール毎の入力画像についてマッチングを行う。テンプレート画像としては、例えば100人程度の人物の平均からなる平均的な顔画像を使用することができる。
【0074】
判定部は、テンプレートマッチング部におけるテンプレートマッチングにおいて、所定の閾値以上の相関値を示した場合にその入力画像に顔画像が含まれると判定し、顔抽出部により、該当する顔領域を抽出する。
【0075】
ここで、判定部において、いずれのマッチング結果も所定の閾値未満である場合は、入力画像にはテンプレート画像が示す顔が含まれていないと判定し、その判定結果をテンプレートマッチング部に返す。マッチング部は、入力画像に顔画像が含まれないと判定された場合、次のスケール画像とのマッチングを行う。
【0076】
そして、判定部は、次のスケール画像とテンプレート画像とのマッチング結果から、当該スケール画像に顔画像が含まれるか否かを判定する。そして、上述した如く、相関値が所定の閾値以上である場合、顔画像が含まれると判定する。全てのスケール画像とのマッチングを行い、顔検出されなかった場合は、次のフレーム画像の処理を行う。
【0077】
また、通常、テンプレートマッチングで使用される平均顔は、正面から撮影された一般的なものを使用して行うため、正面から撮影した顔以外(以下、非正面顔という。)を検出することが難しい。例えば、ロボット装置において、画像を取得するためのCCDカメラが例えばロボット装置の顔部に搭載されていると、転倒して仰向けになったロボット装置を使用者等が覗き込んだ際等に撮影される顔画像は、通常の正面顔とは逆方向、即ち、正面顔を略180°回転した状態の非正面顔となる。そこで、このような非正面顔が撮影された場合であっても顔検出を可能とするため、正面顔のテンプレート画像を使用し、正面顔のテンプレート画像を使用しても顔検出できなかった場合は、テンプレート画像を所定の角度回転して使用すると共に、顔検出された場合は、検出時の回転角度のテンプレート画像を使用して、次の入力画像とのマッチングを行うことにより、非正面顔であっても検出可能になると共に、前回の回転角度を記憶することにより、顔検出処理を高速化するようにしてもよい。
【0078】
こうして顔検出モジュールでは、画像データから顔検出し、ロボット装置は、この検出結果に基づき、検出した顔の方向に近づく、顔方向を向く、或いはトラッキングする等の行動を行うことができる。
【0079】
次に、動体検出モジュール32における動体検出について具体的に説明する。動体検出処理は、図4に示したミドル・ウェア・レイヤ50の認識系71における動体検出モジュールでは、CCDカメラ22(図2)によって撮像した画像データ内の動体を検出し、検出した動体の方向を向く、或いはトラッキングするなどといった行動を行う。
【0080】
例えば、フレーム間の差分画像を生成し、この差分画像から動体を検出することができる。例えば静止画像において、フレーム間の差分値は動体の動きが停止した時点で0となる。例えば、図10に示すように、それぞれ時刻t〜tにおける人間を撮像した画像データP〜Pについて差分画像データD〜Dを生成した場合、時刻t及びt間で顔が静止していると、差分画像データDから顔の差分データが消失してしまう。つまり、差分画像データから動体が消失したということは、動体がその場から消失したのではなく、消えた場所に動体が存在するということを意味している。
【0081】
そこで、ロボット装置1は、この差分が0となる時点を検出すれば動体の位置を検出することができる。このような動体検出により、例えば、その直前の差分画像における重心位置の方向にCCDカメラ22を向けることで重心位置の方向を向き、又は重心位置の方向に近付くことができる。すなわち、図11のフローチャートに示すように、先ずステップS1において、差分画像データの重心位置を計算することで動体を検出し、ステップS2において、検出した動体が差分画像データから消失したか否かが判別される。ステップS2において動体が消えていない場合(No)にはステップS1に戻る。一方、ステップS2において動体が消えた場合(Yes)にはステップS3に進み、消失した方向、すなわち直前の差分画像における重心位置の方向を向く、或いはその重心位置の方向に近付く。
【0082】
なお、検出した動体がロボット装置1の視覚範囲から外れた場合にも差分画像から動体が消失するが、この場合にも上述のステップS3において最後に検出された重心位置の方向を向くことで、ほぼ動体の方向を向くことができる。
【0083】
このように、ロボット装置1は、視覚範囲内で動体が静止したことにより差分画像データから消失するのを検出し、その重心位置の方向を向くようにすることで、例えば人間等の動体の気配を感じてその方向を向くという自律的なインタラクションを実現できる。また、動体が視覚範囲から外れたことにより差分画像データから消失するのを検出し、最後に検出された重心位置の方向を向くようにすることで、ほぼ動体の方向を向くことができる。
【0084】
また、ロボット装置1は、差分画像データから動体が消失した場合のみならず、所定の時間間隔毎、或いは動体の重心位置が視覚範囲から外れそうになる毎に検出された重心方向を向き、動体をトラッキングするようにしても構わない。すなわち、図12のフローチャートに示すように、先ずステップS10において、差分画像データの重心位置を計算することで動体を検出し、ステップS11において、所定の時間間隔毎、或いは動体が視覚範囲から外れそうになる毎に検出された重心位置の方向を向く。
【0085】
