WO2012160915A1 - Electrolysis tank and electrolyzed water producing device - Google Patents

Electrolysis tank and electrolyzed water producing device Download PDF

Info

Publication number
WO2012160915A1
WO2012160915A1 PCT/JP2012/060700 JP2012060700W WO2012160915A1 WO 2012160915 A1 WO2012160915 A1 WO 2012160915A1 JP 2012060700 W JP2012060700 W JP 2012060700W WO 2012160915 A1 WO2012160915 A1 WO 2012160915A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic cell
plate
cathode
anode plate
water
Prior art date
Application number
PCT/JP2012/060700
Other languages
French (fr)
Japanese (ja)
Inventor
壽一 西川
利明 平井
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012160915A1 publication Critical patent/WO2012160915A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4611Fluid flow
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms

Definitions

  • the present invention relates to an electrolytic cell having electrodes (a cathode plate and an anode plate), and an electrolyzed water generating apparatus including the electrolytic cell.
  • an electrolyzed water generating apparatus includes an electrolyzer having electrodes (a cathode plate and an anode plate), and generates alkaline ionized water in the electrolyzer.
  • Alkaline ionized water is said to be effective in improving gastrointestinal symptoms such as relieving stomach upset and stomach discomfort, and assisting gastrointestinal function and improving bowel movements. This reason is considered to be due to the action of hydrogen dissolved in alkaline ionized water. For this reason, it is desired to increase the dissolved hydrogen concentration of alkaline ionized water.
  • an electrolyzed water generating device As a conventional electrolyzed water generating device, an electrolyzed water generating device is known in which a raw water bypass channel branched from the upstream side of the electrolyzer is connected to an ion outflow pipe through which alkaline ionized water generated in the electrolyzer passes ( Patent Document 1).
  • a raw water bypass channel branched from the upstream side of the electrolyzer is connected to an ion outflow pipe through which alkaline ionized water generated in the electrolyzer passes
  • Patent Document 1 alkaline ionized water having an increased dissolved hydrogen concentration is diluted with raw water passing through the raw water bypass flow path.
  • neutral alkaline water having a high dissolved hydrogen concentration and suitable for drinking is produced.
  • JP 2009-160503 A JP 2009-160503 A
  • An object of the present invention is to provide an electrolytic cell capable of simplifying the manufacturing work and suppressing an increase in the size of the product, and an electrolyzed water generating apparatus including the electrolytic cell.
  • an electrolytic cell has a diaphragm and a cathode plate and an anode plate facing each other with the diaphragm interposed therebetween.
  • An electrolytic cell capable of taking water into acidic water, and has a main channel capable of electrolyzing raw water between a cathode plate and an anode plate, and a sub-channel which does not electrolyze the raw water.
  • the alkaline ionized water generated by passing through the main channel only in the electrolytic cell is converted to the raw water that has passed through the sub channel. Can be diluted. For this reason, it is not necessary to provide a flow path outside the electrolytic cell, the manufacturing work can be simplified, and an increase in the size of the product can be suppressed.
  • An opening through which raw water can pass may be formed in at least one of the cathode plate and the anode plate.
  • bubbles generated when the raw water is electrolyzed in the main channel can be discharged from the opening to the sub-channel side (the back side of the cathode plate or the anode plate).
  • the raw water flowing through the main flow channel flows slower than the raw water flowing through the sub flow channel due to electrolysis by the cathode plate and the anode plate.
  • bubbles generated in the main channel are drawn into the raw water flowing through the sub-channel faster than the main channel through the opening. Therefore, it is difficult for bubbles to exist in the main flow path, and stable electrolysis can be performed by the cathode plate and the anode plate without hindering the electrolysis.
  • the interval between the cathode plate and the anode plate may be set so as to increase from the upstream side to the downstream side in the raw water flow direction.
  • a plurality of at least one of a cathode plate and an anode plate are provided, and a relay for controlling a voltage applied to the cathode plate and the anode plate is connected to the cathode plate and the anode plate. May be formed between the cathode plate and the anode plate.
  • the cathode plate and the anode plate are disposed in a state of being separated from the wall surface of the electrolytic cell, and the sub channel is a cathode side sub channel disposed between the cathode plate and the wall surface of the electrolytic cell, and the anode plate and the electrolytic cell. And an anode-side sub-flow channel disposed between the two wall surfaces.
  • the main flow path and the sub flow path are formed in the thickness direction of the electrolytic cell.
  • generated by passing a main flow path can be diluted with the raw
  • the cathode plate and the anode plate are disposed adjacent to the wall surface of the electrolytic cell and are unevenly distributed in the short direction of the wall surface of the electrolytic cell, and the sub-flow path is an area where the cathode plate and the anode plate are not disposed. It may be formed.
  • the electrolyzed water generating device includes the electrolytic cell according to the first technical aspect of the present invention.
  • an electrolytic cell capable of simplifying the manufacturing operation and suppressing an increase in the size of the product, and an electrolyzed water generating apparatus including the electrolytic cell.
  • FIG. 1 is a perspective view showing an electrolytic cell provided in the electrolyzed water generating apparatus according to the first embodiment.
  • FIG. 2 is an exploded perspective view showing an electrolytic cell provided in the electrolyzed water generating apparatus according to the first embodiment.
  • Fig.3 (a) is a block diagram which shows the internal cross section (cross section from the A arrow of FIG. 1) of the electrolytic cell which concerns on 1st Embodiment
  • FIG.3 (b) is the electrolytic cell which concerns on 1st Embodiment. It is a block diagram which shows the internal cross section (cross section from the B arrow direction of FIG. 1).
  • FIG. 1 is a perspective view showing an electrolytic cell provided in the electrolyzed water generating apparatus according to the first embodiment.
  • FIG. 2 is an exploded perspective view showing an electrolytic cell provided in the electrolyzed water generating apparatus according to the first embodiment.
  • Fig.3 (a) is a block diagram which shows the internal cross section (cross section from the A arrow of
  • FIG. 4 (a) is a graph showing the behavior of the pH value of alkaline ionized water in the vicinity of a water-based electrolytic diaphragm that does not contain much carbonic acid component
  • FIG. 4 (b) is the vicinity of the water-based electrolytic diaphragm containing a large amount of carbonic acid component. It is a graph which shows the behavior of the pH value of alkaline ionized water.
  • FIG. 5 is a graph showing the pH control result depending on the water quality with and without the sub-flow channel.
  • FIG. 6 is a configuration diagram illustrating an electrolytic cell according to a modification of the first embodiment.
  • FIG.7 (a) is a perspective view which shows the electrolytic cell which concerns on 2nd Embodiment
  • FIG.7 (b) is a block diagram which shows the electrolytic cell which concerns on 2nd Embodiment.
  • Fig.8 (a) is a front view which shows only the cathode plate (or anode plate) inside the electrolytic cell which concerns on the modification 1 of 2nd Embodiment
  • FIG.8 (b) is the modification 1 of 2nd Embodiment.
  • It is a block diagram which shows the electrolytic cell which concerns on.
  • FIG. 9 is a configuration diagram illustrating an electrolytic cell according to Modification 2 of the second embodiment.
  • Fig.10 (a) is a perspective view which shows the electrolytic cell which concerns on 3rd Embodiment
  • FIG.10 (b) is a block diagram which shows the electrolytic cell which concerns on 3rd Embodiment.
  • the electrolyzed water generating apparatus 1 can take water from raw water into alkaline ionized water and acidic water by electrolyzing the raw water (applying a voltage to the electrodes).
  • a water purification filter for example, adsorption means such as activated carbon, sand filtration, ion exchange resin
  • purified for example, adsorption means such as activated carbon, sand filtration, ion exchange resin
  • the electrolyzed water generating apparatus 1 includes a substantially rectangular electrolytic cell 100 disposed downstream of a water purification filter (not shown).
  • the electrolytic cell 100 includes a plurality of cathode plates 11 and 12 and an anode plate 21 that face each other with an electrolytic diaphragm 120A (diaphragm) interposed therebetween.
  • the electrolytic cell 100 includes an electrolytic cell case 110 that can be divided into an upper case 111 and a lower case 112, and a rectangular box-shaped diaphragm case 120 that is accommodated in the electrolytic cell case 110. .
  • a cathode chamber 10 containing the cathode plates 11 and 12 and an anode chamber 20 containing an anode plate 21 facing the cathode plates 11 and 12 are provided in the electrolytic cell case 110.
  • the anode plate 21 is built in the diaphragm case 120.
  • Cathode plates 11 and 12 are disposed on both sides of the anode plate 21 (anode chamber 20).
  • the cathode plates 11, 12 and the anode plate 21 are disposed at approximately the center in the short direction of the wall surface 113 (the wall surface of the cathode chamber 10 and the wall surface of the anode chamber 20) of the electrolytic cell case 110.
  • the cathode plates 11 and 12 and the anode plate 21 are respectively provided with electrode terminals T (see FIG. 8A) protruding outward from the lower side of the electrolytic cell case 110.
  • Each electrode terminal T is sealed in a watertight manner by an O-ring, and is connected to an electrode type relay (not shown) for controlling the voltage applied to the cathode plates 11 and 12 and the anode plate 21.
  • the electrolytic cell case 110 is provided with a purified water supply pipe 130, an alkaline water outflow pipe 140, and an acidic water outflow pipe 150.
  • the purified water supply pipe 130 is provided with a supply port 131 for supplying purified water into the electrolytic cell 100 on the upper case 111 side.
  • an electrolytic auxiliary agent addition tube 160 filled with an electrolytic auxiliary agent such as a calcium additive that promotes electrolysis is disposed.
  • the purified water supply pipe 130 branches into a cathode supply pipe 130A and an anode supply pipe 130B on the downstream side of the electrolytic auxiliary agent addition cylinder 160 (in the vicinity of the divided part of the upper case 111 and the lower case 112).
  • the cathode supply tube 130A communicates with the lower side of the lower case 112 (that is, the lower part of the cathode chamber 10).
  • the anode supply pipe 130B communicates with the lower side of the diaphragm case 120 (that is, the lower part of the anode chamber 20).
  • the alkaline water outflow pipe 140 flows out the alkaline ionized water generated by passing through the cathode chamber 10.
  • the alkaline water outflow pipe 140 communicates with the upper side of the upper case 111.
  • the acidic water outflow pipe 150 flows out acidic water generated by passing through the diaphragm case 120 (the anode chamber 20).
  • the diaphragm case 120 has an electrolytic diaphragm 120A, and is formed by insert-molding the electrolytic diaphragm 120A and a resin.
  • the diaphragm case 120 constitutes the anode chamber 20.
  • the diaphragm case 120 is formed with an inlet 121A through which purified water flows in and an outlet 121B through which acidic water generated in the diaphragm case 120 flows out.
  • Outflow port 121 ⁇ / b> B communicates with acidic water outflow pipe 150.
  • each of the cathode plates 11, 12 and the anode plate 21 has a plate shape and is disposed substantially parallel to the wall surface 113 of the electrolytic cell case 110.
  • the cathode plates 11 and 12 are disposed in a state of being separated from the wall surface 113 of the electrolytic cell case 110 and the diaphragm case 120 (anode plate 21).
  • the diaphragm case 120 supports the positioning rib 122 and the cathode plates 11 and 12 along the longitudinal direction of the electrode (vertical direction in the drawing) so as to correspond to the sides of the cathode plates 11 and 12.
  • supporting ribs 123 are formed.
  • the positioning rib 122 positions the cathode plates 11 and 12 in a state of being separated from the wall surface 113 of the electrolytic cell case 110 and the diaphragm case 120.
  • the electrolytic cell case 110 is separated from the cathode plate 11, 12 with respect to the separation distance D 1 from the diaphragm case 120 to the cathode plate 11, 12.
  • the electrolytic cell 100 does not electrolyze the purified water introduced from the purified water supply pipe 130 and the main flow path 30 capable of electrolyzing the purified water introduced from the purified water supply pipe 130 between the cathode plates 11 and 12 and the anode plate 21. And a secondary flow path 40.
  • the main flow path 30 is provided between the cathode plates 11 and 12 and the anode plate 21.
  • the auxiliary flow path 40 is provided between the cathode plates 11 and 12 and the wall surface 113 of the electrolytic cell case 110. That is, the purified water passing through the sub-flow channel 40 is not electrolyzed by the cathode plates 11 and 12 and the anode plate 21.
  • the purified water that has passed through the purified water filter (not shown) is introduced into the purified water supply pipe 130 and passes through the electrolytic auxiliary agent addition tube 160.
  • the purified water that has passed through the electrolytic auxiliary agent addition tube 160 branches into the cathode supply tube 130A and the anode supply tube 130B, and is introduced into the cathode chamber 10 and the anode chamber 20 (diaphragm case 120), respectively.
  • the purified water introduced into the cathode chamber 10 from the cathode supply tube 130A branches into purified water that passes through the main flow path 30 and purified water that passes through the sub flow path 40.
  • the purified water passing through the main flow path 30 is electrolyzed by the cathode plates 11, 12 and the anode plate 21, and then passes through the sub-flow path 40 where electrolysis by the cathode plates 11, 12 and the anode plate 21 has not been performed. It is combined with purified water to be discharged and discharged from the alkaline water outflow pipe 140 as alkaline ionized water.
  • the water introduced into the anode chamber 20 (diaphragm case 120) from the anode supply pipe 130B passes between the anode plate 21 and the diaphragm case 120 and is discharged from the acidic water outflow pipe 150 as acidic water.
  • the electrolytic cell 100 includes the main channel 30 capable of electrolyzing the raw water (purified water) and the raw water (purified water). And a sub-flow channel 40 that does not electrolyze.
  • the pH value tends to increase on the cathode plate 11, 12 side, and the pH value tends to decrease on the anode plate 21 side.
  • the pH concentration gradient in the electrolytic diaphragm 120A is increased, and the neutralization effect is greatly increased, thereby suppressing an excessive increase in the pH value of the alkaline ionized water.
  • the sub-flow channel 40 when the sub-flow channel 40 is provided as in the first embodiment, the inclination with respect to the applied current becomes gentle and the influence due to variations in water quality is reduced. For this reason, it becomes easy to control the purified water, and it becomes possible to obtain weak alkaline alkaline ionized water having a pH of about 8.0 to 8.5.
  • the cathode plates 11 and 12 and the anode plate 21 are disposed in a state of being separated from the electrolytic cell 100 (the wall surface 113 of the electrolytic cell case 110). Thereby, the main flow path 30 and the sub flow path 40 are formed in the thickness direction of the electrolytic cell 100. For this reason, while being able to dilute the alkali ion water produced
  • the cathode plates 11 and 12 are arranged in a state of being separated from the wall surface 113 of the electrolytic cell case 110 and the diaphragm case 120.
  • the cathode plates 11 and 12 are disposed adjacent to the wall surface 113 of the electrolytic cell case 110 as shown in FIG. .
  • the electrode terminal T of the cathode plate 11 is connected to an electrode type first relay Ry1 that controls the voltage applied to the cathode plate 11 and the anode plate 21, and the electrode terminal T of the cathode plate 12 is connected to the electrode terminal T of the cathode plate 12.
  • An electrode-type second relay Ry2 for controlling the voltage applied to the cathode plate 12 and the anode plate 21 is connected.
  • the first relay Ry1 when obtaining weak alkaline water, only the first relay Ry1 is operated. In this case, the space between the cathode plate 11 and the anode plate 21 becomes the main flow path 30, and the space between the cathode plate 12 and the anode plate 21 becomes the sub flow path 40.
  • both relays Ry1 and Ry2 are operated. In this case, the main flow path 30 is formed between the cathode plates 11 and 12 and the anode plate 21 without providing the sub flow path 40. That is, the sub flow path 40 is formed between the cathode plate 12 and the anode plate 21 by the switching operation of the relay.
  • the main flow path 30 and the sub flow path 40 are formed between the cathode plates 11 and 12 and the anode plate 21 by the switching operation of the relays Ry1 and Ry2.
  • cathode plates 11 and 12 are disposed on both sides of the anode chamber 20 (anode plate 21).
  • the cathode plate 11 is disposed on one side of the anode chamber 20 (anode plate 21).
  • the cathode chamber 10 in which the cathode plate 11 is built and the anode chamber 20 in which the anode plate 21 is built are partitioned by a plate-shaped electrolytic diaphragm 124. .
  • the cathode plate 11 and the anode plate 21 are disposed in a state of being separated from the wall surface 113 (the wall surface of the cathode chamber 10 and the wall surface of the anode chamber 20) of the electrolytic cell case 110 and the electrolytic diaphragm 124.
  • the cathode plate 11 and the anode plate 21 are disposed approximately in the center in the short-side direction of the electrolytic cell 200 (the wall surface 113 of the electrolytic cell case 110).
  • the main flow path 30 includes a cathode-side main flow path 31 disposed between the cathode plates 11 and 12 and the electrolytic diaphragm 124, and an anode-side main flow path 32 disposed between the anode plate 21 and the electrolytic diaphragm 124. Consists of.
  • the sub-channel 40 includes a cathode-side sub-channel 41 disposed between the cathode plates 11 and 12 and the wall surface 113 of the electrolytic cell case 110 (cathode chamber 10), an anode plate 21 and the electrolytic cell case 110 (anode). It is comprised by the anode side subchannel 42 arrange
  • the cathode plate 11 and the anode plate 21 are disposed in a state of being separated from the electrolytic cell 200 (the wall surface 113 of the electrolytic cell case 110).
  • the main flow path 30 and the sub flow path 40 are formed in the thickness direction (depth direction in the drawing) of the electrolytic cell 200. For this reason, while being able to dilute the alkali ion water produced
  • the cathode plate 11 and the anode plate 21 have a plate shape in which no opening or the like is formed.
  • the cathode plate 11 has an opening 11A penetrating the cathode plate 11, as shown in FIGS. Are formed, and the anode plate 21 is formed with a plurality of openings 21 ⁇ / b> A penetrating the anode plate 21. Air bubbles generated by electrolysis of the cathode plate 11 and the anode plate 21 can pass through the opening 11A and the opening 21A.
  • the openings 11A and the openings 21A are arranged in a lattice shape when the cathode plate 11 and the anode plate 21 are viewed from the front.
  • the opening 11A or the opening 21A is formed in at least one of the cathode plate 11 and the anode plate 21.
  • bubbles generated when the purified water is electrolyzed in the main flow path 30 from the opening to the sub flow path 40 side (the back side of the cathode plate 11 or the anode plate 21).
  • the purified water flowing through the main flow path 30 flows slower than the purified water flowing through the sub flow path 40 due to electrolysis by the cathode plate 11 and the anode plate 21.
  • the openings 11A and the openings 21A are arranged in a lattice shape when the cathode plate 11 and the anode plate 21 are viewed from the front.
  • bubbles generated in the main channel 30 are easily drawn into the purified water flowing through the sub-channel 40 faster than the main channel 30 via the opening 11A or the opening 21A, and are less likely to exist in the main channel 30. .
  • the openings 11A and the openings 21A have been described as being arranged in a grid pattern in the front view of the cathode plate 11 and the anode plate 21, but the present invention is not limited to this, and the arrangement method is not limited thereto. Can be set arbitrarily.
  • the cathode plate 11 and the anode plate 21 have a plate shape in which no opening or the like is formed.
  • a plurality of openings 11A are formed in the cathode plate 11 as in the electrolytic cell 200A according to the modified example 1 of the second embodiment.
  • a plurality of openings 21 ⁇ / b> A are formed in the plate 21.
  • the cathode plate 11 and the anode plate 21 are disposed in an inclined state with respect to the wall surface 113 of the electrolytic cell case 110.
  • the distance D between the cathode plate 11 and the anode plate 21 is set so as to gradually increase from the upstream side to the downstream side in the purified water flow direction (from the bottom to the top in the drawing).
  • the distance between the cathode plate 11 and the anode plate 21 is set wider from the upstream side to the downstream side in the flow direction of the purified water.
  • the cathode plate 11 (12) and the anode plate 21 are provided on the wall surface 113 of the electrolytic cell case 110 (the wall surface of the cathode chamber 10). And the wall surface of the anode chamber 20).
  • the cathode plate 11 and the anode plate 21 are separated from the electrolytic cell 300 (the wall surface of the electrolytic cell case 110). 113) are arranged unevenly in the lateral direction.
  • the main channel 30 is disposed between the cathode plate 11 and the anode plate 21, and the sub-channel 40 is formed in a region where the cathode plate 11 and the anode plate 21 are not disposed. .
  • the cathode plate 11 and the anode plate 21 are adjacent to the electrolytic cell 300 (the wall surface 113 of the electrolytic cell case 110) and are unevenly distributed in the short direction of the wall surface 113. It is arrange
  • the embodiment of the present invention can be modified as follows.
  • generation apparatus 1 demonstrated as what has a water purification filter, it is not limited to this,
  • the apparatus (For example, the bottle water server which stores drinking water) which does not have a water purification filter Or the like.
  • electrolytic cell case 110 was demonstrated as what can be divided
  • the electrolytic cell 100 has been described as having the plurality of cathode plates 11 and 12 and the anode plate 21 that are opposed to each other with the electrolytic diaphragm 120A interposed therebetween, the present invention is not limited to this. It may have a cathode plate and a plurality of anode plates, or may have a plurality of cathode plates and a plurality of anode plates.
  • an electrolytic cell capable of simplifying the manufacturing operation and suppressing an increase in the size of the product, and an electrolyzed water generating apparatus including the electrolytic cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

An electrolysis tank (100) has an electrolysis diaphragm (120A), negative electrode plates (11, 12) facing each other with the electrolysis diaphragm (120A) in between, and a positive electrode plate (21), and performs electrolysis on the flowed-in raw water, thereby enabling alkali ion water and acid water to be taken in. The electrolysis tank (100) has a main flow path (30) where electrolysis can be performed on the raw water between the negative electrode plates (11, 12) and the positive electrode plate (21) and a sub-flow path (40) where electrolysis is not performed on the raw water.

Description

電解槽及び電解水生成装置Electrolysis tank and electrolyzed water generator
 本発明は、電極(陰極板及び陽極板)を有する電解槽、及び、この電解槽を備えた電解水生成装置に関する。 The present invention relates to an electrolytic cell having electrodes (a cathode plate and an anode plate), and an electrolyzed water generating apparatus including the electrolytic cell.
 一般的に、電解水生成装置は、電極(陰極板及び陽極板)を有する電解槽を備え、電解槽でアルカリイオン水を生成する。アルカリイオン水は、胃もたれや胃の不快感をやわらげたり、胃腸の働きを助け便通を良好にするといった胃腸症状の改善に効果があるといわれている。この理由は、アルカリイオン水に溶存する水素が作用しているためであると考えられている。このため、アルカリイオン水の溶存水素濃度を高めることが望まれている。 Generally, an electrolyzed water generating apparatus includes an electrolyzer having electrodes (a cathode plate and an anode plate), and generates alkaline ionized water in the electrolyzer. Alkaline ionized water is said to be effective in improving gastrointestinal symptoms such as relieving stomach upset and stomach discomfort, and assisting gastrointestinal function and improving bowel movements. This reason is considered to be due to the action of hydrogen dissolved in alkaline ionized water. For this reason, it is desired to increase the dissolved hydrogen concentration of alkaline ionized water.
 溶存水素は、強アルカリ性水になるほど多く存在する。しかし、所望する溶存水素量を確保しようとすると、アルカリイオン水のpH値が高くなる。従って、アルカリイオン水として、飲用に適するpH7~8値(以下、中性域)で生成しようとすると、所望する溶存水素量を確保できなかった。 The more dissolved hydrogen is, the stronger it becomes strong alkaline water. However, the pH value of alkaline ionized water increases when it is desired to secure the desired amount of dissolved hydrogen. Therefore, when it is attempted to produce alkaline ionized water at a pH value of 7 to 8 (hereinafter, neutral range) suitable for drinking, a desired dissolved hydrogen amount cannot be ensured.
 従来の電解水生成装置として、電解槽で生成されたアルカリイオン水が通過するイオン流出管に、電解槽の上流側から分岐した原水バイパス流路が連通した電解水生成装置が知れられている(特許文献1参照)。この従来の電解水生成装置では、溶存水素濃度が高められたアルカリイオン水を、原水バイパス流路を通過する原水が合流して希釈する。このことによって、溶存水素濃度が高く且つ飲用に適した中性域のアルカリイオン水が生成される。 As a conventional electrolyzed water generating device, an electrolyzed water generating device is known in which a raw water bypass channel branched from the upstream side of the electrolyzer is connected to an ion outflow pipe through which alkaline ionized water generated in the electrolyzer passes ( Patent Document 1). In this conventional electrolyzed water generating apparatus, alkaline ionized water having an increased dissolved hydrogen concentration is diluted with raw water passing through the raw water bypass flow path. As a result, neutral alkaline water having a high dissolved hydrogen concentration and suitable for drinking is produced.
日本国特開2009-160503号公報 (JP 2009-160503 A)JP 2009-160503 A (JP 2009-160503 A)
 しかしながら、上述した従来の電解水生成装置では、原水バイパス流路を配設する必要がある。このため、従来の電解水生成装置では、複雑な構成となることに伴い、製造作業(組立作業)が煩雑になってしまうという問題があった。また、従来の電解水生成装置では、原水バイパス流路によって、製品が大型化してしまうという問題もあった。 However, in the conventional electrolyzed water generating apparatus described above, it is necessary to provide a raw water bypass channel. For this reason, in the conventional electrolyzed water generating apparatus, there existed a problem that manufacturing work (assembly work) will become complicated with becoming a complicated structure. Moreover, in the conventional electrolyzed water generating apparatus, there also existed a problem that a product enlarged by the raw | natural water bypass flow path.
 本発明は、製造作業を簡素化できるとともに、製品の大型化を抑制できる電解槽、及び、この電解槽を備えた電解水生成装置を提供することを目的とする。 An object of the present invention is to provide an electrolytic cell capable of simplifying the manufacturing work and suppressing an increase in the size of the product, and an electrolyzed water generating apparatus including the electrolytic cell.
 上述した課題を解決するため、本発明は、次のような特徴を有している。まず、本発明の第1の技術的側面に係る電解槽は、隔膜と隔膜を挟んで対向する陰極板及び陽極板とを有し、流入される原水を電気分解することによって、アルカリイオン水及び酸性水に取水可能な電解槽であって、陰極板と陽極板との間において原水を電気分解可能な主流路と、原水を電気分解しない副流路とを有する。 In order to solve the above-described problems, the present invention has the following characteristics. First, an electrolytic cell according to the first technical aspect of the present invention has a diaphragm and a cathode plate and an anode plate facing each other with the diaphragm interposed therebetween. An electrolytic cell capable of taking water into acidic water, and has a main channel capable of electrolyzing raw water between a cathode plate and an anode plate, and a sub-channel which does not electrolyze the raw water.
 これにより、従来のように電解槽の外部に原水バイパス流路を設けることなく、電解槽内のみで、主流路を通過することによって生成されるアルカリイオン水を、副流路を通過した原水によって希釈できる。このため、電解槽の外部に流路を設ける必要がなくなり、製造作業を簡素化できるとともに、製品の大型化を抑制できる。 As a result, without providing a raw water bypass channel outside the electrolytic cell as in the prior art, the alkaline ionized water generated by passing through the main channel only in the electrolytic cell is converted to the raw water that has passed through the sub channel. Can be diluted. For this reason, it is not necessary to provide a flow path outside the electrolytic cell, the manufacturing work can be simplified, and an increase in the size of the product can be suppressed.
 陰極板及び陽極板の少なくとも一方には、原水が通過可能な開口部が形成されていてもよい。 An opening through which raw water can pass may be formed in at least one of the cathode plate and the anode plate.
 これにより、主流路(陰極板と陽極板との間)で原水が電気分解された際に発生する気泡を開口部から副流路側(陰極板又は陽極板の背面側)に排出できる。具体的には、主流路を流れる原水は、陰極板と陽極板とによる電気分解によって、副流路を流れる原水よりも遅く流れている。このため、主流路で発生した気泡は、開口部を介して主流路よりも早い副流路を流れる原水に引き込まれる。従って、主流路内に気泡が存在し難くなり、気泡が電気分解を阻害することなく、陰極板と陽極板とによって安定した電気分解を行うことが可能となる。 Thereby, bubbles generated when the raw water is electrolyzed in the main channel (between the cathode plate and the anode plate) can be discharged from the opening to the sub-channel side (the back side of the cathode plate or the anode plate). Specifically, the raw water flowing through the main flow channel flows slower than the raw water flowing through the sub flow channel due to electrolysis by the cathode plate and the anode plate. For this reason, bubbles generated in the main channel are drawn into the raw water flowing through the sub-channel faster than the main channel through the opening. Therefore, it is difficult for bubbles to exist in the main flow path, and stable electrolysis can be performed by the cathode plate and the anode plate without hindering the electrolysis.
 陰極板と陽極板との間隔は、原水の流れ方向上流側から下流側に向かって広くなるように設定されていてもよい。 The interval between the cathode plate and the anode plate may be set so as to increase from the upstream side to the downstream side in the raw water flow direction.
 これにより、主流路(陰極板と陽極板との間)で原水が電気分解された際に発生する気泡が原水の流れ方向上流側から下流側に向かって流れやすくなる。このため、上記気泡は、陰極板や陽極板の表面に付着しにくくなり、陰極板や陽極板の表面に滞留しにくくなる。従って、主流路内に気泡が存在し難くなり、気泡が電気分解を阻害することなく、陰極板と陽極板とによって安定した電気分解を行うことが可能となる。 Thereby, bubbles generated when the raw water is electrolyzed in the main channel (between the cathode plate and the anode plate) can easily flow from the upstream side to the downstream side in the raw water flow direction. For this reason, the said bubble becomes difficult to adhere to the surface of a cathode plate or an anode plate, and becomes difficult to stay on the surface of a cathode plate or an anode plate. Therefore, it is difficult for bubbles to exist in the main flow path, and stable electrolysis can be performed by the cathode plate and the anode plate without hindering the electrolysis.
 陰極板及び陽極板の少なくとも一方が複数設けられており、陰極板及び陽極板には陰極板及び陽極板に印加する電圧を制御するリレーが接続され、主流路及び副流路はリレーの切替動作により陰極板と陽極板との間に形成されていてもよい。 A plurality of at least one of a cathode plate and an anode plate are provided, and a relay for controlling a voltage applied to the cathode plate and the anode plate is connected to the cathode plate and the anode plate. May be formed between the cathode plate and the anode plate.
 これにより、副流路を敢えて設けずに、電解槽内の広範囲で陰極板と陽極板とによる電気分解を行うことも可能となる。このため、飲用に適する中性域のアルカリイオン水を生成することができることは勿論、溶存水素濃度の高いアルカリイオン水を生成することもできる。 This makes it possible to perform electrolysis with a cathode plate and an anode plate over a wide range in the electrolytic cell without intentionally providing a sub-flow channel. For this reason, it is possible not only to generate neutral alkaline ionized water suitable for drinking, but also to generate alkaline ionized water having a high dissolved hydrogen concentration.
 陰極板及び陽極板は電解槽の壁面から離間した状態で配設され、副流路は陰極板と電解槽の壁面との間に配設される陰極側副流路と、陽極板と電解槽の壁面との間に配設される陽極側副流路とによって構成されていてもよい。 The cathode plate and the anode plate are disposed in a state of being separated from the wall surface of the electrolytic cell, and the sub channel is a cathode side sub channel disposed between the cathode plate and the wall surface of the electrolytic cell, and the anode plate and the electrolytic cell. And an anode-side sub-flow channel disposed between the two wall surfaces.
 これにより、電解槽の厚み方向において、主流路及び副流路が形成される。このため、主流路を通過することによって生成されるアルカリイオン水を、副流路を通過した原水によって希釈できることは勿論、電解槽の短手方向(幅方向)へのコンパクト化を実現できる。 Thereby, the main flow path and the sub flow path are formed in the thickness direction of the electrolytic cell. For this reason, the alkali ion water produced | generated by passing a main flow path can be diluted with the raw | natural water which passed the subflow path, and the compactization to the transversal direction (width direction) of an electrolytic cell is realizable.
 陰極板及び陽極板は、電解槽の壁面に隣接し、電解槽の壁面における短手方向に偏在された状態で配設され、副流路は、陰極板及び陽極板が配設されていない領域に形成されていてもよい。 The cathode plate and the anode plate are disposed adjacent to the wall surface of the electrolytic cell and are unevenly distributed in the short direction of the wall surface of the electrolytic cell, and the sub-flow path is an area where the cathode plate and the anode plate are not disposed. It may be formed.
 これにより、電解槽の壁面における短手方向(幅方向)において、主流路及び副流路が形成され、陰極板と陽極板とによる電気分解を局所的に行うことができる。このため、主流路を通過することによって生成されるアルカリイオン水を、副流路を通過した原水によって希釈できることは勿論、電解槽の厚み方向へのコンパクト化を実現できる。 Thereby, in the short direction (width direction) on the wall surface of the electrolytic cell, a main flow path and a sub flow path are formed, and electrolysis by the cathode plate and the anode plate can be performed locally. For this reason, the alkali ion water produced | generated by passing a main flow path can be diluted with the raw | natural water which passed the subflow path, and the compactization to the thickness direction of an electrolytic cell is realizable.
 本発明の第2の技術的側面に係る電解水生成装置は、本発明の第1の技術的側面に係る電解槽を備える。 The electrolyzed water generating device according to the second technical aspect of the present invention includes the electrolytic cell according to the first technical aspect of the present invention.
 本発明の技術的側面によれば、製造作業を簡素化できるとともに、製品の大型化を抑制できる電解槽、及び、この電解槽を備えた電解水生成装置を提供することができる。 According to the technical aspect of the present invention, it is possible to provide an electrolytic cell capable of simplifying the manufacturing operation and suppressing an increase in the size of the product, and an electrolyzed water generating apparatus including the electrolytic cell.
図1は、第1実施形態に係る電解水生成装置に設けられる電解槽を示す斜視図である。FIG. 1 is a perspective view showing an electrolytic cell provided in the electrolyzed water generating apparatus according to the first embodiment. 図2は、第1実施形態に係る電解水生成装置に設けられる電解槽を示す分解斜視図である。FIG. 2 is an exploded perspective view showing an electrolytic cell provided in the electrolyzed water generating apparatus according to the first embodiment. 図3(a)は第1実施形態に係る電解槽の内部の断面(図1のA矢視からの断面)を示す構成図であり、図3(b)は第1実施形態に係る電解槽の内部の断面(図1のB矢視方向からの断面)を示す構成図である。Fig.3 (a) is a block diagram which shows the internal cross section (cross section from the A arrow of FIG. 1) of the electrolytic cell which concerns on 1st Embodiment, FIG.3 (b) is the electrolytic cell which concerns on 1st Embodiment. It is a block diagram which shows the internal cross section (cross section from the B arrow direction of FIG. 1). 図4(a)は炭酸成分をあまり含まない水質の電解隔膜の近傍におけるアルカリイオン水のpH値の挙動を示すグラフであり、図4(b)は炭酸成分を多く含む水質の電解隔膜の近傍におけるアルカリイオン水のpH値の挙動を示すグラフである。FIG. 4 (a) is a graph showing the behavior of the pH value of alkaline ionized water in the vicinity of a water-based electrolytic diaphragm that does not contain much carbonic acid component, and FIG. 4 (b) is the vicinity of the water-based electrolytic diaphragm containing a large amount of carbonic acid component. It is a graph which shows the behavior of the pH value of alkaline ionized water. 図5は、副流路の有無での水質を違いによるpH制御結果を示すグラフである。FIG. 5 is a graph showing the pH control result depending on the water quality with and without the sub-flow channel. 図6は、第1実施形態の変更例に係る電解槽を示す構成図である。FIG. 6 is a configuration diagram illustrating an electrolytic cell according to a modification of the first embodiment. 図7(a)は第2実施形態に係る電解槽を示す斜視図であり、図7(b)は第2実施形態に係る電解槽を示す構成図である。Fig.7 (a) is a perspective view which shows the electrolytic cell which concerns on 2nd Embodiment, FIG.7 (b) is a block diagram which shows the electrolytic cell which concerns on 2nd Embodiment. 図8(a)は第2実施形態の変更例1に係る電解槽の内部の陰極板(又は陽極板)のみを示す正面図であり、図8(b)は第2実施形態の変更例1に係る電解槽を示す構成図である。Fig.8 (a) is a front view which shows only the cathode plate (or anode plate) inside the electrolytic cell which concerns on the modification 1 of 2nd Embodiment, FIG.8 (b) is the modification 1 of 2nd Embodiment. It is a block diagram which shows the electrolytic cell which concerns on. 図9は、第2実施形態の変更例2に係る電解槽を示す構成図である。FIG. 9 is a configuration diagram illustrating an electrolytic cell according to Modification 2 of the second embodiment. 図10(a)は第3実施形態に係る電解槽を示す斜視図であり、図10(b)は第3実施形態に係る電解槽を示す構成図である。Fig.10 (a) is a perspective view which shows the electrolytic cell which concerns on 3rd Embodiment, FIG.10 (b) is a block diagram which shows the electrolytic cell which concerns on 3rd Embodiment.
 次に、本発明に係る電解水生成装置の実施形態について、図面を参照しながら説明する。具体的には、(1)第1実施形態、(2)第2実施形態、(3)第3実施形態、(4)その他の実施形態について説明する。 Next, an embodiment of the electrolyzed water generating apparatus according to the present invention will be described with reference to the drawings. Specifically, (1) the first embodiment, (2) the second embodiment, (3) the third embodiment, and (4) other embodiments will be described.
 なお、以下の図面の記載において、同一または類似の部分には、同一または類似の符号を付している。ただし、図面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留意すべきである。 In the description of the drawings below, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic and ratios of dimensions and the like are different from actual ones.
 したがって、具体的な寸法などは以下の説明を参酌して判断すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれ得る。 Therefore, specific dimensions should be determined in consideration of the following explanation. Moreover, the part from which the relationship and ratio of a mutual dimension differ also in between drawings may be contained.
(1)第1実施形態
(1.1)電解水生成装置の概略構成
 まず、第1実施形態に係る電解水生成装置1の概略構成について、図1―3を参照しながら説明する。
(1) First Embodiment (1.1) Schematic Configuration of Electrolyzed Water Generating Device First, the schematic configuration of the electrolyzed water generating device 1 according to the first embodiment will be described with reference to FIGS.
 図1―3に示すように、電解水生成装置1は、原水を電気分解(電極に電圧を印加)することによって、原水からアルカリイオン水及び酸性水に取水可能とする。第1実施形態では、原水として、水道水や井戸水などが不図示の浄水フィルター(例えば、活性炭などの吸着手段や砂濾過、イオン交換樹脂)を通過して浄化されることによって生成された浄水を用いるものとする。 As shown in FIG. 1-3, the electrolyzed water generating apparatus 1 can take water from raw water into alkaline ionized water and acidic water by electrolyzing the raw water (applying a voltage to the electrodes). In the first embodiment, as raw water, tap water, well water, and the like are purified by passing through a water purification filter (not shown) (for example, adsorption means such as activated carbon, sand filtration, ion exchange resin) and purified. Shall be used.
 電解水生成装置1は、浄水フィルター(不図示)よりも下流側に配設された略矩形状の電解槽100を備える。電解槽100は、電解隔膜120A(隔膜)を挟んで対向する複数の陰極板11,12及び陽極板21を有する。具体的には、電解槽100は、上側ケース111と下側ケース112とに分割可能な電解槽ケース110と、電解槽ケース110内に収容される矩形箱状の隔膜ケース120とによって構成される。 The electrolyzed water generating apparatus 1 includes a substantially rectangular electrolytic cell 100 disposed downstream of a water purification filter (not shown). The electrolytic cell 100 includes a plurality of cathode plates 11 and 12 and an anode plate 21 that face each other with an electrolytic diaphragm 120A (diaphragm) interposed therebetween. Specifically, the electrolytic cell 100 includes an electrolytic cell case 110 that can be divided into an upper case 111 and a lower case 112, and a rectangular box-shaped diaphragm case 120 that is accommodated in the electrolytic cell case 110. .
 電解槽ケース110内には、陰極板11,12を内蔵する陰極室10と、陰極板11,12と対向する陽極板21を内蔵する陽極室20とが設けられる。陽極板21は、隔膜ケース120の内部に内蔵される。陽極板21(陽極室20)の両側に、陰極板11,12が配設される。 In the electrolytic cell case 110, a cathode chamber 10 containing the cathode plates 11 and 12 and an anode chamber 20 containing an anode plate 21 facing the cathode plates 11 and 12 are provided. The anode plate 21 is built in the diaphragm case 120. Cathode plates 11 and 12 are disposed on both sides of the anode plate 21 (anode chamber 20).
 陰極板11,12及び陽極板21は、電解槽ケース110の壁面113(陰極室10の壁面及び陽極室20の壁面)における短手方向略中央に配設される。陰極板11,12及び陽極板21には、電解槽ケース110の下側から外部に突出する電極端子T(図8(a)参照)がそれぞれ設けられる。それぞれの電極端子Tは、Oリングにより水密にシールされ、陰極板11,12及び陽極板21に印加する電圧を制御する電極式のリレー(不図示)などが接続される。 The cathode plates 11, 12 and the anode plate 21 are disposed at approximately the center in the short direction of the wall surface 113 (the wall surface of the cathode chamber 10 and the wall surface of the anode chamber 20) of the electrolytic cell case 110. The cathode plates 11 and 12 and the anode plate 21 are respectively provided with electrode terminals T (see FIG. 8A) protruding outward from the lower side of the electrolytic cell case 110. Each electrode terminal T is sealed in a watertight manner by an O-ring, and is connected to an electrode type relay (not shown) for controlling the voltage applied to the cathode plates 11 and 12 and the anode plate 21.
 電解槽ケース110には、浄水供給管130と、アルカリ水流出管140と、酸性水流出管150とが配設される。 The electrolytic cell case 110 is provided with a purified water supply pipe 130, an alkaline water outflow pipe 140, and an acidic water outflow pipe 150.
 浄水供給管130には、上側ケース111側において浄水を電解槽100内に供給する供給口131が形成される。浄水供給管130の途中には、電気分解を促進するカルシウム添加剤などの電解補助剤が充填される電解補助剤添加筒160が配設される。浄水供給管130は、電解補助剤添加筒160の下流側(上側ケース111と下側ケース112との分割部分近傍)において、陰極供給管130Aと、陽極供給管130Bとに分岐する。 The purified water supply pipe 130 is provided with a supply port 131 for supplying purified water into the electrolytic cell 100 on the upper case 111 side. In the middle of the purified water supply pipe 130, an electrolytic auxiliary agent addition tube 160 filled with an electrolytic auxiliary agent such as a calcium additive that promotes electrolysis is disposed. The purified water supply pipe 130 branches into a cathode supply pipe 130A and an anode supply pipe 130B on the downstream side of the electrolytic auxiliary agent addition cylinder 160 (in the vicinity of the divided part of the upper case 111 and the lower case 112).
 陰極供給管130Aは、下側ケース112の下側(すなわち、陰極室10の下部)に連通する。陽極供給管130Bは、隔膜ケース120の下側(すなわち、陽極室20の下部)に連通する。 The cathode supply tube 130A communicates with the lower side of the lower case 112 (that is, the lower part of the cathode chamber 10). The anode supply pipe 130B communicates with the lower side of the diaphragm case 120 (that is, the lower part of the anode chamber 20).
 アルカリ水流出管140は、陰極室10を通過することによって生成されたアルカリイオン水を流出する。アルカリ水流出管140は、上側ケース111の上側に連通している。酸性水流出管150は、隔膜ケース120(陽極室20)を通過することによって生成された酸性水を流出する。 The alkaline water outflow pipe 140 flows out the alkaline ionized water generated by passing through the cathode chamber 10. The alkaline water outflow pipe 140 communicates with the upper side of the upper case 111. The acidic water outflow pipe 150 flows out acidic water generated by passing through the diaphragm case 120 (the anode chamber 20).
 隔膜ケース120は、電解隔膜120Aを有し、電解隔膜120A及び樹脂がインサート成型されることにより形成される。隔膜ケース120は、陽極室20を構成する。隔膜ケース120には、浄水を流入する流入口121Aと、隔膜ケース120内で生成される酸性水を流出する流出口121Bが形成される。流出口121Bは、酸性水流出管150に連通する。 The diaphragm case 120 has an electrolytic diaphragm 120A, and is formed by insert-molding the electrolytic diaphragm 120A and a resin. The diaphragm case 120 constitutes the anode chamber 20. The diaphragm case 120 is formed with an inlet 121A through which purified water flows in and an outlet 121B through which acidic water generated in the diaphragm case 120 flows out. Outflow port 121 </ b> B communicates with acidic water outflow pipe 150.
(1.2)電解槽の内部構成
 電解槽100の内部構成について、図2、3(a)、3(b)を参照しながら説明する。
(1.2) Internal structure of electrolytic cell The internal structure of the electrolytic cell 100 is demonstrated referring FIG. 2, 3 (a), 3 (b).
 図2、3(a)、3(b)に示すように、陰極板11,12及び陽極板21は、それぞれ板状をなしており、電解槽ケース110の壁面113と略平行に配設される。陰極板11,12は、電解槽ケース110の壁面113及び隔膜ケース120(陽極板21)から離間した状態で配設される。 As shown in FIGS. 2, 3 (a) and 3 (b), each of the cathode plates 11, 12 and the anode plate 21 has a plate shape and is disposed substantially parallel to the wall surface 113 of the electrolytic cell case 110. The The cathode plates 11 and 12 are disposed in a state of being separated from the wall surface 113 of the electrolytic cell case 110 and the diaphragm case 120 (anode plate 21).
 具体的には、隔膜ケース120には、陰極板11,12の側部に対応するように電極長手方向(図面では、上下方向)に沿って位置決め用リブ122と、陰極板11,12を支持する支持リブ123とが形成される。位置決め用リブ122は、陰極板11,12を電解槽ケース110の壁面113及び隔膜ケース120から離間させた状態で位置決めする。 Specifically, the diaphragm case 120 supports the positioning rib 122 and the cathode plates 11 and 12 along the longitudinal direction of the electrode (vertical direction in the drawing) so as to correspond to the sides of the cathode plates 11 and 12. And supporting ribs 123 are formed. The positioning rib 122 positions the cathode plates 11 and 12 in a state of being separated from the wall surface 113 of the electrolytic cell case 110 and the diaphragm case 120.
 第1実施形態では、図3(a)、3(b)に示すように、隔膜ケース120から陰極板11,12までの離間距離D1に対して、陰極板11,12から電解槽ケース110の壁面113までの離間距離D2が約2倍に設定されている(D1:D2=1:2)。 In the first embodiment, as shown in FIGS. 3 (a) and 3 (b), the electrolytic cell case 110 is separated from the cathode plate 11, 12 with respect to the separation distance D 1 from the diaphragm case 120 to the cathode plate 11, 12. The separation distance D2 to the wall surface 113 is set to about twice (D1: D2 = 1: 2).
 電解槽100は、陰極板11,12と陽極板21との間において浄水供給管130から導入される浄水を電気分解可能な主流路30と、浄水供給管130から導入される浄水を電気分解しない副流路40とを有する。 The electrolytic cell 100 does not electrolyze the purified water introduced from the purified water supply pipe 130 and the main flow path 30 capable of electrolyzing the purified water introduced from the purified water supply pipe 130 between the cathode plates 11 and 12 and the anode plate 21. And a secondary flow path 40.
 主流路30は、陰極板11,12と陽極板21との間に設けられる。一方、副流路40は、陰極板11,12と電解槽ケース110の壁面113との間に設けられる。つまり、副流路40を通過する浄水は、陰極板11,12と陽極板21とによる電気分解が行われない。 The main flow path 30 is provided between the cathode plates 11 and 12 and the anode plate 21. On the other hand, the auxiliary flow path 40 is provided between the cathode plates 11 and 12 and the wall surface 113 of the electrolytic cell case 110. That is, the purified water passing through the sub-flow channel 40 is not electrolyzed by the cathode plates 11 and 12 and the anode plate 21.
(1.3)浄水の動き
 電解槽100内で流れる浄水の動きについて、図1―3を参照しながら説明する。
(1.3) Movement of purified water The movement of purified water flowing in the electrolytic cell 100 will be described with reference to FIG.
 図1、2に示すように、浄水フィルター(不図示)を通過した浄水は、浄水供給管130に導入され、電解補助剤添加筒160を通過する。電解補助剤添加筒160を通過した浄水は、陰極供給管130A及び陽極供給管130Bに分岐し、陰極室10及び陽極室20(隔膜ケース120)にそれぞれ導入される。 As shown in FIGS. 1 and 2, the purified water that has passed through the purified water filter (not shown) is introduced into the purified water supply pipe 130 and passes through the electrolytic auxiliary agent addition tube 160. The purified water that has passed through the electrolytic auxiliary agent addition tube 160 branches into the cathode supply tube 130A and the anode supply tube 130B, and is introduced into the cathode chamber 10 and the anode chamber 20 (diaphragm case 120), respectively.
 図3(b)に示すように、陰極供給管130Aから陰極室10に導入された浄水は、主流路30を通過する浄水と、副流路40を通過する浄水とに分岐する。主流路30を通過する浄水は、陰極板11,12と陽極板21とにより電気分解された後、陰極板11,12と陽極板21とによる電気分解が行われなかった副流路40を通過する浄水と合流し、アルカリ水流出管140からアルカリイオン水として吐出される。 As shown in FIG. 3B, the purified water introduced into the cathode chamber 10 from the cathode supply tube 130A branches into purified water that passes through the main flow path 30 and purified water that passes through the sub flow path 40. The purified water passing through the main flow path 30 is electrolyzed by the cathode plates 11, 12 and the anode plate 21, and then passes through the sub-flow path 40 where electrolysis by the cathode plates 11, 12 and the anode plate 21 has not been performed. It is combined with purified water to be discharged and discharged from the alkaline water outflow pipe 140 as alkaline ionized water.
 陽極供給管130Bから陽極室20(隔膜ケース120)に導入された水は、陽極板21と隔膜ケース120との間を通過して酸性水流出管150から酸性水として吐出される。 The water introduced into the anode chamber 20 (diaphragm case 120) from the anode supply pipe 130B passes between the anode plate 21 and the diaphragm case 120 and is discharged from the acidic water outflow pipe 150 as acidic water.
(1.4)作用・効果
 以上説明したように、第1実施形態に係る電解水生成装置1では、電解槽100は、原水(浄水)を電気分解可能な主流路30と、原水(浄水)を電気分解しない副流路40とを有する。これにより、従来の電解水生成装置のように、電解槽100の外部に原水バイパス流路を設けることなく、電解槽100の内部のみで、主流路30を通過することによって生成されるアルカリイオン水を、副流路40を通過した浄水によって希釈できる。このため、電解槽100の外部に原水バイパス流路を設ける必要がなくなり、製造作業を簡素化できるとともに、製品の大型化を抑制できる。
(1.4) Actions / Effects As described above, in the electrolyzed water generating apparatus 1 according to the first embodiment, the electrolytic cell 100 includes the main channel 30 capable of electrolyzing the raw water (purified water) and the raw water (purified water). And a sub-flow channel 40 that does not electrolyze. Thereby, the alkali ion water produced | generated by passing the main flow path 30 only in the inside of the electrolytic cell 100, without providing a raw | natural water bypass flow path outside the electrolytic cell 100 like the conventional electrolytic water production | generation apparatus. Can be diluted with purified water that has passed through the sub-channel 40. For this reason, it is not necessary to provide the raw water bypass channel outside the electrolytic cell 100, and the manufacturing operation can be simplified and the increase in size of the product can be suppressed.
 ここで、図4に示すように、陰極板11,12と陽極板21とによる電気分解時では、浄水の流れに伴い主流路30において電解反応が局所的に行われる。このため、陽極板21表面におけるpHが低いと、電解隔膜120AでpHの濃度勾配が生じて、アルカリイオン水を中性域(pHが7~8)にし易くなる中和効果が促進される。 Here, as shown in FIG. 4, during the electrolysis by the cathode plates 11, 12 and the anode plate 21, an electrolytic reaction is locally performed in the main flow path 30 along with the flow of purified water. For this reason, when the pH on the surface of the anode plate 21 is low, a pH concentration gradient is generated in the electrolytic diaphragm 120A, and the neutralization effect that facilitates the alkaline ionized water to be in a neutral region (pH is 7 to 8) is promoted.
 従って、例えば炭酸成分をあまり含まない水質では、図4(a)に示すように、陰極板11,12側でpH値が上がりやすく、陽極板21側ではpH値が下がりやすくなる。このため、電解隔膜120AでのpHの濃度勾配は大きくなり、中和効果が大きく働くことによって、アルカリイオン水のpH値の過度の上昇が抑制される。 Therefore, for example, in the case of water quality that does not contain much carbonic acid component, as shown in FIG. 4A, the pH value tends to increase on the cathode plate 11, 12 side, and the pH value tends to decrease on the anode plate 21 side. For this reason, the pH concentration gradient in the electrolytic diaphragm 120A is increased, and the neutralization effect is greatly increased, thereby suppressing an excessive increase in the pH value of the alkaline ionized water.
 一方、例えば炭酸成分を多く含む水質では、図4(b)に示すように、陰極板11,12側でpH値があまり上がらず、陽極板21側ではpH値が下がりにくい。このため、電解隔膜120AでのpHの濃度勾配は小さくなり、中和効果が余り働かない(小さい)ことによって、アルカリイオン水のpH値の上昇を抑制することによる影響が少なくなる。 On the other hand, in the case of water quality containing a large amount of carbonic acid components, for example, as shown in FIG. 4B, the pH value does not rise so much on the cathode plates 11 and 12 side, and the pH value hardly falls on the anode plate 21 side. For this reason, the pH concentration gradient in the electrolytic diaphragm 120A becomes small, and the neutralization effect does not work (is small), thereby reducing the influence of suppressing the increase in the pH value of the alkaline ionized water.
 また、図5に示すように、副流路40が無いと、印加電流に対して傾きが急になり、又、水質のばらつき(炭酸成分の含有量のばらつき)の影響が大きくなる。これにより、アルカリイオン水のpH値が8.6を超えてしまい、浄水の制御が難しくなる。 Further, as shown in FIG. 5, when there is no sub-flow channel 40, the inclination becomes steep with respect to the applied current, and the influence of water quality variation (variation in carbonic acid component content) increases. Thereby, pH value of alkaline ionized water exceeds 8.6, and control of purified water becomes difficult.
 一方、第1実施形態のように、副流路40を設けると、印加電流に対する傾きが緩やかになり、且つ、水質のバラツキによる影響も小さくなる。このため、浄水を制御し易くなり、pHが約8.0~8.5の弱アルカリ性のアルカリイオン水を得ることが可能となる。 On the other hand, when the sub-flow channel 40 is provided as in the first embodiment, the inclination with respect to the applied current becomes gentle and the influence due to variations in water quality is reduced. For this reason, it becomes easy to control the purified water, and it becomes possible to obtain weak alkaline alkaline ionized water having a pH of about 8.0 to 8.5.
 第1実施形態では、陰極板11,12及び陽極板21は、電解槽100(電解槽ケース110の壁面113)から離間した状態で配設される。これにより、電解槽100の厚み方向において、主流路30及び副流路40が形成される。このため、主流路30を通過することによって生成されるアルカリイオン水を副流路40を通過した浄水によって希釈できるとともに、電解槽100の短手方向(幅方向;図面では左右方向)へのコンパクト化を実現できる。 In the first embodiment, the cathode plates 11 and 12 and the anode plate 21 are disposed in a state of being separated from the electrolytic cell 100 (the wall surface 113 of the electrolytic cell case 110). Thereby, the main flow path 30 and the sub flow path 40 are formed in the thickness direction of the electrolytic cell 100. For this reason, while being able to dilute the alkali ion water produced | generated by passing the main flow path 30 with the purified water which passed the subflow path 40, it is compact to the short direction (width direction; left-right direction in drawing) of the electrolytic cell 100. Can be realized.
 第1実施形態では、隔膜ケース120から陰極板11,12までの離間距離D1に対して、陰極板11,12から電解槽ケース110の壁面113までの離間距離D2が約2倍に設定されている(D1:D2=1:2)。これにより、主流路30を通過することによって生成されるアルカリイオン水を、副流路40を通過した浄水によって希釈し易くなる。 In the first embodiment, the separation distance D2 from the cathode plates 11 and 12 to the wall surface 113 of the electrolytic cell case 110 is set to about twice the separation distance D1 from the diaphragm case 120 to the cathode plates 11 and 12. (D1: D2 = 1: 2). Thereby, it becomes easy to dilute the alkali ion water produced | generated by passing the main flow path 30 with the purified water which passed the subflow path 40. FIG.
(1.5)変更例
 第1実施形態の変更例に係る電解槽100Aについて、図6を参照しながら説明する。なお、第1実施形態に係る電解槽100と同一部分には同一の符号を付して、相違する部分を主として説明する。
(1.5) Modified Example An electrolytic cell 100A according to a modified example of the first embodiment will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the same part as the electrolytic cell 100 which concerns on 1st Embodiment, and a different part is mainly demonstrated.
 第1実施形態に係る電解槽100では、陰極板11,12は、電解槽ケース110の壁面113及び隔膜ケース120から離間した状態で配設されている。これに対して、第1実施形態の変更例に係る電解槽100Aでは、図6に示すように、陰極板11,12は、電解槽ケース110の壁面113に隣接した状態で配設されている。 In the electrolytic cell 100 according to the first embodiment, the cathode plates 11 and 12 are arranged in a state of being separated from the wall surface 113 of the electrolytic cell case 110 and the diaphragm case 120. On the other hand, in the electrolytic cell 100A according to the modified example of the first embodiment, the cathode plates 11 and 12 are disposed adjacent to the wall surface 113 of the electrolytic cell case 110 as shown in FIG. .
 具体的には、陰極板11の電極端子Tには、陰極板11及び陽極板21に印加する電圧を制御する電極式の第1リレーRy1が接続され、陰極板12の電極端子Tには、陰極板12及び陽極板21に印加する電圧を制御する電極式の第2リレーRy2が接続されている。これらのリレーRy1,Ry2の切替動作により、低pHの電気分解時には、陰極板11,12の一方のみに電圧が印加され、高pHの電気分解時を得る場合には、陰極板11,12の両方に電圧が印加されるようにすればよい。 Specifically, the electrode terminal T of the cathode plate 11 is connected to an electrode type first relay Ry1 that controls the voltage applied to the cathode plate 11 and the anode plate 21, and the electrode terminal T of the cathode plate 12 is connected to the electrode terminal T of the cathode plate 12. An electrode-type second relay Ry2 for controlling the voltage applied to the cathode plate 12 and the anode plate 21 is connected. By the switching operation of these relays Ry1 and Ry2, a voltage is applied to only one of the cathode plates 11 and 12 during electrolysis at low pH, and when electrolysis at high pH is obtained, A voltage may be applied to both.
 例えば、弱アルカリ水を得る場合、第1リレーRy1のみを作動させる。この場合、陰極板11と陽極板21との間が主流路30となり、陰極板12と陽極板21との間は副流路40となる。また、強アルカリ水を得る場合、両方のリレーRy1,Ry2を作動させる。この場合、副流路40を設けずに、陰極板11,12と陽極板21との間が主流路30となる。つまり、副流路40は、リレーの切替動作により、陰極板12と陽極板21との間に形成されることとなる。 For example, when obtaining weak alkaline water, only the first relay Ry1 is operated. In this case, the space between the cathode plate 11 and the anode plate 21 becomes the main flow path 30, and the space between the cathode plate 12 and the anode plate 21 becomes the sub flow path 40. Moreover, when obtaining strong alkaline water, both relays Ry1 and Ry2 are operated. In this case, the main flow path 30 is formed between the cathode plates 11 and 12 and the anode plate 21 without providing the sub flow path 40. That is, the sub flow path 40 is formed between the cathode plate 12 and the anode plate 21 by the switching operation of the relay.
 このように、第1実施形態の変更例では、主流路30及び副流路40は、リレーRy1,Ry2の切替動作により陰極板11,12と陽極板21との間に形成される。これにより、専用の副流路40を敢えて設けずに、電解槽100A内の広範囲で陰極板11,12と陽極板21とによる電気分解を行うことが可能となる。このため、飲用に適する中性域のアルカリイオン水を生成することができるとともに、溶存水素濃度の高いアルカリイオン水を生成することができる。 Thus, in the modification of the first embodiment, the main flow path 30 and the sub flow path 40 are formed between the cathode plates 11 and 12 and the anode plate 21 by the switching operation of the relays Ry1 and Ry2. Thereby, it is possible to perform electrolysis with the cathode plates 11 and 12 and the anode plate 21 in a wide range in the electrolytic cell 100A without intentionally providing the dedicated sub-flow channel 40. For this reason, while being able to produce | generate the alkaline ionized water of the neutral range suitable for drinking, the alkaline ionized water with high dissolved hydrogen concentration can be produced | generated.
(2)第2実施形態
 第2実施形態に係る電解槽200について、図7(a)、7(b)を参照しながら説明する。なお、第1実施形態に係る電解槽100と同一部分には同一の符号を付して、相違する部分を主として説明する。
(2) Second Embodiment An electrolytic cell 200 according to a second embodiment will be described with reference to FIGS. 7 (a) and 7 (b). In addition, the same code | symbol is attached | subjected to the same part as the electrolytic cell 100 which concerns on 1st Embodiment, and a different part is mainly demonstrated.
(2.1)電解槽の内部構成
 第1実施形態では、陽極室20(陽極板21)の両側に、陰極板11,12が配設されている。これに対して、第2実施形態では、陽極室20(陽極板21)の片側に、陰極板11が配設されている。
(2.1) Internal configuration of electrolytic cell In the first embodiment, cathode plates 11 and 12 are disposed on both sides of the anode chamber 20 (anode plate 21). In contrast, in the second embodiment, the cathode plate 11 is disposed on one side of the anode chamber 20 (anode plate 21).
 図7(a)、7(b)に示すように、陰極板11が内蔵される陰極室10と、陽極板21が内蔵される陽極室20とは、板状の電解隔膜124によって区画される。陰極板11及び陽極板21は、電解槽ケース110の壁面113(陰極室10の壁面及び陽極室20の壁面)及び電解隔膜124から離間した状態で配設される。なお、第2実施形態においても、陰極板11及び陽極板21は、電解槽200(電解槽ケース110の壁面113)の短手方向略中央に配設される。 As shown in FIGS. 7A and 7B, the cathode chamber 10 in which the cathode plate 11 is built and the anode chamber 20 in which the anode plate 21 is built are partitioned by a plate-shaped electrolytic diaphragm 124. . The cathode plate 11 and the anode plate 21 are disposed in a state of being separated from the wall surface 113 (the wall surface of the cathode chamber 10 and the wall surface of the anode chamber 20) of the electrolytic cell case 110 and the electrolytic diaphragm 124. In the second embodiment as well, the cathode plate 11 and the anode plate 21 are disposed approximately in the center in the short-side direction of the electrolytic cell 200 (the wall surface 113 of the electrolytic cell case 110).
 主流路30は、陰極板11,12と電解隔膜124との間に配設される陰極側主流路31と、陽極板21と電解隔膜124との間に配設される陽極側主流路32とによって構成される。 The main flow path 30 includes a cathode-side main flow path 31 disposed between the cathode plates 11 and 12 and the electrolytic diaphragm 124, and an anode-side main flow path 32 disposed between the anode plate 21 and the electrolytic diaphragm 124. Consists of.
 副流路40は、陰極板11,12と電解槽ケース110(陰極室10)の壁面113との間に配設される陰極側副流路41と、陽極板21と電解槽ケース110(陽極室20)の壁面113との間に配設される陽極側副流路42とによって構成される。 The sub-channel 40 includes a cathode-side sub-channel 41 disposed between the cathode plates 11 and 12 and the wall surface 113 of the electrolytic cell case 110 (cathode chamber 10), an anode plate 21 and the electrolytic cell case 110 (anode). It is comprised by the anode side subchannel 42 arrange | positioned between the wall surfaces 113 of the chamber 20).
 以上説明したように、第2実施形態では、陰極板11及び陽極板21は、電解槽200(電解槽ケース110の壁面113)から離間した状態で配設される。これにより、電解槽200の厚み方向(図面では、奥行き方向)において、主流路30及び副流路40が形成される。このため、主流路30を通過することによって生成されるアルカリイオン水を副流路40を通過した浄水によって希釈できるとともに、電解槽200の短手方向(幅方向)へのコンパクト化を実現できる。 As described above, in the second embodiment, the cathode plate 11 and the anode plate 21 are disposed in a state of being separated from the electrolytic cell 200 (the wall surface 113 of the electrolytic cell case 110). Thereby, the main flow path 30 and the sub flow path 40 are formed in the thickness direction (depth direction in the drawing) of the electrolytic cell 200. For this reason, while being able to dilute the alkali ion water produced | generated by passing the main flow path 30 with the purified water which passed the subflow path 40, compactization to the transversal direction (width direction) of the electrolytic cell 200 is realizable.
(2.2)変更例
 第2実施形態の変更例に係る電解槽について、図面を参照しながら説明する。なお、第1実施形態に係る電解槽100と同一部分には同一の符号を付して、相違する部分を主として説明する。
(2.2) Modified Example An electrolytic cell according to a modified example of the second embodiment will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same part as the electrolytic cell 100 which concerns on 1st Embodiment, and a different part is mainly demonstrated.
(2.2.1)変更例1
 第2実施形態の変更例1に係る電解槽200Aについて、図8を参照しながら説明する。
(2.2.1) Modification 1
An electrolytic cell 200A according to Modification 1 of the second embodiment will be described with reference to FIG.
 第2実施形態に係る電解槽200では、陰極板11及び陽極板21は、開口などが形成されていない板状をなしている。これに対して、第2実施形態の変更例1に係る電解槽200Aでは、図8(a)、8(b)に示すように、陰極板11には、陰極板11を貫通する開口部11Aが複数形成され、陽極板21には、陽極板21を貫通する開口部21Aが複数形成される。開口部11A及び開口部21Aでは、陰極板11と陽極板21とによる電気分解により発生した気泡が通過可能である。また、開口部11A及び開口部21Aは、陰極板11及び陽極板21の正面視において、格子状に配列されている。 In the electrolytic cell 200 according to the second embodiment, the cathode plate 11 and the anode plate 21 have a plate shape in which no opening or the like is formed. On the other hand, in the electrolytic cell 200A according to the first modification of the second embodiment, the cathode plate 11 has an opening 11A penetrating the cathode plate 11, as shown in FIGS. Are formed, and the anode plate 21 is formed with a plurality of openings 21 </ b> A penetrating the anode plate 21. Air bubbles generated by electrolysis of the cathode plate 11 and the anode plate 21 can pass through the opening 11A and the opening 21A. The openings 11A and the openings 21A are arranged in a lattice shape when the cathode plate 11 and the anode plate 21 are viewed from the front.
 このように、第2実施形態の変更例1に係る電解槽200Aでは、陰極板11及び陽極板21の少なくとも一方に、開口部11A又は開口部21Aが形成される。これにより、主流路30(陰極板11と陽極板21との間)で浄水が電気分解された際に発生する気泡を開口部から副流路40側(陰極板11又は陽極板21の背面側)に排出できる。具体的には、主流路30を流れる浄水は、陰極板11と陽極板21とによる電気分解によって、副流路40を流れる浄水よりも遅く流れている。このため、主流路30で発生した気泡は、開口部11A又は開口部21Aを介して主流路30よりも早い副流路40を流れる浄水に引き込まれる。従って、主流路30内に気泡が存在し難くなり、気泡が電気分解を阻害することなく、陰極板11と陽極板21とによって安定した電気分解を行うことが可能となる。 Thus, in the electrolytic cell 200A according to Modification 1 of the second embodiment, the opening 11A or the opening 21A is formed in at least one of the cathode plate 11 and the anode plate 21. Thereby, bubbles generated when the purified water is electrolyzed in the main flow path 30 (between the cathode plate 11 and the anode plate 21) from the opening to the sub flow path 40 side (the back side of the cathode plate 11 or the anode plate 21). ) Can be discharged. Specifically, the purified water flowing through the main flow path 30 flows slower than the purified water flowing through the sub flow path 40 due to electrolysis by the cathode plate 11 and the anode plate 21. For this reason, bubbles generated in the main flow path 30 are drawn into the purified water flowing through the sub flow path 40 that is earlier than the main flow path 30 via the opening 11A or the opening 21A. Accordingly, it is difficult for bubbles to exist in the main flow path 30, and stable electrolysis can be performed by the cathode plate 11 and the anode plate 21 without the bubbles hindering electrolysis.
 第2実施形態の変更例1に係る電解槽200Aでは、開口部11A及び開口部21Aは、陰極板11及び陽極板21の正面視において、格子状に配列されている。これにより、主流路30で発生した気泡は、開口部11A又は開口部21Aを介して主流路30よりも早い副流路40を流れる浄水に引き込まれ易くなり、主流路30内により存在し難くなる。 In the electrolytic cell 200A according to the first modification of the second embodiment, the openings 11A and the openings 21A are arranged in a lattice shape when the cathode plate 11 and the anode plate 21 are viewed from the front. As a result, bubbles generated in the main channel 30 are easily drawn into the purified water flowing through the sub-channel 40 faster than the main channel 30 via the opening 11A or the opening 21A, and are less likely to exist in the main channel 30. .
 ここで、開口部11A及び開口部21Aは、陰極板11及び陽極板21の正面視において、格子状に配列されているものとして説明したが、これに限定されるものではなく、配列方法については任意に設定できる。 Here, the openings 11A and the openings 21A have been described as being arranged in a grid pattern in the front view of the cathode plate 11 and the anode plate 21, but the present invention is not limited to this, and the arrangement method is not limited thereto. Can be set arbitrarily.
(2.2.2)変更例2
 第2実施形態の変更例2に係る電解槽200Bについて、図9を参照しながら説明する。
(2.2.2) Modification 2
An electrolytic cell 200B according to Modification 2 of the second embodiment will be described with reference to FIG.
 第2実施形態に係る電解槽200では、陰極板11及び陽極板21は、開口などが形成されていない板状をなしている。これに対して、第2実施形態の変更例2に係る電解槽200Bでは、第2実施形態の変更例1に係る電解槽200Aと同様に、陰極板11に開口部11Aが複数形成され、陽極板21に開口部21Aが複数形成されている。 In the electrolytic cell 200 according to the second embodiment, the cathode plate 11 and the anode plate 21 have a plate shape in which no opening or the like is formed. On the other hand, in the electrolytic cell 200B according to the modified example 2 of the second embodiment, a plurality of openings 11A are formed in the cathode plate 11 as in the electrolytic cell 200A according to the modified example 1 of the second embodiment. A plurality of openings 21 </ b> A are formed in the plate 21.
 また、図9に示すように、陰極板11及び陽極板21は、電解槽ケース110の壁面113に対して傾斜した状態で配設されている。具体的には、陰極板11と陽極板21との間隔Dは、浄水の流れ方向上流側から下流側(図面では、下方から上方)に向かって徐々に広くなるように設定される。 Further, as shown in FIG. 9, the cathode plate 11 and the anode plate 21 are disposed in an inclined state with respect to the wall surface 113 of the electrolytic cell case 110. Specifically, the distance D between the cathode plate 11 and the anode plate 21 is set so as to gradually increase from the upstream side to the downstream side in the purified water flow direction (from the bottom to the top in the drawing).
 このように、第2実施形態の変更例2に係る電解槽200Bでは、陰極板11と陽極板21との間隔は、浄水の流れ方向上流側から下流側に向かって広く設定される。これにより、主流路30(陰極板11と陽極板21との間)で浄水が電気分解された際に発生した気泡が浄水の流れ方向上流側から下流側に向かって流れやすくなる。このため、発生した気泡は、陰極板11や陽極板21の表面に付着しにくくなり、陰極板11や陽極板21の表面に滞留しにくくなる。従って、主流路30内に気泡が存在し難くなり、気泡が電気分解を阻害することなく、陰極板11と陽極板21とによって安定した電気分解を行うことが可能となる。 Thus, in the electrolytic cell 200B according to Modification 2 of the second embodiment, the distance between the cathode plate 11 and the anode plate 21 is set wider from the upstream side to the downstream side in the flow direction of the purified water. Thereby, bubbles generated when purified water is electrolyzed in the main flow path 30 (between the cathode plate 11 and the anode plate 21) can easily flow from the upstream side toward the downstream side in the flowing direction of the purified water. For this reason, the generated bubbles are less likely to adhere to the surfaces of the cathode plate 11 and the anode plate 21 and are less likely to stay on the surfaces of the cathode plate 11 and the anode plate 21. Accordingly, it is difficult for bubbles to exist in the main flow path 30, and stable electrolysis can be performed by the cathode plate 11 and the anode plate 21 without the bubbles hindering electrolysis.
(3)第3実施形態
 第3実施形態に係る電解槽300について、図10(a)、10(b)を参照しながら説明する。なお、上述した第1実施形態に係る電解槽100(100A)や第2実施形態に係る電解槽200(200A、200B)と同一部分には同一の符号を付して、相違する部分を主として説明する。
(3) Third Embodiment An electrolytic cell 300 according to a third embodiment will be described with reference to FIGS. 10 (a) and 10 (b). In addition, the same code | symbol is attached | subjected to the electrolytic cell 100 (100A) which concerns on 1st Embodiment mentioned above, and the electrolytic cell 200 (200A, 200B) which concerns on 2nd Embodiment, and a different part is mainly demonstrated. To do.
(3.1)電解槽の内部構成
 第1実施形態及び第2実施形態に係る電解槽では、陰極板11(12)及び陽極板21は、電解槽ケース110の壁面113(陰極室10の壁面及び陽極室20の壁面)の短手方向略中央に配設される。これに対して、第3実施形態に係る電解槽300では、図10(a)、10(b)に示すように、陰極板11及び陽極板21は、電解槽300(電解槽ケース110の壁面113)の短手方向において偏在された状態で配設される。
(3.1) Internal configuration of electrolytic cell In the electrolytic cell according to the first and second embodiments, the cathode plate 11 (12) and the anode plate 21 are provided on the wall surface 113 of the electrolytic cell case 110 (the wall surface of the cathode chamber 10). And the wall surface of the anode chamber 20). On the other hand, in the electrolytic cell 300 according to the third embodiment, as shown in FIGS. 10A and 10B, the cathode plate 11 and the anode plate 21 are separated from the electrolytic cell 300 (the wall surface of the electrolytic cell case 110). 113) are arranged unevenly in the lateral direction.
 この場合、主流路30は、陰極板11と陽極板21との間に配設され、副流路40は、陰極板11と陽極板21が配設されていない領域に形成されることになる。 In this case, the main channel 30 is disposed between the cathode plate 11 and the anode plate 21, and the sub-channel 40 is formed in a region where the cathode plate 11 and the anode plate 21 are not disposed. .
 以上説明したように、第3実施形態に係る電解槽300では、陰極板11及び陽極板21は、電解槽300(電解槽ケース110の壁面113)に隣接し、壁面113における短手方向に偏在された状態で配設される。これにより、壁面113における短手方向(幅方向)において、主流路30及び副流路40が形成され、陰極板11と陽極板21とによる電気分解を局所的に行うことができる。このため、主流路30を通過することによって生成されるアルカリイオン水を副流路40を通過した浄水によって希釈できることとともに、電解槽300の厚み方向へのコンパクト化を実現できる。 As described above, in the electrolytic cell 300 according to the third embodiment, the cathode plate 11 and the anode plate 21 are adjacent to the electrolytic cell 300 (the wall surface 113 of the electrolytic cell case 110) and are unevenly distributed in the short direction of the wall surface 113. It is arrange | positioned in the state made. Thereby, the main flow path 30 and the sub flow path 40 are formed in the short direction (width direction) in the wall surface 113, and the electrolysis by the cathode plate 11 and the anode plate 21 can be performed locally. For this reason, it is possible to dilute the alkaline ionized water generated by passing through the main flow path 30 with the purified water that has passed through the sub flow path 40, and to achieve downsizing of the electrolytic cell 300 in the thickness direction.
(4)その他の実施形態
 上述したように、各実施形態を通じて本発明の内容を開示したが、この開示の一部をなす論述及び図面は、本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなる。
(4) Other Embodiments As described above, the contents of the present invention have been disclosed through the respective embodiments. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. Absent. From this disclosure, various alternative embodiments, examples, and operational techniques will be apparent to those skilled in the art.
 例えば、本発明の実施形態は、次のように変更することができる。具体的には、電解水生成装置1は、浄水フィルターを有するものとして説明したが、これに限定されるものではなく、浄水フィルターを有していない装置(例えば、飲料水を貯水するボトルウォーターサーバー)などであってもよい。 For example, the embodiment of the present invention can be modified as follows. Specifically, although the electrolyzed water production | generation apparatus 1 demonstrated as what has a water purification filter, it is not limited to this, For example, the apparatus (For example, the bottle water server which stores drinking water) which does not have a water purification filter Or the like.
 また、電解槽ケース110は、上側ケース111と下側ケース112とに分割可能であるものとして説明したが、これに限定されるものではなく、一つのケース及び蓋体とによって構成されていてもよい。 Moreover, although the electrolytic cell case 110 was demonstrated as what can be divided | segmented into the upper case 111 and the lower case 112, it is not limited to this, Even if comprised by one case and a cover body Good.
 また、実施形態1に係る電解槽100では、電解隔膜120Aを挟んで対向する複数の陰極板11,12及び陽極板21を有するものとして説明したが、これに限定されるものではなく、ひとつの陰極板と複数の陽極板を有するものとしてもよく、複数の陰極板と複数の陽極板を有するものとしてもよい。 Moreover, although the electrolytic cell 100 according to the first embodiment has been described as having the plurality of cathode plates 11 and 12 and the anode plate 21 that are opposed to each other with the electrolytic diaphragm 120A interposed therebetween, the present invention is not limited to this. It may have a cathode plate and a plurality of anode plates, or may have a plurality of cathode plates and a plurality of anode plates.
 このように、本発明は、ここでは記載していない様々な実施の形態などを含むことは勿論である。したがって、本発明の技術的範囲は、上述の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められる。 Thus, it goes without saying that the present invention includes various embodiments that are not described herein. Therefore, the technical scope of the present invention is determined only by the invention specifying matters according to the scope of claims reasonable from the above description.
 本発明によれば、製造作業を簡素化できるとともに、製品の大型化を抑制できる電解槽、及び、この電解槽を備えた電解水生成装置を提供することができる。 According to the present invention, it is possible to provide an electrolytic cell capable of simplifying the manufacturing operation and suppressing an increase in the size of the product, and an electrolyzed water generating apparatus including the electrolytic cell.

Claims (7)

  1.  隔膜と前記隔膜を挟んで対向する陰極板及び陽極板を有し、流入される原水を電気分解することによって、アルカリイオン水及び酸性水を取水可能な電解槽であって、
     前記陰極板と前記陽極板との間において前記原水を電気分解可能な主流路と、
     前記原水を電気分解しない副流路と
    を有することを特徴とする電解槽。
    An electrolytic cell having a cathode plate and an anode plate facing each other with the diaphragm sandwiched therebetween, and electrolyzing the inflowing raw water so that alkaline ionized water and acidic water can be taken up,
    A main flow path capable of electrolyzing the raw water between the cathode plate and the anode plate;
    An electrolytic cell comprising a sub-flow channel that does not electrolyze the raw water.
  2.  請求項1に記載の電解槽であって、
     前記陰極板及び前記陽極板の少なくとも一方には、前記原水が通過可能な開口部が形成される
    ことを特徴とする電解槽。
    The electrolytic cell according to claim 1,
    An electrolytic cell, wherein an opening through which the raw water can pass is formed in at least one of the cathode plate and the anode plate.
  3.  請求項1に記載の電解槽であって、
     前記陰極板と前記陽極板との間隔は、前記原水の流れ方向上流側から下流側に向かって広くなるように設定される
    ことを特徴とする電解槽。
    The electrolytic cell according to claim 1,
    The electrolytic cell characterized in that an interval between the cathode plate and the anode plate is set so as to increase from the upstream side to the downstream side in the flow direction of the raw water.
  4.  請求項1に記載の電解槽であって、
     前記陰極板及び前記陽極板の少なくとも一方が、複数設けられており、
     前記陰極板及び前記陽極板には、前記陰極板及び前記陽極板に印加する電圧を制御するリレーが接続され、
     前記主流路及び前記副流路は、前記リレーの切替動作により前記陰極板と前記陽極板との間に形成される
    ことを特徴とする電解槽。
    The electrolytic cell according to claim 1,
    A plurality of at least one of the cathode plate and the anode plate are provided,
    A relay for controlling a voltage applied to the cathode plate and the anode plate is connected to the cathode plate and the anode plate,
    The electrolytic cell according to claim 1, wherein the main channel and the sub channel are formed between the cathode plate and the anode plate by switching operation of the relay.
  5.  請求項1に記載の電解槽であって、
     前記陰極板及び前記陽極板は、前記電解槽の壁面から離間した状態で配設され、
     前記副流路は、
      前記陰極板と前記電解槽の壁面との間に配設される陰極側副流路と、
      前記陽極板と前記電解槽の壁面との間に配設される陽極側副流路と
    によって構成される
    ことを特徴とする電解槽。
    The electrolytic cell according to claim 1,
    The cathode plate and the anode plate are disposed in a state of being separated from the wall surface of the electrolytic cell,
    The secondary flow path is
    A cathode side sub-channel disposed between the cathode plate and the wall surface of the electrolytic cell;
    An electrolytic cell comprising an anode side sub-channel disposed between the anode plate and a wall surface of the electrolytic cell.
  6.  請求項1に記載の電解槽であって、
     前記陰極板及び前記陽極板は、前記電解槽の壁面に隣接し、前記電解槽の壁面における短手方向に偏在された状態で配設され、
     前記副流路は、前記陰極板及び前記陽極板が配設されていない領域に形成される
    ことを特徴とする電解槽。
    The electrolytic cell according to claim 1,
    The cathode plate and the anode plate are disposed adjacent to the wall surface of the electrolytic cell and are unevenly distributed in the lateral direction of the wall surface of the electrolytic cell,
    The electrolytic cell according to claim 1, wherein the sub-flow path is formed in a region where the cathode plate and the anode plate are not provided.
  7.  請求項1に記載の電解槽を備えることを特徴とする電解水生成装置。 An electrolyzed water generating apparatus comprising the electrolyzer according to claim 1.
PCT/JP2012/060700 2011-05-24 2012-04-20 Electrolysis tank and electrolyzed water producing device WO2012160915A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011116258A JP2012240037A (en) 2011-05-24 2011-05-24 Electrolytic cell and electrolyzed water producing apparatus
JP2011-116258 2011-05-24

Publications (1)

Publication Number Publication Date
WO2012160915A1 true WO2012160915A1 (en) 2012-11-29

Family

ID=47216999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060700 WO2012160915A1 (en) 2011-05-24 2012-04-20 Electrolysis tank and electrolyzed water producing device

Country Status (2)

Country Link
JP (1) JP2012240037A (en)
WO (1) WO2012160915A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111847595A (en) * 2019-04-30 2020-10-30 西藏神州瑞霖环保科技股份有限公司 Nano electrochemical reaction device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5639724B1 (en) 2014-03-17 2014-12-10 株式会社日本トリム ELECTROLYTIC WATER GENERATING DEVICE AND MANUFACTURING METHOD THEREOF

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679277A (en) * 1992-09-01 1994-03-22 Sanden Corp Electrolytic cell
JPH07284773A (en) * 1994-04-18 1995-10-31 Hoshizaki Electric Co Ltd Electrolytic apparatus
JPH07328630A (en) * 1994-06-15 1995-12-19 Hoshizaki Electric Co Ltd Electrolyzed water producing device
JPH1190443A (en) * 1997-09-25 1999-04-06 Hoshizaki Electric Co Ltd Electrolytic bath
JPH11300355A (en) * 1998-04-27 1999-11-02 Tokico Ltd Electrolytic water generator
JP2001062452A (en) * 1999-08-31 2001-03-13 Energy Support Corp Ionized water production device
JP2001062451A (en) * 1999-08-31 2001-03-13 Energy Support Corp Ionized water production device
JP2003071446A (en) * 2001-09-04 2003-03-11 Sony Corp Electrolytic ion water making method, electrolytic ion water maker and electrolytic ion water making apparatus
JP2004130262A (en) * 2002-10-11 2004-04-30 Kao Corp Electrolytic water generator
JP2004298807A (en) * 2003-03-31 2004-10-28 Toto Ltd Electrolytic cel
JP2005211800A (en) * 2004-01-29 2005-08-11 Chugoku Electric Power Co Inc:The Alkali ion water generator
JP2008080216A (en) * 2006-09-26 2008-04-10 Matsushita Electric Works Ltd Apparatus for producing electrolytic water
JP2008080217A (en) * 2006-09-26 2008-04-10 Matsushita Electric Works Ltd Apparatus for producing electrolytic water
JP2008086886A (en) * 2006-09-29 2008-04-17 Matsushita Electric Works Ltd Electrolytic water generator
JP2008086885A (en) * 2006-09-29 2008-04-17 Matsushita Electric Works Ltd Electrolytic water generator

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679277A (en) * 1992-09-01 1994-03-22 Sanden Corp Electrolytic cell
JPH07284773A (en) * 1994-04-18 1995-10-31 Hoshizaki Electric Co Ltd Electrolytic apparatus
JPH07328630A (en) * 1994-06-15 1995-12-19 Hoshizaki Electric Co Ltd Electrolyzed water producing device
JPH1190443A (en) * 1997-09-25 1999-04-06 Hoshizaki Electric Co Ltd Electrolytic bath
JPH11300355A (en) * 1998-04-27 1999-11-02 Tokico Ltd Electrolytic water generator
JP2001062452A (en) * 1999-08-31 2001-03-13 Energy Support Corp Ionized water production device
JP2001062451A (en) * 1999-08-31 2001-03-13 Energy Support Corp Ionized water production device
JP2003071446A (en) * 2001-09-04 2003-03-11 Sony Corp Electrolytic ion water making method, electrolytic ion water maker and electrolytic ion water making apparatus
JP2004130262A (en) * 2002-10-11 2004-04-30 Kao Corp Electrolytic water generator
JP2004298807A (en) * 2003-03-31 2004-10-28 Toto Ltd Electrolytic cel
JP2005211800A (en) * 2004-01-29 2005-08-11 Chugoku Electric Power Co Inc:The Alkali ion water generator
JP2008080216A (en) * 2006-09-26 2008-04-10 Matsushita Electric Works Ltd Apparatus for producing electrolytic water
JP2008080217A (en) * 2006-09-26 2008-04-10 Matsushita Electric Works Ltd Apparatus for producing electrolytic water
JP2008086886A (en) * 2006-09-29 2008-04-17 Matsushita Electric Works Ltd Electrolytic water generator
JP2008086885A (en) * 2006-09-29 2008-04-17 Matsushita Electric Works Ltd Electrolytic water generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111847595A (en) * 2019-04-30 2020-10-30 西藏神州瑞霖环保科技股份有限公司 Nano electrochemical reaction device

Also Published As

Publication number Publication date
JP2012240037A (en) 2012-12-10

Similar Documents

Publication Publication Date Title
JP4665880B2 (en) Electrolyzed water generator
US20090266706A1 (en) High electric field electrolysis cell
JP2009072755A (en) Electrolytic water producing device and method, and electrolytic water
JP4751994B1 (en) Electrolyzed water production apparatus having a diaphragm electrolytic cell and a non-diaphragm electrolytic cell
JP2009072778A (en) Electrolytic water producing device and method, and electrolytic water
CN101849037B (en) Multi-pole type oxygen cathode ion membrane electrolysis unit tank
JP5282201B2 (en) Electrolyzed water generator
JP2017056376A (en) Electrolysis tank and electrolyzed water generating apparatus comprising the same
JP7271612B2 (en) Electrolyzed water generator and electrolyzed water generation method
WO2012160915A1 (en) Electrolysis tank and electrolyzed water producing device
TWI517896B (en) Electric deionized water manufacturing device
JP5140123B2 (en) Water electrolysis system
CA2710285C (en) Internal flow control in electrolytic cells
WO2006112065A1 (en) Electrolytic bath for producing alkaline reduced water
JP5379025B2 (en) Electric deionized water production equipment
WO2016114364A1 (en) Electrolyzed water generating device
JP4899750B2 (en) Electrolyzed water generator
JP4353159B2 (en) Electrolyzed water generator
JP2009006287A (en) Production apparatus of electrolytic water, production method of electrolytic water, and electrolytic water
JP2008264746A (en) Electrolytic water production device, method for producing electrolytic water, and electrolytic water
KR101010330B1 (en) Electrolyzor for generating ion water
JP2013000716A (en) Electrolytic water-forming apparatus
WO2017056987A1 (en) Hydrogen-enriched electrolyzed water generator and method of lowering ph of hydrogen-enriched electrolyzed water
JP2012170906A (en) Electric deionizer, method of producing pure water and fuel cell system
JP2009035767A (en) Electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12789245

Country of ref document: EP

Kind code of ref document: A1