JP2004297056A - 半導体発光素子、その製造方法および発光ダイオード - Google Patents

半導体発光素子、その製造方法および発光ダイオード Download PDF

Info

Publication number
JP2004297056A
JP2004297056A JP2004065748A JP2004065748A JP2004297056A JP 2004297056 A JP2004297056 A JP 2004297056A JP 2004065748 A JP2004065748 A JP 2004065748A JP 2004065748 A JP2004065748 A JP 2004065748A JP 2004297056 A JP2004297056 A JP 2004297056A
Authority
JP
Japan
Prior art keywords
light emitting
semiconductor
layer
emitting device
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004065748A
Other languages
English (en)
Other versions
JP4451683B2 (ja
JP2004297056A5 (ja
Inventor
Ryoichi Takeuchi
良一 竹内
Wataru Nabekura
亙 鍋倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2004065748A priority Critical patent/JP4451683B2/ja
Publication of JP2004297056A publication Critical patent/JP2004297056A/ja
Publication of JP2004297056A5 publication Critical patent/JP2004297056A5/ja
Application granted granted Critical
Publication of JP4451683B2 publication Critical patent/JP4451683B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

【課題】 700℃以下の低温、低圧力の接合条件においても接着力の高く、耐熱性に優れた接着層を見出し、接合時に発生するストレスを減少でき、安定生産できるようにする。
【解決手段】 この発明の半導体発光素子100は、発光部20aを含む半導体層20と、発光部20aの発光波長に対して透明な透明基板40と、半導体層20と透明基板40とを接合する低融点ガラス層30と、を含むことを特徴としている。
【選択図】 図4

Description

この発明は、透明基板を用いた半導体発光素子、その製造方法および発光ダイオードに関する。
従来、半導体発光素子(以下、単に「発光素子」という)の高輝度化や機械的強度の向上を目的として、半導体層を積層させたその不透明半導体基板を除去し透明基板を接着する技術が知られている。そして、半導体層の表面に透明基板を接合する方法は、技術的に難しく多種類の方法が考案され、例えば下記の特許文献1,2,3で知られている。
特許第3230638号公報 特開平6−302857号公報 特開2002−246640号公報
特許文献1には、半導体層に透明な基板を高温下で圧力をかけながら直接接着する方法が記載され、特許文献2には、直接ウェーハボンディング法を利用して接着する方法が記載され、また特許文献3には、エポキシ樹脂などの透明粘着物質を利用して接着する方法が記載されている。
上記の特許文献1〜3のうち、特許文献1,2の直接接合法は、一般的に700℃以上の高温・高圧力が必要となり、半導体層に大きなストレスがかかる。また、軟化しない固体同士の接合であるため、表面が平滑でないと接合が不均一となり、接合不良が多発する。さらに、高温での接合は、熱膨張係数の差による反りの発生や機械的応力によるストレスが大きくなり、冷却中に割れたり、クラックが入ることが多く、発光部の品質低下を招き、安定的に製造するには高度な技術および設備が必要である。
一方、特許文献3の接着方法では、低温で接合できるため、高温でのストレス、表面の荒れによる接合不良は改善されるが、樹脂系の材料は、高温に耐えられないため、接着後の工程に大きな制約を受けるという課題がある。例えば、接着後のオーミック電極形成では400℃以上の熱処理が実施されるが、その際に樹脂系の材料が変質し、接着層が不透明となる問題点が発生する。
また、特許文献1,2におけるストレスの発生や、特許文献3における接着層の変質により、ダイシングやスクライブなどの素子分離工程で、接合部の剥がれやクラックが多発する。このため、低温、低ストレスで接着し、かつ耐熱性を満足する接着方法を両立するのが困難であった。
本発明は、上記の問題点に鑑み提案されたもので、700℃以下の低温、低圧力の接合条件においても接着力の高く、耐熱性に優れた接着層を見出し、接合時に発生するストレスを減少でき、安定生産が可能となる高輝度の半導体発光素子、その製造方法および発光ダイオードを提供することを目的とする。
上記目的を達成するために、本発明は、(1)半導体発光素子であって、発光部を含む半導体層と、前記発光部の発光波長に対して透明な透明基板と、前記半導体層と透明基板とを接合する低融点ガラス層と、を含むことを特徴としている。
また、本発明は、(2)上記した(1)に記載の発明の構成に加えて、前記低融点ガラス層は軟化点が500℃以上700℃以下であり、前記半導体層と透明基板とを接合する際の接着温度が500℃以上700℃以下である、ことを特徴としている。
また、本発明は、(3)上記した(1)または(2)に記載の発明の構成に加えて、前記低融点ガラス層は熱膨張係数が2〜9×10-6/Kである、ことを特徴としている。
また、本発明は、(4)上記した(1)乃至(3)に記載の発明の構成に加えて、前記低融点ガラス層は鉛を含まない、ことを特徴としている。
本発明は、(5)上記した(1)乃至(4)に記載の発明の構成に加えて、前記低融点ガラス層はSiO2、ZnO、B23を主成分とする、ことを特徴としている。
また、本発明は、(6)上記した(1)乃至(5)に記載の発明の構成に加えて、前記透明基板は熱膨張係数2〜9×10-6/Kのガラスからなる、ことを特徴としている。
また、本発明は、(7)上記した(1)乃至(6)に記載の発明の構成に加えて、前記透明基板はGaPからなる、ことを特徴としている。
さらに、本発明は、(8)上記した(1)乃至(7)に記載の発明の構成に加えて、前記透明基板は厚さが70μm以上300μm以下である、ことを特徴としている。
本発明は、(9)上記した(1)乃至(8)に記載の発明の構成に加えて、前記発光部はAlGaInPからなる、ことを特徴としている。
また、本発明は、(10)上記した(1)乃至(8)に記載の発明の構成に加えて、前記発光部はGaInN混晶を含む、ことを特徴としている。
また、本発明は、(11)上記した(1)乃至(10)に記載の発明の構成に加えて、前記発光部は、量子井戸構造を備えた、シングルへテロ構造またはダブルへテロ構造である、ことを特徴としている。
また、本発明は、(12)上記した(1)乃至(11)に記載の発明の構成に加えて、前記半導体層はAsを含まない、ことを特徴としている。
また、本発明は、(13)上記した(1)乃至(12)に記載の発明の構成に加えて、前記半導体層の第1の極性を有する表面に形成した第1のオーミック電極と、前記第1の極性を有する表面およびその表面に形成した第1のオーミック電極を覆う金属反射層と、前記半導体層の第2の極性を有する表面に形成した第2のオーミック電極と、を有することを特徴としている。