ここで、ロボット装置1は、前述のように差分画像データから動体が消失した場合の他、ステップS11におけるロボット装置1の動きが大きい場合には、動き補償によって自己の動きと動体の動きとを区別することができなくなり、動体を見失ってしまう。そこでステップS12において、動体を見失ったか否かが判別される。ステップS12において動体を見失っていない場合(No)にはステップS10に戻る。一方、ステップS12において動体を見失った場合(Yes)にはステップS13に進み、最後に検出された重心位置の方向を向く。
【0086】
このように、ロボット装置1は、所定の時間間隔毎、或いは動体が視覚範囲から外れそうになる毎に検出された重心方向を向き、動体を見失った場合に最後に検出された重心位置の方向を向くようにすることで、頭部ユニット4に設けられたCCDカメラ22によって撮像した画像内の動体を簡易な手法により検出し、トラッキングすることが可能となる。
【0087】
このような動体検出処理は、先ず、図9に示すロボティック・サーバ・オブジェクト42のバーチャル・ロボット43がCCDカメラ22によって撮像されたフレーム単位の画像データをDRAM11から読み出し、この画像データをミドル・ウェア・レイヤ50の認識系71に含まれる動体検出モジュール32に送出する。
【0088】
そして、動体検出モジュール32は、画像データを入力する毎に隣接する前フレームの画像データとの差分をとって差分画像データを生成する。例えば、上述した画像データPと画像データPとの差分画像データDを生成する場合、位置(i,j)における差分画像データDの輝度値D(i,j)は、位置(i,j)における画像データPの輝度値P(i,j)から同位置における画像データPの輝度値P(i,j)を減算することで得られる。そして、全画素について同様の計算を行って差分画像データDを生成し、この差分画像データDを生成する。そして、差分画像データのうち、輝度値が閾値Thよりも大きい部分についての重心位置G(x,y)を計算する。ここで、x、yは、それぞれ以下の(3)式、(4)式を用いて計算される。
【0089】
【数3】
Figure 2004130427
【0090】
これにより、図13に示すように、例えば上述した画像データPと画像データPとの差分画像データDから、重心位置Gが求められる。求めた重心位置のデータをアプリケーション・レイヤ51の行動モデルライブラリ90に送出する。
【0091】
行動モデルライブラリ90は、上述したように、必要に応じて情動のパラメータ値や欲求のパラメータ値を参照しながら続く行動を決定し、決定結果を行動切換モジュール91に与える。例えば、差分画像データから動体が消失した場合には、直前に検出された重心位置を向く、或いは近付く行動を決定し、決定結果を行動切換モジュール91に与える。また、所定の時間間隔毎に動体をトラッキングする場合には、その時間間隔毎に検出された重心位置を向く、或いは近付く行動を決定し、決定結果を行動切換モジュール91に与える。そして、行動切換モジュール91は、当該決定結果に基づく行動コマンドをミドル・ウェア・レイヤ50の出力系80におけるトラッキング用信号処理モジュール73に送出する。
【0092】
トラッキング用信号処理モジュール73は、行動コマンドが与えられると当該行動コマンドに基づいて、その行動を行うために対応するアクチュエータ28〜28に与えるべきサーボ指令値を生成し、このデータをロボティック・サーバ・オブジェクト42のバーチャル・ロボット43及び信号処理回路14(図2)を順次介して対応するアクチュエータ28〜28に順次送出する。
【0093】
この結果、例えば、差分画像データから動体が消失した場合には、行動モデルライブラリ90によって、直前に検出された重心位置を向く、或いは近付く行動が決定され、行動切換モジュール91によって、その行動を行わせるための行動コマンドが生成される。また、所定の時間間隔毎に動体をトラッキングする場合には、行動モデルライブラリ90によって、その時間間隔毎に検出された重心位置を向く、或いは近付く行動が決定され、行動切換モジュール91によって、その行動を行わせるための行動コマンドが生成される。
【0094】
そして、この行動コマンドがトラッキング用信号処理モジュール73に与えられると、当該トラッキング用信号処理モジュール73は、その行動コマンドに基づくサーボ指令値を対応するアクチュエータ28〜28に送出し、これによりロボット装置1が動体に興味を示して頭部をその方向に向けたり、動体の方向に近付いたりする行動が発現される。
【0095】
次に、音源方向推定モジュール34における音源推定処理について具体的に説明する。上述したように、ロボット装置1の頭部ユニット4には、左右の「耳」に相当するマイクロホン24が備えられており、ロボット装置1は、このマイクロホン24を用いて音源方向を推定することができる。具体的には、例えば「大賀、山崎、金田『音響システムとディジタル処理』(電子情報通信学会)p197」に記載されているように、音源方向と複数のマイクロホンで受音した信号の時間差とに一対一の関係があることを利用して音源方向を推定することができる。
【0096】
すなわち、図14に示すように、θ方向から到来する平面波を、距離dだけ離れて設置された2つのマイクロホンM,Mで受音する場合、各マイクロホンM,Mの受音信号(音声データ)x(t)とx(t)との間には、下記式(5)、(6)に示すような関係が成立する。ここで、下記式(5)、(6)において、cは音速であり、τは2つのマイクロホンM,Mで受音した信号の時間差である。
【0097】
【数4】
Figure 2004130427
【0098】
したがって、受音信号x(t)とx(t)との間の時間差τが分かれば、下記式(7)により、音波の到来方向、すなわち音源方向を求めることができる。
【0099】
【数5】
Figure 2004130427
【0100】
ここで、時間差τは、下記式(8)に示すような、受音信号x(t)とx(t)との間の相互相関関数φ12(τ)から求めることができる。ここで、下記式(8)において、E[・]は期待値である。
【0101】
【数6】
Figure 2004130427
【0102】
上記式(5)と式(8)とから、相互相関関数φ12(τ)は、下記式(9)のように表される。ここで、下記式(9)において、φ11(τ)は受音信号x(t)の自己相関関数である。
【0103】
【数7】
Figure 2004130427
【0104】
この自己相関関数φ11(τ)は、τ=0で最大値をとることが知られているため、式(5)より相互相関関数φ12(τ)は、τ=τで最大値をとる。したがって、相互相関関数φ12(τ)を計算して、最大値を与えるτを求めればτが得られ、それを上述した式(3)に代入することにより、音波の到来方向、すなわち音源方向を求めることができる。そして、現在ロボット装置1が向いている方向と音源の方向との差が計算され、体幹の向きに対する音源方向の相対角度が求められる。
【0105】
ここで、図15(a)に示すように、ロボット装置1は、頭部ユニットに備えられた異なる位置に設けられたマイクロホン24R/Lと、音源Aとの間の距離の違い、即ち受音信号の時間差により、その音源の位置を推定するものであるが、あるA点に対して、左右のマイクロホン24Lとマイクロホン24Rとを結ぶ直線101と線対称のB点を考えた場合、即ち、直線101との間の距離L,Lが等しいA点、B点を考えた場合、A点から左右のマイクロホン24R/Lまでの間の距離と、B点からマイクロホン24R/Lまでの間の距離とが等しくなるため、受音信号の時間差も等しくなり、従って、受音信号の時間差によってはその音源の方向が何れかは特定することができない。
【0106】
そこで、本実施の形態においては、前回、1つの方角に特定された音源方向か、又は、推定された2つの音源方向を音源方向に関する情報の履歴として記憶しておき、音源方向が特定できない場合、前回の履歴を参考にするものとする。前回の音源方向が1つに特定されていれば、対象物が短時間でそれほど大きく移動せず、現在の音声データの音源は、前回の音声データの音源方向と同一の方向の可能性が高いことを利用することができる。また、前回の音源方向が1つに特定されていない場合、又は履歴が全くない場合であっても、下記のようにマイクロホンが備えられた頭部ユニットを回転させ、回転前後の音声データを得ることにより、音源方向を特定するこができる。
【0107】
即ち、図15(a)において、実際はロボット装置の画面左側上方のA点が音源であった場合、頭部ユニット4を左回転させると、右のマイクロホン24Rの方が音源であるA点により近づくことになる。即ち、回転前後における左右の受音信号の時間差により音源方向を特定することができる。同じく、画面左側下方の点Bが音源である場合、頭部ユニット4を左回転させると左マイクロホン24Lの方がB点により近くづくため、音源方向がB点であることが特定できる。こうして、実際の音源がA点であるかB点であるかは、回転前後の音声データから特定することができる。
【0108】
こうして、音源方向推定モジュール34により音源方向を推定し、ロボット装置はこの音源方向推定結果に基づき、推定した音源方向を向いたり、音源に近づく等の動作を発現することができる。
【0109】
次に、これらの顔検出結果、動体検出結果、音源方向推定結果に基づくロボット装置の行動を制御する制御方法について説明する。本実施の形態においては、ロボット装置1の顔検出モジュール33により顔検出した場合は、ロボット装置1は、顔方向に歩行を開始して、顔検出対象に近づく動作を行うよう制御される。ここで、顔方向とは、例えば、顔領域の重心が画面の中心を通る垂直線上に略重なる位置となる方向を示すものとする。また、動体検出モジュール32により動体検出された場合は、差分画像における重心位置方向(動体方向)に歩行を開始することで、動体に近づく動作を行い、音源推定方向が検出された場合は、音源方向に歩行を開始し、音源に近づく動作を行うように制御される。ここで、顔検出、動体検出、及び音源方向推定が同時になされた場合、顔検出結果を優先して使用するよう制御される。即ち、例えば推定された音源方向と検出された顔方向とが異なる場合、顔方向へ移動するよう制御されるものとする。
【0110】
図16は、本実施の形態におけるロボット装置の行動制御方法を示すフローチャートである。図16に示すように、先ず、ロボット装置は、一定間隔で首振りしながら待機する(ステップS21)。次に音声検出、動体検出、顔検出されたか否かが順次判定され(ステップS22〜ステップS24)、いずれも検出されていない場合は、再びステップS21に戻り、待機状態となる。
【0111】
一方、ステップS24にて顔検出された場合は、例えば、検出された顔領域の重心位置が画面の中央を通る垂直線上にくるよう、頭部ユニットを回転することにより、顔位置を同定し(ステップS31)、その顔方向に歩行を開始する(ステップS32)。歩行時においては、後述する所定の終了条件を満たすまで歩行を続ける。
【0112】
また、ステップS22において、音声検出された場合、音源の方向を特定する。上述したように、音源方向を特定することが困難である場合、即ち、上述のように、2つの音源方向が算出されてしまった場合、音源方向の履歴があるか否かが検出される(ステップS25)。ここで、音源方向の履歴がある場合は、音源方向の履歴を参照して、現在の音源方向を特定し、その音源方向に歩行を行う(ステップS29)。一方、ステップS25において、履歴が検出されない場合、ロボット装置1は、音声検出手段を有する頭部ユニットを回転(首振り)し、算出された2つの音源方向を記憶し、再び待機状態となる。そして、再び音声データを検出すると、上述のステップS26において音源方向が記憶されているため、音源方向を特定することができる。
【0113】
なお、ここで、ステップS26においては、算出された2つの音源方向の履歴を記憶しておくものとしたが、前回、特定された1つの音源方向を記憶するものとしてもよい。即ち、ステップS25にて履歴がないと判定された場合、頭部ユニットを回転させ、回転前後の音声データから1つの音源方向を算出し、回転前後の音声データから特定された音源方向を履歴として記憶するようにしてもよい。
【0114】
また、ステップS23において動体が検出された場合は、動体の動きに合わせて頭部ユニットを回転させてトラッキングし(ステップS27)、動体が静止する位置を検出する(ステップS28)。動体の静止を検出するまで、動体のトラッキングを続ける。そして、動体の静止が検出されると、例えば前後の画像データの差分データにおける重心位置方向に歩行を開始する(ステップS29)。
【0115】
ステップS29において、音声検出又は動体検出の結果に基づき歩行を開始した場合、定期的に顔が検出されたか否かを判定する(ステップS30)。そして、ステップS29において、歩行途中であっても、顔検出された場合は、顔検出処理を行うものとする。即ち、例えば顔領域が画面の中央位置にくるように頭部を回転させる等して検出された顔位置を同定し(ステップS31)、顔方向に歩行を開始する(ステップS32)。
【0116】
次に、ステップS32における終了判定について説明する。本実施の形態においては、顔検出等により歩行を開始し、所定の終了条件を満たすとき、歩行停止するものとする。この終了判定の条件としては、下記に示すものがある。即ち、
1.顔が検出された顔方向がロボット装置の正面であり、且つ、顔検出対象物との距離が所定の距離以下である場合
2.対象物との距離が所定の距離以下である場合
3.所定の音声単語を検出した場合
4.接触センサにより接触が検出された場合
の何れか1つの終了条件を満たす場合に歩行を停止する。
【0117】
顔方向がロボット装置の正面であるか否かは、図17に示すように、ロボット装置1の垂直視野角をθとしたとき、対象物300の顔301がロボット装置1の正面から例えば画面水平方向±22.5°等の範囲内となるように移動方向を制御する。また、顔検出対象、又は対象物300との距離Hは、例えば、PSD(Position Sensor Devise)若しくは距離センサ等により検出するか、又は画像中の顔領域の大きさ、対象物の大きさ等により推測し、その距離は、例えば40cm以下となった場合に停止制御するようにすることができる。ここで、例えば、ロボット装置1の垂直視野角が55°である場合、指定する距離によっては、対象物の顔が検出されない場合がある。このような場合は、対象物との距離データのみを使用して、停止条件とすることができる。
【0118】
また、例えば、「おすわり」、「とまれ」等、所定の音声単語を検出した場合にも歩行停止する。また、使用者に頭を撫でられたり、障害物に接触したりした場合に、接触センサにより、その接触を検出して歩行を停止するものとする。また、例えば頭部以外の接触センサにより接触が検出された場合、障害物に接触した可能性が高いと判断することができるが、そのような場合は、歩行を停止すると共に一旦後退するか、又はその場で障害物を迂回するよう動作制御するような行動を生成するようにしてもよい。
【0119】
図18は、ロボット装置が対象物に接近する際の歩行経路を模式的に示す図である。ロボット装置1が、顔振りしながら顔検出した場合、図18に示すように、自身の姿勢方向Cから角度θの位置に対象物300の顔が検出された場合、その場でθ回転してから対象物300に対して歩行を開始するより、円弧Dを描きながらθ回転して移動する方が動きが自然に見える場合がある。このように移動するように制御することにより、視覚効果を向上させることができる。
【0120】
次に、ロボット装置が対象物に近づく動作について更に詳細に説明する。上述したように、ロボット装置1は、顔検出、音声検出又は動体検出により、所定の方向に歩行を開始するが、その際、対象物によって、頭部ユニットの垂直方向の角度を異ならせることにより、更にエンターテイメント性を向上することができる。図19(a)及び(b)は、ロボット装置歩行時の様子を示す図であって、夫々本実施の形態及び従来におけるロボット装置を示す側面図である。
【0121】
図19(a)に示すように、例えば人間の顔を検出し、人間に対して近くづく動作を行う場合、図19(b)に示す従来の歩行姿勢に比して、視野を上向きにして上方を向いて移動することにより、人間の顔の発見・追従性能が向上する。また、音声又は動体の方向に移動する場合においても、上を向いたまま移動することにより、例えばロボット装置に声をかけた対象者に対し、ロボット装置1が目を向けているという印象を与えて視覚効果が発生する。
【0122】
また、歩行目標が人間であるか、又はボール等の物体であるかによって、頭部ユニット4の垂直方向の角度を変え、視野を異ならせる、即ち、顔位置のパターンを変更するようにしてもよく、更に動物に近い動作となり、エンターテイメント性が向上する。
【0123】
本実施の形態においては、顔検出結果と共に音声及び動体検出結果を利用し、対象物に近づく動作を制御することにより、誤動作を低減することができる。また、音声データを検出して音源方向を推定する際、過去の音源方向に関する情報の履歴を使用することにより、音源方向の推定率を向上することができる。また、所定の距離以上近づいた場合、所定の呼びかけ等により、近づく動作を停止すると共に、顔方向、音源方向、又は動体検出方向に単に近づくのみでなく、円弧を描いて歩行を行うようにしたり、使用者の顔を見るように視野を上向きにして歩行させるように制御することにより、実際の動物に近い動きとなり、ペット型ロボット装置として、エンターテイメント性を向上することができる。
【0124】
なお、本発明は上述した実施の形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能であることは勿論である。例えば、上述の実施の形態においては、顔検出、音声検出、動体検出を行い、対象物に近づく動作を行うものとしたが、音声検出結果のみを使用して対象物に近づく動作制御を行うようにすることも可能である。音声検出では、過去において推定された音源方向の履歴を使用し、履歴がない場合は頭部ユニットを回転させて音源方向を特定するため、音源方向を正確に推定でき、行動に反映させることができる。
【0125】
また、上述の実施の形態では、ソフトウェアの構成として説明したが、これに限定されるものではなく、少なくとも一部をハードウェアにより実現することも可能である。
【0126】
【発明の効果】
以上詳細に説明したように本発明に係るロボット装置は、外部からの働きかけに応じた動作及び/又は内部状態に基づく自律的な動作を実行するロボット装置において、音声を検出する音声検出手段と、上記音声検出手段により検出された音声データから音源方向を推定する音源方向推定手段と、上記音源方向推定手段により推定された音源方向に移動するよう制御する制御手段とを有し、上記音源方向推定手段は、過去に推定された音源方向に関する情報の履歴に基づき現在の音源方向を推定するので、音声データに基づき音源方向を推定する際に、現在の音声データのみでは音源方向を推定できない場合があるが、その際、過去の音源方向等の履歴を参照することにより、現在の音源方向の推定を行うことができ、例えば音源方向に近づく等の動作に反映することができ、エンターテイメント性を向上させることができる。
【0127】
本発明に係るロボット装置は、外部からの働きかけに応じた動作及び/又は内部状態に基づく自律的な動作を実行するロボット装置において、撮像手段と、音声を検出する音声検出手段と、上記撮像手段により撮像された画像データから動体を検出する動体検出手段と、上記画像データから人物の顔を検出する顔検出手段と、上記音声検出手段により検出された音声データから音源方向を推定する音源方向推定手段と、少なくとも上記動体検出、上記顔検出、及び上記音源方向推定のうち、上記顔検出を優先して行うよう制御する制御手段とを有するので、顔検出、動体検出、音声検出等の複数の処理を並行して行っている場合、顔検出を優先的に行い、これにより、対象物の特定率を向上して対象物に近づく動作等の行動に反映することができ、エンターテイメント性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態におけるロボット装置の外観構成を示す斜視図である。
【図2】同ロボット装置の回路構成を示すブロック図である。
【図3】同ロボット装置のソフトウェア構成を示すブロック図である。
【図4】同ロボット装置のソフトウェア構成におけるミドル・ウェア・レイヤの構成を示すブロック図である。
【図5】同ロボット装置のソフトウェア構成におけるアプリケーション・レイヤの構成を示すブロック図である。
【図6】同アプリケーション・レイヤの行動モデルライブラリの構成を示すブロック図である。
【図7】同ロボット装置の行動決定のための情報となる有限確率オートマトンを説明するために使用した図である。
【図8】有限確率オートマトンの各ノードに用意された状態遷移表を示す図である。
【図9】図2乃至図6に示すロボット装置において、顔検出、音声検出、動体検出してその行動を制御するために必要な構成部分を取り出して示すブロック図である。
【図10】画像データP〜Pと、そこから生成された差分画像データD〜Dを示す模式図である。
【図11】本発明の実施の形態におけるロボット装置の動体検出モジュールにおいて、動体が消失した場合に、差分画像における重心位置の方向を向く動作、又は重心位置の方向に近付く動作を行う方法を示すフローチャートである。
【図12】本発明の実施の形態におけるロボット装置の動体検出モジュールにおいて、所定の時間間隔毎、或いは動体の重心位置が視覚範囲から外れそうになる毎に検出された重心方向を向き動作又は動体をトラッキングする動作を行う方法を示すフローチャートであある。
【図13】画像データPと画像データPとの差分画像データDから、求められる重心位置Gを説明する模式図である。
【図14】本発明の実施の形態におけるロボット装置の音源方向推定モジュールにおいて音源方向を推定する原理を説明する模式図である。
【図15】音源方向を特定する方法を説明する模式図である。
【図16】本発明の実施の形態におけるロボット装置の行動制御方法を示すフローチャートである。
【図17】本発明の実施の形態におけるロボット装置の歩行停止条件の一例を説明する模式図である。
【図18】本発明の実施の形態におけるロボット装置が対象物に接近する際の歩行経路を模式的に示す図である。
【図19】(a)及び(b)は、ロボット装置歩行時の様子を示す図であって、夫々本発明の実施の形態及び従来におけるロボット装置を示す側面図である。
【符号の説明】
1 ロボット装置、10 CPU、11 DRAM、14 信号処理回路、22 CCDカメラ、28〜28 アクチュエータ、33 顔検出モジュール、42 ロボティック・サーバ・オブジェクト、43 バーチャル・ロボット、50 ミドル・ウェア・レイヤ、51 アプリケーション・レイヤ、68 動き検出用信号処理モジュール、70 入力セマンティクスコンバータモジュール、71 認識系、73 トラッキング用信号処理モジュール、75 歩行モジュール、79 出力セマンティクスコンバータモジュール、80 出力系、90 行動モデルライブラリ、91 行動切換モジュール

Claims (18)

  1. 外部からの働きかけに応じた動作及び/又は内部状態に基づく自律的な動作を実行するロボット装置において、
    音声を検出する音声検出手段と、
    上記音声検出手段により検出された音声データから音源方向を推定する音源方向推定手段と、
    上記音源方向推定手段により推定された音源方向に移動するよう制御する制御手段とを有し、
    上記音源方向推定手段は、過去に推定された音源方向に関する情報の履歴に基づき現在の音源方向を推定する
    ことを特徴とするロボット装置。
  2. 胴体部と、
    上記胴体部に対して回転可能に接続された頭部とを有し、
    上記音声検出手段は、上記頭部に設けられ、
    上記制御手段は、上記過去に推定された音源方向に関する情報の履歴が存在しないときに、上記頭部を回転するよう制御し、
    上記音源方向推定手段は、回転前後に検出された音声データから音源方向を推定する
    ことを特徴とする請求項1記載のロボット装置。
  3. 上記音声検出手段は異なる位置に複数設けられ、
    上記音源方向推定手段は、各音声検出手段により検出された音声データに基づいて音源方向を推定する
    ことを特徴とする請求項1記載のロボット装置。
  4. 上記音源方向推定手段は、各音声検出手段により検出された音声データの時間差に基づき、音源方向及び位置を算出する
    ことを特徴とする請求項3記載のロボット装置。
  5. 外部からの働きかけに応じた動作及び/又は内部状態に基づく自律的な動作を実行するロボット装置において、
    撮像手段と、
    音声を検出する音声検出手段と、
    上記撮像手段により撮像された画像データから動体を検出する動体検出手段と、
    上記画像データから人物の顔を検出する顔検出手段と、
    上記音声検出手段により検出された音声データから音源方向を推定する音源方向推定手段と、
    少なくとも上記動体検出、上記顔検出、及び上記音源方向推定のうち、上記顔検出を優先して行うよう制御する制御手段とを有する
    ことを特徴とするロボット装置。
  6. 上記制御手段は、上記動体検出結果、又は上記音源方向推定結果に基づく動作中に顔検出された場合に、該顔検出結果を優先する
    ことを特徴とする請求項5記載のロボット装置。
  7. 上記制御手段は、上記動体検出処理、又は上記音源方向推定処理中に顔検出された場合に、該顔検出処理を優先する
    ことを特徴とする請求項5記載のロボット装置。
  8. 上記音源方向推定手段は、過去に推定された音源方向に関する情報の履歴に基づき現在の音源方向を推定する
    ことを特徴とする請求項5記載のロボット装置。
  9. 対象物との距離を検出する距離検出手段と、
    対象物との接触を検出する接触検出手段とを有し、
    上記制御手段は、上記距離検出手段により対象物との距離が所定値以下であることが検出されたとき、上記音声検出手段により予め決められた音声データが検出されたとき、又は上記接触検出手段により接触が検出されたときに上記移動を停止するよう制御する
    ことを特徴とする請求項5記載のロボット装置。
  10. 外部からの働きかけに応じた動作及び/又は内部状態に基づく自律的な動作を実行するロボット装置の行動制御方法において、
    音声検出手段により音声を検出する音声検出工程と、
    上記音声検出工程にて検出された音声データから音源方向を推定する音源方向推定工程と、
    上記音源方向推定工程にて推定された音源方向に移動するよう制御する制御工程とを有し、
    上記音源方向推定工程では、過去に推定された音源方向に関する情報の履歴に基づき現在の音源方向が推定される
    ことを特徴とするロボット装置の行動制御方法。
  11. 胴体部と、該胴体部に対して回転可能に接続された頭部とを有し、上記音声検出手段は、該頭部に設けられ、
    上記制御工程では、上記過去に推定された音源方向の履歴に関する情報が存在しないときに、上記頭部を回転するよう制御され、
    上記音源方向推定工程では、回転前後に検出された音声データから音源方向が推定される
    ことを特徴とする請求項10記載のロボット装置の行動制御方法。
  12. 上記音源方向推定工程では、異なる位置に複数設けられた各音声検出手段により検出された音声データに基づいて音源方向が推定される
    ことを特徴とする請求項10記載のロボット装置の行動制御方法。
  13. 上記音源方向推定工程では、各音声検出手段により検出された音声データの時間差に基づき、音源方向及び位置が算出される
    ことを特徴とする請求項12記載のロボット装置の行動制御方法。
  14. 外部からの働きかけに応じた動作及び/又は内部状態に基づく自律的な動作を実行するロボット装置の行動制御方法において、
    音声検出手段により音声を検出する音声検出工程と、
    撮像手段により撮像された画像データから動体を検出する動体検出工程と、
    上記画像データから人物の顔を検出する顔検出工程と、
    上記音声検出工程にて検出された音声データから音源方向を推定する音源方向推定工程と、
    少なくとも上記動体検出、上記顔検出、及び上記音源方向推定のうち、上記顔検出を優先して行うよう制御する制御工程と
    を有することを特徴とするロボット装置の行動制御方法。
  15. 上記制御工程では、上記動体検出結果、又は上記音源方向推定結果に基づく動作中に顔検出された場合に、該顔検出結果が優先される
    ことを特徴とする請求項14記載のロボット装置の行動制御方法。
  16. 上記制御工程では、上記動体検出処理、又は上記音源方向推定結果処理中に顔検出された場合に、該顔検出処理が優先される
    ことを特徴とする請求項14記載のロボット装置の行動制御方法。
  17. 上記音源方向推定工程では、過去に推定された音源方向に関する情報の履歴に基づき現在の音源方向が推定される
    ことを特徴とする請求項14記載のロボット装置の行動制御方法。
  18. 上記制御工程では、対象物との距離を検出する距離検出手段により対象物との距離が所定値以下であることが検出されたとき、上記音声検出手段により予め決められた音声データが検出されたとき、又は上記対象物との接触を検出する接触検出手段により接触が検出されたときに、上記検出結果に基づく動作を停止するよう制御される
    ことを特徴とする請求項14記載のロボット装置の行動制御方法。
JP2002296785A 2002-10-09 2002-10-09 ロボット装置及びロボット装置の動作制御方法 Withdrawn JP2004130427A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002296785A JP2004130427A (ja) 2002-10-09 2002-10-09 ロボット装置及びロボット装置の動作制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002296785A JP2004130427A (ja) 2002-10-09 2002-10-09 ロボット装置及びロボット装置の動作制御方法

Publications (1)

Publication Number Publication Date
JP2004130427A true JP2004130427A (ja) 2004-04-30

Family

ID=32286648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002296785A Withdrawn JP2004130427A (ja) 2002-10-09 2002-10-09 ロボット装置及びロボット装置の動作制御方法

Country Status (1)

Country Link
JP (1) JP2004130427A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007052547A (ja) * 2005-08-16 2007-03-01 Kddi Corp 顔検出装置
KR100904805B1 (ko) 2006-06-22 2009-06-25 혼다 리서치 인스티튜트 유럽 게엠베하 상호작용 로봇 및 그 제어방법과, 그를 위한 컴퓨터 판독 가능 매체
US8140188B2 (en) 2008-02-18 2012-03-20 Toyota Motor Engineering & Manufacturing North America, Inc. Robotic system and method for observing, learning, and supporting human activities
WO2012102442A1 (ko) * 2011-01-28 2012-08-02 (주)로보티즈 Pc 기반의 모듈형 휴머노이드 로봇 플랫폼
KR101464882B1 (ko) * 2013-06-13 2014-12-04 이화여자대학교 산학협력단 로보카를 이용한 실시간 영상 전송 방법 및 시스템
WO2019138619A1 (ja) * 2018-01-09 2019-07-18 ソニー株式会社 情報処理装置、情報処理方法、およびプログラム
WO2019187834A1 (ja) 2018-03-30 2019-10-03 ソニー株式会社 情報処理装置、情報処理方法、およびプログラム
JP2020018015A (ja) * 2017-07-31 2020-01-30 日本電信電話株式会社 音響信号処理装置、方法及びプログラム
CN111768785A (zh) * 2019-10-22 2020-10-13 广东小天才科技有限公司 一种智能手表的控制方法及智能手表
US20210116919A1 (en) * 2018-03-30 2021-04-22 Honda Motor Co., Ltd. Autonomously traveling vehicle and autonomously traveling device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007052547A (ja) * 2005-08-16 2007-03-01 Kddi Corp 顔検出装置
KR100904805B1 (ko) 2006-06-22 2009-06-25 혼다 리서치 인스티튜트 유럽 게엠베하 상호작용 로봇 및 그 제어방법과, 그를 위한 컴퓨터 판독 가능 매체
US8140188B2 (en) 2008-02-18 2012-03-20 Toyota Motor Engineering & Manufacturing North America, Inc. Robotic system and method for observing, learning, and supporting human activities
WO2012102442A1 (ko) * 2011-01-28 2012-08-02 (주)로보티즈 Pc 기반의 모듈형 휴머노이드 로봇 플랫폼
KR101464882B1 (ko) * 2013-06-13 2014-12-04 이화여자대학교 산학협력단 로보카를 이용한 실시간 영상 전송 방법 및 시스템
JP2020018015A (ja) * 2017-07-31 2020-01-30 日本電信電話株式会社 音響信号処理装置、方法及びプログラム
CN111527461A (zh) * 2018-01-09 2020-08-11 索尼公司 信息处理装置、信息处理方法和程序
WO2019138619A1 (ja) * 2018-01-09 2019-07-18 ソニー株式会社 情報処理装置、情報処理方法、およびプログラム
JPWO2019138619A1 (ja) * 2018-01-09 2021-01-28 ソニー株式会社 情報処理装置、情報処理方法、およびプログラム
EP3739415A4 (en) * 2018-01-09 2021-03-03 Sony Corporation INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING PROCESS AND PROGRAM
JP7120254B2 (ja) 2018-01-09 2022-08-17 ソニーグループ株式会社 情報処理装置、情報処理方法、およびプログラム
JP2022169548A (ja) * 2018-01-09 2022-11-09 ソニーグループ株式会社 情報処理装置、情報処理方法、およびプログラム
JP7351383B2 (ja) 2018-01-09 2023-09-27 ソニーグループ株式会社 情報処理装置、情報処理方法、およびプログラム
CN111527461B (zh) * 2018-01-09 2024-03-22 索尼公司 信息处理装置、信息处理方法和程序
WO2019187834A1 (ja) 2018-03-30 2019-10-03 ソニー株式会社 情報処理装置、情報処理方法、およびプログラム
US20210116919A1 (en) * 2018-03-30 2021-04-22 Honda Motor Co., Ltd. Autonomously traveling vehicle and autonomously traveling device
US11468891B2 (en) 2018-03-30 2022-10-11 Sony Corporation Information processor, information processing method, and program
CN111768785A (zh) * 2019-10-22 2020-10-13 广东小天才科技有限公司 一种智能手表的控制方法及智能手表
CN111768785B (zh) * 2019-10-22 2022-12-27 广东小天才科技有限公司 一种智能手表的控制方法及智能手表

Similar Documents

Publication Publication Date Title
JP3714268B2 (ja) ロボット装置
JP4239635B2 (ja) ロボット装置、その動作制御方法、及びプログラム
KR100898435B1 (ko) 로봇 장치 및 그 제어 방법
JP4032793B2 (ja) 充電システム及び充電制御方法、ロボット装置、及び充電制御プログラム及び記録媒体
EP1151779B1 (en) Robot and action deciding method for robot
JP2004133637A (ja) 顔検出装置、顔検出方法及びプログラム、並びにロボット装置
JP2019008510A (ja) ロボット、ロボットの制御方法及びプログラム
JP2004130427A (ja) ロボット装置及びロボット装置の動作制御方法
JP2003159674A (ja) ロボット装置、ロボット装置の外力検出方法及びロボット装置の外力検出プログラム、並びにロボット装置の外力検出のためのキャリブレーション方法及びロボット装置の外力検出のためのキャリブレーションプログラム
JP7139643B2 (ja) ロボット、ロボットの制御方法及びプログラム
JP2004298975A (ja) ロボット装置、障害物探索方法
JP2004302644A (ja) 顔識別装置、顔識別方法、記録媒体、及びロボット装置
JP2003136456A (ja) ロボット装置、ロボット装置の明るさ検出方法、明るさ検出プログラム及び記録媒体
JP7309371B2 (ja) ロボット制御システム
JP2003271958A (ja) 画像処理方法、その装置、そのプログラム、その記録媒体及び画像処理装置搭載型ロボット装置
WO2020022122A1 (ja) 情報処理装置、行動決定方法及びプログラム
JP2007125629A (ja) ロボット装置及びその行動制御方法
JP4379052B2 (ja) 動体検出装置、動体検出方法、及びロボット装置
JP2004130426A (ja) ロボット装置及びその動作制御方法
JP2002120183A (ja) ロボット装置及びロボット装置の入力情報検出方法
JP4649806B2 (ja) ロボット装置及びロボット装置の衝撃吸収方法
JP2003136439A (ja) ロボット装置及びロボット装置の歩行制御方法並びにロボット装置の歩行制御プログラム
JP4193098B2 (ja) トラッキング装置、トラッキング装置のトラッキング方法及びロボット装置
JP2001157980A (ja) ロボット装置及びその制御方法
JP2021064299A (ja) 制御システム、端末装置、制御方法及びコンピュータプログラム

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110