WO2015177915A1 - Epoxy compound and epoxy resin cured product using same - Google Patents
Epoxy compound and epoxy resin cured product using same Download PDFInfo
- Publication number
- WO2015177915A1 WO2015177915A1 PCT/JP2014/063647 JP2014063647W WO2015177915A1 WO 2015177915 A1 WO2015177915 A1 WO 2015177915A1 JP 2014063647 W JP2014063647 W JP 2014063647W WO 2015177915 A1 WO2015177915 A1 WO 2015177915A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- present
- epoxy resin
- cured
- epoxy compound
- epoxy
- Prior art date
Links
- PTCPJFWEKBDQAP-UHFFFAOYSA-N C(C1OC1)Oc(cc1)cc2c1c(-c1cc(-c(cc3)c(ccc(OCC4OC4)c4)c4c3OCC3OC3)cc(-c(c(cc3)c4cc3OCC3OC3)ccc4OCC3OC3)c1)ccc2OCC1OC1 Chemical compound C(C1OC1)Oc(cc1)cc2c1c(-c1cc(-c(cc3)c(ccc(OCC4OC4)c4)c4c3OCC3OC3)cc(-c(c(cc3)c4cc3OCC3OC3)ccc4OCC3OC3)c1)ccc2OCC1OC1 PTCPJFWEKBDQAP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
- C08G59/22—Di-epoxy compounds
- C08G59/24—Di-epoxy compounds carbocyclic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
Definitions
- the present invention relates to an epoxy compound and an epoxy resin cured product using the same. Specifically, the present invention relates to an epoxy resin cured product excellent in heat resistance and electrical insulation, an epoxy compound that provides the epoxy resin cured product, and an electrical device and a semiconductor device using the epoxy resin cured product.
- An epoxy resin cured product obtained from a mixture of an epoxy compound, a curing agent, a catalyst and a filler is excellent in various properties such as heat resistance, dimensional stability, moisture resistance, material strength, and electrical insulation. For this reason, cured epoxy resins range from materials for electronic components such as semiconductor encapsulants, printed wiring boards, and underfills to adhesives, liquid crystal seals, photoresists, paints, and fiber reinforced composites. , Used in a wide variety of ways.
- Examples of the epoxy compound that is a raw material for the resin material include novolac type epoxy resins, phenol aralkyl type epoxy resins, and monoglycidyloxybenzene type epoxy resins. These epoxy compounds give a cured resin with high heat resistance by a curing reaction with a phenol compound, an amine compound or an acid anhydride.
- Patent Document 1 describes (A) the following general formulas (I) and (II) as structural units in the main chain skeleton: An epoxy resin-forming material for sealing which contains an epoxy resin containing the components represented by (B), (B) curing agent, (C) curing accelerator, and (D) inorganic filler as essential components is described.
- Patent Document 2 describes a phenol aralkyl type epoxy resin having a structure in which at least glycidoxybenzenes or glycidoxynaphthalenes are bonded using an aralkyl group as a bonding group.
- the phenol aralkyl type epoxy resin is represented by the following formula (2): It describes that the epoxy resin obtained by reaction of the phenol aralkyl resin of the structure shown to epihalohydrin may be sufficient.
- Patent Document 3 is an epoxy resin composition containing an epoxy resin and a curing agent as essential components, and the epoxy resin has a molecular structure in which a monoglycidyloxybenzene structural site is bonded to an alkoxynaphthalene structural site via a methylene group.
- the said epoxy resin composition which has is described.
- cured epoxy resins having various basic skeletons have been developed.
- the conventional cured epoxy resin has a need to improve performance in terms of heat resistance and electrical insulation.
- an object of the present invention is to provide an epoxy resin cured product excellent in heat resistance and electrical insulation and an epoxy compound that provides the epoxy resin cured product.
- the epoxy compound of the present invention has a structure in which a naphthyl group having at least one glycidyl ether group is covalently bonded to at least two positions of the 1, 3 or 5 position of the benzene ring.
- the cured epoxy resin of the present invention has, as a basic skeleton, a structure in which a naphthyl group having at least one ether bridging group is covalently bonded to at least two positions of the 1, 3 or 5 position of the benzene ring.
- the cured epoxy resin of the present invention can be obtained by curing reaction of the epoxy compound of the present invention.
- an epoxy resin cured product excellent in heat resistance and electrical insulation and an epoxy compound that provides the epoxy resin cured product it is possible to provide an epoxy resin cured product excellent in heat resistance and electrical insulation and an epoxy compound that provides the epoxy resin cured product.
- FIG. 1 shows the nuclear magnetic resonance spectrum (NMR) of the epoxy compound of Example 1.
- FIG. 2 shows the nuclear magnetic resonance spectrum (NMR) of the epoxy compound of Example 2.
- FIG. 3 shows the nuclear magnetic resonance spectrum (NMR) of the epoxy compound of Example 3.
- FIG. 4 is a cross-sectional view showing an embodiment of a semiconductor device produced using the epoxy resin composition of the present invention.
- FIG. 5 is a cross-sectional view showing an embodiment of an electric wire produced using the epoxy resin composition of the present invention.
- FIG. 6 is a perspective view showing an embodiment of a rotating machine coil produced using the epoxy resin composition of the present invention.
- Epoxy compound> The present invention relates to an epoxy compound.
- the epoxy compound of the present invention needs to have a structure in which a naphthyl group having at least one glycidyl ether group is covalently bonded to at least two positions of the 1, 3 or 5 position of the benzene ring.
- the cured epoxy resin product of the present invention described below can be obtained.
- the present inventors have a structure in which an aromatic ring and another aromatic ring are bonded via a methylene group, the epoxy compound of the present invention having a structure in which a benzene ring and a naphthyl group are directly covalently bonded. It has been found that it has higher heat resistance than conventional epoxy compounds.
- the reason why the epoxy compound of the present invention has the above-described characteristics can be explained as follows. Note that the present invention is not limited to the following actions and principles.
- epoxy compounds are synthesized, for example, by reaction of a polymerization product of a phenol compound and formaldehyde with epichlorohydrin.
- the epoxy resin cured product formed by such an epoxy compound may have improved heat resistance by polyfunctionalizing and / or increasing the molecular weight of the polymerization product.
- the epoxy compound since the epoxy compound has a structure in which an aromatic ring and another aromatic ring are bonded via a methylene group, the degree of freedom of molecular motion is high, and the resulting epoxy resin cured product has high heat resistance. There was a limit to conversion.
- the epoxy compound of the present invention since the epoxy compound of the present invention has a structure in which a benzene ring and a naphthyl group are directly covalently bonded, the degree of freedom of molecular motion is limited. For this reason, the cured epoxy resin obtained by curing the epoxy compound of the present invention has a high glass transition temperature. Therefore, the epoxy compound of the present invention having a structure in which a benzene ring and a naphthyl group are directly covalently bonded has a conventional structure in which an aromatic ring and another aromatic ring are bonded via a methylene group. Compared with the epoxy compound, an epoxy resin cured product having high heat resistance can be formed.
- the epoxy compound and the cured epoxy resin of the present invention have a structure in which a benzene ring and a naphthyl group are directly covalently bonded, for example, the nuclear magnetic resonance spectrum of the epoxy compound and the cured epoxy resin. This can be confirmed by measuring (NMR).
- the glass transition temperature of the cured epoxy resin of the present invention can be determined by, for example, a thermodynamic viscoelasticity measuring device (DMA).
- the epoxy compound of the present invention needs to have a structure in which a naphthyl group is covalently bonded to at least two positions of the 1, 3 or 5 position of the benzene ring.
- the epoxy compound of the present invention preferably has a structure in which one naphthyl group is covalently bonded to the 1- and 3-positions or 1, 3- and 5-positions of the benzene ring, respectively. More preferably, it has a structure in which one naphthyl group is covalently bonded to the 5-position.
- the naphthyl group has a predetermined number of glycidyl ether groups as described below.
- the epoxy compound of the present invention is arranged so that a benzene ring and a naphthyl group are covalently bonded at the position of the benzene ring to form a bent structure in which two adjacent naphthyl groups have a bond angle of 120 °. Is done.
- the epoxy compound of the present invention has a lower viscosity than a conventional epoxy compound having a linear molecular arrangement.
- the epoxy compound of the present invention has a melt viscosity at 150 ° C. usually in the range of 5 to 1000 ⁇ mPa ⁇ s, typically in the range of 5 to 200 ⁇ mPa ⁇ s, particularly 10 to 100 The range is mPa ⁇ s.
- the epoxy compound of this invention can have high moldability.
- the epoxy compound of this invention has the said structure by measuring the nuclear magnetic resonance spectrum (NMR) of this epoxy compound, for example.
- NMR nuclear magnetic resonance spectrum
- the melt viscosity of the epoxy compound of this invention can be determined with a melt viscosity measuring apparatus, for example.
- the naphthyl group covalently bonded to the benzene ring needs to have at least one glycidyl ether group.
- the naphthyl group preferably has 1 or 2 glycidyl ether groups, and more preferably has 2 glycidyl ether groups.
- the epoxy compound of the present invention preferably has one naphthyl group having one or two glycidyl ether groups at a predetermined position of the benzene ring, and preferably one naphthyl having two glycidyl ether groups. It is more preferable to have each group.
- the cured epoxy resin formed by the epoxy compound of the present invention has high heat resistance due to the bonding mode between the benzene ring and the naphthyl group.
- the epoxy compound of this invention can form the epoxy resin hardened
- numerator high by having an epoxy group of the said range.
- concentration of epoxy groups in the molecule when the concentration of epoxy groups in the molecule is high, the concentration of hydroxyl groups in the molecule generated by the curing reaction is high. In this case, the relative permittivity of the cured epoxy resin product may be increased.
- the epoxy compound of the present invention has a low epoxy group concentration in the molecule and a high epoxy equivalent.
- the epoxy equivalent of the epoxy compound of the present invention is usually in the range of 100 to 300 g / eq, typically in the range of 140 to 300 g / eq, in particular 220 to 300 It is in the range of g / eq. Therefore, the cured epoxy resin formed by the epoxy compound of the present invention can have a low dielectric constant. Thereby, the epoxy resin hardened
- the epoxy group concentration or the number of glycidyl ether groups introduced in the epoxy compound of the present invention can be determined, for example, by conducting elemental analysis or mass spectrometry of the epoxy compound.
- the epoxy equivalent of the epoxy compound of the present invention can be determined, for example, by the method specified in JIS K7236.
- the epoxy compound of the present invention it is preferable that at least one glycidyl ether group is bonded to at least one of the 4, 5 and 6 positions of the naphthyl group, and at least one glycidyl ether group is 4 It is more preferable that the glycidyl ether group is bonded to at least one of the 6 and 6 positions, and two glycidyl ether groups are further bonded to the 4 and 6 positions. Since the glycidyl ether group is bonded to the position of the naphthyl group, the glycidyl ether group bonded to two adjacent naphthyl groups is arranged to form a bent structure. Therefore, the epoxy compound of the present invention having the above structure has a low melt viscosity, and as a result, can have high moldability.
- the epoxy compound of this invention has the said structure by measuring the nuclear magnetic resonance spectrum (NMR) of this epoxy compound, for example.
- NMR nuclear magnetic resonance spectrum
- the epoxy compound of the present invention has the formula (I): It is a compound represented by these.
- R 1 , R 3 and R 5 are independently of each other hydrogen or a naphthyl group having at least one glycidyl ether group, provided that at least one of R 1 , R 3 and R 5 Two are not hydrogen.
- R 1 , R 3 and R 5 are independently of each other hydrogen or a naphthyl group having at least one glycidyl ether group in at least one of the 4, 5 and 6 positions. It is more preferable that it is hydrogen or a naphthyl group having 1 or 2 glycidyl ether groups at least at positions 4 and 6, and hydrogen or 2 glycidyl ether groups are 4 and 6 More preferred is a naphthyl group at the position.
- R 1 and R 3 are naphthyl groups as defined above, R 5 is preferably hydrogen, and R 1 , R 3 and R 5 are naphthyl groups as defined above. It is more preferable that
- Particularly preferred epoxy compounds of the invention represented by formula (I) are: It is a compound which has either structure of these.
- the epoxy compound of the present invention having the above structure can form a cured epoxy resin having high heat resistance and excellent electrical insulation.
- the epoxy compound of the present invention can be produced, for example, by cross-coupling a naphthalene derivative and a benzene derivative and then glycidyl etherifying the obtained naphthylbenzene derivative.
- the cross coupling reaction can be carried out, for example, by applying Suzuki-Miyaura coupling using naphthalene boronic acid and halogenated benzene as reaction materials.
- the glycidyl etherification reaction can be carried out, for example, by reacting epihalohydrin and hydroxylated naphthylbenzene.
- the reaction material used for the reaction and the reaction conditions for each reaction can be appropriately selected based on the structure of the epoxy compound of the present invention.
- Epoxy resin composition The epoxy compound of the present invention can form an epoxy resin cured product by curing reaction with a curing agent. Therefore, the present invention also relates to an epoxy resin composition comprising the epoxy compound of the present invention.
- the epoxy resin composition of the present invention needs to contain the epoxy compound of the present invention and at least one curing agent.
- the at least one curing agent contained in the epoxy resin composition of the present invention is usually a compound having a hydroxyl group.
- the curing agent is preferably a phenolic curing agent having a hydroxyl group, and more preferably a phenolic curing agent having two or more hydroxyl groups in the molecule.
- the curing agent include, but are not limited to, for example, resol-type phenol resins such as aniline-modified resole resin or dimethyl ether resole resin; Type phenol resin; and phenol compounds such as phenol aralkyl resin, 2,2′-biphenol, resorcinol, and the like. Only one kind of the curing agent may be used, or a mixture of two or more kinds may be used.
- the glycidyl ether group of the epoxy compound of the present invention and the curing agent undergo a crosslinking reaction to form a cured epoxy resin product. can do.
- the epoxy resin composition of the present invention may contain at least one curing accelerator as desired.
- the curing accelerator include, but are not limited to, for example, tertiary amines such as triethanolamine, tetramethylbutanediamine, tetramethylpentanediamine, tetramethylhexanediamine, triethylenediamine, or methylaniline; dimethylaminoethanol or Mention may be made of oxyalkylamines such as dimethylaminopentanol; and amines such as tris (dimethylaminomethyl) phenol or methylmorpholine.
- curing accelerator examples include, but are not limited to, 2-undecylimidazole, 2-methylimidazole, 2-ethylimidazole, 2-heptadecylimidazole, 2-methyl-4-ethylimidazole, 1 -Butylimidazole, 1-propyl-2-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole or Imidazole compounds such as 1-azine-2-undecylimidazole; triphenylphosphine tetraphenylborate, triethylaminetetraphenylborate, N-methylmorpholine tetraphenylborate, pyridinetetraphenylborate, 2-ethyl-4-methylimidazoletetraphenyl
- the epoxy resin composition of the present invention may contain at least one filler as desired.
- the filler can be appropriately selected based on desired characteristics.
- examples of the filler include, but are not limited to, silica powder such as fused silica, talc, aluminum powder, mica, clay, and calcium carbonate.
- the epoxy resin composition of the present invention may contain at least one additive as desired.
- the additive include, but are not limited to, release agents such as natural waxes, synthetic waxes, linear aliphatic metal oxides, acid amides, esters, paraffins; carbon black or bengara Coloring agents such as: various coupling agents; metal hydroxides such as aluminum hydroxide or magnesium hydroxide.
- the present invention also relates to a cured epoxy resin obtained by curing reaction of the epoxy resin composition of the present invention.
- the epoxy resin cured product of the present invention has a basic skeleton having a structure in which a naphthyl group having at least one ether bridging group is covalently bonded to at least two positions of the 1, 3 or 5 position of the benzene ring.
- the ether crosslinking group is a group formed from a glycidyl ether group of the epoxy compound of the present invention contained in the epoxy resin composition of the present invention.
- the ether crosslinking group is formed, for example, by the ring opening reaction of the hydroxyl group of the curing agent contained in the epoxy resin composition of the present invention with the glycidyl ether group of the epoxy compound of the present invention, or by the ring opening reaction.
- a hydroxyl group derived from a glycidyl ether group is formed by further ring-opening reaction with another glycidyl ether group.
- the ether bridging group has the following formula (II): [Wherein, * represents a bonding position. ] It is preferable that it is a bivalent group represented by these.
- the cured epoxy resin of the present invention has a high glass transition temperature.
- the cured epoxy resin of the present invention usually has a high glass transition temperature of 150 ° C. or higher, typically in the range of 150 to 450 ° C., particularly in the range of 170 to 350 ° C.
- the cured epoxy resin of the present invention can have high heat resistance.
- the glass transition temperature of the cured epoxy resin of the present invention can be determined by, for example, a thermodynamic viscoelasticity measuring device (DMA).
- DMA thermodynamic viscoelasticity measuring device
- the cured epoxy resin of the present invention has a low relative dielectric constant.
- the cured epoxy resin of the present invention usually has a relative dielectric constant of 3.5 or less, typically in the range of 2.0 to 3.5.
- the cured epoxy resin of the present invention can be a resin material having high dielectric breakdown strength and excellent electrical insulation.
- the relative dielectric constant of the cured epoxy resin of the present invention can be determined as a value at 10 GHz by, for example, the cavity resonance perturbation method.
- the epoxy resin composition of the present invention can be obtained by curing reaction of the epoxy resin composition of the present invention.
- the temperature of the curing reaction is preferably in the range of 100 to 200 ° C, more preferably in the range of 150 to 180 ° C.
- the time for the curing reaction is preferably in the range of 0.5 to 12 hours, and more preferably in the range of 1 to 6 hours.