本発明は、(14)半導体発光素子の製造法であって、発光波長に対して不透明な半導体基板上に発光部を含む半導体層を成長する工程と、前記発光部の発光波長に対して透明な基板の表面に形成した低融点ガラス層と前記半導体層の表面に形成した低融点ガラス層とを接合する工程と、前記不透明な半導体基板を除去する工程と、前記半導体基板の除去工程後の半導体層にオーミック電極を形成する工程とを含む、ことを特徴としている。
また、本発明は、(15)上記した(14)に記載の発明の構成に加えて、前記発光部の発光波長に対して透明な基板の表面への低融点ガラス層の形成、および前記半導体層の表面への低融点ガラス層の形成は、真空蒸着法またはスパッタリング法による、ことを特徴としている。
また、本発明は、(16)上記した(14)または(15)に記載の発明の構成に加えて、前記半導体層はMOCVD法を用いて成長する、ことを特徴としている。
さらに、本発明は、(17)上記した(14)乃至(16)に記載の発明の構成に加えて、前記半導体基板の除去工程に選択エッチング処理を含む、ことを特徴としている。
また、本発明は、(18)請求項1乃至13に記載の半導体発光素子を用いた発光ダイオードである。
この発明の半導体発光素子、その製造方法および発光ダイオードでは、半導体層と透明基板との接合を低融点ガラスを介在させて行うようにしたので、700℃以下の低温、低圧力の接合条件においても強力に接着させることができ、半導体層へのストレスや熱膨張係数の差による反りを大幅に低減することができる。また、冷却中に割れたり、クラックが入るようなこともない。
また、耐熱性に優れた接着層を形成できるので、接着後のオーミック電極形成で400℃以上の熱処理を施しても、接着層が変質したり不透明となるようなことも防止することができる。
したがって、割れ、剥がれがほとんど発生せず、高輝度、高品質の発光素子を安定して生産することができる。
以下に、この発明の実施の形態を図面に基づいて詳細に説明する。
図1はこの発明の半導体発光素子の製造工程を概略的に示す図で、(a)はその第1段階の積層構造を、(b)は第2段階の積層構造を示している。なお、(b)は、(a)に対して上下反転させて図示している。
この発明の半導体発光素子10は、図1に示すような製造工程を経て形成される。すなわち、図1(a)に示す第1段階では、先ず発光波長に対して不透明な半導体基板1上に、発光部2aを含む半導体層2を成長させ、その半導体層2の表面に低融点ガラス層3aを形成する。また、発光部2aの発光波長に対して透明な透明基板4の表面に低融点ガラス層3bを形成する。そして、図1(b)に示す第2段階では、半導体層2の表面に形成した低融点ガラス層3aと透明基板4の表面に形成した低融点ガラス層3bとを接合させて一体化するとともに、半導体層2から半導体基板1を除去する。このようにして、発光部2aを含む半導体層2と、発光部2aの発光波長に対して透明な透明基板4と、半導体層2と透明基板4とを接合する低融点ガラス層3(3a,3b)とを含む、この発明に係る積層体10が得られる。
上記の低融点ガラス層3を形成する低融点ガラスは、酸化鉛、酸化ホウ素、酸化亜鉛、酸化珪素などが含まれるガラスであるが、環境負荷の点から鉛を含まない材質が望ましい。熱膨張係数、軟化点から、酸化亜鉛、酸化ホウ素、酸化珪素を主成分とする低融点ガラスが適する。低融点ガラスの形成方法は、印刷、蒸着、スパッタ法等があるが、膜厚が薄く制御しやすい、蒸着、スパッタ法が望ましい。特にスパッタ法は、表面状態が良好で最適である。低融点ガラスは、熱膨張係数が半導体層2および半導体基板1と近い、2〜9×10-6/Kの範囲が望ましい。熱膨張係数の差が大きいと半導体へのストレスや割れの原因となる。低融点ガラスは、軟化点付近の温度の熱処理で接着層として機能する。半導体層2の輝度低下の可能性があるため、この接着時の熱処理温度は、700℃以下が望ましく、後工程の耐熱性を考慮すると500℃以上が望ましい。
透明基板4の熱膨張係数は半導体層2および半導体基板1と近い、2〜9×10-6/Kの範囲が望ましい。熱膨張係数の差が大きいと半導体層2へのストレスや割れの原因となる。
透明基板4は、石英、ガラス、サファイア、GaP、SiC、AlGaAs、GaAsP、ZnSe等の発光波長に対し透明な材料や、ITO(酸化インジウム錫)等からなる透明導電膜の材料を選定すれば良いが、こららの材料のうち、安価で加工のしやすいガラス、GaP基板が望ましい。
透明基板4の厚さは、チップへの加工しやすさから300μm以下が望ましく、透明基板4の半導体層2への接着時の割れの発生防止やダイボンドなどのチップ組立て工程のハンドリングの点から70μm以上の厚さが望ましい。
半導体基板1は、GaAs、InP、GaP、Si等が使用できる。発光部2aは、GaP、AlGaInP混晶、GaAlAs混晶、GaAsP混晶、GaInN混晶等の公知の発光素子で利用されている半導体を用いることができる。
発光部2aは、シングルヘテロ構造、ダブルヘテロ構造、量子井戸構造など通常使用されている発光部の構造を利用できる。また、量子井戸構造を備えた、シングルへテロ構造またはダブルへテロ構造としてもよい。特に、厚膜化が困難で、格子整合の点から通常の構造では不透明なGaAs基板を用いるAlGaInPからなる発光部2aに対して、本発明は、半導体発光素子の高輝度化の効果が大きい。
高輝度の発光部2aを得るには半導体基板1に対して、格子定数の整合した発光部2aの材質を選定し、半導体層2を成長させることが望ましい。成長方法は、液相成長法、MBE法、MOCVD法等、公知の技術を使用できるが、量産性、品質面からMOCVD法が最も好ましい。半導体層2には、発光部2aに加えて、従来技術で使用されている半導体基板1との緩衝層、ブラッグ反射層、選択エッチングの為のエッチングストップ層、オーミック電極の接触抵抗を下げるコンタクト層、電流拡散層、電流の流れる領域を制御する電流阻止層、電流狭窄層などを組み合わせることができる。これらの層は、製造方法、コスト、品質に応じて、必要な層を適切に組み合わせればよい。
透明基板4側の低融点ガラス層3bと半導体層2側の低融点ガラス層2aとを重ね合わせて熱処理を行う方法は、オーブン、電気炉、赤外線ランプ、ホットプレートなどの公知の熱処理手段を利用できる。熱処理時に接合面がずれない程度の1g/cm2以上の圧力を加えるとより接合の均一性、接着強度が向上するが、発光部2aへのストレスの低減を考慮すると100g/cm2以下が望ましい。熱処理は、ストレスを低減し、発光部2aの劣化を抑制するため700℃未満で、冷却速度を制御して行うのが望ましい。
半導体基板1は、機械加工、研磨、化学的エッチング等の方法により除去できる。特に化学的エッチングの中で、材質によるエッチング速度の差を利用した選択エッチングが、量産性、再現性、均一性の面で最適な方法である。
上記の積層体10から発光素子を構成するには、光取り出し面を透明基板4とし、半導体基板1を除去して露出させた第1の極性の半導体層2の表面に第1の電極を形成し、また半導体層2の一部を除去して露出させた第2の極性の半導体層2の表面に第2の電極を形成し、さらに第1の電極とその下地の半導体層2の表面とを覆う金属反射層を設けるようにする。この構造は所謂、フリップチップ型の素子構造であり、反射層で光の取り出し効率を向上させることができる。なお、この素子構造についての詳細は後述する。
その他の素子製造方法は、公知の発光素子の製造技術を利用でき、オーミック電極形成、素子分離、検査・評価工程を経て発光素子を製造する。さらに、発光素子をパッケージに組込んで発光ダイオード(ランプ)を製造できる。
次に実施例1として作製した、この発明の半導体発光素子の構成例を図2〜図6を用いて順に説明する。
図2は半導体発光素子に用いられる半導体エピタキシャルウェーハ(積層体)の層構造を示す図、図3および図4は図2の半導体エピタキシャルウェーハから作製したこの発明の半導体発光素子の構成例を示す図で、図3はその平面図、図4は図3のI−I線断面を示す図である。この実施例1で作製した半導体発光素子100は赤色発光を行う。
半導体発光素子100の製造に用いられる半導体エピタキシャルウェーハ10Aは、図2に示すように、Siをドープしたn形の(001)面から15°傾けた面を有するGaAs単結晶からなる半導体基板11上に順次、Siをドープしたn形のGaAsからなる緩衝層21、Siをドープしたn形の(Al0.5Ga0.50.5In0.5Pからなるエッチングストップ層22、発光部20a、およびZnをドープしたp型GaP層26からなる半導体層20を積層して構成されている。
上記の発光部20aは、ダブルヘテロ構造であり、Siをドープしたn形の(Al0.7Ga0.30.5In0.5Pからなる下部クラッド層23、アンドープの(Al0.2Ga0.80.5In0.5Pからなる発光層24、およびZnをドープしたp形の(Al0.7Ga0.30.5In0.5Pからなる上部クラッド層25から構成されている。
上記の半導体エピタキシャルウェーハ10Aを形成する際には、先ず、上記の半導体層20の各層21〜26を、トリメチルアルミニウム((CH33Al)、トリメチルガリウム((CH33Ga)およびトリメチルインジウム((CH33In)をIII族構成元素の原料に用いた、減圧の有機金属化学気相堆積法(MOCVD法)により、半導体基板11上に積層した。Znのドーピング原料にはジエチル亜鉛((C252Zn)を使用した。Siのドーピング原料にはジシラン(Si26)を使用した。また、V族構成元素の原料としては、ホスフィン(PH3)またはアルシン(AsH3)を用いた。半導体層20を構成する各層21〜26の積層温度は730℃に統一した。
緩衝層21は、キャリア濃度を約5×1018cm-3とし、また層厚を約0.2μmとした。エッチングストップ層22は、キャリア濃度を約2×1018cm-3とし、層厚を約0.5μmとした。下部クラッド層23は、キャリア濃度を約8×1017cm-3、層厚を約1μmとした。発光層24は、アンドープで、層厚を0.5μmとした。上部クラッド層25は、キャリア濃度を約2×1017cm-3とし、層厚を1μmとした。GaP層26は、キャリア濃度を約5×1018cm-3とし、層厚を7μmとした。
次に、半導体層20の表面に、ZnO、B23、SiO2からなる低融点ガラス(軟化点650℃、熱膨張係数4×10-6/K)をスパッタリング法で、0.3μm形成し、低融点ガラス層30aとした。
一方、透明基板40となる厚さ150μmのホウケイ酸ガラス(熱膨張係数7×10-6/K)の表面に、ZnO、B23、SiO2からなる低融点ガラス(軟化点650℃、熱膨張係数4×10-6/K)をスパッタリング法で、0.3μm形成し、低融点ガラス層30bとした。
低融点ガラス層30a,30bの各表面が接触するように、半導体層20と透明基板40とを重ね合わせ、5g/cm2となる荷重をかけた状態で熱処理を行い、両者30a,30bを接着した。このときの接着温度条件は、650℃で30分とし、400℃までの冷却は、1℃/分の徐冷で行った。
次に、半導体基板11および緩衝層21をアンモニア系エッチャントにより選択的に除去した。
続いて、上記のようにして構成した半導体エピタキシャルウェーハ10Aに、電極等を形成して発光素子100を作製した(図3、図4)。すなわち、n形の極性を有するエッチングストップ層22の表面に、第1の電極として、Au・Ge合金からなるn形電極51を、厚さが0.3μmとなるように真空蒸着法により形成した。このn形電極51は、一般的なフォトリソグラフィー手段を利用してパターニングを施し、図3に示すような、幅を約20μmとする三角形の線状電極とした。
n形電極51の表面および半導体層20(エッチングストップ層22)の表面に、スパッタ法でCrを0.05μm、次に金を約1μm積層させ、金属反射層52を形成した。その後、半導体層20を硫酸・過酸化水素系エッチャントでエッチングしてさらに除去し、p形の極性を有するGaP層26を露出させ、半径150μmの扇型領域とした。
上記のGaP層26上に、第2の電極を形成するために、半径130μm扇型の領域にパターンを形成し、先ず膜厚を0.5μmとする金・ベリリウム合金と、膜厚を1μmとする金とを、パターニングのレジスト表面に、一般的な真空蒸着法により被着させた。続けて、公知のリフトオフ法により、レジストを除去し、扇型のp型電極53を形成した。
次に、上記のn形電極51およびp型電極53の形成後、窒素気流中において480℃で15分間の合金化熱処理を施し、各電極51,53と半導体層20との低抵抗オーミック接触を形成した。
上記のようにして、n形電極51、p型電極53および金属反射層52を形成したエピタキシャルウェーハを通常のスクライブ法により素子の形状に裁断して個別に細分化し、半導体発光素子100とした。この半導体発光素子100は、図3に示すように、平面的に見て一辺を300μmとする正方形とし、厚さは約160μmとした。
さらに、この半導体発光素子100を用いて発光ダイオードを組み立てた。
図5はこの発明に係る発光ダイオードの平面図、図6は図5のII−II線断面を示す図である。1個の発光素子100を、基板63に形成された第1の電極端子64および第2の電極端子62に金のボールバンプ65を形成し、発光素子100のn形電極51と金属反射層52とをボールバンプ65に接触させ圧着し接続した。次に、透明なエポキシ樹脂61で封止し、発光ダイオード(LED)60を作製した。
上記のようにして作製したLED60の第1の電極端子64と第2の電極端子62に順方向に電流を流したところ、金属反射層52で反射され、透明基板40の表面および側面を介して、主波長を約620nmとする赤色の光が出射された。順方向に20ミリアンペア(mA)の電流を通流した際の順方向電圧(Vf:20mA当り)は、各電極51,53の良好なオーミック特性を反映し、約2.0ボルト(V)となった。このときの発光強度は、発光部20aの発光効率が高く、外部への取りだし効率も工夫されていることを反映し、160mcdの超高輝度であった。
なお、上記の実施例1ではn型の半導体基板11を用いてLED60を作製したが、p型の半導体基板を用いて作製したLEDでも本発明の効果が得られる。
また、本発明の発光部20aは、AlGaInPのダブルヘテロ構造を用いたが、発光波長、構造、材質、ドーパント等において公知の技術を利用した発光部でも本発明の効果が得られる。
さらに上記の実施例1では、一般的なチップ型のLED60を示したが、形状の異なるいわゆる砲弾型やディスプレイ用のパッケージ、また、発光波長の異なる発光ダイオードでも同様の効果が得られる。
上記の実施例1では、熱膨張係数が4×10-6/Kの低融点ガラスを用いて接着温度を650℃としたが、実施例2では、熱膨張係数が8×10-6/Kの低融点ガラスを用いて接着温度を500℃とした。その他の条件は実施例1と同じにして発光ダイオードを作製し、発光強度を測定した結果、150mcdで、実施例1と同様高輝度のものが得られた。
(比較例) 上記の実施例1、2と同様なプロセスを用い、低融点ガラスの熱膨張係数、接着温度、透明基板の熱膨張係数を変化させて、各種の発光素子を作製した。その比較例1〜6と実施例1,2の評価結果を表1に示す。
Figure 2004297056
比較例1,2,4では、低融点ガラスの熱膨張係数が9×10-6/Kを超えており、また比較例3では、透明基板の熱膨張係数が2×10-6/Kを下回っており、半導体層の熱膨張係数、約5×10-6/Kとの差が大きくなるため、熱歪み等が発生し、プロセスの途中で割れや剥がれが発生して素子が作製できなかった。比較例5では、接着温度が700℃を超えており、その熱で半導体層の品質が劣化し、低輝度であった。
比較例6は、基板除去、ガラス貼り付けを行わない、実施例と同じエピタキシャルウェーハを用いて一般的な構造で作製した300μmピッチの半導体発光素子を図7、図8に示す。
図7は比較例6で作製した半導体発光素子の平面図、図8は図7のIII−III線に沿った断面を示す図である。この半導体発光素子90は、GaAsからなる半導体基板91上に、半導体層92、第1のオーミック電極93を積層し、半導体基板91の裏面に第2のオーミック電極94を形成して構成されている。
比較例6では、上部の電極93を金ワイヤボンディングで接続する。この第1の電極93は、金・ベリリウム合金からなるp形オーミック電極を厚さが0.3μmとなるように形成し、さらに、金を1μmとなるように真空蒸着法により形成した。一般的なフォトリソグラフィー手段を利用してパターニングを施し、直径を130μmとする円形の第1の電極93を形成した。
その後、実施例と同様に作製したLEDの第1の電極端子と第2の電極端子に順方向に電流を通流したところ、半導体層92の表面および側面を介して、波長を約620nmとする赤色の光が出射された。順方向に20ミリアンペア(mA)の電流を通流した際の順方向電圧(Vf:20mA当り)は、約2.0ボルト(V)で、実施例1,2と同等であった。このときの発光強度は、60mcdであった。本発明の実施例1,2に対し半分以下の発光強度であった。これは、GaAs半導体基板91に発光が吸収されるため、外部への取りだし効率が低下したことによると考えられる。
以上述べたように、この発明では、半導体層と透明基板との接合を低融点ガラスを介在させて行うようにしたので、700℃以下の低温、低圧力の接合条件においても強力に接着させることができ、半導体層へのストレスや熱膨張係数の差による反りを大幅に低減することができる。また、冷却中に割れたり、クラックが入るようなこともない。
また、耐熱性に優れた接着層を形成できるので、接着後のオーミック電極形成で400℃以上の熱処理を施しても、接着層が変質したり不透明となるようなことも防止することができる。
したがって、割れ、剥がれがほとんど発生せず、高輝度、高品質の発光素子を安定して生産することができる。
また、半導体層の表面の一部にオーミック電極と金属反射層を設けるようにしたので、発光部の光を効率よく外部へ取り出すことができ、超高輝度化が達成された。
また、発光ダイオードをフリップチップ構造としたため、発光ダイオードの組み立てが容易で、ワイヤの断線がなくなり信頼性が向上する。
この発明の半導体発光素子の製造工程を概略的に示す図で、(a)はその第1段階の積層構造を、(b)は第2段階の積層構造を示す。 半導体発光素子に用いられる半導体エピタキシャルウェーハ(積層体)の層構造を示す図である。 図2の半導体エピタキシャルウェーハから製造したこの発明の半導体発光素子の構成例を示す平面図である。、図4は図3のI−I線断面を示す図である。 図3のI−I線断面を示す図である。 この発明に係る発光ダイオードの平面図である。 図5のII−II線断面を示す図である。 比較例6の半導体発光素子の平面図である。 図7のIII−III線断面を示す図である。
符号の説明
1 半導体基板
2 半導体層
2a 低融点ガラス層
2a 発光部
3 低融点ガラス層
3a 低融点ガラス層
3b 低融点ガラス層
4 透明基板
10 積層体
10 半導体発光素子
10A 半導体エピタキシャルウェーハ
11 半導体基板
20 半導体層
20a 発光部
21 緩衝層
22 エッチングストップ層
23 下部クラッド層
24 発光層
25 上部クラッド層
26 GaP層
30a 低融点ガラス層
30b 低融点ガラス層
40 透明基板
51 n形電極
52 金属反射層
53 p型電極
60 発光ダイオード(LED)
61 エポキシ樹脂
62 第1の電極端子
63 基板
64 第2の電極端子
65 ボールバンプ
90 半導体発光素子
91 GaAs基板
92 半導体層
93 第1の電極
94 第2の電極
100 半導体発光素子

Claims (18)

  1. 発光部を含む半導体層と、
    前記発光部の発光波長に対して透明な透明基板と、
    前記半導体層と透明基板とを接合する低融点ガラス層と、
    を含むことを特徴とする半導体発光素子。
  2. 前記低融点ガラス層は軟化点が500℃以上700℃以下であり、前記半導体層と透明基板とを接合する際の接着温度が500℃以上700℃以下である、請求項1に記載の半導体発光素子。
  3. 前記低融点ガラス層は熱膨張係数が2〜9×10-6/Kである、請求項1または2に記載の半導体発光素子。
  4. 前記低融点ガラス層は鉛を含まない、請求項1乃至3に記載の半導体発光素子。
  5. 前記低融点ガラス層はSiO2、ZnO、B23を主成分とする、請求項1乃至4に記載の半導体発光素子。
  6. 前記透明基板は熱膨張係数2〜9×10-6/Kのガラスからなる、請求項1乃至5に記載の半導体発光素子。
  7. 前記透明基板はGaPからなる、請求項1乃至5に記載の半導体発光素子。
  8. 前記透明基板は厚さが70μm以上300μm以下である、請求項1乃至7に記載の半導体発光素子。
  9. 前記発光部はAlGaInPからなる、請求項1乃至8に記載の半導体発光素子。
  10. 前記発光部はGaInN混晶を含む、請求項1乃至8に記載の半導体発光素子。
  11. 前記発光部は、量子井戸構造を備えた、シングルへテロ構造またはダブルへテロ構造である、請求項1乃至10に記載の半導体発光素子。
  12. 前記半導体層はAsを含まない、請求項1乃至11に記載の半導体発光素子。
  13. 前記半導体層の第1の極性を有する表面に形成した第1のオーミック電極と、
    前記第1の極性を有する表面およびその表面に形成した第1のオーミック電極を覆う金属反射層と、
    前記半導体層の第2の極性を有する表面に形成した第2のオーミック電極と、
    を有する請求項1乃至12に記載の半導体発光素子。
  14. 発光波長に対して不透明な半導体基板上に発光部を含む半導体層を成長する工程と、
    前記発光部の発光波長に対して透明な基板の表面に形成した低融点ガラス層と前記半導体層の表面に形成した低融点ガラス層とを接合する工程と、
    前記不透明な半導体基板を除去する工程と、
    前記半導体基板の除去工程後の半導体層にオーミック電極を形成する工程とを含む、
    ことを特徴とする半導体発光素子の製造方法。
  15. 前記発光部の発光波長に対して透明な基板の表面への低融点ガラス層の形成、および前記半導体層の表面への低融点ガラス層の形成は、真空蒸着法またはスパッタリング法による、請求項14に記載の半導体発光素子の製造方法。
  16. 前記半導体層はMOCVD法を用いて成長する、請求項14乃至15に記載の半導体発光素子の製造方法。
  17. 前記半導体基板の除去工程に選択エッチング処理を含む、請求項14乃至16に記載の半導体発光素子の製造方法。
  18. 請求項1乃至13に記載の半導体発光素子を用いた発光ダイオード。
JP2004065748A 2003-03-13 2004-03-09 半導体発光素子、その製造方法および発光ダイオード Expired - Fee Related JP4451683B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004065748A JP4451683B2 (ja) 2003-03-13 2004-03-09 半導体発光素子、その製造方法および発光ダイオード

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003067428 2003-03-13
JP2004065748A JP4451683B2 (ja) 2003-03-13 2004-03-09 半導体発光素子、その製造方法および発光ダイオード

Publications (3)

Publication Number Publication Date
JP2004297056A true JP2004297056A (ja) 2004-10-21
JP2004297056A5 JP2004297056A5 (ja) 2007-04-26
JP4451683B2 JP4451683B2 (ja) 2010-04-14

Family

ID=33421604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004065748A Expired - Fee Related JP4451683B2 (ja) 2003-03-13 2004-03-09 半導体発光素子、その製造方法および発光ダイオード

Country Status (1)

Country Link
JP (1) JP4451683B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057172A1 (ja) * 2004-11-25 2006-06-01 Matsushita Electric Industrial Co., Ltd. 半導体発光装置、照明装置、携帯通信機器、カメラ、及び製造方法
JP2006344710A (ja) * 2005-06-08 2006-12-21 Sony Corp 半導体発光素子及びその製造方法、並びに半導体発光装置及びその製造方法
WO2007073001A1 (en) * 2005-12-22 2007-06-28 Showa Denko K.K. Light-emitting diode and method for fabricant thereof
JP2007180302A (ja) * 2005-12-28 2007-07-12 Rohm Co Ltd 窒化物半導体発光素子及び窒化物半導体発光素子製造方法
JP2010534943A (ja) * 2007-07-26 2010-11-11 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア P型表面を有する発光ダイオード
JP2011210911A (ja) * 2010-03-30 2011-10-20 Nippon Electric Glass Co Ltd 半導体発光素子デバイスの製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057172A1 (ja) * 2004-11-25 2006-06-01 Matsushita Electric Industrial Co., Ltd. 半導体発光装置、照明装置、携帯通信機器、カメラ、及び製造方法
US7834370B2 (en) 2004-11-25 2010-11-16 Panasonic Corporation Semiconductor light emitting device, illuminating device, mobile communication device, camera, and manufacturing method therefor
JP2006344710A (ja) * 2005-06-08 2006-12-21 Sony Corp 半導体発光素子及びその製造方法、並びに半導体発光装置及びその製造方法
WO2007073001A1 (en) * 2005-12-22 2007-06-28 Showa Denko K.K. Light-emitting diode and method for fabricant thereof
US7915619B2 (en) 2005-12-22 2011-03-29 Showa Denko K.K. Light-emitting diode and method for fabrication thereof
US8158987B2 (en) 2005-12-22 2012-04-17 Showa Denko K.K. Light-emitting diode and method for fabrication thereof
JP2007180302A (ja) * 2005-12-28 2007-07-12 Rohm Co Ltd 窒化物半導体発光素子及び窒化物半導体発光素子製造方法
JP2010534943A (ja) * 2007-07-26 2010-11-11 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア P型表面を有する発光ダイオード
JP2011210911A (ja) * 2010-03-30 2011-10-20 Nippon Electric Glass Co Ltd 半導体発光素子デバイスの製造方法

Also Published As

Publication number Publication date
JP4451683B2 (ja) 2010-04-14

Similar Documents

Publication Publication Date Title
US6786390B2 (en) LED stack manufacturing method and its structure thereof
US6682950B2 (en) Light emitting diode and method of making the same
US6709883B2 (en) Light emitting diode and method of making the same
JP5346443B2 (ja) 半導体発光素子およびその製造方法
US8022436B2 (en) Light emitting diode, production method thereof and lamp
US8076168B2 (en) