JP2004297976A - Electric rotating machine, electrically insulated coil and epoxy resin composition for use therein - Google Patents

Electric rotating machine, electrically insulated coil and epoxy resin composition for use therein Download PDF

Info

Publication number
JP2004297976A
JP2004297976A JP2003090464A JP2003090464A JP2004297976A JP 2004297976 A JP2004297976 A JP 2004297976A JP 2003090464 A JP2003090464 A JP 2003090464A JP 2003090464 A JP2003090464 A JP 2003090464A JP 2004297976 A JP2004297976 A JP 2004297976A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
weight
parts
electrically insulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003090464A
Other languages
Japanese (ja)
Other versions
JP3980507B2 (en
Inventor
Kenji Ikeda
賢二 池田
Shoichi Maruyama
正一 丸山
Setsu Soma
節 相馬
Yoshihiro Haraguchi
芳広 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003090464A priority Critical patent/JP3980507B2/en
Priority to KR1020040012171A priority patent/KR100587581B1/en
Publication of JP2004297976A publication Critical patent/JP2004297976A/en
Application granted granted Critical
Publication of JP3980507B2 publication Critical patent/JP3980507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Epoxy Resins (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric rotating machine employing an epoxy resin composition in which pot life is enhanced while lowering the viscosity. <P>SOLUTION: An electrically insulated coil 1 unit obtained by winding an electrically insulated basic material around a conductor 2 shaped to have a regular profile is fitted in a core slot, bars and wedges are inserted into the inner circumferential groove of the core slot, the electrically insulated coil 1 units are interconnected at the outer end part of the core, and under a state where the electrically insulated coil 1 unit and the core slot are integrated, an epoxy resin composition substantially comprising 100 pts.wt of epoxy resin, 2-5 pts.wt of boron trichloride amine complex, and 3-20 pts.wt of reactive diluent is impregnated and cured to produce a stator constituting an electric rotating machine along with a rotor. An electric rotating machine employing an epoxy resin composition in which pot life is enhanced while lowering the viscosity and moisture absorption, and an electrically insulated coil can thereby be attained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はエポキシ樹脂組成物を用いた回転電機及び電気絶縁線輪に係る。特に、長ポットライフ化、低粘度化及び低吸湿性を備えたエポキシ樹脂組成物を用いた一体化含浸型回転電機及び電気絶縁線輪に関する。また、本発明は新規なエポキシ樹脂組成物に関する。
【0002】
【従来の技術】
車両用回転電機及び一般産業用誘導電動機等の高圧回転電機の小型軽量化、低コスト化の要求は益々強くなってきている。
【0003】
高圧回転電機の固定子の製造方法は、3つに大別される。
【0004】
(1)規定形状に成形した導体にプリプレグマイカテープを巻回し、硬化した電気絶縁線輪を鉄心スロットに収納する単独プリプレグ方式。
【0005】
(2)規定形状に成形した導体に電気絶縁基材を巻回して得た電気絶縁線輪単体にエポキシ樹脂組成物を含浸後、硬化して鉄心スロットに収納する単独注入方式。
【0006】
(3)規定形状に成形した導体に電気絶縁基材を巻回した電気絶縁線輪単体を鉄心スロットに組込み、鉄心スロットの内周溝にサシギ及びウェッジを挿入し、電気絶縁線輪を鉄心外端部で接続する。その後、電気絶縁線輪と鉄心スロットが一体となった状態でエポキシ樹脂組成物を含浸後、硬化する一体化含浸方式がある。
【0007】
特に、一体化含浸方式の固定子の場合は電気絶縁線輪と鉄心スロットとの隙間にエポキシ樹脂組成物を含浸後、硬化して鉄心と電気絶縁線輪を一体化するため、電気絶縁線輪と鉄心間の熱伝導率が高くなるので冷却性能が優れると共に、作業工程や構成材料を簡素化できる利点がある。このことから、一体化含浸方式は小型軽量化や低コスト化の観点からも有利であるため、小型及び中型の高圧回転電機の絶縁処理方式として主流になりつつある。
【0008】
上記一体化含浸方式で回転電機に使用されるエポキシ樹脂組成物には、回転電機固定子の電気絶縁線輪と鉄心間等の細部への含浸性を向上させるため、また、取扱い性を容易にするために更なる低粘度化が要求される。次に、含浸設備におけるエポキシ樹脂組成物の保存時の変質防止や安定性向上を図るために低吸湿率も課題である。さらに、エポキシ樹脂組成物の廃棄量を大幅に削減して地球環境に配慮するため、ポットライフの更なる長時間化が最重要課題に上げられ、こうした数多くの性能面でのグレードアップが望まれている。
【0009】
ところで、上記のような各種性能を向上させようとする従来技術には、以下のような公知例がある。例えば、特公平6−27183号公報(特許文献1)や特開2000−234049号公報(特許文献2)がある。この公知例には、エポキシ樹脂の硬化剤として酸無水物を、硬化促進剤として三塩化ホウ素錯体、さらに、マイクロカプセル型潜在性硬化剤あるいは有機酸金属を併用して、一液化したエポキシ樹脂組成物の記載があり、保存安定性やポットライフ、硬化後の硬化物特性を向上させようとする方法である。
【0010】
一方、特許3261749号公報(特許文献3)にはエポキシ樹脂にハロゲン化ホウ素アミン錯体と固体分散型アミンアダクト系潜在性硬化剤を必須成分とする一液化したエポキシ樹脂組成物の構成があり、ポットライフや含浸性、硬化後の接着強度を向上させようとする方法である。
【0011】
しかしながら、従来技術である特公平6−27183号公報(特許文献1)は、硬化促進剤として三塩化ホウ素錯体に併用されるマイクロカプセル型潜在性硬化剤が、組成物の混合攪拌時にせん断力を受けたり、長期保存によってシェル(カプセル部)の破壊や溶解が起こる。これらが原因で樹脂の硬化反応を促進し、三塩化ホウ素錯体の熱潜在性効果を低減してしまう。このため、エポキシ樹脂組成物の40℃のポットライフが5〜7日程度と短く、回転機用途の含浸樹脂として満足できるものではない。
【0012】
また、特開2000−234049号公報(特許文献2)は、硬化促進剤として三塩化ホウ素錯体と有機酸金属塩を併用しているため、上記技術のように三塩化ホウ素錯体の熱潜在性効果を低減させる悪影響は小さいと思われるが、酸無水物を使用しているため,40℃における貯蔵安定性(ポットライフ)が約2ヶ月(65日)となる。
【0013】
エポキシ樹脂組成物の使用量や使用サイクルにもよるが,この技術では、エポキシ樹脂の廃棄量を大幅に削減するまでには至っていない。さらに、前述の従来技術はエポキシ樹脂組成物中に酸無水物硬化剤を有するので、長期的な保存になる程、水分や湿度の影響を受けやすくなる上、保管時や使用時に容器や含浸装置を密閉する制限が生じ、作業性の面でも課題が残っている。
【0014】
一方、特許3261749号公報(特許文献3)では、エポキシ樹脂組成物に熱潜在性硬化剤であるハロゲン化ホウ素アミン錯体と固体分散型アミンアダクトを併用している。しかし、上記固体分散型アミンアダクトの熱潜在性効果が小さいため、エポキシ樹脂組成物のゲル化時間が120℃で約6〜8分程度を示し、ポットライフも非常に短くなると考えられ、一体化含浸用途として満足できるものではない。
【0015】
特表2000−507292号公報(特許文献4)には、エポキシ樹脂に多官能エポキシ樹脂希釈剤、三塩化ホウ素アミンコンプレックス及びシリカ又はシリケート(充填剤)を含む組成物が開示されている。
【0016】
本発明のエポキシ樹脂組成物は、一体化含浸型回転電機に用いられるため、充填材などを添加しないほうが良い。シリカ、アルミナなどの無機充填材は樹脂成分との比重差により、組成物の使用中あるいは保管中に沈殿してしまい,含浸樹脂中に均一に添加することができない。
【0017】
また、絶縁線輪の卷回絶縁層や線輪同士の接続部やスロット、サシギ、ウエッジなどとの間の微細な隙間に固体充填材が入り込むことは難しい。敢えて充填材を添加した樹脂組成物を用いると、含浸不十分のため、絶縁性、機械特性の点で欠陥のある回転電機となる惧がある。
【0018】
【特許文献1】
特公平6−27183号公報(特許請求の範囲)
【特許文献2】
特開2000−234049号公報(要約)
【特許文献3】
特許第3261749号公報(特許請求の範囲)
【特許文献4】
特表2000−507292号公報(要約)
【0019】
【発明が解決しようとする課題】
本発明の目的は、エポキシ樹脂組成物の長ポットライフ化、低粘度化及び低吸湿化を図り、さらに絶縁性能を向上したエポキシ樹脂組成物及びそれを使用した回転電機ならびに電気絶縁線輪を提供することである。
【0020】
【課題を解決するための手段】
本発明のエポキシ樹脂組成物は、エポキシ樹脂に熱潜在性硬化剤および反応性希釈剤を適用することにより、低粘度化、低吸湿化及びポットライフが向上でき、回転電機に前記エポキシ樹脂組成物を用いることで、省資源化が図られ、廃棄樹脂量を大幅に削減することができる。
【0021】
すなわち、本発明はエポキシ樹脂100重量部に対して、三塩化ホウ素アミン錯体を2〜5重量部、及び反応性希釈剤を3〜20重量部混合し、常温で液体であって実質的に無機充填材及び酸硬化剤を含まないエポキシ樹脂組成物を提供するものである。
【0022】
また、本発明は、導体素線に電気絶縁基材を巻回した電気絶縁線輪を鉄心スロットに組込み、該鉄心スロットの内周溝にサシギ及びウェッジを挿入し、電気絶縁線輪の単体相互を鉄心外端部で接続して、電気絶縁線輪と鉄心スロットが一体の状態で上記エポキシ樹脂組成物を含浸・硬化した固定子と、回転子を有する回転電機を提供する。
【0023】
【発明の実施の形態】
本発明のエポキシ樹脂組成物を用いた回転電機について、以下に詳細に説明する。
【0024】
本発明のエポキシ樹脂組成物は、エポキシ樹脂、三塩化ホウ素アミン錯体及び反応性希釈剤を有する組成物である。特に、エポキシ樹脂の硬化剤として、実質的に熱潜在性を有する三塩化ホウ素アミン錯体のみを適用することが特徴で、他の硬化剤や硬化触媒を用いることは本質的に必要ではない。
【0025】
また、本発明に使用される三塩化ホウ素アミン錯体はエポキシ樹脂に対して熱潜在性が非常に優れている。このため、本発明のエポキシ樹脂組成物の室温領域(25℃〜40℃)におけるポットライフの長時間化が容易に達成できる。
【0026】
さらに、本発明で用いるエポキシ樹脂組成物は、前述のように酸無水物硬化剤を使用していないため、保存時や使用時に水分や湿気に対して変質などを起こしにくい。したがって、本発明のエポキシ樹脂組成物は一般のエポキシ樹脂のような管理方法や取扱い方でも、変質等を起こすことが非常に少なく、取扱い性や作業性に優れる利点がある。
【0027】
本発明のエポキシ樹脂組成物は、一体化含浸型回転電機に用いられるため、充填材などを添加しないほうが良い。特にシリカ、アルミナなどの無機充填材は樹脂成分との比重差により、使用中あるいは保管中に沈殿してしまい,含浸樹脂中に均一に添加することができない。また、絶縁線輪の卷回絶縁層や線輪同士の接続部やスロット、サシギ、ウエッジなどの微細な隙間に固体充填材が入り込むことが難しくなる。有機ポリマー粒子なども一体化含浸の際に樹脂の含浸性を阻害する惧があるので,粒子状の充填材を添加することは推奨できない。
【0028】
本発明のエポキシ樹脂組成物の各素材について説明する。本発明で使用されるエポキシ樹脂は、室温領域(25℃〜40℃)で液状が好ましいが、室温領域で固体又は結晶性でも2種類以上を混合して液状になるエポキシ樹脂であれば、使用できる。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールA/F型エポキシ樹脂、レゾルシン型エポキシ樹脂、脂環型エポキシ樹脂等が挙げられ、前記エポキシ樹脂は単独又は2種類以上を混合して使用することができる。
【0029】
次に、潜在性硬化剤である三塩化ホウ素アミン錯体としては、エポキシ樹脂や反応性希釈剤を硬化あるいは硬化促進させる性質がある化合物であれば制限はない。例えば、三塩化ホウ素N,N−ジメチルオクチルアミン錯体、三塩化ホウ素N,Nジエチルジオクチルアミン錯体、三塩化ホウ素N,N−ジメチルドデシルアミン錯体等が挙げられ、単独又は2種類以上を混合して使用することができる。
【0030】
前記三塩化ホウ素アミン錯体の中で、エポキシ樹脂組成物のポットライフを長時間化する観点から、特に三塩化ホウ素N,N−ジメチルオクチルアミン錯体を使用することが好ましい。前記三塩化ホウ素アミン錯体の配合量としては、ポットライフの長時間化及び硬化物特性(ガラス転移温度等)を両立させる観点から、エポキシ樹脂100重量部に対して2〜5重量部を配合することが好ましい。
【0031】
この配合量が2重量部に満たないと硬化反応性が鈍くなるため、ポットライフには有利であるが硬化物特性を低下させる原因になる。また、5重量部より多くなると、硬化物特性を向上させるためには有利であるがポットライフが短くなる可能性がある。
【0032】
更に、三塩化ホウ素アミン錯体が所望の混合温度で結晶性を示す場合は,予め加熱溶融することでエポキシ樹脂と容易に混合できると共に,混合後に分離や沈降が生じにくくなる。
【0033】
次に、反応性希釈剤としては、常温(25℃)で液体であり,かつ三塩化ホウ素アミン錯体によって硬化あるいは硬化反応が促進される化合物であれば良い。例えば、スチレンオキシド、脂肪族ジグリシジルエーテル及び芳香族ジグリシジルエーテル等が挙げられ、単独又は2種類以上を混合して使用することができる。この反応性希釈剤の配合量は、エポキシ樹脂組成物の低粘度化と硬化物特性を両立させる観点から、エポキシ樹脂100重量部に対して3〜20重量部とするのが好ましい。
【0034】
この配合量が3重量部に満たないと低粘度化が得られにくいため、電気絶縁線輪や回転電機固定子等への含浸性を低下させる原因となり、20重量部より多くなると硬化物特性を低下させる原因になる。
【0035】
以上述べたエポキシ樹脂組成物は長ポットライフ化、低粘度化及び低吸湿化が図られ、一体化含浸型回転電機に適用することにより絶縁性能に優れた回転電機を作製できる。
【0036】
以下、本発明のエポキシ樹脂組成物及び回転電機について、実施例、参考例及び比較例を用いて具体的に説明する。
【0037】
まず、本発明で用いられるエポキシ樹脂組成物及び比較例のエポキシ樹脂組成物の各特性を実施例で説明する。以下に示す測定方法及び条件で上記組成物の評価をした。
【0038】
(1)初期粘度
初期粘度は100mlのガラス製アンプル瓶(高さ100mmx直径30mm)にエポキシ樹脂組成物を約70ml入れ、25℃及び40℃に保持したオイルバスで30分間放置し、B型回転粘度計(東京計器社製)を用いて測定した。
【0039】
(2)ポットライフ
ポットライフはエポキシ樹脂組成物を気泡粘度計(JISK7233規定の泡粘度計、ガラス製)に規定量入れて、上部をシリコンゴム栓で密閉して40℃の恒温槽に放置し、下記測定方法による粘度が0.5Pa・sに到達する日数で判定した。
【0040】
ポットライフ判定用粘度はエポキシ樹脂組成物を入れた前記気泡粘度計を40℃に保持して上下反転させ、所定の位置まで気泡が上昇する時間t(s)を測定し、下記式[1]からエポキシ樹脂組成物の粘度η(Pa・s)を算出した。
なお、JISZ8809規定の既知粘度標準液を用いて、予め、気泡上昇時間(s)と粘度(Pa・s)の関係から係数(0.065)を求めた。
η=0.065×t ・・・・・・・・・・・・式[1]
(3)ガラス転移温度
ガラス転移温度はエポキシ樹脂組成物を175℃/4hで硬化した硬化物を長さ10mm×直径8φmmに加工して、TM−4000(真空理工社製)で昇温速度2℃/minで測定した。
【0041】
(4)吸湿性
吸湿性は100mlのガラス製サンプル瓶(高さ100mm×直径30φmm)にエポキシ樹脂組成物を約80cc注入して、蓋をせずに温度25℃、湿度50%の室内で30日間放置した時、エポキシ樹脂組成物に析出物などの変質が生じるか、その有無を確認した。
【0042】
[実施例1〜3、比較例1〜2]
本発明の実施例1〜3と比較例1〜2のエポキシ樹脂組成物は、表1に示す三塩化ホウ素N,N−ジメチルオクチルアミン錯体(ナガセケムテックス社製、商品名DY−9577)を予め80℃で加熱して溶解したものと、反応性希釈剤であるスチレンオキシド(和光純薬社製)を所定量計量して、200mlのガラス製サンプル瓶で混合し、所定量のビスフェノールA型エポキシ樹脂(旭チバ社製、商品名AER−250)と混合して作製した。作製したエポキシ樹脂組成物の各特性を評価した。
【0043】
その結果、実施例1〜3は初期粘度が25℃で0.5Pa・s以下、40℃で0.26Pa・s以下と低く、ポットライフが200日を経過しても0.5Pa・sを超えることがなく、また、ゲル化時間が35〜90分であり、硬化物のガラス転移温度(以下、Tgと記載する)も120℃以上であった。
【0044】
一方、比較例1はDY−9577の配合量が1重量部と少なかったため初期粘度やポットライフに特に支障なかったが、Tgが104℃と本実施例より低い温度であった。
【0045】
比較例2はDY−9577の配合量が6重量部と多かったためポットライフが130日と短くなった。
【0046】
以上述べたとおり、本実施例1〜3は室温領域の初期粘度が低くできると共にポットライフも約30%長時間化できる効果があった。
【0047】
【表1】

Figure 2004297976
【0048】
[実施例4〜6、比較例3〜4]
実施例4〜6と比較例3〜4のエポキシ樹脂組成物は、表2に示すビスフェノールA/F型エポキシ樹脂(ナガセケムテックス社製、商品名PY−302−2)、レゾルシン型エポキシ樹脂(ナガセケムテックス社製、商品名EX−201)、硬化剤としてDY−9577、反応性希釈剤をスチレンオキシドと脂肪族ジグリシジルエーテル(ナガセケムテックス社製、商品名DY−022)の2種類を用いた。実施例1と同様にしてエポキシ樹脂組成物を作製し、各特性を評価した。
【0049】
その結果、実施例4〜6は初期粘度が25℃で0.5Pa・s以下、40℃で0.25Pa・s以下と低く、ポットライフも200日を経過しても0.5Pa・sを超えることがなく,またゲル化時間が55〜85分であり、硬化物のTgが110℃以上と良好であった。
【0050】
一方、比較例3は反応性希釈剤の配合量が2重量部と少なかったためTg等に支障はなかったが、初期粘度が25℃で0.61Pa・s、40℃で0.33Pa・sと高くなった。また、比較例4は反応性希釈剤の配合量が21重量部と多かったため、Tgが98℃と低かった。
【0051】
本実施例4〜6は室温領域の初期粘度を約20%低くできると共にポットライフも約30%長時間化(対比較例3)できる効果があった。
【0052】
【表2】
Figure 2004297976
【0053】
[実施例7、比較例5〜7]
本発明の実施例7と比較例5〜7のエポキシ樹脂組成物は、表3に示すビスフェノールA型エポキシ樹脂(旭チバ社製、商品名AER−260)、ビスフェノールF型エポキシ樹脂(旭電化社製、商品名EP−4901)、硬化剤としてDY−9577、アミンアダクト化合物(味の素社製、商品名アミキュアMY−24)、メチルヘキサヒドロ無水フタル酸(日立化成社製、商品名HN−5500)、反応性希釈剤をスチレンオキシドと芳香族ジグリシジルエーテル(ナガセケムテックス社製、商品名DY−023)の2種類を用いた。実施例1と同様にしてエポキシ樹脂組成物を作製し、各特性を評価した。
【0054】
その結果、実施例7は初期粘度が25℃で0.47Pa・s、40℃で0.19Pa・sと低く、ポットライフも200日を経過しても0.5Pa・sを超える事がなく、またゲル化時間は50分であり、耐湿性についても析出物等の変質が無く良好であった。
【0055】
一方、比較例5〜6は硬化剤としてDY−9577とMY−24の併用あるいは、MY−24のみとした場合であるため、初期粘度がそれぞれ25℃で0.51Pa・s〜0.54Pa・s、40℃で0.30〜0.32Pa・sと若干高くなり、ポットライフも30日以内で0.5Pa・sを超えてしまった。
【0056】
比較例7は初期粘度が25℃で0.40Pa・s、40℃で0.10Pa・sと低くかったが、ポットライフが8日で0.5Pa・sを超えてしまい、さらに、酸無水物を併用しているため、耐湿性試験においてサンプル瓶沿面等に析出物ができてしまった。
【0057】
本実施例7は室温領域の初期粘度を15%低くできると共に、ポットライフも約6倍以上に長時間化でき(対比較例5〜7)、更に保管時に密閉せずに放置しても水分や湿気による変質がなく、更に取扱い性を向上できたため,エポキシ樹脂組成物の廃棄量を50%削減できる効果があった。
【0058】
さらに、保管時に密閉せずに放置しても水分や湿気による変質がないため、取扱い性を向上できる効果があった。
【0059】
【表3】
Figure 2004297976
【0060】
[実施例8、比較例8、9]
本発明による新規なエポキシ樹脂組成物を用いた電気絶縁線輪の製法及び得られた線輪の特性を説明する。電気絶縁線輪は規定形状に成形した導体に電気絶縁基材を巻回した線輪単体に、本発明のエポキシ樹脂組成物を含浸・硬化して製作される。上記絶縁線輪の場合も、一体化含浸型回転電機の場合と同様、含浸エポキシ樹脂組成物は、含浸性がよく、ポットライフが長く,耐湿性があり、硬化性が良いことが要求される。本発明のエポキシ樹脂組成物は一体化含浸型回転電機に最適であるが,一般の電機絶縁線輪に適用しても大きな効果がある。
【0061】
以下、本発明に示すエポキシ樹脂組成物を用いて電気絶縁線輪を作製した例について具体的に説明する。図1(a)は本発明のエポキシ樹脂組成物を用いて製作した電気絶縁線輪1の外観図で、図1(b)は図1(a)の円で示した部分の内部断面拡大図である。電気絶縁線輪単体は絶縁被覆した導体2を2列6層に並べて図1(a)の形状に加工し、その外周側にポリエステルフィルム裏打ち集成マイカテープ3(厚0.13mm×幅15mm)を半掛けで二層巻回した。
【0062】
さらにその外周側にガラスクロステープ4(厚0.18mm×幅15mm)を半掛けで一層巻回して作製した。この電気絶縁線輪単体を40℃/200日放置した実施例1のエポキシ樹脂組成物に40℃に保持した注入炉に浸漬し、真空注入(10Pa/2h)、加圧注入(0.5MPa/4h)をした後に、175℃/4hの条件で硬化し、常温まで自然冷却して実施例8の電気絶縁線輪1を作製した。
【0063】
一方、比較例8は40℃/200日放置した比較例1のエポキシ樹脂組成物を使用した以外は、本実施例8と同様にして電気絶縁線輪を作製した。比較例9も40℃/200日放置した比較例2のエポキシ樹脂組成物を使用した以外は、本実施例8と同様にして電気絶縁線輪を作製した。
【0064】
実施例8、比較例8及び9の電気絶縁線輪を通常の1.5倍で過負荷となるように電圧を印加し、電気絶縁線輪部のエポキシ樹脂組成物等の絶縁物を加熱劣化した後、前記電気絶縁線輪の耐電圧試験を実施した。その結果、本実施例8の電気絶縁線輪は、耐電圧試験において短絡が生じなかった。一方、比較例8の電気絶縁線輪は含浸性が良かったが、エポキシ樹脂組成物のTgが低かったため、劣化が著しくなり短絡が生じた。
【0065】
また、比較例9の電気絶縁線輪はエポキシ樹脂組成物の含浸性が悪かったため、絶縁耐圧が確保できずに短絡が生じた。
【0066】
実施例8の電気絶縁線輪はポットライフや低粘度化を向上した実施例1のエポキシ樹脂組成物を使用したため、耐電圧試験において短絡が生じず、絶縁性能を向上できる効果があった。
[実施例9、比較例10及び11]
本発明によるエポキシ樹脂組成物を用いて電気絶縁線輪を作製した例について説明する。実施例9は40℃/200日放置した実施例6のエポキシ樹脂組成物を使用した。それ以外は、実施例8と同様にして電気絶縁線輪を作製した。比較例10は40℃/200日放置した比較例3のエポキシ樹脂組成物を使用した。それ以外は、実施例8と同様にして電気絶縁線輪を作製した。
【0067】
比較例11も40℃/200日放置した比較例4のエポキシ樹脂組成物を使用した。それ以外は、実施例8と同様にして電気絶縁線輪を作製した。実施例9、比較例10及び11の電気絶縁線輪について、実施例8と同様の条件で耐電圧試験を実施した。その結果、実施例9の電気絶縁線輪は、耐電圧試験において短絡が生じなかった。
【0068】
一方、比較例10の電気絶縁線輪はエポキシ樹脂組成物が高粘度のために含浸不良が生じて、耐電圧試験で短絡が発生した。また、比較例11の電気絶縁線輪は含浸性が良かったが、エポキシ樹脂組成物のTgが低かったため、劣化が酷くなり短絡が生じた。
【0069】
実施例9の電気絶縁線輪は、ポットライフや低粘度化を向上した実施例6のエポキシ樹脂組成物を使用したため、耐電圧試験において短絡が生じず、絶縁性能を向上できる効果があった。
[実施例10]
本発明によるエポキシ樹脂組成物を用いて回転電機を作製した例について説明する。図2(a)は本発明の回転電機固定子の断面正面図であり、図2(b)は固定子スロットの断面拡大図である。図3は本発明の回転電機の断面斜視図である。実施例8と同様の電気絶縁線輪単体を鉄心5の鉄心スロット6に挿入した後、図2(b)の固定子スロットの断面図に示すサシギ7及びウエッジ8を、電気絶縁線輪単体を固定するために各々挿入して固定子単体を作製した。
【0070】
この固定子単体に、実施例1のエポキシ樹脂組成物を実施例8の電気絶縁線輪を作製した時と同様の注入条件及び硬化条件で、固定子9を作製した。図3に示すように前記固定子9と回転子10等を組立て結線して本実施例10の回転電機11を作製した。
【0071】
本実施例10の回転電機は、低粘度を有する含浸性を向上した実施例1のエポキシ樹脂組成物を適用しているため、回転電機固定子の細部に短時間で確実に含浸ができるので、作製時間を短縮できると共に、絶縁性能を向上できる効果があった。
[実施例11]
本発明に示すエポキシ樹脂組成物を用いて回転電機を作製した例について説明する。本実施例11は実施例10と同様の電気絶縁線輪単体と実施例6のエポキシ樹脂組成物を用いて実施例10と同様にして回転電機を作製した。
【0072】
本実施例11の回転電機は、低粘度を有する含浸性を向上した実施例6のエポキシ樹脂組成物を適用しているため、回転電機固定子の細部に短時間で確実に含浸できるので、作製時間を短縮できると共に、絶縁性能を向上できる効果があった。
[実施例12]
本発明に示すエポキシ樹脂組成物を用いて回転電機を作製した例について説明する。本実施例12は参考例1と同様の電気絶縁線輪単体と実施例7のエポキシ樹脂組成物を用いて実施例11と同様に回転電機を作製した。
【0073】
本実施例12の回転電機は、低粘度を有する含浸性を向上した実施例7のエポキシ樹脂組成物を適用しているため、回転電機固定子の細部に短時間で確実に含浸できるので、作製時間を短縮できると共に、絶縁性能を向上できる効果があった。
【0074】
【発明の効果】
本発明によれば、ポットライフを著しく長時間化できると共に、低粘度化及び低吸湿性が向上できるエポキシ樹脂組成物を用いた回転電機及び電気絶縁線輪を提供することができる。
【図面の簡単な説明】
【図1】本発明の電気絶縁線輪の外観とその断面拡大図である。
【図2】本発明の回転電機固定子の断面正面図と固定子スロットの断面拡大図である。
【図3】本発明の回転電機の断面斜視図である。
【符号の説明】
1…電気絶縁線輪、2…導体、3…ポリエステルフィルム裏打ち集成マイカテープ、4…ガラステープ、5…固定子鉄心、6…固定子スロット、7…サシギ、8…ウェッジ、9…固定子、10…回転子、11…回転電機。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rotating electric machine and an electrically insulated wire using an epoxy resin composition. In particular, the present invention relates to an integrated impregnated rotary electric machine and an electrically insulated wire using an epoxy resin composition having a long pot life, low viscosity, and low moisture absorption. The present invention also relates to a novel epoxy resin composition.
[0002]
[Prior art]
Demands for reduction in size, weight, and cost of high-voltage rotating electric machines such as electric rotating machines for vehicles and induction motors for general industry have been increasing.
[0003]
The manufacturing method of the stator of the high-voltage rotating electric machine is roughly divided into three.
[0004]
(1) A single prepreg system in which a prepreg mica tape is wound around a conductor formed into a prescribed shape, and the cured electrically insulated wire is stored in an iron core slot.
[0005]
(2) A single injection method in which an electrically insulated wire obtained by winding an electrically insulated base material around a conductor formed into a prescribed shape is impregnated with an epoxy resin composition, cured, and stored in an iron core slot.
[0006]
(3) An electric insulating wire loop in which an electric insulating base material is wound around a conductor formed into a prescribed shape is assembled into an iron core slot, a sedge and a wedge are inserted into an inner circumferential groove of the iron core slot, and the electric insulating wire ring is moved outside the iron core. Connect at the end. Thereafter, there is an integrated impregnation method in which the epoxy resin composition is impregnated in a state where the electrically insulated wire loop and the iron core slot are integrated, and then cured.
[0007]
In particular, in the case of an integrated impregnation type stator, since the epoxy resin composition is impregnated into the gap between the electrically insulated wire loop and the iron core slot, then hardened to integrate the iron core and the electrically insulated wire loop. Since the thermal conductivity between the iron core and the iron core is high, there is an advantage that the cooling performance is excellent and the work process and constituent materials can be simplified. For this reason, the integrated impregnation method is advantageous from the viewpoint of reducing the size and weight and reducing the cost, and is becoming the mainstream as an insulation treatment method for small and medium-sized high-voltage electric rotating machines.
[0008]
The epoxy resin composition used in the rotating electric machine in the integrated impregnation method is used to improve the impregnating property of the rotating electric machine stator between details such as between the electrically insulated wire and the iron core. In order to achieve this, a further reduction in viscosity is required. Next, low moisture absorption is also an issue in order to prevent deterioration of the epoxy resin composition during storage in the impregnation equipment and to improve stability. Furthermore, in order to greatly reduce the amount of waste of epoxy resin composition and consider the global environment, further prolonging the pot life is the most important issue, and it is desired to upgrade these many performance aspects. ing.
[0009]
By the way, there are the following known examples in the prior art for improving the above various performances. For example, JP-B-6-27183 (Patent Document 1) and JP-A-2000-234049 (Patent Document 2) are known. In this known example, an acid anhydride is used as a curing agent for an epoxy resin, a boron trichloride complex is used as a curing accelerator, and a microcapsule-type latent curing agent or an organic acid metal is used in combination to form a one-part epoxy resin composition. It is a method for improving storage stability, pot life, and cured product properties after curing.
[0010]
On the other hand, Japanese Patent No. 3261749 (Patent Document 3) discloses a composition of a one-pack epoxy resin composition containing a boron halide amine complex and a solid dispersion type amine adduct latent curing agent as essential components in an epoxy resin. This is a method for improving the life, impregnation, and adhesive strength after curing.
[0011]
However, Japanese Patent Publication No. Hei 6-27183 (Patent Document 1), which is a conventional technique, discloses that a microcapsule-type latent curing agent used in combination with a boron trichloride complex as a curing accelerator exerts a shear force upon mixing and stirring the composition. Destruction or dissolution of the shell (capsule part) occurs due to receiving or long-term storage. For these reasons, the curing reaction of the resin is accelerated, and the thermal latent effect of the boron trichloride complex is reduced. For this reason, the pot life at 40 ° C. of the epoxy resin composition is as short as about 5 to 7 days, and is not satisfactory as an impregnated resin for a rotating machine.
[0012]
Japanese Patent Application Laid-Open No. 2000-234049 (Patent Document 2) discloses that a boron trichloride complex and an organic acid metal salt are used in combination as a curing accelerator. It is thought that the adverse effect of reducing the acid content is small, but the storage stability (pot life) at 40 ° C. is about 2 months (65 days) because the acid anhydride is used.
[0013]
Although it depends on the amount and cycle of use of the epoxy resin composition, this technique has not been able to significantly reduce the amount of epoxy resin waste. Furthermore, since the above-mentioned prior art has an acid anhydride curing agent in the epoxy resin composition, the longer it is stored for a long time, the more susceptible to the effects of moisture and humidity, and the container or impregnation device during storage or use. There is a restriction to seal the airtight, and problems remain in terms of workability.
[0014]
On the other hand, in Japanese Patent No. 3261749 (Patent Document 3), a boron halide amine complex that is a heat latent curing agent and a solid dispersion type amine adduct are used in combination in an epoxy resin composition. However, since the thermal latency effect of the solid-dispersed amine adduct is small, the gel time of the epoxy resin composition is about 6 to 8 minutes at 120 ° C., and the pot life is considered to be very short. It is not satisfactory for impregnation applications.
[0015]
JP-T-2000-507292 (Patent Document 4) discloses a composition containing an epoxy resin containing a polyfunctional epoxy resin diluent, a boron trichloride amine complex, and silica or silicate (filler).
[0016]
Since the epoxy resin composition of the present invention is used for an integrated impregnated rotary electric machine, it is better not to add a filler or the like. The inorganic filler such as silica and alumina precipitates during use or storage of the composition due to a difference in specific gravity from the resin component, and cannot be uniformly added to the impregnated resin.
[0017]
In addition, it is difficult for the solid filler to enter a fine gap between the wound insulating layer of the insulated wire loop, a connection between the wires, a slot, a sedge, a wedge, and the like. If a resin composition to which a filler is added is dared to be used, the impregnation may be insufficient due to insufficient impregnation, resulting in defects in insulation and mechanical properties.
[0018]
[Patent Document 1]
Japanese Patent Publication No. 6-27183 (Claims)
[Patent Document 2]
JP 2000-234049 A (abstract)
[Patent Document 3]
Japanese Patent No. 3261749 (Claims)
[Patent Document 4]
JP-T-2000-507292 (abstract)
[0019]
[Problems to be solved by the invention]
An object of the present invention is to provide an epoxy resin composition having a longer pot life, a lower viscosity and a lower moisture absorption while further improving the insulation performance, and a rotating electric machine and an electrically insulated wire using the same. It is to be.
[0020]
[Means for Solving the Problems]
The epoxy resin composition of the present invention can reduce the viscosity, reduce the moisture absorption and improve the pot life by applying a thermal latent curing agent and a reactive diluent to the epoxy resin. By using, resources can be saved and the amount of waste resin can be significantly reduced.
[0021]
That is, the present invention mixes 2 to 5 parts by weight of a boron trichloride amine complex and 3 to 20 parts by weight of a reactive diluent with respect to 100 parts by weight of an epoxy resin. An epoxy resin composition containing no filler and no acid curing agent is provided.
[0022]
Further, the present invention provides an electric insulating wire loop in which an electric insulating base material is wound around a conductor element wire, incorporated into an iron core slot, and a sedge and a wedge are inserted into an inner peripheral groove of the iron core slot, so that the electric insulating wire loop can be connected to each other. Are connected at the outer end of the iron core to provide a stator in which the epoxy resin composition is impregnated and cured in a state where the electrically insulated wire and the iron core slot are integrated, and a rotating electric machine having a rotor.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
The rotating electric machine using the epoxy resin composition of the present invention will be described in detail below.
[0024]
The epoxy resin composition of the present invention is a composition having an epoxy resin, a boron trichloride amine complex, and a reactive diluent. In particular, as a curing agent for an epoxy resin, only a boron trichloride amine complex having substantially thermal latency is applied, and it is essentially unnecessary to use another curing agent or a curing catalyst.
[0025]
Further, the boron trichloride amine complex used in the present invention has an extremely high heat potential with respect to an epoxy resin. Therefore, the pot life of the epoxy resin composition of the present invention in the room temperature region (25 ° C. to 40 ° C.) can be easily increased.
[0026]
Furthermore, since the epoxy resin composition used in the present invention does not use an acid anhydride curing agent as described above, the epoxy resin composition is unlikely to be deteriorated by moisture or moisture during storage or use. Therefore, the epoxy resin composition of the present invention has an advantage that it is very unlikely to cause deterioration and the like even in a management method and a handling method like a general epoxy resin, and is excellent in handleability and workability.
[0027]
Since the epoxy resin composition of the present invention is used for an integrated impregnated rotary electric machine, it is better not to add a filler or the like. In particular, inorganic fillers such as silica and alumina are precipitated during use or storage due to a difference in specific gravity from the resin component, and cannot be uniformly added to the impregnated resin. In addition, it becomes difficult for the solid filler to enter the wound insulating layer of the insulated wire, the connection between the wires, or a minute gap such as a slot, a sedge, or a wedge. It is not recommended to add a particulate filler because organic polymer particles may impair the resin impregnation during the integrated impregnation.
[0028]
Each material of the epoxy resin composition of the present invention will be described. The epoxy resin used in the present invention is preferably liquid in a room temperature range (25 ° C. to 40 ° C.). it can. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol A / F type epoxy resin, resorcinol type epoxy resin, alicyclic type epoxy resin and the like are mentioned, and the epoxy resin is used alone or in combination of two or more. Can be used.
[0029]
Next, the boron trichloride amine complex as the latent curing agent is not limited as long as it is a compound having the property of curing or accelerating the curing of an epoxy resin or a reactive diluent. For example, boron trichloride N, N-dimethyloctylamine complex, boron trichloride N, N diethyldioctylamine complex, boron trichloride N, N-dimethyldodecylamine complex and the like can be mentioned. Can be used.
[0030]
Among the above boron trichloride amine complexes, it is particularly preferable to use boron trichloride N, N-dimethyloctylamine complex from the viewpoint of prolonging the pot life of the epoxy resin composition. As the compounding amount of the boron trichloride amine complex, 2 to 5 parts by weight is mixed with respect to 100 parts by weight of the epoxy resin from the viewpoint of achieving both a prolonged pot life and properties of a cured product (such as a glass transition temperature). Is preferred.
[0031]
If the amount is less than 2 parts by weight, the curing reactivity becomes slow, which is advantageous for pot life but causes deterioration of the cured product characteristics. When the amount is more than 5 parts by weight, it is advantageous to improve the properties of the cured product, but the pot life may be shortened.
[0032]
Further, when the boron trichloride amine complex exhibits crystallinity at a desired mixing temperature, it can be easily mixed with the epoxy resin by heating and melting in advance, and separation and sedimentation hardly occur after mixing.
[0033]
Next, the reactive diluent may be any compound that is liquid at normal temperature (25 ° C.) and that is cured or accelerated by the boron trichloride amine complex. For example, styrene oxide, aliphatic diglycidyl ether, aromatic diglycidyl ether and the like can be mentioned, and they can be used alone or in combination of two or more. The amount of the reactive diluent is preferably 3 to 20 parts by weight based on 100 parts by weight of the epoxy resin, from the viewpoint of achieving both low viscosity and cured product characteristics of the epoxy resin composition.
[0034]
If the amount is less than 3 parts by weight, it is difficult to obtain a low viscosity, so that the impregnating property to the electric insulation wire or the rotating electric machine stator is reduced. May cause a decrease.
[0035]
The epoxy resin composition described above has a long pot life, low viscosity, and low moisture absorption. By applying the epoxy resin composition to an integrated impregnated rotary electric machine, a rotary electric machine having excellent insulation performance can be manufactured.
[0036]
Hereinafter, the epoxy resin composition and the rotating electric machine of the present invention will be specifically described with reference to Examples, Reference Examples, and Comparative Examples.
[0037]
First, each property of the epoxy resin composition used in the present invention and the epoxy resin composition of the comparative example will be described in Examples. The composition was evaluated by the following measurement method and conditions.
[0038]
(1) Initial viscosity
About 70 ml of the epoxy resin composition was placed in a 100 ml glass ampoule (height: 100 mm × diameter: 30 mm) and left in an oil bath kept at 25 ° C. and 40 ° C. for 30 minutes to obtain an initial viscosity for 30 minutes. (Manufactured by the company).
[0039]
(2) Pot life
For the pot life, a specified amount of the epoxy resin composition was put into a bubble viscometer (foam viscometer specified by JIS K7233, made of glass), the upper part was sealed with a silicone rubber stopper, and left in a constant temperature bath at 40 ° C. according to the following measurement method. Judgment was made based on the number of days when the viscosity reached 0.5 Pa · s.
[0040]
The pot life determination viscosity was measured by measuring the time t (s) in which the bubble rises to a predetermined position by inverting the bubble viscometer containing the epoxy resin composition at 40 ° C. and measuring the time t (s). Was used to calculate the viscosity η (Pa · s) of the epoxy resin composition.
Note that a coefficient (0.065) was previously determined from the relationship between the bubble rising time (s) and the viscosity (Pa · s) using a known viscosity standard liquid specified in JISZ8809.
η = 0.065 × t Equation [1]
(3) Glass transition temperature
The glass transition temperature was obtained by processing a cured product obtained by curing the epoxy resin composition at 175 ° C./4 h into a length of 10 mm × diameter of 8 mm and using a TM-4000 (manufactured by Vacuum Riko Co., Ltd.) at a heating rate of 2 ° C./min. .
[0041]
(4) hygroscopicity
About 80 cc of the epoxy resin composition was poured into a 100 ml glass sample bottle (height 100 mm × diameter 30 φmm) and left in a room at a temperature of 25 ° C. and a humidity of 50% for 30 days without a lid. It was confirmed whether the epoxy resin composition was deteriorated such as a precipitate or not.
[0042]
[Examples 1-3, Comparative Examples 1-2]
The epoxy resin compositions of Examples 1 to 3 and Comparative Examples 1 and 2 of the present invention were prepared using boron trichloride N, N-dimethyloctylamine complex (manufactured by Nagase ChemteX Corporation, trade name: DY-9577) shown in Table 1. Predetermined amounts of styrene oxide (manufactured by Wako Pure Chemical Industries, Ltd.) as a reactive diluent and heated and dissolved at 80 ° C. in advance are weighed and mixed in a 200 ml glass sample bottle, and a predetermined amount of bisphenol A type is mixed. It was prepared by mixing with an epoxy resin (trade name: AER-250, manufactured by Asahi Ciba). Each property of the produced epoxy resin composition was evaluated.
[0043]
As a result, Examples 1 to 3 had an initial viscosity of 0.5 Pa · s or less at 25 ° C. and 0.26 Pa · s or less at 40 ° C., and the pot life was 0.5 Pa · s even after 200 days. The gelation time was 35 to 90 minutes, and the glass transition temperature (hereinafter referred to as Tg) of the cured product was 120 ° C. or higher.
[0044]
On the other hand, in Comparative Example 1, since the amount of DY-9577 was as small as 1 part by weight, there was no particular problem with the initial viscosity and the pot life, but Tg was 104 ° C., which was lower than that of this example.
[0045]
In Comparative Example 2, the pot life was shortened to 130 days because the amount of DY-9577 was as large as 6 parts by weight.
[0046]
As described above, Examples 1 to 3 have the effects of lowering the initial viscosity in the room temperature region and increasing the pot life by about 30%.
[0047]
[Table 1]
Figure 2004297976
[0048]
[Examples 4 to 6, Comparative Examples 3 to 4]
The epoxy resin compositions of Examples 4 to 6 and Comparative Examples 3 to 4 were bisphenol A / F type epoxy resins (manufactured by Nagase ChemteX Corporation, trade name PY-302-2) and resorcinol type epoxy resins shown in Table 2. EX-201 (trade name, manufactured by Nagase ChemteX Corporation), DY-9577 as a curing agent, and styrene oxide and an aliphatic diglycidyl ether (trade name: DY-022, manufactured by Nagase ChemteX Corporation) as reactive diluents. Using. An epoxy resin composition was prepared in the same manner as in Example 1, and each property was evaluated.
[0049]
As a result, in Examples 4 to 6, the initial viscosity was 0.5 Pa · s or less at 25 ° C. and 0.25 Pa · s or less at 40 ° C., and the pot life was 0.5 Pa · s even after 200 days. The gelation time was 55 to 85 minutes, and the cured product had a good Tg of 110 ° C. or higher.
[0050]
On the other hand, in Comparative Example 3, although the amount of the reactive diluent was as small as 2 parts by weight, there was no problem with Tg or the like, but the initial viscosity was 0.61 Pa · s at 25 ° C. and 0.33 Pa · s at 40 ° C. Got higher. In Comparative Example 4, the Tg was as low as 98 ° C. because the content of the reactive diluent was as large as 21 parts by weight.
[0051]
Examples 4 to 6 were effective in reducing the initial viscosity in the room temperature region by about 20% and increasing the pot life by about 30% (compared to Comparative Example 3).
[0052]
[Table 2]
Figure 2004297976
[0053]
[Example 7, Comparative Examples 5 to 7]
The epoxy resin compositions of Example 7 of the present invention and Comparative Examples 5 to 7 were bisphenol A-type epoxy resins (manufactured by Asahi Ciba, trade name AER-260) and bisphenol F-type epoxy resins (Asahi Denka Co., Ltd.) shown in Table 3. DY-9577 as a curing agent, an amine adduct compound (trade name Amicure MY-24), methylhexahydrophthalic anhydride (trade name HN-5500, manufactured by Hitachi Chemical Co., Ltd.) As the reactive diluent, two kinds of styrene oxide and aromatic diglycidyl ether (trade name DY-023, manufactured by Nagase ChemteX Corporation) were used. An epoxy resin composition was prepared in the same manner as in Example 1, and each property was evaluated.
[0054]
As a result, Example 7 had an initial viscosity of 0.47 Pa · s at 25 ° C. and 0.19 Pa · s at 40 ° C., and the pot life did not exceed 0.5 Pa · s even after 200 days. The gelation time was 50 minutes, and the moisture resistance was good without any deterioration such as precipitates.
[0055]
On the other hand, Comparative Examples 5 and 6 are cases in which DY-9577 and MY-24 are used in combination or only MY-24 is used as the curing agent, so that the initial viscosities are 0.51 Pa · s to 0.54 Pa · s, slightly increased to 0.30 to 0.32 Pa · s at 40 ° C., and the pot life exceeded 0.5 Pa · s within 30 days.
[0056]
Comparative Example 7 had low initial viscosities of 0.40 Pa · s at 25 ° C. and 0.10 Pa · s at 40 ° C., but the pot life exceeded 0.5 Pa · s in 8 days, Since the sample was used in combination, a precipitate was formed on the surface of the sample bottle and the like in the moisture resistance test.
[0057]
In Example 7, the initial viscosity in the room temperature region can be reduced by 15%, the pot life can be prolonged to about 6 times or more (comparative examples 5 to 7), and the water content can be kept even if the container is left closed without being stored. Since there was no deterioration due to heat or moisture and the handling property was further improved, there was an effect that the amount of waste of the epoxy resin composition could be reduced by 50%.
[0058]
Furthermore, there is an effect that the handling property can be improved because there is no deterioration due to moisture or moisture even when the storage is left without being closed during storage.
[0059]
[Table 3]
Figure 2004297976
[0060]
[Example 8, Comparative Examples 8, 9]
A method for manufacturing an electrically insulated wire using the novel epoxy resin composition according to the present invention and characteristics of the obtained wire will be described. The electrically insulated wire is manufactured by impregnating and curing the epoxy resin composition of the present invention into a single wire in which an electrically insulating base material is wound around a conductor formed into a prescribed shape. In the case of the above-mentioned insulated wire, as in the case of the integrated impregnated rotary electric machine, the impregnated epoxy resin composition is required to have good impregnation, long pot life, moisture resistance, and good curability. . The epoxy resin composition of the present invention is most suitable for an integrated impregnated rotary electric machine, but has a great effect when applied to a general electric machine insulated wire ring.
[0061]
Hereinafter, an example in which an electrically insulated wire is manufactured using the epoxy resin composition according to the present invention will be specifically described. FIG. 1A is an external view of an electrically insulated wire ring 1 manufactured using the epoxy resin composition of the present invention, and FIG. 1B is an enlarged internal cross-sectional view of a portion indicated by a circle in FIG. It is. The electrically insulated wire single piece is formed by arranging the insulated conductors 2 in two rows and six layers and processing it into the shape shown in FIG. 1 (a), and a polyester film-lined mica tape 3 (0.13 mm thick × 15 mm wide) is provided on the outer peripheral side. Two layers were wound in half.
[0062]
Further, a glass cloth tape 4 (0.18 mm thick × 15 mm wide) was wound around the outer periphery side by a half hook to make a single layer. This electrically insulated wire alone was immersed in an injection furnace maintained at 40 ° C. in the epoxy resin composition of Example 1 left at 40 ° C./200 days, vacuum injected (10 Pa / 2 h), and pressure injected (0.5 MPa / After 4 h), the composition was cured under the condition of 175 ° C./4 h, and was naturally cooled to room temperature to produce the electrically insulated wire loop 1 of Example 8.
[0063]
On the other hand, in Comparative Example 8, an electrically insulated wire was produced in the same manner as in Example 8 except that the epoxy resin composition of Comparative Example 1 left at 40 ° C./200 days was used. In Comparative Example 9, an electrically insulated wire was produced in the same manner as in Example 8, except that the epoxy resin composition of Comparative Example 2 left at 40 ° C./200 days was used.
[0064]
A voltage was applied to the electrically insulated wires of Example 8 and Comparative Examples 8 and 9 so as to overload at 1.5 times the normal value, and the insulator such as the epoxy resin composition of the electrically insulated wire was heated and degraded. After that, a withstand voltage test of the electrically insulated wire loop was performed. As a result, in the electrically insulated wire of Example 8, no short circuit occurred in the withstand voltage test. On the other hand, the electrically insulated wire of Comparative Example 8 had good impregnation, but the Tg of the epoxy resin composition was low, so that the deterioration was remarkable and a short circuit occurred.
[0065]
In addition, the electrically insulated wire loop of Comparative Example 9 was poor in impregnating property of the epoxy resin composition, so that a withstand voltage could not be secured and a short circuit occurred.
[0066]
Since the electrically insulated wire of Example 8 used the epoxy resin composition of Example 1 having improved pot life and reduced viscosity, a short circuit did not occur in the withstand voltage test, and the insulation performance was improved.
[Example 9, Comparative Examples 10 and 11]
An example in which an electrically insulated wire is manufactured using the epoxy resin composition according to the present invention will be described. Example 9 used the epoxy resin composition of Example 6 left at 40 ° C./200 days. Otherwise, the procedure of Example 8 was followed to fabricate an electrically insulated wire loop. Comparative Example 10 used the epoxy resin composition of Comparative Example 3 left at 40 ° C./200 days. Otherwise, the procedure of Example 8 was followed to fabricate an electrically insulated wire loop.
[0067]
Comparative Example 11 also used the epoxy resin composition of Comparative Example 4 left at 40 ° C./200 days. Otherwise, the procedure of Example 8 was followed to fabricate an electrically insulated wire loop. A withstand voltage test was performed on the electrically insulated wires of Example 9 and Comparative Examples 10 and 11 under the same conditions as in Example 8. As a result, in the electrically insulated wire of Example 9, no short circuit occurred in the withstand voltage test.
[0068]
On the other hand, in the electrically insulated wire of Comparative Example 10, impregnation failure occurred due to the high viscosity of the epoxy resin composition, and a short circuit occurred in the withstand voltage test. In addition, the electrical insulation wire of Comparative Example 11 had good impregnation, but the Tg of the epoxy resin composition was low, so that the deterioration was severe and a short circuit occurred.
[0069]
Since the electrically insulated wire of Example 9 used the epoxy resin composition of Example 6 having improved pot life and reduced viscosity, a short circuit did not occur in a withstand voltage test, and thus the insulating performance was improved.
[Example 10]
An example in which a rotating electric machine is manufactured using the epoxy resin composition according to the present invention will be described. FIG. 2A is a sectional front view of a rotating electric machine stator of the present invention, and FIG. 2B is an enlarged sectional view of a stator slot. FIG. 3 is a sectional perspective view of the rotating electric machine of the present invention. After inserting a single electrically insulated wire loop similar to that of the eighth embodiment into the iron core slot 6 of the iron core 5, a sedge 7 and a wedge 8 shown in a sectional view of the stator slot in FIG. Each of the stators was inserted for fixing to prepare a stator alone.
[0070]
A stator 9 was prepared by adding the epoxy resin composition of Example 1 to the stator alone under the same injection conditions and curing conditions as when the electrically insulated wire of Example 8 was fabricated. As shown in FIG. 3, the stator 9 and the rotor 10 and the like were assembled and connected to produce a rotating electric machine 11 of the tenth embodiment.
[0071]
Since the rotating electric machine of the tenth embodiment employs the epoxy resin composition of the first embodiment having a low viscosity and improved impregnating property, it is possible to reliably impregnate the details of the rotating electric machine stator in a short time. This has the effect of shortening the manufacturing time and improving the insulation performance.
[Example 11]
An example in which a rotating electric machine is manufactured using the epoxy resin composition according to the present invention will be described. In Example 11, a rotating electric machine was manufactured in the same manner as in Example 10 using the same electrically insulated wire loop as in Example 10 and the epoxy resin composition of Example 6.
[0072]
Since the rotating electric machine of the eleventh embodiment uses the epoxy resin composition of the sixth embodiment having a low viscosity and improved impregnating properties, it is possible to surely impregnate the details of the rotating electric machine stator in a short time. This has the effect of shortening the time and improving the insulation performance.
[Example 12]
An example in which a rotating electric machine is manufactured using the epoxy resin composition according to the present invention will be described. In the twelfth embodiment, a rotating electric machine was manufactured in the same manner as in the eleventh embodiment using the same electrically insulated wire loop as in the first embodiment and the epoxy resin composition of the seventh embodiment.
[0073]
Since the rotating electric machine of the twelfth embodiment employs the epoxy resin composition of the seventh embodiment having a low viscosity and improved impregnation, it is possible to reliably impregnate the details of the rotating electric machine stator in a short time. This has the effect of shortening the time and improving the insulation performance.
[0074]
【The invention's effect】
Advantageous Effects of Invention According to the present invention, it is possible to provide a rotating electric machine and an electrically insulated wire using an epoxy resin composition capable of significantly increasing the pot life and improving the viscosity and the hygroscopicity.
[Brief description of the drawings]
FIG. 1 is an external view of an electrically insulated wire loop of the present invention and an enlarged sectional view thereof.
FIG. 2 is a sectional front view of a rotating electric machine stator of the present invention and an enlarged sectional view of a stator slot.
FIG. 3 is a sectional perspective view of the rotating electric machine according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Insulated wire loop, 2 ... Conductor 3, ... Polyester film backing mica tape, 4 ... Glass tape, 5 ... Stator core, 6 ... Stator slot, 7 ... Sedge, 8 ... Wedge, 9 ... Stator, 10 ... rotor, 11 ... rotating electric machine.

Claims (5)

導体素線に電気絶縁基材を巻回した電気絶縁線輪を鉄心スロットに組込み、該鉄心スロットの内周溝にサシギ及びウェッジを挿入し、電気絶縁線輪を鉄心外端部で接続して、電気絶縁線輪単体と鉄心スロットを一体化した状態で、エポキシ樹脂100重量部に対して、三塩化ホウ素アミン錯体を2〜5重量部、反応性希釈剤を3〜20重量部混合した、常温で液状の、無機充填材及び酸硬化剤を実質的に含まないエポキシ樹脂組成物を含浸・硬化した固定子と、回転子を有する回転電機。An electrically insulated wire loop in which an electrically insulating base material is wound around a conductor wire is incorporated in an iron core slot, a sedge and a wedge are inserted into an inner circumferential groove of the iron core slot, and the electrically insulated wire loop is connected at an outer end of the iron core. In a state where the electric insulation wire loop and the iron core slot were integrated, 2 to 5 parts by weight of a boron trichloride amine complex and 3 to 20 parts by weight of a reactive diluent were mixed with 100 parts by weight of the epoxy resin. A rotating electric machine having a stator which is liquid at room temperature and is impregnated and cured with an epoxy resin composition substantially free of an inorganic filler and an acid curing agent, and a rotor. 導体素線に電気絶縁基材を巻回した電気絶縁線輪を鉄心スロットに組込み、該鉄心スロットの内周溝にサシギ及びウェッジを挿入し、電気絶縁線輪を鉄心外端部で接続して、電気絶縁線輪単体と鉄心スロットを一体化した状態で、実質的に、エポキシ樹脂100重量部と、三塩化ホウ素アミン錯体2〜5重量部及び反応性希釈剤3〜20重量部とからなる、常温で液状のエポキシ樹脂組成物を含浸・硬化した固定子と、回転子を有する回転電機。An electrically insulated wire loop in which an electrically insulating base material is wound around a conductor wire is incorporated in an iron core slot, a sedge and a wedge are inserted into an inner circumferential groove of the iron core slot, and the electrically insulated wire loop is connected at an outer end of the iron core. In the state where the electric insulation wire loop and the iron core slot are integrated, it consists essentially of 100 parts by weight of an epoxy resin, 2 to 5 parts by weight of a boron trichloride amine complex, and 3 to 20 parts by weight of a reactive diluent. A rotating electric machine having a stator impregnated and cured with a liquid epoxy resin composition at room temperature, and a rotor. 規定形状に成形した導体に電気絶縁基材を巻回した線輪単体に、エポキシ樹脂100重量部に対して、三塩化ホウ素アミン錯体を2〜5重量部、反応性希釈剤を3〜20重量部混合した、常温で液状の、無機充填材及び酸硬化剤を実質的に含まないエポキシ樹脂組成物を含浸・硬化して製作された電気絶縁線輪。A single wire formed by winding an electrically insulating base material on a conductor formed into a prescribed shape, 2 to 5 parts by weight of a boron trichloride amine complex and 3 to 20 parts by weight of a reactive diluent with respect to 100 parts by weight of an epoxy resin. An electrically insulated wire manufactured by impregnating and curing a partially mixed epoxy resin composition substantially free of an inorganic filler and an acid curing agent at room temperature. エポキシ樹脂100重量部に対して、三塩化ホウ素アミン錯体2〜5重量部、反応性希釈剤3〜20重量部を含み,常温で液状の、無機充填材及び酸硬化剤を実質的に含まない、一体化含浸型回転電機用エポキシ樹脂組成物。Contains 2 to 5 parts by weight of a boron trichloride amine complex and 3 to 20 parts by weight of a reactive diluent based on 100 parts by weight of an epoxy resin, and is substantially free of an inorganic filler and an acid curing agent which is liquid at normal temperature. , An epoxy resin composition for integrated impregnated rotary electric machines. 実質的にエポキシ樹脂100重量部と、三塩化ホウ素アミン錯体2〜5重量部及び反応性希釈剤3〜20重量部とからなる、常温で液状の一体化含浸型回転電機用エポキシ樹脂組成物。An epoxy resin composition for an integrated impregnated rotary electric machine, which is liquid at room temperature, comprising substantially 100 parts by weight of an epoxy resin, 2 to 5 parts by weight of a boron trichloride amine complex, and 3 to 20 parts by weight of a reactive diluent.
JP2003090464A 2003-03-28 2003-03-28 Rotating electric machine, electrically insulated wire ring and epoxy resin composition used therefor Expired - Fee Related JP3980507B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003090464A JP3980507B2 (en) 2003-03-28 2003-03-28 Rotating electric machine, electrically insulated wire ring and epoxy resin composition used therefor
KR1020040012171A KR100587581B1 (en) 2003-03-28 2004-02-24 Rotary electrical machinery, electric insulating coil and epoxy resin composition used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003090464A JP3980507B2 (en) 2003-03-28 2003-03-28 Rotating electric machine, electrically insulated wire ring and epoxy resin composition used therefor

Publications (2)

Publication Number Publication Date
JP2004297976A true JP2004297976A (en) 2004-10-21
JP3980507B2 JP3980507B2 (en) 2007-09-26

Family

ID=33404090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003090464A Expired - Fee Related JP3980507B2 (en) 2003-03-28 2003-03-28 Rotating electric machine, electrically insulated wire ring and epoxy resin composition used therefor

Country Status (2)

Country Link
JP (1) JP3980507B2 (en)
KR (1) KR100587581B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3096442A1 (en) * 2015-05-19 2016-11-23 Hitachi, Ltd. Dynamo-electric machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3096442A1 (en) * 2015-05-19 2016-11-23 Hitachi, Ltd. Dynamo-electric machine
JP2016220359A (en) * 2015-05-19 2016-12-22 株式会社日立製作所 Rotary electric machine

Also Published As

Publication number Publication date
JP3980507B2 (en) 2007-09-26
KR20040086530A (en) 2004-10-11
KR100587581B1 (en) 2006-06-08

Similar Documents

Publication Publication Date Title
JP3201262B2 (en) Thermosetting resin composition, electric insulated wire loop, rotating electric machine, and method of manufacturing the same
CN108028092B (en) Solid, in particular tape-shaped, insulating material, impregnating agent formulation for the production of an insulating system in a vacuum impregnation process, and machine having such an insulating system
KR100197167B1 (en) Electrically insulated coil, electric rotating machine, and method of manufacturing the same
EP2707411B1 (en) Insulation formulations
US4582723A (en) Heat-hardenable reaction resin mixtures for impregnating and embedding
WO2012158292A1 (en) Insulation formulations
JP6804227B2 (en) Molds, electrical equipment parts, and manufacturing methods for electrical equipment parts
JP2008179786A (en) Molding composition for producing bipolar plate
JP4403829B2 (en) Rotating electric machine, electrically insulated wire ring and epoxy resin composition used therefor
JP6101122B2 (en) Epoxy resin composition for mold transformer, mold transformer, and method for producing mold transformer
US3637572A (en) Epoxy resins with organoboron cure promotors
JPS6230215B2 (en)
JP3557938B2 (en) Thermosetting resin composition and insulating coil using the same
JP2004297976A (en) Electric rotating machine, electrically insulated coil and epoxy resin composition for use therein
JP3389533B2 (en) Epoxy resin composition and molded coil
JP2002145996A (en) Thermosetting resin composition and insulated coil using the same
WO2015177915A1 (en) Epoxy compound and epoxy resin cured product using same
JPH1171503A (en) Epoxy resin composition and insulation treatment of electric instrument using the same
JP2570210B2 (en) Prepreg
JP2000086869A (en) Epoxy resin composition and coil
JPS5921245A (en) Magnetic wedge for rotary electric machine
JPH1180324A (en) Impregnable thermosetting resin composition and electric rotating machine insulated coil
JP7168157B2 (en) COMPOSITION FOR HIGHLY HEAT RESISTANT RESIN CURED MATERIAL, ELECTRONIC COMPONENTS AND SEMICONDUCTOR DEVICE USING THE SAME
JPS60255029A (en) Coil of rotary electric machine
JPH0452703B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3980507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees