JP2004298807A - Electrolytic cel - Google Patents

Electrolytic cel Download PDF

Info

Publication number
JP2004298807A
JP2004298807A JP2003097228A JP2003097228A JP2004298807A JP 2004298807 A JP2004298807 A JP 2004298807A JP 2003097228 A JP2003097228 A JP 2003097228A JP 2003097228 A JP2003097228 A JP 2003097228A JP 2004298807 A JP2004298807 A JP 2004298807A
Authority
JP
Japan
Prior art keywords
electrode
electrolyte
electrolytic cell
water
sustained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003097228A
Other languages
Japanese (ja)
Inventor
Koji Oshima
功治 大島
Shigenobu Ozeki
重宣 尾関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2003097228A priority Critical patent/JP2004298807A/en
Publication of JP2004298807A publication Critical patent/JP2004298807A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolytic cel in which electrolysis efficiently is good at the time of electrolyzing and unelectrolyzing is not vainly consumed both at the time of electrolysis and at the time of unelectrolysis. <P>SOLUTION: The electrolytic cel is provided with a pair of electrodes and an electrolyte vessel containing at least one kind of an electrolyte or an electrolytic solution. The electrolyte vessel is located between a pair of electrodes and is an electrolytic cel having a slowly releasing membrane for slowly releasing the electrolyte at a part facing the electrode. When water flows, distance between the electrode and the slowly releasing membrane is made smaller than that when water does not flow because of pressure of flowing water. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、水道水または水を電気分解して電解水を得る電解水生成装置の電解槽に関するものである。より具体的には、電解質または電解質溶液を内包する電解質容器を有し、電解槽に通水した際に、電解質または電解質溶液を徐放しながら電気分解を行う電解槽に関する。
【0002】
【従来の技術】
従来の隔膜を有する電解水生成装置の電解槽は、被電解水が通水される電極室と電解質、または電解質溶液を通す槽とが隔膜で分離されており、電解時は電気泳動により電解質イオンが隔膜を透過し電極室に移動して電極表面で反応が起こるので、電解時に使用する電解質量を少なくすることが可能となり、未反応の電解質が被電解水に残存する量を少なくしている。(例えば、特許文献1参照)。
また、電解槽が外側容器と内側容器の2重容器で構成され、外側容器は内側に電極を設け、内側容器は外側がイオン交換膜で構成され、内部に電解質と電極を設けてカートリッジ式電極とし、電解水を効率よく生成し、かつ、使い勝手がよく、低コスト、小型化が可能で、メンテナンスが不要としている。(例えば、特許文献2参照)。
【0003】
【特許文献1】
特開2002−153873号公報
【特許文献2】
特開2002−200488号公報
【0004】
【発明が解決しようとする課題】
付加した電力量によって決定する電解反応物の理論生成量に対する実際の生成量を電解効率、電解質槽から電極へ移動した電解質量に対する電解反応物生成量を電解質利用効率とすると、上記のように隔膜を有する電解水生成装置の電解槽は、電解質が電気泳動により、電極に移動し電解反応が起こっていることから、電解質利用効率は高くなるが、充分な電解質が電極表面に移動しないことから電解効率は低くなっており、付加する電気量を理論値よりも多くしなければならず、ランニングコストが高い、電極の劣化が早いといった問題がある。また、電解質を大量に含む電解質溶液を電気分解すると電解効率は高くなるが、通水しながら電解する際には、未反応の電解質量が多くなり、電解質利用効率が低くなり、電解質を浪費し、ランニングコストが高い。電解質容器を持つ電解槽においては、電極とイオン交換膜の距離の適当な範囲について記載が無い。
【0005】
【課題を解決するための手段および作用・効果】
前記課題に対し、本発明者らは電解時の電解効率を上昇させるとともに電解質利用効率を上昇させるべく、隔膜と電極間の距離と電解効率、電解質利用効率について検討した結果、隔膜と電極間距離が小さくなれば電解効率、電解質利用効率がともに上昇しするという知見を得た。電解効率の上昇については、電極近傍の電解質濃度が高いことが原因であると思われる。電解効率は電解質濃度に依存しており、隔膜と電極間距離が小さくなることで電極近傍の電解質濃度が高くなり、電解効率が上昇すると考えられる。電解質利用効率については隔膜と電極間距離が小さくなることにより、被電解水量が減少し、被電解水に徐放される電解質量も少なくなることから、未反応電解質量が減り、電解質利用効率が高くなっていると考えられる。しかし、隔膜と電極間距離を小さくすることで、電解時には電解効率と電解質利用効率が上昇するが、非電解時には隔膜と電極の間に水が排出されずに残り、濃度拡散によって電解質が隔膜を透過し、電極近傍に移動することで、電解質が無駄になり、さらには、電解開始時に隔膜と電極の間の電解質を大量に含んだ水が吐水されるといった問題点が生じた。そこで、本発明は、電解時は隔膜と電極間の距離を小さくし、電解効率、電解質利用効率を上昇させ、非電解時には隔膜と電極間距離を広くし、水が隔膜と電極の間に保持されないようにし、電解質の無駄な徐放を防ぐ。また、電解時に隔膜と電極の間の距離を小さくし、電解効率、電解質利用効率を高くするとともに非電解時には、隔膜と電極間距離をより小さく、または隔膜と電極を密着させてもよい。隔膜と電極の間に水が残存する量が少なくなり、非電解時に徐放される電解質量を少なくすることができる。
【0006】
本発明は、一対の電極と、少なくとも1種類の電解質または電解質溶液を内包する電解質容器とを備え、前記電解質容器は前記一対の電極の間に位置し、前記電解質容器は前記電極に面している部分に電解質を徐放する徐放膜を有する電解槽であって、通水時は通水の圧力により、前記電極と前記徐放膜との距離を非通水時よりも小さくすることを特徴とする。
【0007】
電解時は、電極と徐放膜との距離が狭くなることにより、電解効率、電解質利用効率が上昇する。電解効率の上昇により、電解水を得る際に付加する電力量を小さくできるので、ランニングコストの低下、省エネルギー、電極の劣化防止という効果もある。電解質利用効率が上昇すると、電解時に未反応の電解質が流れ出ることがなく、電解質の浪費を防ぐことができる。一方、非電解時に電極と徐放膜との距離を大きくすることで、電極と徐放膜との間に水が溜まることなく、濃度拡散による徐放膜から電極近傍への電解質の漏れを防ぐことができ、非電解時にも電解質の浪費を防止する。電解質の浪費がなくなることにより、電解質容器がコンパクト化される。電解質槽をカートリッジタイプとした際には、電解質カートリッジの交換頻度や、電解質充填頻度が少なくなり、メンテナンスが容易になり、省資源、ごみの減量にもつながる。
【0008】
【0009】
本発明の好ましい態様においては、前記電解槽は、前記電極の電解質溶液と向かい合っていない側の流路と、前記電極と前記徐放膜の間の流路を有し、前記電極は弾性体により電解槽壁面に支持されており、前記電極の電解質溶液と向かい合っていない側の流路の入口の断面積を前記電極と前記徐放膜の間の流路の入口の断面積より大きくしたことを特徴とする。
電解質溶液と向かい合っていない側の流路の入口を大きくすることで、通水時に電解質溶液と向かい合っていない側の流路への流量が大きくなり、電極が圧力を受け、電極と徐放膜との距離を小さくすることが可能となる。電極と徐放膜との距離の変化が弾性体の変形によるものであることから単純な構造となる。また、電解質溶液と向かい合っていない側の流路へと分流する流路と電極が弾性体により支持されていることから、流量が増えても電極と徐放膜に流れる水の流量を一定に保つことが可能となり、流量によらず生成する電解反応物の量を一定に保つことができるといった効果もある。通水が終われば、弾性体がもとの形に戻り、電極と徐放膜との距離が通水前の状態に戻り、極板と徐放膜との間に水が溜まり、電解質が極板近傍に濃度拡散により漏れ出ることがなくなる。
【0010】
本発明の好ましい態様においては、前記電解槽の電解質容器壁面は少なくとも一部が弾性体で構成されており、前記電解質容器に通水による圧力を受ける受圧部を有することを特徴とする。
通水時に受圧部に圧を受け、電解質容器壁面の一部が弾性体であることから、電解質容器は通水時に変形し、極板と徐放膜との距離が小さくなる。通水による圧によって電解質槽が変形するので、単純な構造で、外部動力を用いることなく極板と徐放膜との距離を小さくすることができ、電解時の電解効率と電解質利用効率を上昇させることができ、付加する電気量を少なくするとともに、未反応の電解質量を減少させることも可能となる。
【0011】
本発明の好ましい態様においては、前記電極は平面電極であり、前記電極は前記徐放膜と平行に設置され、かつ前記電極が水平に対して15°以上傾斜したことを特徴とする。
電極に平面電極を用い、徐放膜と平行に設置することで、電極上のどの位置においても一様に反応が起こり、電流値の制御、電極−徐放膜間距離の制御が容易となる。また、極板を水平に対して傾斜させることで、非電解時に水が電解槽外に抜け、非電解時の電解質の漏れを防止することが可能となる。
【0012】
本発明の好ましい態様においては、陽極側においてのみ、前記電極の電解質溶液と向かい合っていない側の流路と、前記電極と前記徐放膜の間の流路を有し、前記電極は弾性体により電解槽壁面に支持されており、前記電極と前記徐放膜の間の流路の分流比が大きいことを特徴とする。
電解質にNaCl、KCl、HCl、NaHCO 、Na CO を用いた際は、電解質反応物は陽極において生成され、陰極では水の電気分解反応が起こるだけである。電解質が電極で反応するのは陽極においてのみであるので、陽極側のみ分流構造とすることで、通水時に陽極側の徐放膜と電極間の距離が小さくなり、電解効率を上昇させ、未反応電解質量を減少させることができ、電解質容器のコンパクト化や、電解質容器をカートリッジタイプとした際にはカートリッジ交換頻度、電解質充填頻度を減少させることができる。また、分流構造が陽極側のみであるので、電解槽の構造を単純にすることができる。
【0013】
本発明の好ましい態様においては、前記電解質容器の陰極側の徐放膜が水圧によらず、電極との距離が一定になるよう固定されていることを特徴とする。
陰極側を固定することで、電解質容器の受圧部に通水による圧力を受けた際、陰極の徐放膜は移動せず、陽極側の徐放膜が陽極板側へ移動し、陽極板−徐放膜間距離が小さくなる。陰極では、電解質が電解反応物に影響しないので、徐放膜と電極間を小さくする必要はない。陰極板−徐放膜間距離が大きいことから、流量が大きくなると、主に陰極側に通水されるので、流量が増加しても陽極側流路の通水量は一定となり、陽極近傍の電解質濃度は小さくなることがなく、電解効率を高くすることが可能となる。
【0014】
本発明の好ましい態様においては、前記電解質容器の徐放膜は精密ろ過膜、超精密ろ過膜、無機膜から選ばれることを特徴とする。精密ろ過膜(MF膜)とは孔径が数μm〜0.01μm程度までの膜であり、超精密ろ過膜(UF膜)とは0.001μm〜0.01μmの孔径を有する膜である。このような膜を用いることで、非電解時の流路に水が保持されていない状態においても電解質容器内の電解質溶液が膜を通して漏れ出ることなく容器内に保持され、また、電解中に流路に水が存在するときでも浸透圧により電解質容器内に水が浸透し、電解質容器の圧力が高くなり、膜と極板間の距離が制御できなくなることや、電解質容器が破損するといった恐れがない。
【0015】
本発明の好ましい態様においては、空気透過性膜、または空気孔を有することを特徴とする。非電解時に電極板−徐放膜間の距離が大きくなり、電解槽外に水が抜ける際に、空気透過性膜、または空気孔により空気が流入し、電極板−徐放膜間のすべての水をすばやく抜き去ることが可能となる。空気透過性膜は水を通さないものが好ましい。
【0016】
本発明の好ましい態様においては、電解槽内の圧力を検知するセンサと電解槽下流に流量弁を有することを特徴とする。流量が少なく、電極、または電解質容器の弾性体部分を変形させるのに充分な通水圧が得られないときに、圧力センサにより、圧力を検知し、内部の圧力が高くなるように流量弁を調節することで、どのような通水圧でも、電解時には電極板−徐放膜間の距離を小さくすることができ、電解効率と電解質利用効率をともに高くすることができる。
【0017】
本発明の好ましい態様においては、電解時の極板間の抵抗値で電解反応物生成量を推定し、推定値に基づいて電流値および、電解時間を制御することを特徴とする。電解反応物生成量と電極間の抵抗には相関があるので、電極間の抵抗を検知することで、電解反応物の生成量を推定することが可能となり、電流値、電解時間を制御することで、電解反応物生成量を一定に保つことができ、所望の電解水を得ることが可能となる。
【0018】
本発明の好ましい態様においては、通水初期の一定時間は電解を行わず、その後、電解することを特徴とする。非通水時には徐放膜が乾燥しているため、通水初期は徐放膜が湿潤状態となるまでは電解質が徐放されなかったり、徐放量が一定とならないことがある。通水初期の一定時間に電解を行わず、電解質が徐放されてから電解を開始することにより、無駄な電流の印加を防止し、電解開始時から所定の電解反応物量を含む電解水を使用することができる。
【発明の実施の形態】
【0019】
以下に本発明の第一の実施形態を、添付図面により詳細に説明する。
図1は本発明の電解水生成装置の非通水時における電解槽であり、図2は図1の電解槽の通水時の様子である。図の1は陽極板であり、2は陰極板である。これら電極板は電解槽壁面にバネ、ゴムなどの電極支持弾性体10で支持されている。この1組の電極の間に電解質または電解質溶液を内包する容器である電解質カートリッジ3が固定されている。電解質は例えばNaCl、KCl、HCl、NaHCO 、Na CO から選ばれる少なくとも1種類であり、粉末を封入しても、溶液を封入していてもよい。電解質カートリッジ3の電極に面している部分は徐放膜4となっている。徐放膜は、乾燥状態、湿潤状態を繰り返しても性能の変化しない膜を用いる。5は通水路であり、電解槽に流入した水または水道水は電解槽内で、11に示す分流板により、12の徐放膜−電極板間流路と13の電極板背面流路に分流される。図には分流板を用いているが、分流板を用いなくても電極板の形態により分流させてもよい。32は圧力センサ、33は流量弁、34は流量制御部であり、電解槽の下流に設置し、電解槽内の通水時の圧力を一定に保っている。35は電源、36は電流制御部であり、電源から電極に電流を印加する際に、電極間の抵抗を検知し、電極間抵抗と電解反応量には相関があることから、電極間抵抗より電解反応物生成量を推定し、電流値を制御して、所望の電解反応物量を生成することができる。電解槽上部には空気透過性膜30を設置し、非通水時には電解槽内部に溜まっている水が電解槽外に抜ける構造となっている。
【0020】
本実施例で用いている電極支持弾性体10は樹脂、金属等を板状、棒状、線状にしたものであり、外部からの圧力を受けて変形し、圧力を受けなくなれば元の形状に戻るものであればよい。また、形状記憶合金を用いて、通水時の水により変形し、水がなくなれば元の形状に戻るという支持体にしてもよい。
徐放膜4は、MF膜、UF膜を用いる。孔径は電解質容器内の電解質溶液を保持できる程度に小さく、通水路に水が存在しても浸透圧が生じる事のない程度に大きいものが望ましい。すなわち、100μm以下、0.001μm以上のものであればよい。本発明は、非電解時には通水路に水が保持されないため、電解質容器は電解質が重力により徐放膜から漏れ出ることがないようにする必要がある。浸透圧については、浸透圧が生じると電解質容器内の圧力が高くなり、電解質容器が変形し、膜と極板間の距離が制御できなくなったり、膜や容器が破損する恐れがあるため、浸透圧が生じない膜を用いることが望ましい。また、湿潤状態と乾燥状態を繰り返しても湿潤時には湿潤時には一定の性能が維持される膜であり、材質は無機物、有機高分子においても焼結させたものなどの水を含有しない膜であればよい。
空気透過性膜30は、液体を透過せず、気体のみを透過する膜である。具体的には、布製膜や、高分子膜に撥水加工をしたものや、孔径が0.001μm以下の膜であればよい。空気透過性膜以外に、空気孔を設けても良いが、空気孔についても液体を通さず、気体だけを通すものであり、孔の周りに撥水加工を施すか、孔径を0.001μm以下にすればよい。
【0021】
次に、図1、図2に示す電解槽の通水電解における動作を図3のフローを用いて説明する。まず、電解槽に通水が行われると(S1)、分流板11により電極板背面流路13と徐放膜−電極板間流路12に水が分流される。その分流比は、電極板背面流路13の方が大きくなる。ここで背面流路とは、電解質溶液と向かい合っていない側の流路を指す。電極板背面流路13の分流比が大きくなることから、電極支持弾性体が変形し、電極板が徐放膜方向に移動する。流量によって、その移動量には差が生じるため、電解槽下流部の圧力センサ32により電解槽内の圧力を検知し(S2)、電解槽内の圧力状態により、流量弁制御部34が流量弁33の開放を自動調節し(S3)、電解槽内の通水による圧を規定の値にまで高め、徐放膜−電極板間流路12が規定の幅にまで狭まる(S4)。圧力センサ32が通水による圧力を検知することで、電流制御部36のタイマーが作動する。このタイマーにより、一定時間、電解槽内に水が通水された(S5)後に、電極に電流が印加されることになる(S6)。非通水時には水が電解槽内から抜けており、徐放膜が乾燥状態にあることが考えられ、通水開始初期には電解質が徐放されなかったり、安定した徐放が行われないおそれがあるため、数秒間の通水を行うことにより、徐放膜を湿潤状態とし、電流印加により所定の電解質が徐放されるようになる。電流印加時には、電極間の抵抗を電流制御部36が検知し(S7)、電源から印加する電流値を変化させる(S8)。電極間抵抗と電解反応物生成量には相関関係があるため、電極間の抵抗から電解反応物生成量を推定することができるので、推定値に応じて、電流値を変化させることにより、電解反応物生成量を制御することが可能となる。電解と通水を終了する(S9)と、通水による圧力がなくなったことから、電極を支持している弾性体10が通水前の形に戻り、徐放膜−電極板間流路12が大きくなり、電解槽上部に設けられた空気透過性膜30から電解槽内に空気が流入し、電解槽内の水が電解槽外に排出される。
【0022】
電気分解において、電解反応物の理論生成量は、印加した電気量に応じて決定される。理論生成量に対する実際の生成量を電解効率とすると、電解効率は徐放膜と電極間の距離に関係があり、徐放膜と電極間の距離が小さくなると電解効率が高くなるという知見を本発明者らは得た。また、電解質カートリッジ3から徐放膜4を通って徐放された電解質量に対する電解反応物の生成量を電解質利用効率とすると、電解質利用効率を大きくするには徐放された電解質をなるべく多く反応させることが必要となる。以上のことから、電解効率、電解質利用効率を上昇させるためには、徐放膜−電極板間流路12を狭くし、徐放膜−電極板間流路12への通水量を少なくすることにより、少量の電解質が徐放膜−電極板間流路12に徐放されるようにし、さらに、電極板背面流路への分流構造とすればよい。
本実施例においては、電解質に塩化ナトリウム、徐放膜に平均孔径9μm、気孔率50%の多孔質ポリエチレンを用い、徐放膜−電極板間距離を1mmとし、総流量を0.8ml/min、分流比を徐放膜−電極板間流路の流量1に対し電極板背面流路の流量を4とし、電極面積20cmの電極に0.5Aの電流を印加し、電気分解を行った。ここで、徐放膜−電極板間の流量と電極板背面流路の流量との分流比とは流路入口(図1では分流板11の一番上)の通水方向に対して垂直な面の断面積比であり、本実施例においては、徐放膜−電極板間流路入口の通水方向に対して垂直な面の断面積と電極板背面流路入口の通水方向に対して垂直な面の断面積の比が1対4であることを示す。このような条件で電気分解を行った結果、電解反応物である次亜塩素酸生成量は7.2mg/min、電解効率は65%、電解質利用効率は40%となった。これに対し、上記と同様の徐放膜、電極、電解質を用い、徐放膜−電極板間距離を3mmとし、分流を行わずに0.5Aの電流を印加したところ、次亜塩素酸生成量は3.7mg/min、電解効率は33%、電解質利用効率は2%となり、徐放膜−電極板間流路を狭くし、分流を行うことで、電解効率は2倍、電解質利用効率は20倍となった。本実施例では、前記のような条件の電解槽構成としたが、より好ましくは、分流比を徐放膜−電極板間流路の流量対、電極板背面流路の流量の分流比を1対数十にし、徐放膜−電極間距離を1mm以下にすることが望ましい。
非電解時においては、例えば、徐放膜−電極板間距離が1mmで徐放膜−電極間流路の水が表面張力により抜けなかった場合には、2mlの水が流路に残存する。この流路に残った水に塩化ナトリウムが濃度拡散により、徐放膜を透過して移動する。時間が経過すると、流路の水は飽和塩化ナトリウム水となり、0.4gの塩化ナトリウムが無駄に徐放されたことになる。これに対し、徐放膜−電極板間距離を3mmとすると、徐放膜−電極間流路の水は電解槽外に排出され、非電解時に塩化ナトリウムが無駄に流路に徐放されることはない。本実施例においては、前記のような条件を用いたが、徐放膜−極板間距離は非電解時には2mm以上であればよい。
このようなことから、非通水時には徐放膜−電極板間流路12を水の表面張力が生じない程広く、通水電解時には徐放膜−電極板間流路12を狭くすることにより、電解効率、電解質利用効率を上昇させ、さらに、非電解時には徐放膜−電極板間流路12に水が残ることはなく、電解質の浪費を防ぎ、電解質カートリッジの交換頻度や、電解質充填頻度を低くし、手間を省き、電解時の電力量を減少させ、省エネ、ランニングコストの低下、電極の劣化を防止することができる電解槽となる。
【0023】
次に本発明の第二の実施形態を図4,5に示す。図4は第二の実施形態の非通水時における電解槽であり、図5は図4の電解槽の通水時の様子である。図の1は陽極板であり、2は陰極板であり、電解槽内部壁面に固定されている。この1組の電極の間に電解質または電解質溶液を内包する電解質カートリッジ3が21の電解質カートリッジ支持部のみで固定されている。電解質はNaCl、KCl、HCl、NaHCO、NaCOのいずれか1種類、または数種類であり、粉末で封入しても、水溶液を封入してもよい。電解質カートリッジ3の電極に面している部分は徐放膜4となっている。徐放膜は、乾燥状態においても破損の生じる恐れのない膜、例えば、高分子焼結多孔質体、中空糸膜、無機多孔質膜等を用いる。電解質カートリッジ3は通水時の流体の圧を受ける部分が受圧部22となっており、徐放膜4部分と受圧部22以外の部分はゴム等の弾性体20となっており、受圧部に通水による圧を受けることで変形し、電解質カートリッジ3が変形する。5は通水路であり、電解槽に流入した水または水道水は電極板と徐放膜の間を通過する。32は圧力センサ、33は流量弁、34は流量制御部であり、圧力センサ32は電解槽外に設置され、電解槽内部圧力を検知し、圧力に応じて流量制御部34が電解槽の下流に設置した流量弁33を調節し、電解槽に流入する水の流量によらず、電解槽内部の圧力を一定に保っている。35は電源、36は電流制御部であり、電源から電極に電流を印加する際に、電極間の抵抗を検知し、電極間抵抗より電解反応物生成量を推定し、電流値を制御して電解反応物生成量を所望の値にすることができる。電解槽上部には微小空気孔31を設置し、非通水時には電解槽内部に溜まっている水を電解槽外に抜けやすくしている。
【0024】
次に、図4、図5に示す電解槽の通水電解における動作を図6のフローを用いて説明する。まず、電解槽に通水が行われると(S21)、圧力センサにより電解槽内に通水が行われたことを検知し、流量弁制御部34が流量弁33を一時的に閉じる(S22)。この間に、乾燥状態にある恐れのある膜を湿潤状態に戻し、所定の徐放性能の膜にする。流量弁を閉じて一定時間が経過した後、流量弁を開く(S23)。電解槽内の圧力状態を圧力センサにより検知し、流量弁制御部34が流量弁33の開放を自動調節し(S24)、電解槽内の通水による圧を規定の値にまで高めることにより、電解質カートリッジ3の受圧部22が通水による圧力を受け弾性体20が変形し、徐放膜−電極板間流路が狭まり(S25)、電極に電流が印加される(S26)。電流印加時には、電極間の抵抗を電流制御部36が検知し(S27)、電源から印加する電流値を変化させる。電極間抵抗と電解反応物生成量には相関関係があるため、電極間の抵抗から電解反応物生成量を推定することができるので、推定値に応じて、電流値を変化させることにより(S28)、電解反応物生成量を制御することが可能となる。所望の電解水を得たら、通水を終了する(S29)。通水の終了により、電解槽内の圧力は低下し、圧力がある値以下になると、圧力センサ32は通水の終了を検知し、電流制御部36が電源35の電流印加を終了させ(S30)、流量制御部34が流量弁33を開放する。通水による圧を受けないため、電解質カートリッジ3は通水前の形に戻り、徐放膜−電極間距離が水の表面張力が生じないほど大きくなる。電解槽上部に設けられた微小空気孔31から電解槽内に空気が流入し、電解槽内の水が電解槽外に排出され、電解が終了する(S31)。
【0025】
本実施形態においては、第一の実施形態と異なり、電解時に徐放膜−電極板間流路と電極板背面流路への分流を行っていない。しかし、第一の実施形態と同様の電極板、徐放膜、通水量、電流値にて徐放膜−電極板間距離を1mmとした際の電解効率は60%、電解質利用効率は30%となり、第一の実施形態と同等の効率を得ることができた。このように、第二の実施形態においても徐放膜−電極板間距離を小さくすることで電解効率、電解質利用効率を高くすることができる。本実施形態においては前記の条件により電解槽を構成したが、電解時の徐放膜−電極板間距離が1mm以下、非電解時の徐放膜−電極板間距離が2mm以上であればよい。
【0026】
本発明の第三の実施形態を図7,8に示す。図7は第三の実施形態の非通水時の様子であり、図8は通水時の様子である。図の1は陽極板であり、2は陰極板である。陽極板1は電解槽壁面にバネ、ゴムなどの弾性体10で支持されており、陰極板2は電解槽内の流路壁面に固定されている。この1組の電極の間に電解質または電解質溶液を内包する電解質カートリッジ3が固定されている。電解質カートリッジ3の電極に面している部分は徐放膜4となっている。5は通水路であり、電解槽に流入した水または水道水は電解槽内で、陽極においてのみ11に示す分流板により、12の徐放膜−電極板間流路と13の電極背面流路に分流される。電解質はNaCl、KCl、HCl、NaHCO、NaCOのいずれか1種類、または数種類を用いる。これらの電解質溶液の電気分解反応は陰極においては、水素が発生し、OHの濃度が高くなり、アルカリ水が生成される。陽極では、電解質にNaCl、KCl、HClを用いた際は、次亜塩素酸とHを含んだ酸性水が生成される。次亜塩素酸は、酸化力が強く、殺菌、漂白、消臭作用がある。電解質にNaHCO、NaCOを用いた際は、陽極で、炭酸水と酸性水が生成される。炭酸水は、血行促進効果がある。このように、陽極で生成される反応物において効果的な電解水が生成されるため、徐放膜−陽極板間の流路を通水圧により小さくし、陽極背面流路の分流比を大きくすることによって、陽極での電解効率、電解質利用効率を上昇させることが可能となる。
本実施形態において、電極、徐放膜、電解質を第一の実施形態と同様のものを用い、電解時の徐放膜−陽極板間距離を1mm、徐放膜−陰極板間距離を3mmとして評価を行ったところ、第一の実施形態と同程度の電解効率、電解質利用効率となり、陽極側のみを分流構造とし、徐放膜−電極板間距離を電解時に小さくすることで電解効率、電解質利用効率を上昇させることが可能となった。本実施形態では前記の条件にて電解槽を構成したが、電解時の徐放膜−陽極板間距離を1mm以下、非電解時の徐放膜−陽極板間距離を2mm以上、徐放膜−陰極板間距離を2mm以上とすればよい。
【0027】
本発明の第四の実施形態を図9,10に示す。図9は第四の実施形態の非通水時の様子であり、図10は通水時の様子である。図の1は陽極板であり、2は陰極板であり、陽極板1、陰極板2は電解槽内の壁面に固定されている。この1組の電極の間に電解質または電解質溶液を内包する電解質カートリッジ3が21の電解質カートリッジ支持部と、陰極側の徐放膜部で固定されている。電解質カートリッジ3は電極に面している部分が徐放膜4となっており、通水時の流体の圧を受ける部分が受圧部22となっており、徐放膜4部分と受圧部22以外の部分はゴム等の弾性体20となっている。受圧部22に通水による圧を受けると電解質カートリッジ3は弾性体部分20が変形し、カートリッジ支持部21と陰極側の徐放膜部分が固定されていることから、徐放膜−陽極板間流路が小さくなるように変形する。5は通水路であり、電解槽に流入した水または水道水は電極板と徐放膜の間を通過する。第三の実施形態と同様に、電解質にNaCl、KCl、HCl、NaHCO、NaCOのいずれか1種類、または数種類を用いると、陽極側において効果的な電解水が生成されるため、徐放膜−陽極板間の流路を通水圧により小さくすることで、陽極での電解効率、電解質利用効率を上昇させることが可能となる。また、陽極側のみの流路が小さくなり、陰極側の流路は大きいことから、流量が大きくなっても、主に陰極側に通水され陽極側の電解質濃度が低くなることはない。非電解時には、陽極側の電極板−徐放膜間距離が大きくなり、電極が水平に対して傾斜していることから、電極板−徐放膜間に表面張力により水が保持されることなくすみやかに電解槽外に水が排出され、電解質が徐放膜を通してもれ出ることがなく、非電解時にも電解質の浪費を防ぐことが可能となる。
本実施形態において徐放膜、電極、電解質を第一の実施形態と同様として、電解時の徐放膜−電極間距離を1mmとしたところ、第一の実施形態と同等の電解効率、電解質利用効率となった。また、傾斜角度は本実施形態において45°とし、非電解時の徐放膜−電極板間距離を3mmとしたところ、すみやかに徐放膜−電極板間流路の水が電解槽外に排出された。本実施形態では前記の構成としたが、電解時の徐放膜−陽極板間距離を1mm以下、非電解時の徐放膜−陽極板間距離を2mm以上、徐放膜−陰極板間距離を2mm以上、傾斜角度は15°〜90°であればよい。
【図面の簡単な説明】
【図1】第一の実施形態(非通水時)
【図2】第一の実施形態(通水時)
【図3】第一の実施形態の電解水生成フロー
【図4】第二の実施形態(非通水時)
【図5】第二の実施形態(通水時)
【図6】第二の実施形態の電解水生成フロー
【図7】第三の実施形態(非通水時)
【図8】第三の実施形態(通水時)
【図9】第四の実施形態(非通水時)
【図10】第四の実施形態(通水時)
【符号の説明】
1…陽極板、 2…陰極板、 3…電解質カートリッジ、 4…徐放膜、5…通水路、 10…電極支持弾性体、 11…分流板、 12…徐放膜−電極板間流路、 13…電極板背面流路、 20…電解質カートリッジ弾性体、 21…電解質カートリッジ支持部、 22…受圧部、 30…空気透過性膜、 31…微小空気孔、 32…圧力センサ、 33…流量弁、 34…流量弁制御部、 35…電源、 36…電流制御部
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to an electrolytic cell of an electrolyzed water generator for obtaining electrolyzed water by electrolyzing tap water or water. More specifically, the present invention relates to an electrolytic cell having an electrolyte container containing an electrolyte or an electrolytic solution and performing electrolysis while gradually releasing the electrolyte or the electrolytic solution when water is passed through the electrolytic cell.
[0002]
[Prior art]
In an electrolytic cell of a conventional electrolyzed water generating apparatus having a diaphragm, an electrode chamber through which water to be electrolyzed flows and a tank through which an electrolyte or an electrolyte solution passes are separated by a diaphragm. Moves through the diaphragm and moves to the electrode chamber, where a reaction occurs on the electrode surface, so that it is possible to reduce the amount of electrolysis used during electrolysis, thereby reducing the amount of unreacted electrolyte remaining in the water to be electrolyzed. . (For example, see Patent Document 1).
In addition, the electrolytic cell is constituted by a double container of an outer container and an inner container, the outer container is provided with an electrode on the inside, the inner container is constituted by an ion exchange membrane on the outside, and an electrolyte and an electrode are provided inside to form a cartridge type electrode. In addition, the electrolyzed water is efficiently generated, the usability is good, the cost can be reduced, the size can be reduced, and the maintenance is not required. (For example, see Patent Document 2).
[0003]
[Patent Document 1]
JP-A-2002-153873
[Patent Document 2]
JP 2002-200488 A
[0004]
[Problems to be solved by the invention]
Assuming that the actual production amount with respect to the theoretical production amount of the electrolytic reactant determined by the added electric energy is the electrolytic efficiency, and the electrolytic reactant production amount with respect to the electrolytic mass moved from the electrolyte tank to the electrode is the electrolyte utilization efficiency, the diaphragm is as described above. The electrolyzer in the electrolyzed water generator has an electrolyte utilization efficiency that is high because the electrolyte moves to the electrode by electrophoresis and an electrolytic reaction occurs, but the electrolysis occurs because sufficient electrolyte does not move to the electrode surface. The efficiency is low, the amount of electricity to be added must be larger than the theoretical value, and there are problems such as high running cost and rapid deterioration of the electrodes. Electrolysis efficiency increases when an electrolyte solution containing a large amount of electrolyte is electrolyzed. However, when electrolysis is performed while passing water, the amount of unreacted electrolyte increases, electrolyte utilization efficiency decreases, and electrolyte is wasted. , Running cost is high. In an electrolytic cell having an electrolyte container, there is no description on an appropriate range of the distance between the electrode and the ion exchange membrane.
[0005]
[Means for Solving the Problems and Functions / Effects]
In order to increase the electrolysis efficiency during electrolysis and increase the electrolyte utilization efficiency, the present inventors examined the distance between the diaphragm and the electrode, the electrolysis efficiency, and the utilization efficiency of the electrolyte. It has been found that both the electrolysis efficiency and the electrolyte utilization efficiency increase as the value of “E” decreases. The increase in electrolysis efficiency is considered to be due to the high electrolyte concentration near the electrodes. The electrolytic efficiency depends on the electrolyte concentration, and it is considered that the electrolyte concentration near the electrode increases as the distance between the diaphragm and the electrode decreases, and the electrolytic efficiency increases. Regarding the electrolyte utilization efficiency, as the distance between the diaphragm and the electrode is reduced, the amount of water to be electrolyzed is reduced, and the mass of the electrolyte that is gradually released into the water to be electrolyzed is also reduced. It is considered higher. However, by reducing the distance between the diaphragm and the electrode, the electrolysis efficiency and the electrolyte use efficiency increase during electrolysis, but during non-electrolysis, water remains without being discharged between the diaphragm and the electrode, and the electrolyte diffuses through the diaphragm due to concentration diffusion. By permeating and moving to the vicinity of the electrode, there is a problem that the electrolyte is wasted, and water containing a large amount of the electrolyte between the diaphragm and the electrode is discharged at the start of the electrolysis. Therefore, the present invention reduces the distance between the diaphragm and the electrode during electrolysis, increases the electrolysis efficiency and electrolyte utilization efficiency, increases the distance between the diaphragm and the electrode during non-electrolysis, and retains water between the diaphragm and the electrode. And prevent useless sustained release of electrolytes. Further, the distance between the diaphragm and the electrode may be reduced during electrolysis to increase the electrolysis efficiency and the use efficiency of the electrolyte, and the distance between the diaphragm and the electrode may be reduced or the diaphragm and the electrode may be adhered during non-electrolysis. The amount of water remaining between the diaphragm and the electrode is reduced, and the mass of the electrolyte that is gradually released during non-electrolysis can be reduced.
[0006]
The present invention includes a pair of electrodes and an electrolyte container containing at least one kind of electrolyte or electrolyte solution, wherein the electrolyte container is located between the pair of electrodes, and the electrolyte container faces the electrodes. An electrolytic cell having a sustained-release membrane for slowly releasing an electrolyte in a portion where water flows, and the pressure between the electrodes and the sustained-release membrane during water flow is set to be smaller than that during non-water flow. Features.
[0007]
At the time of electrolysis, the distance between the electrode and the sustained-release membrane is reduced, so that the electrolysis efficiency and the electrolyte utilization efficiency increase. By increasing the electrolysis efficiency, the amount of electric power added when obtaining electrolyzed water can be reduced, so that there are also effects of lowering running costs, saving energy, and preventing electrode deterioration. When the electrolyte use efficiency increases, unreacted electrolyte does not flow out during electrolysis, and waste of the electrolyte can be prevented. On the other hand, by increasing the distance between the electrode and the sustained-release membrane during non-electrolysis, water does not accumulate between the electrode and the sustained-release membrane, and leakage of the electrolyte from the sustained-release membrane to the vicinity of the electrode due to concentration diffusion is prevented. This prevents waste of electrolyte even during non-electrolysis. By eliminating waste of the electrolyte, the electrolyte container is made compact. When the electrolyte tank is of a cartridge type, the frequency of replacing the electrolyte cartridge and the frequency of filling the electrolyte are reduced, so that maintenance is facilitated, which leads to resource saving and waste reduction.
[0008]
[0009]
In a preferred aspect of the present invention, the electrolytic cell has a flow path on the side of the electrode not facing the electrolyte solution, and a flow path between the electrode and the sustained-release membrane, wherein the electrode is formed of an elastic body. The cross-sectional area of the inlet of the flow path on the side not facing the electrolyte solution of the electrode, which is supported on the wall surface of the electrolytic cell, is larger than the cross-sectional area of the inlet of the flow path between the electrode and the sustained-release membrane. Features.
By increasing the inlet of the flow path on the side not facing the electrolyte solution, the flow rate to the flow path on the side not facing the electrolyte solution at the time of flowing water increases, the electrode receives pressure, and the electrode and the sustained release membrane Can be reduced. Since the change in the distance between the electrode and the sustained release film is due to the deformation of the elastic body, the structure is simple. In addition, since the flow path and the electrode that are diverted to the flow path on the side not facing the electrolyte solution and the electrode are supported by an elastic body, the flow rate of water flowing through the electrode and the sustained release membrane is kept constant even when the flow rate increases. This also has the effect that the amount of electrolytic reactant generated can be kept constant regardless of the flow rate. When water flow is completed, the elastic body returns to its original shape, the distance between the electrode and the sustained release film returns to the state before water flow, water accumulates between the electrode plate and the sustained release film, and the electrolyte Leakage due to concentration diffusion near the plate is eliminated.
[0010]
In a preferred aspect of the present invention, at least a part of an electrolyte container wall surface of the electrolytic cell is formed of an elastic body, and has a pressure receiving portion that receives a pressure by flowing water through the electrolyte container.
The pressure is applied to the pressure receiving portion during water passage, and a part of the wall surface of the electrolyte container is an elastic body. Therefore, the electrolyte container is deformed during water passage, and the distance between the electrode plate and the sustained-release membrane is reduced. Since the electrolyte tank is deformed by the pressure caused by water flow, the distance between the electrode plate and the sustained-release membrane can be reduced with a simple structure without using external power, increasing the electrolysis efficiency and electrolyte utilization efficiency during electrolysis. The amount of electricity to be added can be reduced, and the mass of unreacted electrolyte can be reduced.
[0011]
In a preferred aspect of the present invention, the electrode is a planar electrode, the electrode is installed in parallel with the sustained-release film, and the electrode is inclined at least 15 ° with respect to the horizontal.
By using a flat electrode as the electrode and installing it in parallel with the sustained-release membrane, the reaction occurs uniformly at any position on the electrode, making it easier to control the current value and the distance between the electrode and the sustained-release membrane. . Further, by inclining the electrode plate with respect to the horizontal, water can escape outside the electrolytic cell during non-electrolysis, and leakage of electrolyte during non-electrolysis can be prevented.
[0012]
In a preferred embodiment of the present invention, only on the anode side, a flow path on the side of the electrode not facing the electrolyte solution, and a flow path between the electrode and the sustained release membrane, the electrode is an elastic body It is supported on the wall surface of an electrolytic cell, and has a large flow division ratio of a flow path between the electrode and the sustained release film.
NaCl, KCl, HCl, NaHCO for electrolyte 3 , Na 2 CO 3 When is used, the electrolyte reactant is produced at the anode and only the water electrolysis reaction occurs at the cathode. Since the electrolyte reacts at the anode only at the anode, by adopting a split flow structure only on the anode side, the distance between the sustained release membrane on the anode side and the electrode during water flow is reduced, and the electrolytic efficiency is increased. The reaction electrolytic mass can be reduced, and the electrolyte container can be made compact, and when the electrolyte container is of a cartridge type, the cartridge replacement frequency and the electrolyte filling frequency can be reduced. Further, since the flow dividing structure is only on the anode side, the structure of the electrolytic cell can be simplified.
[0013]
In a preferred aspect of the present invention, the sustained release film on the cathode side of the electrolyte container is fixed so that the distance from the electrode is constant regardless of the water pressure.
By fixing the cathode side, when pressure is applied by water flow to the pressure receiving portion of the electrolyte container, the sustained release film of the cathode does not move, the sustained release film on the anode side moves to the anode plate side, and the anode plate- The distance between the sustained release membranes becomes smaller. At the cathode, there is no need to reduce the distance between the sustained release membrane and the electrodes since the electrolyte does not affect the electrolytic reactants. Since the distance between the cathode plate and the sustained-release membrane is large, when the flow rate is large, water is mainly passed to the cathode side. Therefore, even if the flow rate increases, the flow rate of the anode side flow path becomes constant, and the electrolyte near the anode becomes The concentration does not decrease, and the electrolytic efficiency can be increased.
[0014]
In a preferred aspect of the present invention, the sustained release membrane of the electrolyte container is selected from a microfiltration membrane, an ultrafine filtration membrane, and an inorganic membrane. The microfiltration membrane (MF membrane) is a membrane having a pore size of about several μm to 0.01 μm, and the ultrafine filtration membrane (UF membrane) is a membrane having a pore size of 0.001 μm to 0.01 μm. By using such a membrane, even in a state where water is not held in the flow path during non-electrolysis, the electrolyte solution in the electrolyte container is held in the container without leaking through the membrane, and the electrolyte solution flows during the electrolysis. Even when water is present in the path, water may permeate into the electrolyte container due to osmotic pressure, increasing the pressure of the electrolyte container, making it impossible to control the distance between the membrane and the electrode plate or damaging the electrolyte container. Absent.
[0015]
A preferred embodiment of the present invention is characterized by having an air-permeable membrane or air holes. During non-electrolysis, the distance between the electrode plate and the sustained-release membrane increases, and when water flows out of the electrolytic cell, air flows in through the air-permeable membrane or air holes, and all the water between the electrode plate and the sustained-release membrane is removed. Water can be quickly drained. Preferably, the air-permeable membrane is impermeable to water.
[0016]
In a preferred aspect of the present invention, a sensor for detecting the pressure in the electrolytic cell and a flow valve downstream of the electrolytic cell are provided. When the flow rate is low and the water pressure is not enough to deform the electrode or the elastic part of the electrolyte container, the pressure sensor detects the pressure and adjusts the flow valve to increase the internal pressure. By doing so, the distance between the electrode plate and the sustained-release membrane can be reduced during electrolysis at any water pressure, and both electrolysis efficiency and electrolyte utilization efficiency can be increased.
[0017]
In a preferred embodiment of the present invention, the amount of electrolytic reactant generated is estimated based on the resistance between the electrodes during electrolysis, and the current value and the electrolysis time are controlled based on the estimated value. Since there is a correlation between the amount of electrolytic reactant generated and the resistance between the electrodes, it is possible to estimate the amount of electrolytic reactant generated by detecting the resistance between the electrodes, and to control the current value and electrolysis time. Thus, the amount of electrolytic reactant generated can be kept constant, and desired electrolytic water can be obtained.
[0018]
In a preferred embodiment of the present invention, the electrolysis is not performed for a certain period of time at the beginning of the water flow, and then the electrolysis is performed. Since the sustained release membrane is dry when water is not passed, the electrolyte may not be gradually released or the sustained release amount may not be constant until the sustained release membrane becomes wet in the initial stage of water flow. Electrolysis is not performed for a certain period of time at the beginning of water flow, and electrolysis is started after the electrolyte is gradually released, thereby preventing useless current application and using electrolytic water containing a predetermined amount of electrolytic reactant from the start of electrolysis. can do.
BEST MODE FOR CARRYING OUT THE INVENTION
[0019]
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows an electrolytic cell of the electrolyzed water generating apparatus of the present invention when water is not supplied, and FIG. 2 shows a state of the electrolytic cell of FIG. 1 when water is supplied. 1 is an anode plate and 2 is a cathode plate. These electrode plates are supported on the wall surface of the electrolytic cell by an electrode supporting elastic body 10 such as a spring or rubber. An electrolyte cartridge 3, which is a container containing an electrolyte or an electrolyte solution, is fixed between the pair of electrodes. The electrolyte is, for example, NaCl, KCl, HCl, NaHCO 3 , Na 2 CO 3 And at least one type selected from the group consisting of a powder and a solution. The portion of the electrolyte cartridge 3 facing the electrode is a sustained release film 4. As the sustained release film, a film whose performance does not change even when the dry state and the wet state are repeated is used. Reference numeral 5 denotes a water passage, in which water or tap water flowing into the electrolytic cell is divided by a flow dividing plate shown in FIG. Is done. Although a flow dividing plate is used in the figure, the flow may be divided depending on the form of the electrode plate without using the current dividing plate. Reference numeral 32 denotes a pressure sensor, reference numeral 33 denotes a flow valve, reference numeral 34 denotes a flow control unit, which is installed downstream of the electrolytic cell and keeps a constant pressure when water flows through the electrolytic cell. Reference numeral 35 denotes a power supply, and 36 denotes a current control unit. When a current is applied to the electrodes from the power supply, the resistance between the electrodes is detected, and the resistance between the electrodes and the amount of electrolytic reaction are correlated. A desired amount of electrolytic reactant can be generated by estimating the amount of electrolytic reactant produced and controlling the current value. An air permeable membrane 30 is provided on the upper part of the electrolytic cell, and the water remaining in the electrolytic cell flows out of the electrolytic cell when no water flows.
[0020]
The electrode supporting elastic body 10 used in the present embodiment is made of resin, metal, or the like in a plate shape, a rod shape, or a linear shape. Anything can be returned. In addition, a support may be used in which a shape memory alloy is used, which is deformed by water at the time of passing water, and returns to its original shape when the water disappears.
As the sustained release film 4, an MF film and a UF film are used. The pore size is desirably small enough to hold the electrolyte solution in the electrolyte container and large enough not to cause osmotic pressure even if water is present in the water passage. That is, it may be 100 μm or less and 0.001 μm or more. In the present invention, since water is not held in the water passage during non-electrolysis, the electrolyte container needs to prevent the electrolyte from leaking from the sustained-release membrane due to gravity. As for the osmotic pressure, when the osmotic pressure occurs, the pressure inside the electrolyte container increases, the electrolyte container deforms, the distance between the membrane and the electrode plate becomes uncontrollable, and the membrane and the container may be damaged. It is desirable to use a film that does not generate pressure. In addition, even if the wet state and the dry state are repeated, the film maintains a certain performance when wet when wet, and is made of a material that does not contain water, such as a sintered inorganic or organic polymer. Good.
The air-permeable film 30 is a film that does not transmit liquid but only gas. Specifically, it may be a cloth film, a film obtained by subjecting a polymer film to a water-repellent treatment, or a film having a pore diameter of 0.001 μm or less. In addition to the air-permeable membrane, air holes may be provided, but the air holes do not allow liquid to pass through but only gas. Apply water-repellent treatment around the holes or reduce the hole diameter to 0.001 μm or less. What should I do?
[0021]
Next, the operation of the electrolytic cell shown in FIGS. 1 and 2 in the flow-through electrolysis will be described with reference to the flow of FIG. First, when water is passed through the electrolytic cell (S1), the water is divided by the flow dividing plate 11 into the flow path 13 on the back surface of the electrode plate and the flow path 12 between the sustained-release membrane and the electrode plate. The shunt ratio is greater in the electrode plate back channel 13. Here, the back flow path refers to a flow path on the side not facing the electrolyte solution. Since the flow division ratio of the electrode plate rear flow path 13 is increased, the electrode support elastic body is deformed, and the electrode plate moves in the direction of the sustained release film. Since the amount of movement varies depending on the flow rate, the pressure in the electrolytic cell is detected by the pressure sensor 32 in the downstream part of the electrolytic cell (S2). The opening of 33 is automatically adjusted (S3), the pressure due to the water flow in the electrolytic cell is increased to a specified value, and the flow path 12 between the sustained release membrane and the electrode plate is narrowed to a specified width (S4). When the pressure sensor 32 detects the pressure due to the flow of water, the timer of the current control unit 36 operates. With this timer, a current is applied to the electrode after water is passed through the electrolytic cell for a certain time (S5) (S6). When water is not passed, the water has escaped from the electrolytic cell, and it is considered that the sustained-release membrane is in a dry state, and the electrolyte may not be released at the beginning of water-flow or stable sustained release may not be performed. Therefore, by passing water for several seconds, the sustained release membrane is brought into a wet state, and a predetermined electrolyte is gradually released by applying current. When a current is applied, the current controller 36 detects the resistance between the electrodes (S7), and changes the value of the current applied from the power supply (S8). Since there is a correlation between the resistance between the electrodes and the amount of electrolytic reactant generated, the amount of electrolytic reactant generated can be estimated from the resistance between the electrodes.Therefore, by changing the current value according to the estimated value, the electrolytic It is possible to control the amount of reactants generated. When the electrolysis and the flow of water have been completed (S9), the pressure due to the flow of water has disappeared, so that the elastic body 10 supporting the electrode returns to the shape before the flow of water, and the channel 12 between the sustained-release membrane and the electrode plate 12 Is increased, air flows into the electrolytic cell from the air-permeable membrane 30 provided on the upper part of the electrolytic cell, and water in the electrolytic cell is discharged out of the electrolytic cell.
[0022]
In electrolysis, the theoretical amount of an electrolytic reactant is determined according to the amount of electricity applied. Assuming that the actual production amount relative to the theoretical production amount is the electrolytic efficiency, the electrolytic efficiency is related to the distance between the sustained-release membrane and the electrode. The inventors have obtained. When the amount of the electrolytic reactant generated relative to the mass of the electrolytically released from the electrolyte cartridge 3 through the sustained release membrane 4 is defined as the electrolyte utilization efficiency, in order to increase the utilization efficiency of the electrolyte, as much as possible of the sustained released electrolyte reacts as much as possible. It is necessary to make it. From the above, in order to increase the electrolytic efficiency and the electrolyte use efficiency, the flow path 12 between the sustained-release membrane and the electrode plate is narrowed, and the amount of water flowing into the flow path 12 between the sustained-release membrane and the electrode plate is reduced. Thus, a small amount of the electrolyte may be gradually released into the channel 12 between the sustained-release membrane and the electrode plate, and further, the flow may be divided into the flow channel on the back surface of the electrode plate.
In this embodiment, sodium chloride is used for the electrolyte, porous polyethylene having an average pore diameter of 9 μm and a porosity of 50% is used for the sustained release membrane, the distance between the sustained release membrane and the electrode plate is 1 mm, and the total flow rate is 0.8 ml / min. The flow rate of the flow path in the back of the electrode plate was set to 4 with respect to the flow rate of the flow path between the sustained-release membrane and the electrode plate, and the electrode area was 20 cm 2 A current of 0.5 A was applied to the electrode of No. 1 to perform electrolysis. Here, the split ratio between the flow rate between the sustained release membrane and the electrode plate and the flow rate of the flow path on the back surface of the electrode plate is perpendicular to the flow direction of the flow channel inlet (the top of the flow splitting plate 11 in FIG. 1). It is the cross-sectional area ratio of the surfaces, and in this embodiment, the cross-sectional area of the surface perpendicular to the water flow direction of the controlled-release membrane-electrode plate flow path inlet and the water flow direction of the electrode plate back flow path inlet are And the ratio of the cross-sectional areas of the vertical surfaces is 1: 4. As a result of electrolysis performed under such conditions, the amount of hypochlorous acid generated as an electrolytic reactant was 7.2 mg / min, the electrolysis efficiency was 65%, and the electrolyte utilization efficiency was 40%. On the other hand, when the same slow-release membrane, electrode, and electrolyte as described above were used, the distance between the sustained-release membrane and the electrode plate was set to 3 mm, and a current of 0.5 A was applied without branching, the formation of hypochlorous acid occurred. The amount is 3.7 mg / min, the electrolytic efficiency is 33%, and the electrolyte use efficiency is 2%. By narrowing the flow path between the sustained-release membrane and the electrode plate and performing branching, the electrolytic efficiency is doubled and the electrolyte use efficiency is increased. Was 20 times. In the present embodiment, the electrolytic cell configuration under the above conditions was used. However, more preferably, the split ratio is set such that the split ratio of the flow rate of the sustained release membrane-electrode plate flow path to the flow rate of the electrode plate back flow path is 1 It is desirable to make the logarithmic tens and the distance between the sustained release membrane and the electrode to be 1 mm or less.
At the time of non-electrolysis, for example, when the distance between the sustained-release membrane and the electrode plate is 1 mm and water in the flow path between the sustained-release membrane and the electrode does not escape due to surface tension, 2 ml of water remains in the flow path. Sodium chloride permeates and moves through the sustained-release membrane due to concentration diffusion of water remaining in the flow path. After a lapse of time, the water in the flow path becomes a saturated sodium chloride solution, and 0.4 g of sodium chloride is wastefully and gradually released. On the other hand, if the distance between the sustained-release membrane and the electrode plate is 3 mm, the water in the flow path between the sustained-release membrane and the electrode is discharged out of the electrolytic cell, and sodium chloride is gradually released into the flow path unnecessarily during non-electrolysis. Never. In the present embodiment, the above conditions were used, but the distance between the sustained release film and the electrode plate may be 2 mm or more during non-electrolysis.
For this reason, the flow path 12 between the sustained-release membrane and the electrode plate is widened so that the surface tension of water does not occur when water is not passed, and the flow path 12 between the sustained-release membrane and the electrode plate is narrowed during water electrolysis. In addition, the electrolysis efficiency and the use efficiency of the electrolyte are increased. Further, when no electrolysis is performed, water does not remain in the flow path 12 between the sustained-release membrane and the electrode plate, preventing waste of the electrolyte, replacing the electrolyte cartridge, and filling the electrolyte. The electrolytic cell can reduce power consumption, reduce power consumption during electrolysis, save energy, reduce running costs, and prevent electrode deterioration.
[0023]
Next, a second embodiment of the present invention is shown in FIGS. FIG. 4 shows the electrolytic cell of the second embodiment when water is not flowing, and FIG. 5 shows the electrolytic cell of FIG. 4 when water is flowing. 1 is an anode plate and 2 is a cathode plate, which is fixed to the inner wall surface of the electrolytic cell. An electrolyte cartridge 3 containing an electrolyte or an electrolyte solution is fixed between the pair of electrodes only by 21 electrolyte cartridge support portions. The electrolyte is NaCl, KCl, HCl, NaHCO 3 , Na 2 CO 3 Any one or several of these may be used, and they may be filled with a powder or an aqueous solution. The portion of the electrolyte cartridge 3 facing the electrode is a sustained release film 4. As the sustained-release membrane, a membrane that is not likely to be damaged even in a dry state, for example, a polymer sintered porous body, a hollow fiber membrane, an inorganic porous membrane, or the like is used. The portion of the electrolyte cartridge 3 that receives the pressure of the fluid when flowing water is a pressure receiving portion 22, and the portion other than the sustained release film 4 portion and the pressure receiving portion 22 is an elastic body 20 such as rubber. The electrolyte cartridge 3 is deformed by receiving the pressure caused by the water flow, and the electrolyte cartridge 3 is deformed. Reference numeral 5 denotes a water passage, in which water or tap water flowing into the electrolytic cell passes between the electrode plate and the sustained-release membrane. Reference numeral 32 denotes a pressure sensor, reference numeral 33 denotes a flow valve, reference numeral 34 denotes a flow control unit. The pressure sensor 32 is installed outside the electrolytic cell, detects the pressure inside the electrolytic cell, and controls the flow control unit 34 downstream of the electrolytic cell according to the pressure. The pressure inside the electrolytic cell is kept constant irrespective of the flow rate of the water flowing into the electrolytic cell by adjusting the flow valve 33 installed in the electrolytic cell. Reference numeral 35 denotes a power supply, and 36 denotes a current control unit, which detects a resistance between the electrodes when applying a current to the electrodes from the power supply, estimates an electrolytic reactant generation amount from the resistance between the electrodes, and controls a current value. The amount of electrolytic reactant generated can be set to a desired value. Micro air holes 31 are provided in the upper part of the electrolytic cell so that water accumulated in the electrolytic cell can easily escape to the outside of the electrolytic cell when water is not passed.
[0024]
Next, the operation of the electrolytic cell shown in FIGS. 4 and 5 in the flow-through electrolysis will be described using the flow of FIG. First, when water is passed through the electrolytic cell (S21), the pressure sensor detects that water is passed through the electrolytic cell, and the flow valve control unit 34 temporarily closes the flow valve 33 (S22). . During this time, the membrane which may be in a dry state is returned to a wet state, and a film having a predetermined sustained release performance is obtained. After a certain time has passed since the closing of the flow valve, the flow valve is opened (S23). The pressure state in the electrolytic cell is detected by a pressure sensor, and the flow valve control unit 34 automatically adjusts the opening of the flow valve 33 (S24), and increases the pressure due to water flow in the electrolytic cell to a specified value. The elastic body 20 is deformed by the pressure of the water passing through the pressure receiving portion 22 of the electrolyte cartridge 3, the flow path between the sustained release membrane and the electrode plate is narrowed (S25), and a current is applied to the electrode (S26). When a current is applied, the current control unit 36 detects the resistance between the electrodes (S27), and changes the value of the current applied from the power supply. Since there is a correlation between the inter-electrode resistance and the amount of electrolytic reactant generation, the amount of electrolytic reactant generation can be estimated from the resistance between the electrodes. Therefore, by changing the current value according to the estimated value (S28) ), It is possible to control the amount of electrolytic reactant generated. When the desired electrolyzed water is obtained, the passage of water is terminated (S29). With the termination of the water flow, the pressure in the electrolytic cell decreases. When the pressure falls below a certain value, the pressure sensor 32 detects the termination of the water flow, and the current control unit 36 terminates the application of the current from the power supply 35 (S30). ), The flow control unit 34 opens the flow valve 33. Since the pressure due to the water flow is not received, the electrolyte cartridge 3 returns to the shape before the water flow, and the distance between the sustained-release membrane and the electrode becomes so large that the surface tension of the water does not occur. Air flows into the electrolytic cell from the micro air holes 31 provided in the upper part of the electrolytic cell, water in the electrolytic cell is discharged out of the electrolytic cell, and the electrolysis is completed (S31).
[0025]
In the present embodiment, unlike the first embodiment, the flow is not divided into the flow path between the sustained-release membrane and the electrode plate and the flow path behind the electrode plate during electrolysis. However, when the distance between the sustained-release membrane and the electrode plate was 1 mm in the same electrode plate, sustained-release membrane, water flow rate, and current value as in the first embodiment, the electrolysis efficiency was 60%, and the electrolyte utilization efficiency was 30%. Thus, the same efficiency as in the first embodiment could be obtained. Thus, also in the second embodiment, the electrolytic efficiency and the electrolyte use efficiency can be increased by reducing the distance between the sustained release membrane and the electrode plate. In the present embodiment, the electrolytic cell is configured under the above conditions, but the distance between the sustained release film and the electrode plate during electrolysis is 1 mm or less, and the distance between the sustained release film and the electrode plate during non-electrolysis is 2 mm or more. .
[0026]
A third embodiment of the present invention is shown in FIGS. FIG. 7 shows a state when water is not flowing in the third embodiment, and FIG. 8 shows a state when water is flowing. 1 is an anode plate and 2 is a cathode plate. The anode plate 1 is supported on the wall surface of the electrolytic cell by an elastic body 10 such as a spring or rubber, and the cathode plate 2 is fixed to the wall surface of a flow path in the electrolytic cell. An electrolyte cartridge 3 containing an electrolyte or an electrolyte solution is fixed between the pair of electrodes. The portion of the electrolyte cartridge 3 facing the electrode is a sustained release film 4. Reference numeral 5 denotes a water passage, in which water or tap water flowing into the electrolytic cell is supplied to the electrolytic cell, only at the anode, by a flow dividing plate shown at 11, by a sustained release membrane-electrode plate flow path at 12 and an electrode back flow path at 13 Shunted. The electrolyte is NaCl, KCl, HCl, NaHCO 3 , Na 2 CO 3 Any one or several types are used. In the electrolysis reaction of these electrolyte solutions, hydrogen is generated at the cathode, and OH Is increased, and alkaline water is generated. At the anode, when NaCl, KCl, or HCl is used for the electrolyte, hypochlorous acid and H + Is generated. Hypochlorous acid has a strong oxidizing power and has sterilizing, bleaching and deodorizing effects. NaHCO for electrolyte 3 , Na 2 CO 3 When is used, carbonated water and acidic water are generated at the anode. Carbonated water has a blood circulation promoting effect. As described above, since effective electrolyzed water is generated in the reactant generated at the anode, the flow path between the sustained-release membrane and the anode plate is reduced by the water pressure, and the branch flow ratio of the anode back flow path is increased. This makes it possible to increase the electrolytic efficiency at the anode and the electrolyte use efficiency.
In the present embodiment, the same electrode, sustained release film, and electrolyte as those of the first embodiment are used, and the distance between the sustained release film and the anode plate during electrolysis is 1 mm, and the distance between the sustained release film and the cathode plate is 3 mm. As a result of the evaluation, the electrolysis efficiency and the electrolyte use efficiency were almost the same as those of the first embodiment. Only the anode side had a split flow structure, and the distance between the sustained release film and the electrode plate was reduced during electrolysis, thereby improving the electrolysis efficiency and the electrolyte. It has become possible to increase the utilization efficiency. In this embodiment, the electrolytic cell was configured under the above conditions, but the distance between the sustained release film and the anode plate during electrolysis was 1 mm or less, the distance between the sustained release film and the anode plate during non-electrolysis was 2 mm or more, -The distance between the cathode plates may be 2 mm or more.
[0027]
A fourth embodiment of the present invention is shown in FIGS. FIG. 9 shows a state when water is not flowing in the fourth embodiment, and FIG. 10 shows a state when water is flowing. 1 is an anode plate, 2 is a cathode plate, and the anode plate 1 and the cathode plate 2 are fixed to the wall surface in the electrolytic cell. An electrolyte cartridge 3 containing an electrolyte or an electrolyte solution is fixed between the set of electrodes by a support portion for the 21 electrolyte cartridge and a sustained-release membrane portion on the cathode side. The portion of the electrolyte cartridge 3 that faces the electrode is a sustained release membrane 4, the portion that receives the pressure of the fluid when flowing water is the pressure receiving portion 22, and the portions other than the sustained release membrane 4 portion and the pressure receiving portion 22. Is an elastic body 20 such as rubber. When the pressure is applied to the pressure receiving portion 22 by the flow of water, the elastic portion 20 of the electrolyte cartridge 3 is deformed, and the cartridge supporting portion 21 and the sustained release membrane portion on the cathode side are fixed. Deforms so that the flow path becomes smaller. Reference numeral 5 denotes a water passage, in which water or tap water flowing into the electrolytic cell passes between the electrode plate and the sustained-release membrane. As in the third embodiment, NaCl, KCl, HCl, NaHCO 3 , Na 2 CO 3 When any one or several types are used, effective electrolyzed water is generated on the anode side. Therefore, the flow rate between the sustained-release membrane and the anode plate is reduced by the water pressure, so that the electrolysis efficiency at the anode is improved. In addition, it is possible to increase the use efficiency of the electrolyte. Further, since the flow path only on the anode side is small and the flow path on the cathode side is large, even if the flow rate is increased, water is mainly passed to the cathode side and the electrolyte concentration on the anode side does not decrease. During non-electrolysis, the distance between the electrode plate on the anode side and the sustained release film increases, and the electrode is inclined with respect to the horizontal, so that water is not retained due to surface tension between the electrode plate and the sustained release film. Water is immediately discharged to the outside of the electrolytic cell, and the electrolyte does not leak out through the sustained-release membrane, so that waste of the electrolyte can be prevented even during non-electrolysis.
In this embodiment, when the sustained-release membrane, the electrode, and the electrolyte are the same as those in the first embodiment, and the distance between the sustained-release membrane and the electrode during electrolysis is 1 mm, the same electrolytic efficiency and electrolyte utilization as those in the first embodiment are used. Became more efficient. When the inclination angle was 45 ° in the present embodiment and the distance between the sustained-release membrane and the electrode plate during non-electrolysis was 3 mm, water in the flow path between the sustained-release membrane and the electrode plate was immediately discharged to the outside of the electrolytic cell. Was done. In the present embodiment, the above-described configuration is used. However, the distance between the sustained release film and the anode plate during electrolysis is 1 mm or less, the distance between the sustained release film and the anode plate during non-electrolysis is 2 mm or more, and the distance between the sustained release film and the cathode plate. 2 mm or more, and the inclination angle may be 15 ° to 90 °.
[Brief description of the drawings]
FIG. 1 is a first embodiment (when water is not flowing).
FIG. 2 is a first embodiment (when water is flowing).
FIG. 3 is a flow chart for generating electrolyzed water according to the first embodiment;
FIG. 4 is a second embodiment (when water is not flowing).
FIG. 5 is a second embodiment (when water is flowing).
FIG. 6 is a flow chart of generating electrolyzed water according to the second embodiment.
FIG. 7 is a third embodiment (when water is not flowing).
FIG. 8 is a third embodiment (when water is flowing).
FIG. 9 is a fourth embodiment (when water is not flowing).
FIG. 10 is a fourth embodiment (when water is flowing).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Anode plate, 2 ... Cathode plate, 3 ... Electrolyte cartridge, 4 ... Sustained release membrane, 5 ... Water passage, 10 ... Electrode support elastic body, 11 ... Divided plate, 12 ... Slow release membrane-electrode plate flow path, DESCRIPTION OF SYMBOLS 13 ... Flow path behind an electrode plate, 20 ... Electrolyte cartridge elastic body, 21 ... Electrolyte cartridge support part, 22 ... Pressure receiving part, 30 ... Air permeable membrane, 31 ... Micro air hole, 32 ... Pressure sensor, 33 ... Flow valve, 34: flow valve control unit 35: power supply 36: current control unit

Claims (13)

一対の電極と、少なくとも1種類の電解質または電解質溶液を内包する電解質容器とを備え、前記電解質容器は前記一対の電極の間に位置し、前記電解質容器は前記電極に面している部分に電解質を徐放する徐放膜を有する電解槽であって、通水時は通水の圧力により、前記電極と前記徐放膜との距離を非通水時よりも小さくすることを特徴とする電解槽。A pair of electrodes and an electrolyte container containing at least one type of electrolyte or electrolyte solution, wherein the electrolyte container is located between the pair of electrodes, and the electrolyte container has an electrolyte in a portion facing the electrodes. An electrolytic cell having a sustained release membrane for sustained release of water, wherein the pressure between the electrode and the sustained release membrane during water flow is smaller than that during non-water flow. Tank. 前記電解槽は、通水時は通水の圧力により、前記電極が移動し、前記電極と前記徐放膜との距離を非通水時よりも小さくすることを特徴とする請求項1記載の電解槽。2. The electrolytic cell according to claim 1, wherein the electrode moves due to the pressure of the flowing water when flowing water, and makes a distance between the electrode and the sustained-release membrane smaller than when not flowing water. Electrolyzer. 前記電解槽は、通水時は通水の圧力により、前記徐放膜が移動し、前記電極と前記徐放膜との距離を非通水時よりも小さくすることを特徴とする請求項1記載の電解槽。The said electrolytic cell moves the said sustained-release film | membrane by the pressure of water flow at the time of water flow, and makes the distance of the said electrode and the said sustained-release film | membrane smaller than at the time of non-water flow. The electrolytic cell as described. 前記電解槽は、前記電極の電解質溶液と向かい合っていない側の流路と、前記電極と前記徐放膜の間の流路を有し、前記電極は弾性体により電解槽壁面に支持されており、前記電極の電解質溶液と向かい合っていない側の流路の入口の断面積を前記電極と前記徐放膜の間の流路の入口の断面積より大きくしたことを特徴とする請求項2記載の電解槽。The electrolytic cell has a flow path on the side of the electrode not facing the electrolyte solution, and a flow path between the electrode and the sustained-release membrane, and the electrode is supported on an electrolytic cell wall surface by an elastic body. The cross-sectional area of the inlet of the flow path on the side of the electrode not facing the electrolyte solution is larger than the cross-sectional area of the inlet of the flow path between the electrode and the sustained-release membrane. Electrolyzer. 前記電解槽の電解質容器壁面は少なくとも一部が弾性体で構成されており、前記電解質容器に通水による圧力を受ける受圧部を有することを特徴とする請求項3記載の電解槽。4. The electrolytic cell according to claim 3, wherein at least a part of an electrolyte container wall surface of the electrolytic cell is formed of an elastic body, and has a pressure receiving unit that receives a pressure by flowing water through the electrolyte container. 5. 前記電極は平面電極であり、前記電極は前記徐放膜と平行に設置され、かつ前記電極が水平に対して15°以上傾斜していることを特徴とする請求項1〜4いずれかに記載の電解槽The electrode according to any one of claims 1 to 4, wherein the electrode is a flat electrode, the electrode is provided in parallel with the sustained-release film, and the electrode is inclined at least 15 ° with respect to the horizontal. Electrolytic cell 前記電解槽は、陽極側においてのみ、前記電極の電解質溶液と向かい合っていない側の流路と、前記電極と前記徐放膜の間の流路を有し、前記電極は弾性体により電解槽壁面に支持されており、前記電極と前記徐放膜の間の流路の分流比が大きいことを特徴とする請求項1記載の電解槽The electrolytic cell has a flow path on the side not facing the electrolyte solution of the electrode only on the anode side, and a flow path between the electrode and the sustained-release membrane. 2. The electrolytic cell according to claim 1, wherein the flow path between the electrode and the sustained-release membrane has a large split ratio. 3. 前記電解質容器の陰極側の徐放膜が水圧によらず、電極との距離が一定になるよう固定されていることを特徴とする請求項3記載の電解槽。4. The electrolytic cell according to claim 3, wherein the sustained release film on the cathode side of the electrolyte container is fixed so that the distance from the electrode is constant irrespective of the water pressure. 前記電解質容器の徐放膜は精密ろ過膜、超精密ろ過膜、無機膜から選ばれることを特徴とする請求項1〜7記載の電解槽。The electrolytic cell according to any one of claims 1 to 7, wherein the sustained-release membrane of the electrolyte container is selected from a microfiltration membrane, an ultra-microfiltration membrane, and an inorganic membrane. 前記電解槽は、空気透過性膜または空気孔を有することを特徴とする請求項1〜8記載の電解槽。The electrolytic cell according to claim 1, wherein the electrolytic cell has an air-permeable membrane or an air hole. 前記電解槽は、電解槽内の圧力を検知するセンサと、電解槽下流に流量弁を有することを特徴とする請求項1〜9記載の電解槽。The electrolytic cell according to claim 1, wherein the electrolytic cell has a sensor for detecting a pressure in the electrolytic cell and a flow valve downstream of the electrolytic cell. 前記電解槽は、電解時の抵抗値を測定し、測定値に基づき電流値および電解時間を制御する制御装置を有することを特徴とする請求項1〜10記載の電解槽。The electrolyzer according to claim 1, wherein the electrolyzer has a controller that measures a resistance value during electrolysis and controls a current value and an electrolysis time based on the measured value. 前記電解槽は、通水初期の所定時間は電解を行わず、その後、電解を開始することを特徴とする請求項1〜11記載の電解槽。The electrolyzer according to claim 1, wherein the electrolyzer does not perform electrolysis for a predetermined period of time at the beginning of water passage, and then starts electrolysis.
JP2003097228A 2003-03-31 2003-03-31 Electrolytic cel Pending JP2004298807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003097228A JP2004298807A (en) 2003-03-31 2003-03-31 Electrolytic cel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003097228A JP2004298807A (en) 2003-03-31 2003-03-31 Electrolytic cel

Publications (1)

Publication Number Publication Date
JP2004298807A true JP2004298807A (en) 2004-10-28

Family

ID=33409074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003097228A Pending JP2004298807A (en) 2003-03-31 2003-03-31 Electrolytic cel

Country Status (1)

Country Link
JP (1) JP2004298807A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088149A (en) * 2011-02-07 2011-05-06 Bisansei Denkaisui Kenkyusho:Kk Method of preparing electrolyzed water and composition
WO2012160915A1 (en) * 2011-05-24 2012-11-29 パナソニック株式会社 Electrolysis tank and electrolyzed water producing device
JPWO2013191140A1 (en) * 2012-06-18 2016-05-26 旭化成株式会社 Bipolar alkaline water electrolysis unit and electrolytic cell
JP2016209864A (en) * 2016-04-18 2016-12-15 シャープ株式会社 Electrolytic water generator
JP2020132938A (en) * 2019-02-19 2020-08-31 株式会社豊田中央研究所 Electrochemical reaction device and artificial photosynthesis device
CN114132997A (en) * 2021-11-15 2022-03-04 昆山泰瑞克智能科技有限公司 An electrolyzed water module assembly that helps to improve the electrolysis efficiency of electrolyzed pure water
CN114927828A (en) * 2022-07-19 2022-08-19 浙江金羽新能源科技有限公司 Composite diaphragm with slow release function and preparation method and application thereof
CN116969554A (en) * 2023-09-22 2023-10-31 康亦健(集团)有限公司 Electrolytic reduction water making machine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088149A (en) * 2011-02-07 2011-05-06 Bisansei Denkaisui Kenkyusho:Kk Method of preparing electrolyzed water and composition
WO2012160915A1 (en) * 2011-05-24 2012-11-29 パナソニック株式会社 Electrolysis tank and electrolyzed water producing device
JPWO2013191140A1 (en) * 2012-06-18 2016-05-26 旭化成株式会社 Bipolar alkaline water electrolysis unit and electrolytic cell
US9683300B2 (en) 2012-06-18 2017-06-20 Asahi Kasei Kabushiki Kaisha Bipolar alkaline water electrolysis unit and electrolytic cell
JP2016209864A (en) * 2016-04-18 2016-12-15 シャープ株式会社 Electrolytic water generator
JP2020132938A (en) * 2019-02-19 2020-08-31 株式会社豊田中央研究所 Electrochemical reaction device and artificial photosynthesis device
JP7293709B2 (en) 2019-02-19 2023-06-20 株式会社豊田中央研究所 Electrochemical reactor and artificial photosynthesis device
CN114132997A (en) * 2021-11-15 2022-03-04 昆山泰瑞克智能科技有限公司 An electrolyzed water module assembly that helps to improve the electrolysis efficiency of electrolyzed pure water
CN114927828A (en) * 2022-07-19 2022-08-19 浙江金羽新能源科技有限公司 Composite diaphragm with slow release function and preparation method and application thereof
CN114927828B (en) * 2022-07-19 2022-10-25 浙江金羽新能源科技有限公司 Composite diaphragm with slow release function and preparation method and application thereof
CN116969554A (en) * 2023-09-22 2023-10-31 康亦健(集团)有限公司 Electrolytic reduction water making machine
CN116969554B (en) * 2023-09-22 2024-01-12 康亦健(集团)有限公司 Electrolytic reduction water making machine

Similar Documents

Publication Publication Date Title
US8075757B2 (en) Method and apparatus for ammonia (NH3) generation
JP3349710B2 (en) Electrolyzer and electrolyzed water generator
JPH0293088A (en) Method and device for water electrolysis
JP6315884B2 (en) Electrolysis of alkali metal chlorides using oxygen consuming electrodes.
TW201406996A (en) Process for electrolysis of alkali metal chlorides with oxygen-consuming electrodes having orifices
JP2004351317A (en) Electrochemical liquid treatment apparatus
JP2004298807A (en) Electrolytic cel
TW202033266A (en) Hydrogenation device and method for determining a degree of consumption of a hydrogen-permeable membrane
JP2007522941A (en) Gas-driven electrolytic cell
TW201402869A (en) Process for electrolysis of alkali metal chlorides with oxygen-consuming electrodes in micro-gap arrangement
KR20230042313A (en) Methods and Systems for Improving and Maintaining the Performance of Carbon Dioxide Electrolyzers
JP2020190021A (en) Hydrogen/oxygen generator
EP0922789B1 (en) Shut-down process for membrane electrolytic cell with oxygen reducing cathode
US8247098B2 (en) Electrochemical cell
JP3264893B2 (en) Hydrogen / oxygen generator
JP2004042025A (en) Electrolytic ion water generation method and device therefor
JP5302969B2 (en) Microbial fuel cell cathode assembly
KR20240090450A (en) Pressurized water electrolysis device
JPS6059086A (en) Electrolyzing method
JP4415444B2 (en) Electrolyzer
JP4531522B2 (en) High pressure hydrogen production equipment
CN215864067U (en) Water pipeline system for bathing and bathroom water heater
US8236455B2 (en) Method for operating a direct oxidation fuel cell and corresponding arrangement
JP6503054B2 (en) Electrolyzed water generating device, electrode unit, and electrolytic water generating method
TW202100231A (en) Hydrogenation device and method for determining degree of consumption of hydrogen-permeable membrane