- the cured epoxy resin of the present invention can be used as a sealing material for electrical devices and semiconductor devices. Therefore, the present invention also relates to a semiconductor device having a semiconductor element and a sealing member that seals the semiconductor element and includes the cured epoxy resin of the present invention.
- semiconductor device means any semiconductor device known in the art.
- semiconductor device of the present invention include, but are not limited to, for example, a television receiver, a mobile phone, a device built in an electronic device such as a computer or an electronic device, or a computer or the like in an automobile or various industrial devices. Can be cited as an example.
- the “semiconductor element” means an electronic component itself composed of a semiconductor or an element at the functional center of the electronic component.
- the semiconductor element include, but are not limited to, a transistor, an integrated circuit (IC or LSI), a resistor, and a capacitor.
- the “sealing member” is one of members constituting the semiconductor device and means a member used for preventing air oxidation of the semiconductor element and / or contamination of the semiconductor element.
- FIG. 4 shows a cross-sectional view of a power semiconductor device which is an embodiment of the semiconductor device of the present invention.
- the lower surface side electrode of the power semiconductor element 401 is electrically connected to the circuit wiring member 402 disposed on the upper surface of the insulating substrate 406 via the bonding material 404. It is connected.
- the main electrode of the power semiconductor element 401 is electrically connected to the lead member 403 via the wire 405.
- a heat radiating plate 407 for releasing heat generated in the power semiconductor element 401 to the outside is provided.
- the periphery of the power semiconductor element 401 is sealed with a sealing member 408 in a state where a part of the circuit wiring member 402, the lead member 403, and the heat sink 407 are exposed.
- the sealing member 408 includes the cured epoxy resin of the present invention.
- the cured epoxy resin of the present invention has high dielectric breakdown strength. For this reason, in the power semiconductor device of this invention which uses the epoxy resin hardened
- the structure of the power semiconductor device shown in FIG. 4 is an example showing an embodiment of the semiconductor device of the present invention. Even in a semiconductor device having another structure, similar effects can be obtained by using the cured epoxy resin of the present invention as a sealing member.
- the cured epoxy resin of the present invention can also be used as an insulating material for covering a conductor. Therefore, the present invention also relates to an electric wire having a conductor and an insulating member covering the conductor and containing the cured epoxy resin of the present invention.
- the “electric wire” includes a linear conductor such as a metal used to conduct electricity between two points, and a coating member for insulation and / or protection is provided on the surface thereof. It means what you have.
- the electric wires include, but are not limited to, high-voltage distribution wires, high-voltage lead-in wires, low-voltage overhead wires, low-voltage lead-in wires, or indoor wires, etc .; electric wires for electric equipment, communication wires, underground wires Cables for indoor wiring, fire fighting equipment, control circuit, power equipment, marine or undercarpet wiring; and cords used by connecting to outlets of small electrical products Can be mentioned.
- the shape of the said electric wire is not specifically limited, The electric wire of various shapes normally used in the said technical field, such as a single wire, a twisted wire, a twisted pair wire, or a shield wire, can be included.
- the “conductor” means a material having a high electrical conductivity (conductivity) having a property of containing a movable charge and easily conducting electricity.
- the conductor include, but are not limited to, copper, silver, aluminum, alloys thereof, and optical fibers.
- the insulating member includes the cured epoxy resin of the present invention as an insulating material.
- the insulating member has a property that it is difficult to conduct electricity and / or heat, such as polyethylene, cross-linked polyethylene, polyvinyl chloride, kapton, rubbery polymer, oil-impregnated paper, Teflon (registered trademark), silicone, or fluororesin, if desired.
- One or more additional materials may be included.
- FIG. 5 shows a cross-sectional view of an insulated wire that is an embodiment of the wire of the present invention.
- the insulated wire 5 of the present invention has a conductor 501 and an insulating member 502 covering the conductor.
- the insulating member 502 includes the cured epoxy resin of the present invention.
- the insulated wire 5 of the present invention can be produced, for example, by applying the epoxy resin composition of the present invention to the conductor 501 and then curing by heating. Thereby, the insulating member 502 that covers the conductor 501 and includes the cured epoxy resin of the present invention is formed.
- the cured epoxy resin of the present invention has high dielectric breakdown strength. For this reason, the insulated electric wire which is excellent in surge-proof characteristics can be obtained by using the epoxy resin hardened
- the structure of the insulated wire shown in FIG. 5 is an example showing an embodiment of the wire of the present invention.
- similar effects can be obtained by using the cured epoxy resin of the present invention as an insulating material.
- the cured epoxy resin of the present invention can also be used as an insulating material for an insulating member in which a conductor is wound in a rotating machine coil. Therefore, the present invention also relates to a rotating machine coil having a conductor, an insulating member wound around the conductor, and an impregnated resin member impregnated in the insulating member and containing the cured epoxy resin of the present invention. .
- rotary machine coil means a conductor in which an insulation coating is wound in a coil shape.
- the rotating machine coil of the present invention can be used as a constituent member of a motor or a generator by combining with a magnet.
- FIG. 6 shows a perspective view of an embodiment of the rotating machine coil of the present invention.
- the rotating machine coil 6 of the present invention includes a conductor 601, an insulating member wound around the conductor 601, and an impregnated resin member 602 impregnated in the insulating member.
- the impregnated resin member 602 includes the cured epoxy resin of the present invention.
- the impregnated resin member 602 is usually formed by impregnating an insulating member with the cured epoxy resin of the present invention.
- the rotating machine coil 6 of the present invention is obtained by, for example, winding an insulating member such as an insulating tape around the conductor 601 and heating and drying, and then impregnating the insulating member with the epoxy resin composition of the present invention under a vacuum, for example. It can be produced by heat curing. Thereby, the impregnated resin member 602 containing the cured epoxy resin of the present invention is formed.
- the cured epoxy resin of the present invention has high dielectric breakdown strength. For this reason, the rotating machine coil which is excellent in heat-resistant lifetime can be obtained by using the epoxy resin hardened
- the structure of the rotating machine coil shown in FIG. 6 is an example showing an embodiment of the rotating machine coil of the present invention. Even in a rotating machine coil having another structure, similar effects can be obtained by using the cured epoxy resin of the present invention as an insulating material.
- the breakdown strength of the cured epoxy resin of the present invention is, for example, a rate of decrease of the breakdown voltage in a predetermined time in an electrical device and a semiconductor device using the cured epoxy resin of the present invention by an accelerated life evaluation test at 150 ° C. Can be evaluated.
- the obtained extract was purified by silica gel chromatography to obtain 1,3-bis (4-benzyloxynaphthalene) benzene (yield: 8.7 g; yield: 93%).
- the nuclear magnetic resonance spectrum (NMR) of the obtained epoxy compound is shown in FIG. All peaks on the NMR spectrum were assigned to hydrogen atoms of the epoxy compound having the above structure.
- the epoxy equivalent of the obtained epoxy compound was 237 g / eq, and the melt viscosity of the epoxy compound was 10 mPa ⁇ s at 150 ° C.
- the obtained epoxy compound and phenol resin (MEH-7500, Meiwa Kasei) were blended and mixed so that the molar ratio of glycidyl ether group and hydroxyl group was 1: 1.
- a resin composition was obtained by mixing at 150 ° C.
- the obtained resin composition was heat-cured at 180 ° C. for 6 hours to obtain a cured resin product.
- the glass transition temperature of the cured resin as determined by the thermodynamic viscoelasticity measuring device (DMA) is 196 ° C, and the relative dielectric constant of the cured resin at 10 GHz determined by the cavity resonance perturbation method is 3.4. there were.
- Example 2 Synthesis was performed in the same manner as in Example 1, except that 1,3,5-tribromobenzene was used instead of 1,3-dibromobenzene.
- an epoxy compound having a structure in which one naphthyl group having one glycidyl ether group is covalently bonded to each of the 1, 3 and 5 positions of the benzene ring (Yield: 5 g; total reaction yield: 32%).
- the nuclear magnetic resonance spectrum (NMR) of the obtained epoxy compound is shown in FIG. All peaks on the NMR spectrum were assigned to hydrogen atoms of the epoxy compound having the above structure.
- the epoxy equivalent of the obtained epoxy compound was 224 g / eq, and the melt viscosity of the epoxy compound was 10 mPa ⁇ s at 150 ° C.
- the obtained epoxy compound and phenol resin (MEH-7500, Meiwa Kasei) were blended and mixed so that the molar ratio of glycidyl ether group and hydroxyl group was 1: 1.
- a resin composition was obtained by mixing at 150 ° C.
- the obtained resin composition was heat-cured at 180 ° C. for 6 hours to obtain a cured resin product.
- the glass transition temperature of the cured resin as determined by the thermodynamic viscoelasticity measurement device (DMA) is 232 ° C, and the relative dielectric constant of the cured resin at 10 GHz determined by the cavity resonance perturbation method is 3.1. there were.
- Example 3 In Example 2, synthesis was performed in the same manner as in Example 2 except that 1,7-dihydroxynaphthalene was used instead of 1-naphthol. As a result, an epoxy compound having a structure in which one naphthyl group having two glycidyl ether groups is covalently bonded to the 1, 3 and 5 positions of the benzene ring, respectively: (Yield: 5 g; total reaction yield: 33%).
- the nuclear magnetic resonance spectrum (NMR) of the obtained epoxy compound is shown in FIG. All peaks on the NMR spectrum were assigned to hydrogen atoms of the epoxy compound having the above structure.
- the epoxy equivalent of the obtained epoxy compound was 148 g / eq, and the melt viscosity of the epoxy compound was 100 mPa ⁇ s at 150 ° C.
- the obtained epoxy compound and phenol resin (MEH-7500, Meiwa Kasei) were blended and mixed so that the molar ratio of glycidyl ether group and hydroxyl group was 1: 1.
- a resin composition was obtained by mixing at 160 ° C.
- the obtained resin composition was heat-cured at 180 ° C. for 6 hours to obtain a cured resin product.
- the glass transition temperature of the cured resin determined by the thermodynamic viscoelasticity measurement device (DMA) is 350 ° C. or higher, and the relative dielectric constant of the cured resin at 10 GHz determined by the cavity resonance perturbation method is 2.8. Met.
- the glass transition temperature of the cured resin as determined by the thermodynamic viscoelasticity measuring device (DMA) is 170 ° C, and the relative dielectric constant of the cured resin at 10 GHz determined by the cavity resonance perturbation method is 3.8. there were.
- the epoxy compound used in Comparative Example 1 has a structure in which ortho-cresol is bonded through a methylene group.
- the epoxy compounds of Examples 1, 2 and 3 do not have a methylene group between the benzene ring and the naphthyl group, and the benzene ring and the naphthyl group are directly covalently bonded.
- the epoxy compounds of Examples 1, 2 and 3 have a benzene ring and a naphthalene ring having high heat resistance as a basic skeleton. For this reason, when the epoxy compounds of Examples 1, 2 and 3 were used, a cured resin product having higher heat resistance than that obtained using Comparative Example 1 could be obtained.
- the epoxy compounds of Examples 1, 2 and 3 have glycidyl ether groups at the 4-position or the 4- and 6-positions of the naphthyl group, the glycidyl ether groups are arranged so as to form a bent structure. As a result, in the epoxy compounds of Examples 1, 2, and 3, the melt viscosity decreased. As a result, the epoxy compounds of Examples 1, 2 and 3 showed high moldability.
- the epoxy equivalents of the epoxy compounds of Examples 1 and 2 were 237 g / eq and 224 g / eq, respectively, which were higher values than the ortho-cresol novolac type epoxy compound of Comparative Example 1.
- the higher the epoxy equivalent of the epoxy compound the lower the concentration of the epoxy group that becomes the reaction point, and as a result, the concentration of the hydroxyl group generated by the curing reaction decreases. Therefore, when the epoxy compounds of Examples 1 and 2 are used, it is considered that a cured resin product having a low dielectric constant can be obtained as compared with the case of using Comparative Example 1.
- the epoxy compound of the present invention has no methylene group between the benzene ring and the naphthyl group, and thus has high heat resistance and electrical insulation. It was shown to give an excellent cured resin.
- Example 4 Production of equipment using cured epoxy resin> [Example 4] A power semiconductor device was manufactured using the epoxy resin composition of the present invention.
- the epoxy compound of Example 1 and a phenol resin (MEH-7500, Meiwa Kasei) were blended and mixed so that the molar ratio of glycidyl ether group and hydroxyl group was 1: 1.
- 1 part by weight of the resulting mixture is 80 parts by weight of silica as a filler, 5 parts by weight of KBM403 (manufactured by Shin-Etsu Chemical Co., Ltd.) as a silane coupling agent, and Hoechst Wax E (Clariant Japan Co., Ltd.) as a release agent.
- a sealing resin raw material 2 parts by weight (made by company) and 1 part by weight of carbon black as a colorant were added and melt-kneaded to prepare a sealing resin raw material.
- a module on which a power semiconductor element was mounted was produced.
- the entire module was covered by a transfer mold method, and heat-cured at 180 ° C. for 6 hours to seal the resin.
- Fig. 4 shows a schematic diagram of the fabricated power semiconductor device.
- the lower surface side electrode of the power semiconductor element 401 is electrically connected to the circuit wiring member 402 disposed on the upper surface of the insulating substrate 406 via the bonding material 404.
- the main electrode of the power semiconductor element 401 is electrically connected to the lead member 403 via the wire 405.
- a heat radiating plate 407 for releasing heat generated in the power semiconductor element 401 to the outside is provided on the lower surface side of the insulating substrate 406, a heat radiating plate 407 for releasing heat generated in the power semiconductor element 401 to the outside is provided.
- the periphery of the power semiconductor element 401 is sealed with a sealing member 408 in a state where a part of the circuit wiring member 402, the lead member 403, and the heat sink 407 are exposed.
- the sealing member 408 includes a cured epoxy resin produced by the above procedure.
- Example 4 an ortho-cresol novolak type epoxy compound (211 g / eq, YDCN-750, Toto Kasei) having a structure bonded via a methylene group is used as the epoxy compound, as in Example 4. Thus, a power semiconductor device was manufactured.
- PC power cycle
- Example 5 An enameled wire was prepared using the epoxy resin composition of the present invention.
- the epoxy resin composition of the present invention was prepared by the same procedure as in Example 1. After the obtained epoxy resin composition was applied to an electric wire, it was heat-cured at 180 ° C. for 6 hours to obtain an enameled wire coated with the cured epoxy resin of the present invention. The performance of the obtained enamel wire was evaluated by an accelerated life evaluation test at 150 ° C. As a result, the reduction rate of the dielectric breakdown voltage of the enameled wire of Example 5 for 500 hours was 5% of the initial value.
- Comparative Example 3 An enameled wire of Comparative Example 3 was produced using a commercially available insulating coating material. The performance of the obtained enamel wire was evaluated by an accelerated life evaluation test at 150 ° C. As a result, the reduction rate of the dielectric breakdown voltage for 500 hours of the enameled wire of Comparative Example 3 was 60% of the initial value. From the test results, it was shown that the enameled wire produced using the cured resin product of the present invention is superior in voltage resistance compared to the enameled wire produced using a conventional insulating coating material.
- Example 6 A rotating machine coil was prepared using the epoxy resin composition of the present invention.
- the epoxy resin composition of the present invention was prepared by the same procedure as in Example 1.
- An insulating tape was wound around the conductor and dried by heating.
- the obtained epoxy resin composition was vacuum impregnated and then heat-cured at 180 ° C. for 6 hours to obtain a rotating machine coil having an impregnated resin member containing the cured epoxy resin of the present invention.
- the performance of the obtained rotating machine coil was evaluated by an accelerated life evaluation test at 150 ° C. As a result, the reduction rate of the dielectric breakdown voltage of the enameled wire of Example 5 for 500 hours was 10% of the initial value.
- Comparative Example 4 A rotating machine coil of Comparative Example 4 was produced using a commercially available impregnating resin. The performance of the obtained rotating machine coil was evaluated by an accelerated life evaluation test at 150 ° C. As a result, the reduction rate of the dielectric breakdown voltage for 500 hours of the rotating machine coil of Comparative Example 4 was 60% of the initial value. From the above test results, it is shown that the rotating machine coil produced using the resin cured product of the present invention is superior in voltage resistance compared to the rotating machine coil produced using the conventional insulation coating material. It was.
- this invention is not limited to an above-described Example, Various modifications are included.
- the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, it is possible to add, delete, and / or replace another configuration with respect to a part of the configuration of each embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Epoxy Resins (AREA)
Abstract
The objective of the present invention is to provide: an epoxy resin cured product having excellent heat resistance and excellent electrical insulating properties; and an epoxy compound which provides the epoxy resin cured product. The present invention relates to an epoxy compound which has a structure wherein a naphthyl group having at least one glycidyl ether group is covalently bonded to a benzene ring at at least two positions selected from among the 1-position, the 3-position and the 5-position.
Description
本発明は、エポキシ化合物、及びそれを用いたエポキシ樹脂硬化物に関する。具体的には、本発明は、耐熱性及び電気絶縁性に優れるエポキシ樹脂硬化物及び該エポキシ樹脂硬化物を与えるエポキシ化合物、並びに該エポキシ樹脂硬化物を用いる電気的装置及び半導体装置に関する。
The present invention relates to an epoxy compound and an epoxy resin cured product using the same. Specifically, the present invention relates to an epoxy resin cured product excellent in heat resistance and electrical insulation, an epoxy compound that provides the epoxy resin cured product, and an electrical device and a semiconductor device using the epoxy resin cured product.
エポキシ化合物、硬化剤、触媒及び充填剤等の混合物から得られるエポキシ樹脂硬化物は、耐熱性、寸法安定性、耐湿性、材料強度及び電気絶縁性等の諸特性に優れる。このため、エポキシ樹脂硬化物は、半導体封止材、プリント配線基板又はアンダーフィル等の電子部品の材料分野から、接着剤、液晶シール材、フォトレジスト、塗料又は繊維強化複合材の分野に至るまで、多岐に亘って用いられている。
An epoxy resin cured product obtained from a mixture of an epoxy compound, a curing agent, a catalyst and a filler is excellent in various properties such as heat resistance, dimensional stability, moisture resistance, material strength, and electrical insulation. For this reason, cured epoxy resins range from materials for electronic components such as semiconductor encapsulants, printed wiring boards, and underfills to adhesives, liquid crystal seals, photoresists, paints, and fiber reinforced composites. , Used in a wide variety of ways.
近年、インバータ、モータ又は発電機等の動作環境は、高温化及び高電界化している。このため、パワー半導体装置の封止材料又はモータの導線被覆絶縁材料等に使用される樹脂材料として、より高い耐熱性を有するエポキシ樹脂硬化物が要求されている。
In recent years, the operating environment of inverters, motors, generators, and the like has been increased in temperature and electric field. For this reason, the epoxy resin hardened | cured material which has higher heat resistance is requested | required as a resin material used for the sealing material of a power semiconductor device, or the conductor covering insulation material of a motor.
樹脂材料の原料となるエポキシ化合物としては、例えば、ノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂及びモノグリシジルオキシベンゼン型エポキシ樹脂等を挙げることができる。これらのエポキシ化合物は、フェノール化合物、アミン化合物又は酸無水物等との硬化反応により、耐熱性が高いエポキシ樹脂硬化物を与える。
Examples of the epoxy compound that is a raw material for the resin material include novolac type epoxy resins, phenol aralkyl type epoxy resins, and monoglycidyloxybenzene type epoxy resins. These epoxy compounds give a cured resin with high heat resistance by a curing reaction with a phenol compound, an amine compound or an acid anhydride.
特許文献1は、(A)主鎖骨格に構成単位として下記一般式(I)及び(II):
で示される成分を含むエポキシ樹脂、(B)硬化剤、(C)硬化促進剤、(D)無機充填剤を必須成分とする封止用エポキシ樹脂形成材料を記載する。
Patent Document 1 describes (A) the following general formulas (I) and (II) as structural units in the main chain skeleton:
An epoxy resin-forming material for sealing which contains an epoxy resin containing the components represented by (B), (B) curing agent, (C) curing accelerator, and (D) inorganic filler as essential components is described.
特許文献2は、少なくともグリシドキシベンゼン類又はグリシドキシナフタレン類を、アラルキル基を結合基として結合した構造を有するフェノールアラルキル型エポキシ樹脂を記載する。当該文献は、前記フェノールアラルキル型エポキシ樹脂が、下記式(2):
に示す構造のフェノールアラルキル樹脂とエピハロヒドリンとの反応により得られるエポキシ樹脂であってもよいことを記載する。
Patent Document 2 describes a phenol aralkyl type epoxy resin having a structure in which at least glycidoxybenzenes or glycidoxynaphthalenes are bonded using an aralkyl group as a bonding group. In the document, the phenol aralkyl type epoxy resin is represented by the following formula (2):
It describes that the epoxy resin obtained by reaction of the phenol aralkyl resin of the structure shown to epihalohydrin may be sufficient.
特許文献3は、エポキシ樹脂及び硬化剤を必須成分とするエポキシ樹脂組成物であって、前記エポキシ樹脂が、モノグリシジルオキシベンゼン構造部位がメチレン基を介してアルコキシナフタレン構造部位と結合した分子構造を有するものである、前記エポキシ樹脂組成物を記載する。
Patent Document 3 is an epoxy resin composition containing an epoxy resin and a curing agent as essential components, and the epoxy resin has a molecular structure in which a monoglycidyloxybenzene structural site is bonded to an alkoxynaphthalene structural site via a methylene group. The said epoxy resin composition which has is described.
前記のように、種々の基本骨格を有するエポキシ樹脂硬化物が開発された。しかしながら、高温化及び高電界化している樹脂硬化物の使用環境に鑑みると、従来のエポキシ樹脂硬化物は、耐熱性及び電気絶縁性の点で性能向上の必要性が存在した。
As described above, cured epoxy resins having various basic skeletons have been developed. However, in view of the usage environment of the cured resin having a high temperature and a high electric field, the conventional cured epoxy resin has a need to improve performance in terms of heat resistance and electrical insulation.
それ故、本発明は、耐熱性及び電気絶縁性に優れるエポキシ樹脂硬化物及び該エポキシ樹脂硬化物を与えるエポキシ化合物を提供することを目的とする。
Therefore, an object of the present invention is to provide an epoxy resin cured product excellent in heat resistance and electrical insulation and an epoxy compound that provides the epoxy resin cured product.
前記課題を解決するため、本発明のエポキシ化合物は、ベンゼン環の1、3又は5位の少なくとも2個の位置に、少なくとも1個のグリシジルエーテル基を有するナフチル基が共有結合している構造を有する。
In order to solve the above problems, the epoxy compound of the present invention has a structure in which a naphthyl group having at least one glycidyl ether group is covalently bonded to at least two positions of the 1, 3 or 5 position of the benzene ring. Have.
本発明のエポキシ樹脂硬化物は、ベンゼン環の1、3又は5位の少なくとも2個の位置に、少なくとも1個のエーテル架橋基を有するナフチル基が共有結合している構造を基本骨格として有する。本発明のエポキシ樹脂硬化物は、本発明のエポキシ化合物を硬化反応させることによって得ることができる。
The cured epoxy resin of the present invention has, as a basic skeleton, a structure in which a naphthyl group having at least one ether bridging group is covalently bonded to at least two positions of the 1, 3 or 5 position of the benzene ring. The cured epoxy resin of the present invention can be obtained by curing reaction of the epoxy compound of the present invention.
本発明により、耐熱性及び電気絶縁性に優れるエポキシ樹脂硬化物及び該エポキシ樹脂硬化物を与えるエポキシ化合物を提供することが可能となる。
According to the present invention, it is possible to provide an epoxy resin cured product excellent in heat resistance and electrical insulation and an epoxy compound that provides the epoxy resin cured product.
前記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
Issues, configurations, and effects other than those described above will be clarified by the following description of embodiments.
以下、本発明の好ましい実施形態について詳細に説明する。以下では、適宜、図面等を用いて、本発明の実施形態について説明する。以下の説明は、本発明の内容の具体例を示すものである。本発明は、以下の説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において、当業者による様々な変更及び修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
Hereinafter, preferred embodiments of the present invention will be described in detail. Hereinafter, embodiments of the present invention will be described as appropriate using the drawings and the like. The following description shows specific examples of the contents of the present invention. The present invention is not limited to the following description, and various changes and modifications by those skilled in the art are possible within the scope of the technical idea disclosed in the present specification. In all the drawings for explaining the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.
<1. エポキシ化合物>
本発明は、エポキシ化合物に関する。本発明のエポキシ化合物は、ベンゼン環の1、3又は5位の少なくとも2個の位置に、少なくとも1個のグリシジルエーテル基を有するナフチル基が共有結合している構造を有することが必要である。本発明のエポキシ化合物を硬化反応させることによって、以下において説明する本発明のエポキシ樹脂硬化物を得ることができる。 <1. Epoxy compound>
The present invention relates to an epoxy compound. The epoxy compound of the present invention needs to have a structure in which a naphthyl group having at least one glycidyl ether group is covalently bonded to at least two positions of the 1, 3 or 5 position of the benzene ring. By curing reaction of the epoxy compound of the present invention, the cured epoxy resin product of the present invention described below can be obtained.
本発明は、エポキシ化合物に関する。本発明のエポキシ化合物は、ベンゼン環の1、3又は5位の少なくとも2個の位置に、少なくとも1個のグリシジルエーテル基を有するナフチル基が共有結合している構造を有することが必要である。本発明のエポキシ化合物を硬化反応させることによって、以下において説明する本発明のエポキシ樹脂硬化物を得ることができる。 <1. Epoxy compound>
The present invention relates to an epoxy compound. The epoxy compound of the present invention needs to have a structure in which a naphthyl group having at least one glycidyl ether group is covalently bonded to at least two positions of the 1, 3 or 5 position of the benzene ring. By curing reaction of the epoxy compound of the present invention, the cured epoxy resin product of the present invention described below can be obtained.
本発明者らは、ベンゼン環とナフチル基とが直接共有結合している構造を有する本発明のエポキシ化合物は、芳香環と他の芳香環とがメチレン基を介して結合している構造を有する従来のエポキシ化合物と比較して、高い耐熱性を有することを見出した。本発明のエポキシ化合物が前記のような特性を有する理由は、以下のように説明することができる。なお、本発明は、以下の作用・原理に限定されるものではない。
The present inventors have a structure in which an aromatic ring and another aromatic ring are bonded via a methylene group, the epoxy compound of the present invention having a structure in which a benzene ring and a naphthyl group are directly covalently bonded. It has been found that it has higher heat resistance than conventional epoxy compounds. The reason why the epoxy compound of the present invention has the above-described characteristics can be explained as follows. Note that the present invention is not limited to the following actions and principles.
従来のエポキシ化合物は、例えば、フェノール化合物及びホルムアルデヒドの重合生成物とエピクロルヒドリンとの反応により合成される。このようなエポキシ化合物によって形成されるエポキシ樹脂硬化物は、重合生成物を多官能化及び/又は高分子量化することにより、耐熱性が向上する可能性がある。しかしながら、前記エポキシ化合物は、芳香環と他の芳香環とがメチレン基を介して結合している構造を有することから、分子運動の自由度が高く、結果として得られるエポキシ樹脂硬化物の高耐熱化には限界があった。これに対し、本発明のエポキシ化合物は、ベンゼン環とナフチル基との間で直接共有結合している構造を有することから、分子運動の自由度が制限される。このため、本発明のエポキシ化合物を硬化反応させることによって得られるエポキシ樹脂硬化物は、高いガラス転移温度を有する。それ故、ベンゼン環とナフチル基との間で直接共有結合している構造を有する本発明のエポキシ化合物は、芳香環と他の芳香環とがメチレン基を介して結合している構造を有する従来のエポキシ化合物と比較して、高い耐熱性を有するエポキシ樹脂硬化物を形成することができる。
Conventional epoxy compounds are synthesized, for example, by reaction of a polymerization product of a phenol compound and formaldehyde with epichlorohydrin. The epoxy resin cured product formed by such an epoxy compound may have improved heat resistance by polyfunctionalizing and / or increasing the molecular weight of the polymerization product. However, since the epoxy compound has a structure in which an aromatic ring and another aromatic ring are bonded via a methylene group, the degree of freedom of molecular motion is high, and the resulting epoxy resin cured product has high heat resistance. There was a limit to conversion. On the other hand, since the epoxy compound of the present invention has a structure in which a benzene ring and a naphthyl group are directly covalently bonded, the degree of freedom of molecular motion is limited. For this reason, the cured epoxy resin obtained by curing the epoxy compound of the present invention has a high glass transition temperature. Therefore, the epoxy compound of the present invention having a structure in which a benzene ring and a naphthyl group are directly covalently bonded has a conventional structure in which an aromatic ring and another aromatic ring are bonded via a methylene group. Compared with the epoxy compound, an epoxy resin cured product having high heat resistance can be formed.
なお、本発明のエポキシ化合物及びエポキシ樹脂硬化物が、ベンゼン環とナフチル基との間で直接共有結合している構造を有することは、例えば、該エポキシ化合物及びエポキシ樹脂硬化物の核磁気共鳴スペクトル(NMR)を測定することにより、確認することができる。また、本発明のエポキシ樹脂硬化物のガラス転移温度は、例えば、熱動的粘弾性測定装置(DMA)によって決定することができる。
Note that the epoxy compound and the cured epoxy resin of the present invention have a structure in which a benzene ring and a naphthyl group are directly covalently bonded, for example, the nuclear magnetic resonance spectrum of the epoxy compound and the cured epoxy resin. This can be confirmed by measuring (NMR). The glass transition temperature of the cured epoxy resin of the present invention can be determined by, for example, a thermodynamic viscoelasticity measuring device (DMA).
本発明のエポキシ化合物は、ベンゼン環の1、3又は5位の少なくとも2個の位置にナフチル基が共有結合している構造を有することが必要である。本発明のエポキシ化合物は、ベンゼン環の1及び3位、又は1、3及び5位に、1個のナフチル基がそれぞれ共有結合している構造を有することが好ましく、ベンゼン環の1、3及び5位に、1個のナフチル基がそれぞれ共有結合している構造を有することがより好ましい。前記ナフチル基は、以下において説明するように、所定の個数のグリシジルエーテル基を有する。本発明のエポキシ化合物は、ベンゼン環とナフチル基とが、ベンゼン環の前記位置において共有結合することにより、隣接する2個のナフチル基が120°の結合角を有する屈曲構造を形成するように配置される。このような屈曲構造を有することにより、本発明のエポキシ化合物は、直線状の分子配置を有する従来のエポキシ化合物と比較して、粘度が低くなる。例えば、本発明のエポキシ化合物は、150℃における溶融粘度が、通常は、5~1000 mPa・sの範囲であり、典型的には、5~200 mPa・sの範囲であり、特に10~100 mPa・sの範囲である。前記の溶融粘度を有することにより、本発明のエポキシ化合物は、高い成形性を有することができる。
The epoxy compound of the present invention needs to have a structure in which a naphthyl group is covalently bonded to at least two positions of the 1, 3 or 5 position of the benzene ring. The epoxy compound of the present invention preferably has a structure in which one naphthyl group is covalently bonded to the 1- and 3-positions or 1, 3- and 5-positions of the benzene ring, respectively. More preferably, it has a structure in which one naphthyl group is covalently bonded to the 5-position. The naphthyl group has a predetermined number of glycidyl ether groups as described below. The epoxy compound of the present invention is arranged so that a benzene ring and a naphthyl group are covalently bonded at the position of the benzene ring to form a bent structure in which two adjacent naphthyl groups have a bond angle of 120 °. Is done. By having such a bent structure, the epoxy compound of the present invention has a lower viscosity than a conventional epoxy compound having a linear molecular arrangement. For example, the epoxy compound of the present invention has a melt viscosity at 150 ° C. usually in the range of 5 to 1000 μmPa · s, typically in the range of 5 to 200 μmPa · s, particularly 10 to 100 The range is mPa · s. By having the said melt viscosity, the epoxy compound of this invention can have high moldability.
なお、本発明のエポキシ化合物が前記構造を有することは、例えば、該エポキシ化合物の核磁気共鳴スペクトル(NMR)を測定することにより、確認することができる。また、本発明のエポキシ化合物の溶融粘度は、例えば、溶融粘度測定装置によって決定することができる。
In addition, it can confirm that the epoxy compound of this invention has the said structure by measuring the nuclear magnetic resonance spectrum (NMR) of this epoxy compound, for example. Moreover, the melt viscosity of the epoxy compound of this invention can be determined with a melt viscosity measuring apparatus, for example.
本発明のエポキシ化合物において、ベンゼン環に共有結合しているナフチル基は、少なくとも1個のグリシジルエーテル基を有することが必要である。前記ナフチル基は、1又は2個のグリシジルエーテル基を有することが好ましく、2個のグリシジルエーテル基を有することがより好ましい。例えば、本発明のエポキシ化合物は、ベンゼン環の所定の位置に、1又は2個のグリシジルエーテル基を有する1個のナフチル基をそれぞれ有することが好ましく2個のグリシジルエーテル基を有する1個のナフチル基をそれぞれ有することがより好ましい。
In the epoxy compound of the present invention, the naphthyl group covalently bonded to the benzene ring needs to have at least one glycidyl ether group. The naphthyl group preferably has 1 or 2 glycidyl ether groups, and more preferably has 2 glycidyl ether groups. For example, the epoxy compound of the present invention preferably has one naphthyl group having one or two glycidyl ether groups at a predetermined position of the benzene ring, and preferably one naphthyl having two glycidyl ether groups. It is more preferable to have each group.
前記で説明したように、本発明のエポキシ化合物によって形成されるエポキシ樹脂硬化物は、ベンゼン環とナフチル基との結合様式に起因して、高い耐熱性を有する。このため、本発明のエポキシ化合物は、前記範囲のエポキシ基を有することによって、分子内のエポキシ基濃度を高くすることなく、高い耐熱性を有するエポキシ樹脂硬化物を形成することができる。通常、エポキシ化合物において、分子内のエポキシ基濃度が高い場合、硬化反応によって生成する分子内の水酸基濃度が高くなる。この場合、形成されるエポキシ樹脂硬化物の比誘電率が高くなる可能性がある。これに対し、本発明のエポキシ化合物は、分子内のエポキシ基濃度が低く、エポキシ当量が高い。具体的には、本発明のエポキシ化合物のエポキシ当量は、通常は、100~300 g/eqの範囲であり、典型的には、140~300 g/eqの範囲であり、特に、220~300 g/eqの範囲である。それ故、本発明のエポキシ化合物によって形成されるエポキシ樹脂硬化物は、低い比誘電率を有することができる。これにより、本発明のエポキシ樹脂硬化物は、高い絶縁破壊強度を有する電気絶縁性に優れた樹脂材料となることができる。
As described above, the cured epoxy resin formed by the epoxy compound of the present invention has high heat resistance due to the bonding mode between the benzene ring and the naphthyl group. For this reason, the epoxy compound of this invention can form the epoxy resin hardened | cured material which has high heat resistance, without making the epoxy group density | concentration in a molecule | numerator high by having an epoxy group of the said range. Usually, in an epoxy compound, when the concentration of epoxy groups in the molecule is high, the concentration of hydroxyl groups in the molecule generated by the curing reaction is high. In this case, the relative permittivity of the cured epoxy resin product may be increased. In contrast, the epoxy compound of the present invention has a low epoxy group concentration in the molecule and a high epoxy equivalent. Specifically, the epoxy equivalent of the epoxy compound of the present invention is usually in the range of 100 to 300 g / eq, typically in the range of 140 to 300 g / eq, in particular 220 to 300 It is in the range of g / eq. Therefore, the cured epoxy resin formed by the epoxy compound of the present invention can have a low dielectric constant. Thereby, the epoxy resin hardened | cured material of this invention can become a resin material excellent in the electrical insulation which has high dielectric breakdown strength.
なお、本発明のエポキシ化合物におけるエポキシ基濃度又はグリシジルエーテル基の導入数は、例えば、該エポキシ化合物の元素分析又は質量分析を実施することにより、決定することができる。また、本発明のエポキシ化合物のエポキシ当量は、例えば、JIS K7236に規定される方法によって決定することができる。
The epoxy group concentration or the number of glycidyl ether groups introduced in the epoxy compound of the present invention can be determined, for example, by conducting elemental analysis or mass spectrometry of the epoxy compound. Moreover, the epoxy equivalent of the epoxy compound of the present invention can be determined, for example, by the method specified in JIS K7236.
本発明のエポキシ化合物は、少なくとも1個のグリシジルエーテル基が、ナフチル基の4、5及び6位の少なくともいずれかの位置に結合していることが好ましく、少なくとも1個のグリシジルエーテル基が、4及び6位の少なくともいずれかの位置に結合していることがより好ましく、2個のグリシジルエーテル基が、4及び6位に結合していることがさらに好ましい。グリシジルエーテル基がナフチル基の前記位置に結合していることにより、隣接する2個のナフチル基に結合しているグリシジルエーテル基が屈曲構造を形成するように配置される。それ故、前記構造を有する本発明のエポキシ化合物は、溶融粘度が低くなり、結果として高い成形性を有することができる。
In the epoxy compound of the present invention, it is preferable that at least one glycidyl ether group is bonded to at least one of the 4, 5 and 6 positions of the naphthyl group, and at least one glycidyl ether group is 4 It is more preferable that the glycidyl ether group is bonded to at least one of the 6 and 6 positions, and two glycidyl ether groups are further bonded to the 4 and 6 positions. Since the glycidyl ether group is bonded to the position of the naphthyl group, the glycidyl ether group bonded to two adjacent naphthyl groups is arranged to form a bent structure. Therefore, the epoxy compound of the present invention having the above structure has a low melt viscosity, and as a result, can have high moldability.
なお、本発明のエポキシ化合物が前記構造を有することは、例えば、該エポキシ化合物の核磁気共鳴スペクトル(NMR)を測定することにより、確認することができる。
In addition, it can confirm that the epoxy compound of this invention has the said structure by measuring the nuclear magnetic resonance spectrum (NMR) of this epoxy compound, for example.
本発明のエポキシ化合物は、式(I):
で表される化合物である。式(I)において、R1、R3及びR5は、互いに独立して、水素、又は少なくとも1個のグリシジルエーテル基を有するナフチル基であり、但し、R1、R3及びR5の少なくとも2個は、水素ではない。
The epoxy compound of the present invention has the formula (I):
It is a compound represented by these. In the formula (I), R 1 , R 3 and R 5 are independently of each other hydrogen or a naphthyl group having at least one glycidyl ether group, provided that at least one of R 1 , R 3 and R 5 Two are not hydrogen.
式(I)において、R1、R3及びR5が、互いに独立して、水素、或いは少なくとも1個のグリシジルエーテル基を4、5及び6位の少なくともいずれかの位置に有するナフチル基であることが好ましく、水素、或いは1又は2個のグリシジルエーテル基を4及び6位の少なくともいずれかの位置に有するナフチル基であることがより好ましく、水素、或いは2個のグリシジルエーテル基を4及び6位に有するナフチル基であることがさらに好ましい。
In formula (I), R 1 , R 3 and R 5 are independently of each other hydrogen or a naphthyl group having at least one glycidyl ether group in at least one of the 4, 5 and 6 positions. It is more preferable that it is hydrogen or a naphthyl group having 1 or 2 glycidyl ether groups at least at positions 4 and 6, and hydrogen or 2 glycidyl ether groups are 4 and 6 More preferred is a naphthyl group at the position.
式(I)において、R1及びR3が、前記で定義されるナフチル基であり、R5が水素であることが好ましく、R1、R3及びR5が、前記で定義されるナフチル基であることがより好ましい。
In the formula (I), R 1 and R 3 are naphthyl groups as defined above, R 5 is preferably hydrogen, and R 1 , R 3 and R 5 are naphthyl groups as defined above. It is more preferable that
特に好ましい式(I)で表される本発明のエポキシ化合物は、以下:
のいずれかの構造を有する化合物である。前記構造を有する本発明のエポキシ化合物は、高い耐熱性及び優れた電気絶縁性を有するエポキシ樹脂硬化物を形成することができる。
Particularly preferred epoxy compounds of the invention represented by formula (I) are:
It is a compound which has either structure of these. The epoxy compound of the present invention having the above structure can form a cured epoxy resin having high heat resistance and excellent electrical insulation.
本発明のエポキシ化合物は、例えば、ナフタレン誘導体とベンゼン誘導体とをクロスカップリングさせた後、得られたナフチルベンゼン誘導体をグリシジルエーテル化させることにより、製造することができる。前記クロスカップリング反応は、例えば、ナフタレンボロン酸及びハロゲン化ベンゼンを反応材料として、鈴木・宮浦カップリングを適用することにより、実施することができる。前記グリシジルエーテル化反応は、例えば、エピハロヒドリンとヒドロキシル化ナフチルベンゼンとを反応させることにより、実施することができる。前記反応に使用される反応材料及び各反応の反応条件は、本発明のエポキシ化合物の構造に基づき、適宜選択することができる。
The epoxy compound of the present invention can be produced, for example, by cross-coupling a naphthalene derivative and a benzene derivative and then glycidyl etherifying the obtained naphthylbenzene derivative. The cross coupling reaction can be carried out, for example, by applying Suzuki-Miyaura coupling using naphthalene boronic acid and halogenated benzene as reaction materials. The glycidyl etherification reaction can be carried out, for example, by reacting epihalohydrin and hydroxylated naphthylbenzene. The reaction material used for the reaction and the reaction conditions for each reaction can be appropriately selected based on the structure of the epoxy compound of the present invention.
<2. エポキシ樹脂組成物>
本発明のエポキシ化合物は、硬化剤とともに硬化反応させることにより、エポキシ樹脂硬化物を形成することができる。それ故、本発明はまた、本発明のエポキシ化合物を含むエポキシ樹脂組成物に関する。本発明のエポキシ樹脂組成物は、本発明のエポキシ化合物及び少なくとも1種の硬化剤を含むことが必要である。 <2. Epoxy resin composition>
The epoxy compound of the present invention can form an epoxy resin cured product by curing reaction with a curing agent. Therefore, the present invention also relates to an epoxy resin composition comprising the epoxy compound of the present invention. The epoxy resin composition of the present invention needs to contain the epoxy compound of the present invention and at least one curing agent.
本発明のエポキシ化合物は、硬化剤とともに硬化反応させることにより、エポキシ樹脂硬化物を形成することができる。それ故、本発明はまた、本発明のエポキシ化合物を含むエポキシ樹脂組成物に関する。本発明のエポキシ樹脂組成物は、本発明のエポキシ化合物及び少なくとも1種の硬化剤を含むことが必要である。 <2. Epoxy resin composition>
The epoxy compound of the present invention can form an epoxy resin cured product by curing reaction with a curing agent. Therefore, the present invention also relates to an epoxy resin composition comprising the epoxy compound of the present invention. The epoxy resin composition of the present invention needs to contain the epoxy compound of the present invention and at least one curing agent.
本発明のエポキシ樹脂組成物に含まれる少なくとも1種の硬化剤は、通常は、水酸基を有する化合物である。前記硬化剤は、水酸基を有するフェノール性硬化剤であることが好ましく、分子内に2個以上の水酸基を有するフェノール性硬化剤であることがより好ましい。前記硬化剤としては、限定するものではないが、例えば、アニリン変性レゾール樹脂若しくはジメチルエーテルレゾール樹脂等のレゾール型フェノール樹脂;フェノールノボラック樹脂、クレゾールノボラック樹脂、tert-ブチルフェノールノボラック樹脂若しくはノニルフェノールノボラック樹脂等のノボラック型フェノール樹脂;及びフェノールアラルキル樹脂、2、2’-ビフェノール若しくはレソルシノール等のフェノール化合物等を挙げることができる。前記硬化剤は、1種のみを使用してもよく、2種以上の混合物の形態で使用してもよい。前記硬化剤を含む本発明のエポキシ樹脂組成物を、所定の条件で硬化反応させることにより、本発明のエポキシ化合物のグリシジルエーテル基と前記硬化剤とが架橋反応して、エポキシ樹脂硬化物を形成することができる。
The at least one curing agent contained in the epoxy resin composition of the present invention is usually a compound having a hydroxyl group. The curing agent is preferably a phenolic curing agent having a hydroxyl group, and more preferably a phenolic curing agent having two or more hydroxyl groups in the molecule. Examples of the curing agent include, but are not limited to, for example, resol-type phenol resins such as aniline-modified resole resin or dimethyl ether resole resin; Type phenol resin; and phenol compounds such as phenol aralkyl resin, 2,2′-biphenol, resorcinol, and the like. Only one kind of the curing agent may be used, or a mixture of two or more kinds may be used. By curing reaction of the epoxy resin composition of the present invention containing the curing agent under predetermined conditions, the glycidyl ether group of the epoxy compound of the present invention and the curing agent undergo a crosslinking reaction to form a cured epoxy resin product. can do.
本発明のエポキシ樹脂組成物は、所望により、少なくとも1種の硬化促進剤を含んでもよい。前記硬化促進剤としては、限定するものではないが、例えば、トリエタノールアミン、テトラメチルブタンジアミン、テトラメチルペンタンジアミン、テトラメチルヘキサンジアミン、トリエチレンジアミン若しくはメチルアニリン等の3級アミン;ジメチルアミノエタノール若しくはジメチルアミノペンタノール等のオキシアルキルアミン;及びトリス(ジメチルアミノメチル)フェノール若しくはメチルモルホリン等のアミン類を挙げることができる。また、前記硬化促進剤としては、限定するものではないが、例えば、2-ウンデシルイミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-ヘプタデシルイミダゾール、2-メチル-4-エチルイミダゾール、1-ブチルイミダゾール、1-プロピル-2-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール若しくは1-アジン-2-ウンデシルイミダゾール等のイミダゾール化合物等;トリフェニルホスフィンテトラフェニルボレート、トリエチルアミンテトラフェニルボレート、N-メチルモルホリンテトラフェニルボレート、ピリジンテトラフェニルボレート、2-エチル-4-メチルイミダゾールテトラフェニルボレート若しくは2-エチル-1,4-ジメチルイミダゾールテトラフェニルボレート等のテトラフェニルボロン塩、トリフェニルホスフィン、ジアザビシクロウンデセン、ジアザビシクロノネン、及び酸無水物等を挙げることもできる。前記硬化促進剤は、1種のみを使用してもよく、2種以上の混合物の形態で使用してもよい。前記硬化促進剤を含むことにより、本発明のエポキシ樹脂組成物の硬化反応を促進することができる。
The epoxy resin composition of the present invention may contain at least one curing accelerator as desired. Examples of the curing accelerator include, but are not limited to, for example, tertiary amines such as triethanolamine, tetramethylbutanediamine, tetramethylpentanediamine, tetramethylhexanediamine, triethylenediamine, or methylaniline; dimethylaminoethanol or Mention may be made of oxyalkylamines such as dimethylaminopentanol; and amines such as tris (dimethylaminomethyl) phenol or methylmorpholine. Examples of the curing accelerator include, but are not limited to, 2-undecylimidazole, 2-methylimidazole, 2-ethylimidazole, 2-heptadecylimidazole, 2-methyl-4-ethylimidazole, 1 -Butylimidazole, 1-propyl-2-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole or Imidazole compounds such as 1-azine-2-undecylimidazole; triphenylphosphine tetraphenylborate, triethylaminetetraphenylborate, N-methylmorpholine tetraphenylborate, pyridinetetraphenylborate, 2-ethyl-4-methylimidazoletetraphenyl Borate or 2-d Le-1,4-dimethylimidazole tetraphenyl tetraphenyl boron salts rate, etc., triphenylphosphine, diazabicycloundecene, may also be mentioned diazabicyclononene, and acid anhydrides. Only one kind of the curing accelerator may be used, or a mixture of two or more kinds may be used. By containing the curing accelerator, the curing reaction of the epoxy resin composition of the present invention can be accelerated.
本発明のエポキシ樹脂組成物は、所望により、少なくとも1種の充填剤を含んでもよい。前記充填剤は、所望の特性に基づき適宜選択することができる。前記充填剤としては、限定するものではないが、例えば、溶融シリカ等のシリカ粉末、タルク、アルミニウム粉末、マイカ、クレー及び炭酸カルシウム等を挙げることができる。前記少なくとも1種の充填剤を含む本発明のエポキシ樹脂組成物を、所定の条件で硬化反応させることにより、所望の特性を有するエポキシ樹脂硬化物を得ることができる。
The epoxy resin composition of the present invention may contain at least one filler as desired. The filler can be appropriately selected based on desired characteristics. Examples of the filler include, but are not limited to, silica powder such as fused silica, talc, aluminum powder, mica, clay, and calcium carbonate. By curing the epoxy resin composition of the present invention containing the at least one filler under predetermined conditions, a cured epoxy resin product having desired characteristics can be obtained.
本発明のエポキシ樹脂組成物は、所望により、少なくとも1種の添加剤を含んでもよい。前記添加剤としては、限定するものではないが、例えば、天然ワックス類、合成ワックス類、直鎖脂肪族金属酸化物、酸アミド類、エステル類若しくはパラフィン類等の離型剤;カーボンブラック若しくはベンガラ等の着色剤;種々のカップリング剤;水酸化アルミニウム若しくは水酸化マグネシウム等の金属水酸化物を挙げることができる。前記少なくとも1種の添加剤を含む本発明のエポキシ樹脂組成物を、所定の条件で硬化反応させることにより、所望の特性を有するエポキシ樹脂硬化物を得ることができる。
The epoxy resin composition of the present invention may contain at least one additive as desired. Examples of the additive include, but are not limited to, release agents such as natural waxes, synthetic waxes, linear aliphatic metal oxides, acid amides, esters, paraffins; carbon black or bengara Coloring agents such as: various coupling agents; metal hydroxides such as aluminum hydroxide or magnesium hydroxide. By curing the epoxy resin composition of the present invention containing the at least one additive under predetermined conditions, a cured epoxy resin product having desired characteristics can be obtained.
<3. エポキシ樹脂硬化物>
本発明はまた、本発明のエポキシ樹脂組成物を硬化反応させることによって得られるエポキシ樹脂硬化物に関する。本発明のエポキシ樹脂硬化物は、ベンゼン環の1、3又は5位の少なくとも2個の位置に、少なくとも1個のエーテル架橋基を有するナフチル基が共有結合している構造を基本骨格として有する。 <3. Cured epoxy resin>
The present invention also relates to a cured epoxy resin obtained by curing reaction of the epoxy resin composition of the present invention. The epoxy resin cured product of the present invention has a basic skeleton having a structure in which a naphthyl group having at least one ether bridging group is covalently bonded to at least two positions of the 1, 3 or 5 position of the benzene ring.
本発明はまた、本発明のエポキシ樹脂組成物を硬化反応させることによって得られるエポキシ樹脂硬化物に関する。本発明のエポキシ樹脂硬化物は、ベンゼン環の1、3又は5位の少なくとも2個の位置に、少なくとも1個のエーテル架橋基を有するナフチル基が共有結合している構造を基本骨格として有する。 <3. Cured epoxy resin>
The present invention also relates to a cured epoxy resin obtained by curing reaction of the epoxy resin composition of the present invention. The epoxy resin cured product of the present invention has a basic skeleton having a structure in which a naphthyl group having at least one ether bridging group is covalently bonded to at least two positions of the 1, 3 or 5 position of the benzene ring.
本発明のエポキシ樹脂硬化物において、前記エーテル架橋基は、本発明のエポキシ樹脂組成物に含まれる本発明のエポキシ化合物のグリシジルエーテル基から形成される基である。前記エーテル架橋基は、例えば、本発明のエポキシ樹脂組成物に含まれる硬化剤の水酸基が、本発明のエポキシ化合物のグリシジルエーテル基と開環反応をすることによって、或いは、該開環反応によって形成されるグリシジルエーテル基に由来する水酸基が、別のグリシジルエーテル基とさらなる開環反応をすることによって、形成される。前記エーテル架橋基は、下記の式(II):
[式中、*は、結合位置を表す。]
で表される二価基であることが好ましい。前記基本骨格を有することにより、本発明のエポキシ樹脂硬化物は、高い耐熱性及び優れた電気絶縁性を有することができる。 In the cured epoxy resin of the present invention, the ether crosslinking group is a group formed from a glycidyl ether group of the epoxy compound of the present invention contained in the epoxy resin composition of the present invention. The ether crosslinking group is formed, for example, by the ring opening reaction of the hydroxyl group of the curing agent contained in the epoxy resin composition of the present invention with the glycidyl ether group of the epoxy compound of the present invention, or by the ring opening reaction. A hydroxyl group derived from a glycidyl ether group is formed by further ring-opening reaction with another glycidyl ether group. The ether bridging group has the following formula (II):
[Wherein, * represents a bonding position. ]
It is preferable that it is a bivalent group represented by these. By having the basic skeleton, the cured epoxy resin of the present invention can have high heat resistance and excellent electrical insulation.
で表される二価基であることが好ましい。前記基本骨格を有することにより、本発明のエポキシ樹脂硬化物は、高い耐熱性及び優れた電気絶縁性を有することができる。 In the cured epoxy resin of the present invention, the ether crosslinking group is a group formed from a glycidyl ether group of the epoxy compound of the present invention contained in the epoxy resin composition of the present invention. The ether crosslinking group is formed, for example, by the ring opening reaction of the hydroxyl group of the curing agent contained in the epoxy resin composition of the present invention with the glycidyl ether group of the epoxy compound of the present invention, or by the ring opening reaction. A hydroxyl group derived from a glycidyl ether group is formed by further ring-opening reaction with another glycidyl ether group. The ether bridging group has the following formula (II):
It is preferable that it is a bivalent group represented by these. By having the basic skeleton, the cured epoxy resin of the present invention can have high heat resistance and excellent electrical insulation.
すでに説明したように、本発明のエポキシ樹脂硬化物は、高いガラス転移温度を有する。具体的には、本発明のエポキシ樹脂硬化物は、通常は、150℃以上、典型的には150~450℃の範囲、特に170~350℃の範囲の高いガラス転移温度を有する。前記範囲の高いガラス転移温度を有することにより、本発明のエポキシ樹脂硬化物は、高い耐熱性を有することができる。
As already explained, the cured epoxy resin of the present invention has a high glass transition temperature. Specifically, the cured epoxy resin of the present invention usually has a high glass transition temperature of 150 ° C. or higher, typically in the range of 150 to 450 ° C., particularly in the range of 170 to 350 ° C. By having a glass transition temperature in the above range, the cured epoxy resin of the present invention can have high heat resistance.
なお、本発明のエポキシ樹脂硬化物のガラス転移温度は、例えば、熱動的粘弾性測定装置(DMA)によって決定することができる。
The glass transition temperature of the cured epoxy resin of the present invention can be determined by, for example, a thermodynamic viscoelasticity measuring device (DMA).
すでに説明したように、本発明のエポキシ樹脂硬化物は、低い比誘電率を有する。具体的には、本発明のエポキシ樹脂硬化物は、通常は、3.5以下、典型的には、2.0~3.5の範囲の比誘電率を有する。前記範囲の低い比誘電率を有することにより、本発明のエポキシ樹脂硬化物は、高い絶縁破壊強度を有する電気絶縁性に優れた樹脂材料となることができる。
As already explained, the cured epoxy resin of the present invention has a low relative dielectric constant. Specifically, the cured epoxy resin of the present invention usually has a relative dielectric constant of 3.5 or less, typically in the range of 2.0 to 3.5. By having a low relative dielectric constant in the above range, the cured epoxy resin of the present invention can be a resin material having high dielectric breakdown strength and excellent electrical insulation.
なお、本発明のエポキシ樹脂硬化物の比誘電率は、例えば、空洞共振摂動法によって、10 GHzにおける値として決定することができる。
The relative dielectric constant of the cured epoxy resin of the present invention can be determined as a value at 10 GHz by, for example, the cavity resonance perturbation method.
本発明のエポキシ樹脂組成物は、本発明のエポキシ樹脂組成物を硬化反応させることによって得ることができる。前記硬化反応の温度は、100~200℃の範囲であることが好ましく、150~180℃の範囲であることがより好ましい。前記硬化反応の時間は、0.5~12時間の範囲であることが好ましく、1~6時間の範囲であることがより好ましい。前記条件で硬化反応を実施することにより、本発明のエポキシ樹脂硬化物を得ることができる。
The epoxy resin composition of the present invention can be obtained by curing reaction of the epoxy resin composition of the present invention. The temperature of the curing reaction is preferably in the range of 100 to 200 ° C, more preferably in the range of 150 to 180 ° C. The time for the curing reaction is preferably in the range of 0.5 to 12 hours, and more preferably in the range of 1 to 6 hours. By carrying out the curing reaction under the above conditions, the cured epoxy resin of the present invention can be obtained.
<4. エポキシ樹脂硬化物の用途>
本発明のエポキシ樹脂硬化物は、電気的装置及び半導体装置の封止材料として使用することができる。それ故、本発明はまた、半導体素子と、該半導体素子を封止している、本発明のエポキシ樹脂硬化物を含む封止部材とを有する半導体装置に関する。 <4. Use of cured epoxy resin>
The cured epoxy resin of the present invention can be used as a sealing material for electrical devices and semiconductor devices. Therefore, the present invention also relates to a semiconductor device having a semiconductor element and a sealing member that seals the semiconductor element and includes the cured epoxy resin of the present invention.
本発明のエポキシ樹脂硬化物は、電気的装置及び半導体装置の封止材料として使用することができる。それ故、本発明はまた、半導体素子と、該半導体素子を封止している、本発明のエポキシ樹脂硬化物を含む封止部材とを有する半導体装置に関する。 <4. Use of cured epoxy resin>
The cured epoxy resin of the present invention can be used as a sealing material for electrical devices and semiconductor devices. Therefore, the present invention also relates to a semiconductor device having a semiconductor element and a sealing member that seals the semiconductor element and includes the cured epoxy resin of the present invention.
本発明において、「半導体装置」は、当該技術分野で公知のあらゆる半導体装置を意味する。本発明の半導体装置としては、限定するものではないが、例えば、テレビ受像機、携帯電話又はコンピュータ等の電気機器若しくは電子機器に内蔵される装置、或いは自動車又は各種産業機器等にコンピュータ等の形態で組み込まれている装置を挙げることができる。
In the present invention, “semiconductor device” means any semiconductor device known in the art. Examples of the semiconductor device of the present invention include, but are not limited to, for example, a television receiver, a mobile phone, a device built in an electronic device such as a computer or an electronic device, or a computer or the like in an automobile or various industrial devices. Can be cited as an example.
本発明において、「半導体素子」は、半導体によって構成される電子部品自体又は電子部品の機能中心部の素子を意味する。前記半導体素子としては、限定するものではないが、例えば、トランジスタ、集積回路(IC若しくはLSI)、抵抗及びコンデンサ等を挙げることができる。
In the present invention, the “semiconductor element” means an electronic component itself composed of a semiconductor or an element at the functional center of the electronic component. Examples of the semiconductor element include, but are not limited to, a transistor, an integrated circuit (IC or LSI), a resistor, and a capacitor.
本発明において、「封止部材」は、半導体装置を構成する部材の一つであって、半導体素子の空気酸化及び/又は半導体素子への不純物混入を防ぐために用いる部材を意味する。
In the present invention, the “sealing member” is one of members constituting the semiconductor device and means a member used for preventing air oxidation of the semiconductor element and / or contamination of the semiconductor element.
本発明の半導体装置の一実施形態であるパワー半導体装置の断面図を図4に示す。図4に示すように、本発明のパワー半導体装置4において、パワー半導体素子401の下面側電極は、接合材404を介して、絶縁基板406の上面に配置された回路配線部材402に電気的に接続されている。パワー半導体素子401の主電極は、ワイヤ405を介して、リード部材403に電気的に接続されている。絶縁基板406の下面側には、パワー半導体素子401で発生した熱を外部に逃がすための放熱板407が設けられている。そして、回路配線部材402、リード部材403及び放熱板407の一部がそれぞれ露出した状態で、パワー半導体素子401の周囲が封止部材408で封止されている。封止部材408は、本発明のエポキシ樹脂硬化物を含む。
FIG. 4 shows a cross-sectional view of a power semiconductor device which is an embodiment of the semiconductor device of the present invention. As shown in FIG. 4, in the power semiconductor device 4 of the present invention, the lower surface side electrode of the power semiconductor element 401 is electrically connected to the circuit wiring member 402 disposed on the upper surface of the insulating substrate 406 via the bonding material 404. It is connected. The main electrode of the power semiconductor element 401 is electrically connected to the lead member 403 via the wire 405. On the lower surface side of the insulating substrate 406, a heat radiating plate 407 for releasing heat generated in the power semiconductor element 401 to the outside is provided. The periphery of the power semiconductor element 401 is sealed with a sealing member 408 in a state where a part of the circuit wiring member 402, the lead member 403, and the heat sink 407 are exposed. The sealing member 408 includes the cured epoxy resin of the present invention.
本発明のエポキシ樹脂硬化物は、絶縁破壊強度が高い。このため、本発明のエポキシ樹脂硬化物を封止部材として使用する本発明のパワー半導体装置では、部分放電によるパワー半導体素子と配線とのショートを防止することができる。それ故、本発明のエポキシ樹脂硬化物を封止部材として使用することにより、本発明のパワー半導体装置の高寿命化に寄与することができる。
The cured epoxy resin of the present invention has high dielectric breakdown strength. For this reason, in the power semiconductor device of this invention which uses the epoxy resin hardened | cured material of this invention as a sealing member, the short circuit with a power semiconductor element and wiring by partial discharge can be prevented. Therefore, by using the cured epoxy resin of the present invention as a sealing member, it can contribute to the extension of the life of the power semiconductor device of the present invention.
なお、図4に示すパワー半導体装置の構造は、本発明の半導体装置の一実施形態を示す一例である。他の構造の有する半導体装置においても、本発明のエポキシ樹脂硬化物を封止部材として使用することにより、同様の作用効果を得ることができる。
The structure of the power semiconductor device shown in FIG. 4 is an example showing an embodiment of the semiconductor device of the present invention. Even in a semiconductor device having another structure, similar effects can be obtained by using the cured epoxy resin of the present invention as a sealing member.
本発明のエポキシ樹脂硬化物は、導体を被覆する絶縁材料として使用することもできる。それ故、本発明はまた、導体と、該導体を被覆している、本発明のエポキシ樹脂硬化物を含む絶縁部材とを有する電線に関する。
The cured epoxy resin of the present invention can also be used as an insulating material for covering a conductor. Therefore, the present invention also relates to an electric wire having a conductor and an insulating member covering the conductor and containing the cured epoxy resin of the present invention.
本発明において、「電線」は、2点間で電気を伝導するために使用される、金属等の線状導体を含むものであって、その表面に絶縁及び/又は保護のための被覆部材を有するものを意味する。前記電線としては、限定するものではないが、例えば、高圧配電線、高圧引込線、低圧架空電線、低圧引込線若しくは屋内配線等の電力用電線;電気機器用電線、通信用電線、地中配線用電線、屋内配線用電線、消防設備用電線、制御回路用電線、電力機器用電線、船舶用電線若しくはアンダーカーペット配線用電線等のケーブル;及び小型電気製品のコンセントに接続して使用されるコード等を挙げることができる。前記電線の形状は特に限定されず、単線、撚線、撚対線又はシールド線等の、当該技術分野で通常使用される各種の形状の電線を包含することができる。
In the present invention, the “electric wire” includes a linear conductor such as a metal used to conduct electricity between two points, and a coating member for insulation and / or protection is provided on the surface thereof. It means what you have. Examples of the electric wires include, but are not limited to, high-voltage distribution wires, high-voltage lead-in wires, low-voltage overhead wires, low-voltage lead-in wires, or indoor wires, etc .; electric wires for electric equipment, communication wires, underground wires Cables for indoor wiring, fire fighting equipment, control circuit, power equipment, marine or undercarpet wiring; and cords used by connecting to outlets of small electrical products Can be mentioned. The shape of the said electric wire is not specifically limited, The electric wire of various shapes normally used in the said technical field, such as a single wire, a twisted wire, a twisted pair wire, or a shield wire, can be included.
本発明において、「導体」は、移動可能な電荷を含み、電気を通しやすい性質を有する、電気伝導率(導電率)の高い材料を意味する。前記導体としては、限定するものではないが、例えば、銅、銀若しくはアルミニウム、若しくはこれらの合金、又は光ファイバ等を挙げることができる。
In the present invention, the “conductor” means a material having a high electrical conductivity (conductivity) having a property of containing a movable charge and easily conducting electricity. Examples of the conductor include, but are not limited to, copper, silver, aluminum, alloys thereof, and optical fibers.
本発明の電線において、絶縁部材は、絶縁材料として本発明のエポキシ樹脂硬化物を含む。前記絶縁部材は、所望により、ポリエチレン、架橋ポリエチレン、ポリ塩化ビニル、カプトン、ゴム状重合体、油浸紙、テフロン(登録商標)、シリコーン又はフッ素樹脂等の、電気及び/又は熱を通しにくい性質を有する1種以上のさらなる材料を含んでいてもよい。
In the electric wire of the present invention, the insulating member includes the cured epoxy resin of the present invention as an insulating material. The insulating member has a property that it is difficult to conduct electricity and / or heat, such as polyethylene, cross-linked polyethylene, polyvinyl chloride, kapton, rubbery polymer, oil-impregnated paper, Teflon (registered trademark), silicone, or fluororesin, if desired. One or more additional materials may be included.
本発明の電線の一実施形態である絶縁電線の断面図を図5に示す。図5に示すように、本発明の絶縁電線5は、導体501と、該導体を被覆している絶縁部材502とを有する。絶縁部材502は、本発明のエポキシ樹脂硬化物を含む。本発明の絶縁電線5は、例えば、導体501に、本発明のエポキシ樹脂組成物を塗布した後、加熱硬化することにより、作製することができる。これにより、導体501を被覆している、本発明のエポキシ樹脂硬化物を含む絶縁部材502が形成される。
FIG. 5 shows a cross-sectional view of an insulated wire that is an embodiment of the wire of the present invention. As shown in FIG. 5, the insulated wire 5 of the present invention has a conductor 501 and an insulating member 502 covering the conductor. The insulating member 502 includes the cured epoxy resin of the present invention. The insulated wire 5 of the present invention can be produced, for example, by applying the epoxy resin composition of the present invention to the conductor 501 and then curing by heating. Thereby, the insulating member 502 that covers the conductor 501 and includes the cured epoxy resin of the present invention is formed.
本発明のエポキシ樹脂硬化物は、絶縁破壊強度が高い。このため、本発明のエポキシ樹脂硬化物を絶縁材料として使用することにより、耐サージ特性に優れる絶縁電線を得ることができる。
The cured epoxy resin of the present invention has high dielectric breakdown strength. For this reason, the insulated electric wire which is excellent in surge-proof characteristics can be obtained by using the epoxy resin hardened | cured material of this invention as an insulating material.
なお、図5に示す絶縁電線の構造は、本発明の電線の一実施形態を示す一例である。他の構造の有する電線においても、本発明のエポキシ樹脂硬化物を絶縁材料として使用することにより、同様の作用効果を得ることができる。
In addition, the structure of the insulated wire shown in FIG. 5 is an example showing an embodiment of the wire of the present invention. In the electric wires having other structures, similar effects can be obtained by using the cured epoxy resin of the present invention as an insulating material.
本発明のエポキシ樹脂硬化物は、回転機コイルにおいて、導体を巻回している絶縁部材の絶縁材料として使用することもできる。それ故、本発明はまた、導体と、該導体を巻回している絶縁部材と、該絶縁部材に含浸されている、本発明のエポキシ樹脂硬化物を含む含浸樹脂部材とを有する回転機コイルに関する。
The cured epoxy resin of the present invention can also be used as an insulating material for an insulating member in which a conductor is wound in a rotating machine coil. Therefore, the present invention also relates to a rotating machine coil having a conductor, an insulating member wound around the conductor, and an impregnated resin member impregnated in the insulating member and containing the cured epoxy resin of the present invention. .
本発明において、「回転機コイル」は、絶縁被覆された導体がコイル状に巻かれたものを意味する。本発明の回転機コイルは、磁石と組み合わせることによって、モータ又は発電機の構成部材として使用することができる。
In the present invention, “rotary machine coil” means a conductor in which an insulation coating is wound in a coil shape. The rotating machine coil of the present invention can be used as a constituent member of a motor or a generator by combining with a magnet.
本発明の回転機コイルの一実施形態の斜視図を図6に示す。図6に示すように、本発明の回転機コイル6は、導体601と、該導体601を巻回している絶縁部材と、該絶縁部材に含浸されている含浸樹脂部材602とを有する。含浸樹脂部材602は、本発明のエポキシ樹脂硬化物を含む。含浸樹脂部材602は、通常は、本発明のエポキシ樹脂硬化物で絶縁部材が含浸されることによって形成される。本発明の回転機コイル6は、例えば、導体601に、絶縁テープのような絶縁部材を巻回し、加熱乾燥した後、本発明のエポキシ樹脂組成物を例えば真空下で前記絶縁部材に含浸して、加熱硬化することにより、作製することができる。これにより、本発明のエポキシ樹脂硬化物を含む含浸樹脂部材602が形成される。
FIG. 6 shows a perspective view of an embodiment of the rotating machine coil of the present invention. As shown in FIG. 6, the rotating machine coil 6 of the present invention includes a conductor 601, an insulating member wound around the conductor 601, and an impregnated resin member 602 impregnated in the insulating member. The impregnated resin member 602 includes the cured epoxy resin of the present invention. The impregnated resin member 602 is usually formed by impregnating an insulating member with the cured epoxy resin of the present invention. The rotating machine coil 6 of the present invention is obtained by, for example, winding an insulating member such as an insulating tape around the conductor 601 and heating and drying, and then impregnating the insulating member with the epoxy resin composition of the present invention under a vacuum, for example. It can be produced by heat curing. Thereby, the impregnated resin member 602 containing the cured epoxy resin of the present invention is formed.
本発明のエポキシ樹脂硬化物は、絶縁破壊強度が高い。このため、本発明のエポキシ樹脂硬化物を、導体を巻回している絶縁部材の絶縁材料として使用することにより、耐熱寿命に優れる回転機コイルを得ることができる。
The cured epoxy resin of the present invention has high dielectric breakdown strength. For this reason, the rotating machine coil which is excellent in heat-resistant lifetime can be obtained by using the epoxy resin hardened | cured material of this invention as an insulating material of the insulating member which has wound the conductor.
なお、図6に示す回転機コイルの構造は、本発明の回転機コイルの一実施形態を示す一例である。他の構造の有する回転機コイルにおいても、本発明のエポキシ樹脂硬化物を絶縁材料として使用することにより、同様の作用効果を得ることができる。
The structure of the rotating machine coil shown in FIG. 6 is an example showing an embodiment of the rotating machine coil of the present invention. Even in a rotating machine coil having another structure, similar effects can be obtained by using the cured epoxy resin of the present invention as an insulating material.
本発明のエポキシ樹脂硬化物の絶縁破壊強度は、例えば、150℃の加速寿命評価試験により、本発明のエポキシ樹脂硬化物を用いた電気的装置及び半導体装置における所定時間の絶縁破壊電圧の減少率を決定することによって、評価することができる。
The breakdown strength of the cured epoxy resin of the present invention is, for example, a rate of decrease of the breakdown voltage in a predetermined time in an electrical device and a semiconductor device using the cured epoxy resin of the present invention by an accelerated life evaluation test at 150 ° C. Can be evaluated.
以下、実施例を用いて本発明をさらに具体的に説明する。但し、本発明の技術的範囲はこれら実施例に限定されるものではない。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the technical scope of the present invention is not limited to these examples.
<1. エポキシ化合物及び樹脂硬化物の調製>
[実施例1]
25 gの1-ナフトールと31 gのN-ブロモスクシンイミドとを、アセトニトリル中で3時間撹拌しながら反応させた。反応後、反応混合物を溶媒抽出することにより、4-ブロモ-1-ナフトールを得た(収量:30 g;収率:77%)。次いで、42 gの4-ブロモ-1-ナフトール、40 gの炭酸カリウム、300 mlのアセトン、触媒量のヨウ化カリウム、及び28 mlのベンジルブロミドを加えて、窒素雰囲気下、70℃で3日間撹拌しながら反応させた。反応後、反応混合物を溶媒抽出することにより、1-ベンジルオキシ-4-ブロモナフタレンを得た(収量:45.1 g;収率:77%)。次いで、20 gの1-ベンジルオキシ-4-ブロモナフタレンに、65 mlの乾燥THFを加えて、得られた混合物を-78℃まで冷却した。冷却後、前記混合物とn-BuLi(0.075 mol)とを混合し、さらに0.077 molのトリエチルボレートを加えて、5分間撹拌した。得られた混合物を、-40℃に加熱して30分撹拌し、次いで室温で40時間撹拌しながら反応させた。反応後、塩化アンモニウム、塩酸、酢酸エチル及びトルエンを用いて反応混合物から生成物を分離することにより、4-ブロモ-1-ナフタレンボロン酸を得た(収量:15.3 g;収率:86%)。 <1. Preparation of epoxy compound and cured resin>
[Example 1]
25 g of 1-naphthol and 31 g of N-bromosuccinimide were reacted in acetonitrile with stirring for 3 hours. After the reaction, the reaction mixture was subjected to solvent extraction to obtain 4-bromo-1-naphthol (yield: 30 g; yield: 77%). Then 42 g of 4-bromo-1-naphthol, 40 g of potassium carbonate, 300 ml of acetone, catalytic amount of potassium iodide, and 28 ml of benzyl bromide are added, and nitrogen atmosphere at 70 ° C. for 3 days The reaction was carried out with stirring. After the reaction, the reaction mixture was subjected to solvent extraction to obtain 1-benzyloxy-4-bromonaphthalene (yield: 45.1 g; yield: 77%). Next, to 20 g of 1-benzyloxy-4-bromonaphthalene, 65 ml of dry THF was added and the resulting mixture was cooled to -78 ° C. After cooling, the mixture and n-BuLi (0.075 mol) were mixed, 0.077 mol triethylborate was further added, and the mixture was stirred for 5 minutes. The resulting mixture was heated to −40 ° C. and stirred for 30 minutes, and then reacted at room temperature with stirring for 40 hours. After the reaction, 4-bromo-1-naphthaleneboronic acid was obtained by separating the product from the reaction mixture using ammonium chloride, hydrochloric acid, ethyl acetate and toluene (yield: 15.3 g; yield: 86%). .
[実施例1]
25 gの1-ナフトールと31 gのN-ブロモスクシンイミドとを、アセトニトリル中で3時間撹拌しながら反応させた。反応後、反応混合物を溶媒抽出することにより、4-ブロモ-1-ナフトールを得た(収量:30 g;収率:77%)。次いで、42 gの4-ブロモ-1-ナフトール、40 gの炭酸カリウム、300 mlのアセトン、触媒量のヨウ化カリウム、及び28 mlのベンジルブロミドを加えて、窒素雰囲気下、70℃で3日間撹拌しながら反応させた。反応後、反応混合物を溶媒抽出することにより、1-ベンジルオキシ-4-ブロモナフタレンを得た(収量:45.1 g;収率:77%)。次いで、20 gの1-ベンジルオキシ-4-ブロモナフタレンに、65 mlの乾燥THFを加えて、得られた混合物を-78℃まで冷却した。冷却後、前記混合物とn-BuLi(0.075 mol)とを混合し、さらに0.077 molのトリエチルボレートを加えて、5分間撹拌した。得られた混合物を、-40℃に加熱して30分撹拌し、次いで室温で40時間撹拌しながら反応させた。反応後、塩化アンモニウム、塩酸、酢酸エチル及びトルエンを用いて反応混合物から生成物を分離することにより、4-ブロモ-1-ナフタレンボロン酸を得た(収量:15.3 g;収率:86%)。 <1. Preparation of epoxy compound and cured resin>
[Example 1]
25 g of 1-naphthol and 31 g of N-bromosuccinimide were reacted in acetonitrile with stirring for 3 hours. After the reaction, the reaction mixture was subjected to solvent extraction to obtain 4-bromo-1-naphthol (yield: 30 g; yield: 77%). Then 42 g of 4-bromo-1-naphthol, 40 g of potassium carbonate, 300 ml of acetone, catalytic amount of potassium iodide, and 28 ml of benzyl bromide are added, and nitrogen atmosphere at 70 ° C. for 3 days The reaction was carried out with stirring. After the reaction, the reaction mixture was subjected to solvent extraction to obtain 1-benzyloxy-4-bromonaphthalene (yield: 45.1 g; yield: 77%). Next, to 20 g of 1-benzyloxy-4-bromonaphthalene, 65 ml of dry THF was added and the resulting mixture was cooled to -78 ° C. After cooling, the mixture and n-BuLi (0.075 mol) were mixed, 0.077 mol triethylborate was further added, and the mixture was stirred for 5 minutes. The resulting mixture was heated to −40 ° C. and stirred for 30 minutes, and then reacted at room temperature with stirring for 40 hours. After the reaction, 4-bromo-1-naphthaleneboronic acid was obtained by separating the product from the reaction mixture using ammonium chloride, hydrochloric acid, ethyl acetate and toluene (yield: 15.3 g; yield: 86%). .
次いで、14 gの4-ブロモ-1-ナフタレンボロン酸、4 gの1,3-ジブロモベンゼン、35 mlの2 M炭酸ナトリウム水溶液、52 mlのエタノール、及び207 mlのトルエンを加え、窒素封入した。得られた溶液に、1.2 mmolのテトラキス(トリフェニルホスフィン)パラジウムを加え、窒素雰囲気下、87℃で50時間撹拌しながら反応させた。反応後、反応混合物を溶媒抽出した。得られた抽出物をシリカゲルクロマトグラフィーで精製することにより、1,3-ビス(4-ベンジルオキシナフタレン)ベンゼンを得た(収量:8.7 g;収率:93%)。8.7 gの1,3-ビス(4-ベンジルオキシナフタレン)ベンゼン、56 mlのエタノール、115.5 mlのTHF、及び700 mgの10%Pd/Cを加え、水素雰囲気下で44時間撹拌しながら反応させた。反応混合物を濾過した後、濾液から溶媒を留去することにより、4,4’-(1,3-フェニレン)ビス(ナフタレン-1-オール)を得た。化合物は精製せずにそのまま次の反応に用いた。5.8 gの4,4’-(1,3-フェニレン)ビス(ナフタレン-1-オール)、60 gのエピクロルヒドリン、及び224 mgのテトラメチルアンモニウムクロリドを混合し、80℃で7時間撹拌しながら反応させた。反応後、反応混合物を、室温まで冷却した。得られた反応混合物に、40 mlの15質量%水酸化ナトリウム水溶液を加え、室温で12時間撹拌しながら反応させた。反応終了後、反応混合物を、水及びクロロホルムで溶媒抽出した。抽出物から溶媒を留去した後、生成物を再結晶した。得られた生成物をシリカゲルクロマトグラフィーで精製することにより、ベンゼン環の1及び3位に、1個のグリシジルエーテル基を有する1個のナフチル基がそれぞれ共有結合している構造を有するエポキシ化合物:
を得た(収量:5 g;収率:67%)。
Then 14 g 4-bromo-1-naphthaleneboronic acid, 4 g 1,3-dibromobenzene, 35 ml 2 M aqueous sodium carbonate, 52 ml ethanol, and 207 ml toluene were added and sealed with nitrogen. . To the obtained solution, 1.2 mmol of tetrakis (triphenylphosphine) palladium was added, and the mixture was reacted with stirring at 87 ° C. for 50 hours in a nitrogen atmosphere. After the reaction, the reaction mixture was extracted with a solvent. The obtained extract was purified by silica gel chromatography to obtain 1,3-bis (4-benzyloxynaphthalene) benzene (yield: 8.7 g; yield: 93%). Add 8.7 g of 1,3-bis (4-benzyloxynaphthalene) benzene, 56 ml of ethanol, 115.5 ml of THF, and 700 mg of 10% Pd / C, and react with stirring under a hydrogen atmosphere for 44 hours. It was. After filtering the reaction mixture, the solvent was distilled off from the filtrate to obtain 4,4 ′-(1,3-phenylene) bis (naphthalen-1-ol). The compound was used in the next reaction without purification. 5.8 g of 4,4 ′-(1,3-phenylene) bis (naphthalen-1-ol), 60 g of epichlorohydrin, and 224 mg of tetramethylammonium chloride were mixed and reacted with stirring at 80 ° C. for 7 hours. I let you. After the reaction, the reaction mixture was cooled to room temperature. To the resulting reaction mixture, 40 ml of a 15% by mass aqueous sodium hydroxide solution was added and reacted at room temperature with stirring for 12 hours. After completion of the reaction, the reaction mixture was extracted with water and chloroform. After the solvent was distilled off from the extract, the product was recrystallized. An epoxy compound having a structure in which one naphthyl group having one glycidyl ether group is covalently bonded to positions 1 and 3 of the benzene ring by purifying the obtained product by silica gel chromatography:
(Yield: 5 g; yield: 67%).
得られたエポキシ化合物の核磁気共鳴スペクトル(NMR)を図1に示す。NMRスペクトル上のすべてのピークは、前記構造を有するエポキシ化合物の水素原子に帰属された。
The nuclear magnetic resonance spectrum (NMR) of the obtained epoxy compound is shown in FIG. All peaks on the NMR spectrum were assigned to hydrogen atoms of the epoxy compound having the above structure.
得られたエポキシ化合物のエポキシ当量は、237 g/eqであり、エポキシ化合物の溶融粘度は、150℃において10 mPa・sであった。
The epoxy equivalent of the obtained epoxy compound was 237 g / eq, and the melt viscosity of the epoxy compound was 10 mPa · s at 150 ° C.
得られたエポキシ化合物とフェノール樹脂(MEH-7500、明和化成)とを、グリシジルエーテル基及び水酸基のモル比が1:1となるように配合して混合した。1重量部の得られた混合物に対し、硬化触媒としてイミダゾール(2PHZ-PW、四国化成)を1重量部となるように添加して、150℃で混合することにより、樹脂組成物を得た。得られた樹脂組成物を180℃で6時間加熱硬化することにより、樹脂硬化物を得た。
The obtained epoxy compound and phenol resin (MEH-7500, Meiwa Kasei) were blended and mixed so that the molar ratio of glycidyl ether group and hydroxyl group was 1: 1. By adding 1 part by weight of imidazole (2PHZ-PW, Shikoku Kasei) as a curing catalyst to 1 part by weight of the obtained mixture, a resin composition was obtained by mixing at 150 ° C. The obtained resin composition was heat-cured at 180 ° C. for 6 hours to obtain a cured resin product.
熱動的粘弾性測定装置(DMA)によって決定された樹脂硬化物のガラス転移温度は、196℃であり、空洞共振摂動法によって決定された10 GHzにおける樹脂硬化物の比誘電率は、3.4であった。
The glass transition temperature of the cured resin as determined by the thermodynamic viscoelasticity measuring device (DMA) is 196 ° C, and the relative dielectric constant of the cured resin at 10 GHz determined by the cavity resonance perturbation method is 3.4. there were.
[実施例2]
実施例1において、1,3-ジブロモベンゼンに代えて、1,3,5-トリブロモベンゼンを用いること以外は実施例1と同様の方法で、合成を行った。その結果、ベンゼン環の1、3及び5位に、1個のグリシジルエーテル基を有する1個のナフチル基がそれぞれ共有結合している構造を有するエポキシ化合物:
を得た(収量:5 g;全反応収率:32%)。
[Example 2]
Synthesis was performed in the same manner as in Example 1, except that 1,3,5-tribromobenzene was used instead of 1,3-dibromobenzene. As a result, an epoxy compound having a structure in which one naphthyl group having one glycidyl ether group is covalently bonded to each of the 1, 3 and 5 positions of the benzene ring:
(Yield: 5 g; total reaction yield: 32%).
実施例1において、1,3-ジブロモベンゼンに代えて、1,3,5-トリブロモベンゼンを用いること以外は実施例1と同様の方法で、合成を行った。その結果、ベンゼン環の1、3及び5位に、1個のグリシジルエーテル基を有する1個のナフチル基がそれぞれ共有結合している構造を有するエポキシ化合物:
Synthesis was performed in the same manner as in Example 1, except that 1,3,5-tribromobenzene was used instead of 1,3-dibromobenzene. As a result, an epoxy compound having a structure in which one naphthyl group having one glycidyl ether group is covalently bonded to each of the 1, 3 and 5 positions of the benzene ring:
得られたエポキシ化合物の核磁気共鳴スペクトル(NMR)を図2に示す。NMRスペクトル上のすべてのピークは、前記構造を有するエポキシ化合物の水素原子に帰属された。
The nuclear magnetic resonance spectrum (NMR) of the obtained epoxy compound is shown in FIG. All peaks on the NMR spectrum were assigned to hydrogen atoms of the epoxy compound having the above structure.
得られたエポキシ化合物のエポキシ当量は、224 g/eqであり、エポキシ化合物の溶融粘度は、150℃において10 mPa・sであった。
The epoxy equivalent of the obtained epoxy compound was 224 g / eq, and the melt viscosity of the epoxy compound was 10 mPa · s at 150 ° C.
得られたエポキシ化合物とフェノール樹脂(MEH-7500、明和化成)とを、グリシジルエーテル基及び水酸基のモル比が1:1となるように配合して混合した。1重量部の得られた混合物に対し、硬化触媒としてイミダゾール(2PHZ-PW、四国化成)を1重量部となるように添加して、150℃で混合することにより、樹脂組成物を得た。得られた樹脂組成物を180℃で6時間加熱硬化することにより、樹脂硬化物を得た。
The obtained epoxy compound and phenol resin (MEH-7500, Meiwa Kasei) were blended and mixed so that the molar ratio of glycidyl ether group and hydroxyl group was 1: 1. By adding 1 part by weight of imidazole (2PHZ-PW, Shikoku Kasei) as a curing catalyst to 1 part by weight of the obtained mixture, a resin composition was obtained by mixing at 150 ° C. The obtained resin composition was heat-cured at 180 ° C. for 6 hours to obtain a cured resin product.
熱動的粘弾性測定装置(DMA)によって決定された樹脂硬化物のガラス転移温度は、232℃であり、空洞共振摂動法によって決定された10 GHzにおける樹脂硬化物の比誘電率は、3.1であった。
The glass transition temperature of the cured resin as determined by the thermodynamic viscoelasticity measurement device (DMA) is 232 ° C, and the relative dielectric constant of the cured resin at 10 GHz determined by the cavity resonance perturbation method is 3.1. there were.
[実施例3]
実施例2において、1-ナフトールに代えて、1,7-ジヒドロキシナフタレンを用いること以外は実施例2と同様の方法で、合成を行った。その結果、ベンゼン環の1、3及び5位に、2個のグリシジルエーテル基を有する1個のナフチル基がそれぞれ共有結合している構造を有するエポキシ化合物:
を得た(収量:5 g;全反応収率:33%)。
[Example 3]
In Example 2, synthesis was performed in the same manner as in Example 2 except that 1,7-dihydroxynaphthalene was used instead of 1-naphthol. As a result, an epoxy compound having a structure in which one naphthyl group having two glycidyl ether groups is covalently bonded to the 1, 3 and 5 positions of the benzene ring, respectively:
(Yield: 5 g; total reaction yield: 33%).
実施例2において、1-ナフトールに代えて、1,7-ジヒドロキシナフタレンを用いること以外は実施例2と同様の方法で、合成を行った。その結果、ベンゼン環の1、3及び5位に、2個のグリシジルエーテル基を有する1個のナフチル基がそれぞれ共有結合している構造を有するエポキシ化合物:
In Example 2, synthesis was performed in the same manner as in Example 2 except that 1,7-dihydroxynaphthalene was used instead of 1-naphthol. As a result, an epoxy compound having a structure in which one naphthyl group having two glycidyl ether groups is covalently bonded to the 1, 3 and 5 positions of the benzene ring, respectively:
得られたエポキシ化合物の核磁気共鳴スペクトル(NMR)を図3に示す。NMRスペクトル上のすべてのピークは、前記構造を有するエポキシ化合物の水素原子に帰属された。
The nuclear magnetic resonance spectrum (NMR) of the obtained epoxy compound is shown in FIG. All peaks on the NMR spectrum were assigned to hydrogen atoms of the epoxy compound having the above structure.
得られたエポキシ化合物のエポキシ当量は、148 g/eqであり、エポキシ化合物の溶融粘度は、150℃において100 mPa・sであった。
The epoxy equivalent of the obtained epoxy compound was 148 g / eq, and the melt viscosity of the epoxy compound was 100 mPa · s at 150 ° C.
得られたエポキシ化合物とフェノール樹脂(MEH-7500、明和化成)とを、グリシジルエーテル基及び水酸基のモル比が1:1となるように配合して混合した。1重量部の得られた混合物に対し、硬化触媒としてイミダゾール(2PHZ-PW、四国化成)を1重量部となるように添加して、160℃で混合することにより、樹脂組成物を得た。得られた樹脂組成物を180℃で6時間加熱硬化することにより、樹脂硬化物を得た。
The obtained epoxy compound and phenol resin (MEH-7500, Meiwa Kasei) were blended and mixed so that the molar ratio of glycidyl ether group and hydroxyl group was 1: 1. By adding 1 part by weight of imidazole (2PHZ-PW, Shikoku Kasei) as a curing catalyst to 1 part by weight of the obtained mixture, a resin composition was obtained by mixing at 160 ° C. The obtained resin composition was heat-cured at 180 ° C. for 6 hours to obtain a cured resin product.
熱動的粘弾性測定装置(DMA)によって決定された樹脂硬化物のガラス転移温度は、350℃以上であり、空洞共振摂動法によって決定された10 GHzにおける樹脂硬化物の比誘電率は、2.8であった。
The glass transition temperature of the cured resin determined by the thermodynamic viscoelasticity measurement device (DMA) is 350 ° C. or higher, and the relative dielectric constant of the cured resin at 10 GHz determined by the cavity resonance perturbation method is 2.8. Met.
[比較例1]
比較例として、メチレン基を介して結合している構造を有するオルトクレゾールノボラック型エポキシ化合物(211 g/eq、YDCN-750、東都化成)を使用した。前記オルトクレゾールノボラック型エポキシ化合物(YDCN-750)とフェノール樹脂(MEH-7500、明和化成)とを、グリシジルエーテル基及び水酸基のモル比が1:1となるように配合して混合した。1重量部の得られた混合物に対し、硬化触媒としてイミダゾール(2PHZ-PW、四国化成)を1重量部となるように添加して、150℃で混合することにより、樹脂組成物を得た。得られた樹脂組成物を180℃で6時間加熱硬化することにより、樹脂硬化物を得た。 [Comparative Example 1]
As a comparative example, an ortho cresol novolak type epoxy compound (211 g / eq, YDCN-750, Toto Kasei) having a structure bonded via a methylene group was used. The ortho-cresol novolac type epoxy compound (YDCN-750) and a phenol resin (MEH-7500, Meiwa Kasei) were blended and mixed so that the molar ratio of glycidyl ether group and hydroxyl group was 1: 1. By adding 1 part by weight of imidazole (2PHZ-PW, Shikoku Kasei) as a curing catalyst to 1 part by weight of the obtained mixture, a resin composition was obtained by mixing at 150 ° C. The obtained resin composition was heat-cured at 180 ° C. for 6 hours to obtain a cured resin product.
比較例として、メチレン基を介して結合している構造を有するオルトクレゾールノボラック型エポキシ化合物(211 g/eq、YDCN-750、東都化成)を使用した。前記オルトクレゾールノボラック型エポキシ化合物(YDCN-750)とフェノール樹脂(MEH-7500、明和化成)とを、グリシジルエーテル基及び水酸基のモル比が1:1となるように配合して混合した。1重量部の得られた混合物に対し、硬化触媒としてイミダゾール(2PHZ-PW、四国化成)を1重量部となるように添加して、150℃で混合することにより、樹脂組成物を得た。得られた樹脂組成物を180℃で6時間加熱硬化することにより、樹脂硬化物を得た。 [Comparative Example 1]
As a comparative example, an ortho cresol novolak type epoxy compound (211 g / eq, YDCN-750, Toto Kasei) having a structure bonded via a methylene group was used. The ortho-cresol novolac type epoxy compound (YDCN-750) and a phenol resin (MEH-7500, Meiwa Kasei) were blended and mixed so that the molar ratio of glycidyl ether group and hydroxyl group was 1: 1. By adding 1 part by weight of imidazole (2PHZ-PW, Shikoku Kasei) as a curing catalyst to 1 part by weight of the obtained mixture, a resin composition was obtained by mixing at 150 ° C. The obtained resin composition was heat-cured at 180 ° C. for 6 hours to obtain a cured resin product.
熱動的粘弾性測定装置(DMA)によって決定された樹脂硬化物のガラス転移温度は、170℃であり、空洞共振摂動法によって決定された10 GHzにおける樹脂硬化物の比誘電率は、3.8であった。
The glass transition temperature of the cured resin as determined by the thermodynamic viscoelasticity measuring device (DMA) is 170 ° C, and the relative dielectric constant of the cured resin at 10 GHz determined by the cavity resonance perturbation method is 3.8. there were.
比較例1で使用されたエポキシ化合物は、オルトクレゾールがメチレン基を介して結合している構造を有する。これに対し、実施例1、2及び3のエポキシ化合物は、ベンゼン環とナフチル基との間にメチレン基を有さず、ベンゼン環とナフチル基とが直接共有結合している。また、実施例1、2及び3のエポキシ化合物は、耐熱性が高いベンゼン環及びナフタレン環を基本骨格として有する。このため、実施例1、2及び3のエポキシ化合物を用いた場合、比較例1を用いた場合と比較して、耐熱性が高い樹脂硬化物を得ることができた。また、実施例1、2及び3のエポキシ化合物は、ナフチル基の4位又は4及び6位にグリシジルエーテル基を有することから、グリシジルエーテル基が屈曲構造を形成するように配置される。その結果、実施例1、2及び3のエポキシ化合物では、溶融粘度が低下した。これにより、実施例1、2及び3のエポキシ化合物は、高い成形性を示した。
The epoxy compound used in Comparative Example 1 has a structure in which ortho-cresol is bonded through a methylene group. On the other hand, the epoxy compounds of Examples 1, 2 and 3 do not have a methylene group between the benzene ring and the naphthyl group, and the benzene ring and the naphthyl group are directly covalently bonded. In addition, the epoxy compounds of Examples 1, 2 and 3 have a benzene ring and a naphthalene ring having high heat resistance as a basic skeleton. For this reason, when the epoxy compounds of Examples 1, 2 and 3 were used, a cured resin product having higher heat resistance than that obtained using Comparative Example 1 could be obtained. In addition, since the epoxy compounds of Examples 1, 2 and 3 have glycidyl ether groups at the 4-position or the 4- and 6-positions of the naphthyl group, the glycidyl ether groups are arranged so as to form a bent structure. As a result, in the epoxy compounds of Examples 1, 2, and 3, the melt viscosity decreased. As a result, the epoxy compounds of Examples 1, 2 and 3 showed high moldability.
実施例1及び2のエポキシ化合物のエポキシ当量は、それぞれ237 g/eq及び224 g/eqであり、比較例1のオルトクレゾールノボラック型エポキシ化合物と比較して高い値であった。一般に、エポキシ化合物のエポキシ当量が高いほど、反応点となるエポキシ基濃度が低くなり、結果として硬化反応により生成する水酸基濃度が低下する。このため、実施例1及び2のエポキシ化合物を用いた場合、比較例1を用いた場合と比較して、誘電率が低い樹脂硬化物を得ることができたと考えられる。
The epoxy equivalents of the epoxy compounds of Examples 1 and 2 were 237 g / eq and 224 g / eq, respectively, which were higher values than the ortho-cresol novolac type epoxy compound of Comparative Example 1. In general, the higher the epoxy equivalent of the epoxy compound, the lower the concentration of the epoxy group that becomes the reaction point, and as a result, the concentration of the hydroxyl group generated by the curing reaction decreases. Therefore, when the epoxy compounds of Examples 1 and 2 are used, it is considered that a cured resin product having a low dielectric constant can be obtained as compared with the case of using Comparative Example 1.
実施例1、2及び3と比較例1との対比から、本発明のエポキシ化合物は、ベンゼン環とナフチル基との間にメチレン基を有しないことから、耐熱性が高く、且つ電気絶縁性に優れる樹脂硬化物を与えることが示された。
From the comparison between Examples 1, 2 and 3 and Comparative Example 1, the epoxy compound of the present invention has no methylene group between the benzene ring and the naphthyl group, and thus has high heat resistance and electrical insulation. It was shown to give an excellent cured resin.
<2. エポキシ樹脂硬化物を用いる装置の作製>
[実施例4]
本発明のエポキシ樹脂組成物を用いて、パワー半導体装置を作製した。実施例1のエポキシ化合物とフェノール樹脂(MEH-7500,明和化成)とを、グリシジルエーテル基及び水酸基のモル比が1:1となるように配合して混合した。1重量部の得られた混合物に対し、充填材としてシリカを80重量部、シランカップリング剤としてKBM403(信越化学工業株式会社製)を5重量部、離型剤としてヘキストワックスE(クラリアントジャパン株式会社製)を2重量部、着色剤としてカーボンブラックを1重量部添加して、溶融混錬して封止樹脂原料を作製した。常法に従い、パワー半導体素子が搭載されたモジュールを作製した。得られた封止樹脂原料を用いて、トランスファモールド法により前記モジュール全体を被覆し、180℃で6時間加熱硬化して、樹脂封止した。 <2. Production of equipment using cured epoxy resin>
[Example 4]
A power semiconductor device was manufactured using the epoxy resin composition of the present invention. The epoxy compound of Example 1 and a phenol resin (MEH-7500, Meiwa Kasei) were blended and mixed so that the molar ratio of glycidyl ether group and hydroxyl group was 1: 1. 1 part by weight of the resulting mixture is 80 parts by weight of silica as a filler, 5 parts by weight of KBM403 (manufactured by Shin-Etsu Chemical Co., Ltd.) as a silane coupling agent, and Hoechst Wax E (Clariant Japan Co., Ltd.) as a release agent. 2 parts by weight (made by company) and 1 part by weight of carbon black as a colorant were added and melt-kneaded to prepare a sealing resin raw material. In accordance with a conventional method, a module on which a power semiconductor element was mounted was produced. Using the obtained sealing resin raw material, the entire module was covered by a transfer mold method, and heat-cured at 180 ° C. for 6 hours to seal the resin.
[実施例4]
本発明のエポキシ樹脂組成物を用いて、パワー半導体装置を作製した。実施例1のエポキシ化合物とフェノール樹脂(MEH-7500,明和化成)とを、グリシジルエーテル基及び水酸基のモル比が1:1となるように配合して混合した。1重量部の得られた混合物に対し、充填材としてシリカを80重量部、シランカップリング剤としてKBM403(信越化学工業株式会社製)を5重量部、離型剤としてヘキストワックスE(クラリアントジャパン株式会社製)を2重量部、着色剤としてカーボンブラックを1重量部添加して、溶融混錬して封止樹脂原料を作製した。常法に従い、パワー半導体素子が搭載されたモジュールを作製した。得られた封止樹脂原料を用いて、トランスファモールド法により前記モジュール全体を被覆し、180℃で6時間加熱硬化して、樹脂封止した。 <2. Production of equipment using cured epoxy resin>
[Example 4]
A power semiconductor device was manufactured using the epoxy resin composition of the present invention. The epoxy compound of Example 1 and a phenol resin (MEH-7500, Meiwa Kasei) were blended and mixed so that the molar ratio of glycidyl ether group and hydroxyl group was 1: 1. 1 part by weight of the resulting mixture is 80 parts by weight of silica as a filler, 5 parts by weight of KBM403 (manufactured by Shin-Etsu Chemical Co., Ltd.) as a silane coupling agent, and Hoechst Wax E (Clariant Japan Co., Ltd.) as a release agent. 2 parts by weight (made by company) and 1 part by weight of carbon black as a colorant were added and melt-kneaded to prepare a sealing resin raw material. In accordance with a conventional method, a module on which a power semiconductor element was mounted was produced. Using the obtained sealing resin raw material, the entire module was covered by a transfer mold method, and heat-cured at 180 ° C. for 6 hours to seal the resin.
作製されたパワー半導体装置の模式図を図4に示す。パワー半導体装置4において、パワー半導体素子401の下面側電極は、接合材404を介して、絶縁基板406の上面に配置された回路配線部材402に電気的に接続されている。パワー半導体素子401の主電極は、ワイヤ405を介して、リード部材403に電気的に接続されている。絶縁基板406の下面側には、パワー半導体素子401で発生した熱を外部に逃がすための放熱板407が設けられている。そして、回路配線部材402、リード部材403及び放熱板407の一部がそれぞれ露出した状態で、パワー半導体素子401の周囲が封止部材408で封止されている。封止部材408は、前記手順で作製されたエポキシ樹脂硬化物を含む。
Fig. 4 shows a schematic diagram of the fabricated power semiconductor device. In the power semiconductor device 4, the lower surface side electrode of the power semiconductor element 401 is electrically connected to the circuit wiring member 402 disposed on the upper surface of the insulating substrate 406 via the bonding material 404. The main electrode of the power semiconductor element 401 is electrically connected to the lead member 403 via the wire 405. On the lower surface side of the insulating substrate 406, a heat radiating plate 407 for releasing heat generated in the power semiconductor element 401 to the outside is provided. The periphery of the power semiconductor element 401 is sealed with a sealing member 408 in a state where a part of the circuit wiring member 402, the lead member 403, and the heat sink 407 are exposed. The sealing member 408 includes a cured epoxy resin produced by the above procedure.
[比較例2]
実施例4において、エポキシ化合物として、メチレン基を介して結合している構造を有するオルトクレゾールノボラック型エポキシ化合物(211 g/eq、YDCN-750、東都化成)を用いること以外は実施例4と同様の方法で、パワー半導体装置を作製した。 [Comparative Example 2]
In Example 4, an ortho-cresol novolak type epoxy compound (211 g / eq, YDCN-750, Toto Kasei) having a structure bonded via a methylene group is used as the epoxy compound, as in Example 4. Thus, a power semiconductor device was manufactured.
実施例4において、エポキシ化合物として、メチレン基を介して結合している構造を有するオルトクレゾールノボラック型エポキシ化合物(211 g/eq、YDCN-750、東都化成)を用いること以外は実施例4と同様の方法で、パワー半導体装置を作製した。 [Comparative Example 2]
In Example 4, an ortho-cresol novolak type epoxy compound (211 g / eq, YDCN-750, Toto Kasei) having a structure bonded via a methylene group is used as the epoxy compound, as in Example 4. Thus, a power semiconductor device was manufactured.
パワーサイクル(PC)試験(ΔTc=170℃、20℃⇔190℃)により、実施例4及び比較例2のパワー半導体装置のサイクル寿命を評価した。その結果、実施例4のパワー半導体装置のパワーサイクル寿命は、20000回であったのに対し、比較例2のパワー半導体装置のパワーサイクル寿命は、4000回であった。前記試験結果より、本発明の樹脂硬化物を用いて作製されたパワー半導体装置は、従来の樹脂硬化物を用いて作製されたパワー半導体装置と比較して、パワーサイクル寿命が向上することが示された。この結果は、封止部材として本発明のエポキシ樹脂硬化物を用いることにより、部分放電電圧に伴う絶縁劣化が抑制されるためと考えられる。
The cycle life of the power semiconductor devices of Example 4 and Comparative Example 2 was evaluated by a power cycle (PC) test (ΔTc = 170 ° C., 20 ° C. to 190 ° C.). As a result, the power cycle life of the power semiconductor device of Example 4 was 20000 times, whereas the power cycle life of the power semiconductor device of Comparative Example 2 was 4000 times. From the above test results, it is shown that a power semiconductor device manufactured using the cured resin product of the present invention has an improved power cycle life compared to a power semiconductor device manufactured using a conventional cured resin material. It was done. This result is considered to be because the deterioration of insulation associated with the partial discharge voltage is suppressed by using the cured epoxy resin of the present invention as the sealing member.
[実施例5]
本発明のエポキシ樹脂組成物を用いて、エナメル線を作製した。実施例1と同様の手順により、本発明のエポキシ樹脂組成物を調製した。得られたエポキシ樹脂組成物を電線に塗布した後、180℃で6時間加熱硬化することにより、本発明のエポキシ樹脂硬化物で被覆されたエナメル線を得た。150℃の加速寿命評価試験により、得られたエナメル線の性能を評価した。その結果、実施例5のエナメル線の、500時間の絶縁破壊電圧の減少率は、初期値の5%であった。 [Example 5]
An enameled wire was prepared using the epoxy resin composition of the present invention. The epoxy resin composition of the present invention was prepared by the same procedure as in Example 1. After the obtained epoxy resin composition was applied to an electric wire, it was heat-cured at 180 ° C. for 6 hours to obtain an enameled wire coated with the cured epoxy resin of the present invention. The performance of the obtained enamel wire was evaluated by an accelerated life evaluation test at 150 ° C. As a result, the reduction rate of the dielectric breakdown voltage of the enameled wire of Example 5 for 500 hours was 5% of the initial value.
本発明のエポキシ樹脂組成物を用いて、エナメル線を作製した。実施例1と同様の手順により、本発明のエポキシ樹脂組成物を調製した。得られたエポキシ樹脂組成物を電線に塗布した後、180℃で6時間加熱硬化することにより、本発明のエポキシ樹脂硬化物で被覆されたエナメル線を得た。150℃の加速寿命評価試験により、得られたエナメル線の性能を評価した。その結果、実施例5のエナメル線の、500時間の絶縁破壊電圧の減少率は、初期値の5%であった。 [Example 5]
An enameled wire was prepared using the epoxy resin composition of the present invention. The epoxy resin composition of the present invention was prepared by the same procedure as in Example 1. After the obtained epoxy resin composition was applied to an electric wire, it was heat-cured at 180 ° C. for 6 hours to obtain an enameled wire coated with the cured epoxy resin of the present invention. The performance of the obtained enamel wire was evaluated by an accelerated life evaluation test at 150 ° C. As a result, the reduction rate of the dielectric breakdown voltage of the enameled wire of Example 5 for 500 hours was 5% of the initial value.
[比較例3]
市販の絶縁被覆材を用いて、比較例3のエナメル線を作製した。150℃の加速寿命評価試験により、得られたエナメル線の性能を評価した。その結果、比較例3のエナメル線の、500時間の絶縁破壊電圧の減少率は、初期値の60%であった。前記試験結果より、本発明の樹脂硬化物を用いて作製されたエナメル線は、従来の絶縁被覆材を用いて作製されたエナメル線と比較して、耐電圧性に優れることが示された。 [Comparative Example 3]
An enameled wire of Comparative Example 3 was produced using a commercially available insulating coating material. The performance of the obtained enamel wire was evaluated by an accelerated life evaluation test at 150 ° C. As a result, the reduction rate of the dielectric breakdown voltage for 500 hours of the enameled wire of Comparative Example 3 was 60% of the initial value. From the test results, it was shown that the enameled wire produced using the cured resin product of the present invention is superior in voltage resistance compared to the enameled wire produced using a conventional insulating coating material.
市販の絶縁被覆材を用いて、比較例3のエナメル線を作製した。150℃の加速寿命評価試験により、得られたエナメル線の性能を評価した。その結果、比較例3のエナメル線の、500時間の絶縁破壊電圧の減少率は、初期値の60%であった。前記試験結果より、本発明の樹脂硬化物を用いて作製されたエナメル線は、従来の絶縁被覆材を用いて作製されたエナメル線と比較して、耐電圧性に優れることが示された。 [Comparative Example 3]
An enameled wire of Comparative Example 3 was produced using a commercially available insulating coating material. The performance of the obtained enamel wire was evaluated by an accelerated life evaluation test at 150 ° C. As a result, the reduction rate of the dielectric breakdown voltage for 500 hours of the enameled wire of Comparative Example 3 was 60% of the initial value. From the test results, it was shown that the enameled wire produced using the cured resin product of the present invention is superior in voltage resistance compared to the enameled wire produced using a conventional insulating coating material.
[実施例6]
本発明のエポキシ樹脂組成物を用いて、回転機コイルを作製した。実施例1と同様の手順により、本発明のエポキシ樹脂組成物を調製した。導体に絶縁テープを巻回し、加熱乾燥した。得られたエポキシ樹脂組成物を真空含浸した後、180℃で6時間加熱硬化することにより、本発明のエポキシ樹脂硬化物を含む含浸樹脂部材を有する回転機コイルを得た。150℃の加速寿命評価試験により、得られた回転機コイルの性能を評価した。その結果、実施例5のエナメル線の、500時間の絶縁破壊電圧の減少率は、初期値の10%であった。 [Example 6]
A rotating machine coil was prepared using the epoxy resin composition of the present invention. The epoxy resin composition of the present invention was prepared by the same procedure as in Example 1. An insulating tape was wound around the conductor and dried by heating. The obtained epoxy resin composition was vacuum impregnated and then heat-cured at 180 ° C. for 6 hours to obtain a rotating machine coil having an impregnated resin member containing the cured epoxy resin of the present invention. The performance of the obtained rotating machine coil was evaluated by an accelerated life evaluation test at 150 ° C. As a result, the reduction rate of the dielectric breakdown voltage of the enameled wire of Example 5 for 500 hours was 10% of the initial value.
本発明のエポキシ樹脂組成物を用いて、回転機コイルを作製した。実施例1と同様の手順により、本発明のエポキシ樹脂組成物を調製した。導体に絶縁テープを巻回し、加熱乾燥した。得られたエポキシ樹脂組成物を真空含浸した後、180℃で6時間加熱硬化することにより、本発明のエポキシ樹脂硬化物を含む含浸樹脂部材を有する回転機コイルを得た。150℃の加速寿命評価試験により、得られた回転機コイルの性能を評価した。その結果、実施例5のエナメル線の、500時間の絶縁破壊電圧の減少率は、初期値の10%であった。 [Example 6]
A rotating machine coil was prepared using the epoxy resin composition of the present invention. The epoxy resin composition of the present invention was prepared by the same procedure as in Example 1. An insulating tape was wound around the conductor and dried by heating. The obtained epoxy resin composition was vacuum impregnated and then heat-cured at 180 ° C. for 6 hours to obtain a rotating machine coil having an impregnated resin member containing the cured epoxy resin of the present invention. The performance of the obtained rotating machine coil was evaluated by an accelerated life evaluation test at 150 ° C. As a result, the reduction rate of the dielectric breakdown voltage of the enameled wire of Example 5 for 500 hours was 10% of the initial value.
[比較例4]
市販の含浸樹脂を用いて、比較例4の回転機コイルを作製した。150℃の加速寿命評価試験により、得られた回転機コイルの性能を評価した。その結果、比較例4の回転機コイルの、500時間の絶縁破壊電圧の減少率は、初期値の60%であった。前記試験結果より、本発明の樹脂硬化物を用いて作製された回転機コイルは、従来の絶縁被覆材を用いて作製された回転機コイルと比較して、耐電圧性に優れることが示された。 [Comparative Example 4]
A rotating machine coil of Comparative Example 4 was produced using a commercially available impregnating resin. The performance of the obtained rotating machine coil was evaluated by an accelerated life evaluation test at 150 ° C. As a result, the reduction rate of the dielectric breakdown voltage for 500 hours of the rotating machine coil of Comparative Example 4 was 60% of the initial value. From the above test results, it is shown that the rotating machine coil produced using the resin cured product of the present invention is superior in voltage resistance compared to the rotating machine coil produced using the conventional insulation coating material. It was.
市販の含浸樹脂を用いて、比較例4の回転機コイルを作製した。150℃の加速寿命評価試験により、得られた回転機コイルの性能を評価した。その結果、比較例4の回転機コイルの、500時間の絶縁破壊電圧の減少率は、初期値の60%であった。前記試験結果より、本発明の樹脂硬化物を用いて作製された回転機コイルは、従来の絶縁被覆材を用いて作製された回転機コイルと比較して、耐電圧性に優れることが示された。 [Comparative Example 4]
A rotating machine coil of Comparative Example 4 was produced using a commercially available impregnating resin. The performance of the obtained rotating machine coil was evaluated by an accelerated life evaluation test at 150 ° C. As a result, the reduction rate of the dielectric breakdown voltage for 500 hours of the rotating machine coil of Comparative Example 4 was 60% of the initial value. From the above test results, it is shown that the rotating machine coil produced using the resin cured product of the present invention is superior in voltage resistance compared to the rotating machine coil produced using the conventional insulation coating material. It was.
なお、本発明は、前記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施例の構成の一部について、他の構成の追加・削除及び/又は置換をすることが可能である。
In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, it is possible to add, delete, and / or replace another configuration with respect to a part of the configuration of each embodiment.
本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書にとり入れるものとする。
All publications, patents and patent applications cited in this specification shall be incorporated into this specification as they are.
4…本発明のパワー半導体装置
5…本発明の絶縁電線
6…本発明の回転機コイル
401…パワー半導体素子
402…回路配線部材
403…リード部材
404…接合材
405…ワイヤ
406…絶縁基板
407…放熱板
408…封止部材
501…導体
502…絶縁部材
601…導体
602…含浸樹脂部材 4 ... Power semiconductor device of the present invention
5 ... Insulated wire of the present invention
6 ... Rotating machine coil of the present invention
401… Power semiconductor element
402 ... Circuit wiring member
403 ... Lead material
404 ... Joint material
405 ... Wire
406 ... Insulating substrate
407… Heat sink
408 ... Sealing member
501 ... Conductor
502… Insulating material
601 ... conductor
602 ... Impregnated resin member
5…本発明の絶縁電線
6…本発明の回転機コイル
401…パワー半導体素子
402…回路配線部材
403…リード部材
404…接合材
405…ワイヤ
406…絶縁基板
407…放熱板
408…封止部材
501…導体
502…絶縁部材
601…導体
602…含浸樹脂部材 4 ... Power semiconductor device of the present invention
5 ... Insulated wire of the present invention
6 ... Rotating machine coil of the present invention
401… Power semiconductor element
402 ... Circuit wiring member
403 ... Lead material
404 ... Joint material
405 ... Wire
406 ... Insulating substrate
407… Heat sink
408 ... Sealing member
501 ... Conductor
502… Insulating material
601 ... conductor
602 ... Impregnated resin member
Claims (10)
- ベンゼン環の1、3又は5位の少なくとも2個の位置に、少なくとも1個のグリシジルエーテル基を有するナフチル基が共有結合している構造を有する、エポキシ化合物。 An epoxy compound having a structure in which a naphthyl group having at least one glycidyl ether group is covalently bonded to at least two positions of the 1, 3 or 5 position of the benzene ring.
- ベンゼン環の1及び3位に、1個のグリシジルエーテル基を有する1個のナフチル基がそれぞれ共有結合している構造を有する、請求項1に記載のエポキシ化合物。 2. The epoxy compound according to claim 1, which has a structure in which one naphthyl group having one glycidyl ether group is covalently bonded to positions 1 and 3 of the benzene ring.
- ベンゼン環の1、3及び5位に、1個のグリシジルエーテル基を有する1個のナフチル基がそれぞれ共有結合している構造を有する、請求項1に記載のエポキシ化合物。 2. The epoxy compound according to claim 1, having a structure in which one naphthyl group having one glycidyl ether group is covalently bonded to each of the 1, 3, and 5 positions of the benzene ring.
- ベンゼン環の1、3及び5位に、2個のグリシジルエーテル基を有する1個のナフチル基がそれぞれ共有結合している構造を有する、請求項1に記載のエポキシ化合物。 2. The epoxy compound according to claim 1, having a structure in which one naphthyl group having two glycidyl ether groups is covalently bonded to the 1, 3 and 5 positions of the benzene ring.
- 請求項1~4のいずれか1項に記載のエポキシ化合物及び少なくとも1種の硬化剤を含むエポキシ樹脂組成物。 An epoxy resin composition comprising the epoxy compound according to any one of claims 1 to 4 and at least one curing agent.
- 請求項5に記載のエポキシ樹脂組成物を硬化反応させることによって得られるエポキシ樹脂硬化物。 6. A cured epoxy resin obtained by curing reaction of the epoxy resin composition according to claim 5.
- ベンゼン環の1、3又は5位の少なくとも2個の位置に、少なくとも1個のエーテル架橋基を有するナフチル基が共有結合している構造を基本骨格として有する、エポキシ樹脂硬化物。 An epoxy resin cured product having, as a basic skeleton, a structure in which a naphthyl group having at least one ether bridging group is covalently bonded to at least two positions of the 1, 3 or 5 position of the benzene ring.
- 半導体素子と、該半導体素子を封止している、請求項6又は7に記載のエポキシ樹脂硬化物を含む封止部材とを有する半導体装置。 A semiconductor device having a semiconductor element and a sealing member containing the cured epoxy resin according to claim 6 or 7, which seals the semiconductor element.
- 導体と、該導体を被覆している、請求項6又は7に記載のエポキシ樹脂硬化物を含む絶縁部材とを有する電線。 An electric wire having a conductor and an insulating member containing the cured epoxy resin according to claim 6 or 7, which covers the conductor.
- 導体と、該導体を巻回している絶縁部材と、該絶縁部材に含浸されている、請求項6又は7に記載のエポキシ樹脂硬化物を含む含浸樹脂部材とを有する回転機コイル。 A rotating machine coil having a conductor, an insulating member wound around the conductor, and an impregnated resin member containing the cured epoxy resin according to claim 6 impregnated in the insulating member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/063647 WO2015177915A1 (en) | 2014-05-23 | 2014-05-23 | Epoxy compound and epoxy resin cured product using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/063647 WO2015177915A1 (en) | 2014-05-23 | 2014-05-23 | Epoxy compound and epoxy resin cured product using same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015177915A1 true WO2015177915A1 (en) | 2015-11-26 |
Family
ID=54553608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/063647 WO2015177915A1 (en) | 2014-05-23 | 2014-05-23 | Epoxy compound and epoxy resin cured product using same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015177915A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018070718A (en) * | 2016-10-27 | 2018-05-10 | Tdk株式会社 | Resin composition, resin sheet, resin cured product and resin substrate |
WO2018180091A1 (en) * | 2017-03-28 | 2018-10-04 | Tdk株式会社 | Resin composition, resin sheet, resin cured product, and resin substrate |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02235918A (en) * | 1989-03-09 | 1990-09-18 | Mitsubishi Electric Corp | Epoxy resin composition for semiconductor sealing |
JP2001011158A (en) * | 1999-06-25 | 2001-01-16 | Hitachi Chem Co Ltd | Epoxy resin molding material for sealing and electronic part device |
JP2007191587A (en) * | 2006-01-19 | 2007-08-02 | Nippon Kayaku Co Ltd | Active energy ray-curable resin composition, and use thereof |
JP2012077214A (en) * | 2010-10-01 | 2012-04-19 | Namics Corp | Epoxy resin composition and semiconductor device using the same |
-
2014
- 2014-05-23 WO PCT/JP2014/063647 patent/WO2015177915A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02235918A (en) * | 1989-03-09 | 1990-09-18 | Mitsubishi Electric Corp | Epoxy resin composition for semiconductor sealing |
JP2001011158A (en) * | 1999-06-25 | 2001-01-16 | Hitachi Chem Co Ltd | Epoxy resin molding material for sealing and electronic part device |
JP2007191587A (en) * | 2006-01-19 | 2007-08-02 | Nippon Kayaku Co Ltd | Active energy ray-curable resin composition, and use thereof |
JP2012077214A (en) * | 2010-10-01 | 2012-04-19 | Namics Corp | Epoxy resin composition and semiconductor device using the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018070718A (en) * | 2016-10-27 | 2018-05-10 | Tdk株式会社 | Resin composition, resin sheet, resin cured product and resin substrate |
WO2018180091A1 (en) * | 2017-03-28 | 2018-10-04 | Tdk株式会社 | Resin composition, resin sheet, resin cured product, and resin substrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mya et al. | Preparation and thermomechanical properties of epoxy resins modified by octafunctional cubic silsesquioxane epoxides | |
KR101901473B1 (en) | Insulation formulations | |
Liu et al. | Silicon‐containing cycloaliphatic epoxy resins with systematically varied functionalities: synthesis and structure/property relationships | |
US20100018750A1 (en) | Curable epoxy resin composition | |
WO2010106084A1 (en) | Curable epoxy resin composition | |
WO2012158292A1 (en) | Insulation formulations | |
JP3874108B2 (en) | Epoxy resin composition | |
CN106084184B (en) | Composition, epoxy resin curing agent, epoxy resin composition, thermosetting composition, cured product, semiconductor device, and interlayer insulating material | |
JPH0817060B2 (en) | Electrically insulated coil, rotating electric machine, and manufacturing method thereof | |
JP6192523B2 (en) | Epoxy resin curing agent, production method, and use thereof | |
WO2015177915A1 (en) | Epoxy compound and epoxy resin cured product using same | |
US20220029491A1 (en) | Electrical Operating Means Having an Insulation System, and Method for Producing the Insulation System | |
CN109867909A (en) | Composition epoxy resin and transformer comprising the composition | |
JP6160777B2 (en) | Epoxy resin, production method thereof, epoxy resin composition and cured product thereof | |
US20150152230A1 (en) | Thermosetting resin composition and electrical device using same | |
JP5744010B2 (en) | Epoxy resin composition and cured product thereof | |
JP2019157052A (en) | Epoxy resin, epoxy resin composition and epoxy resin cured product, and semiconductor device, electric wire and rotating machine coil comprising epoxy resin cured product | |
Teh et al. | DGEBA‐grafted polyaniline: Synthesis, characterization and thermal properties | |
US9890277B2 (en) | Liquid thermosetting resin composition for insulating stator coil of rotating electric machine | |
JP2570210B2 (en) | Prepreg | |
JP7168157B2 (en) | COMPOSITION FOR HIGHLY HEAT RESISTANT RESIN CURED MATERIAL, ELECTRONIC COMPONENTS AND SEMICONDUCTOR DEVICE USING THE SAME | |
JP5579300B2 (en) | Epoxy resin, epoxy resin composition and cured product thereof | |
US20210102027A1 (en) | Potting Compound and Insulating Material | |
TW202348678A (en) | Resin composition for molding, method of manufacturing encapsulated structure, and encapsulated structure | |
KR20220108258A (en) | Epoxy compound having alkoxysilyl group, preparing method thereof, composition, and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14892393 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14892393 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |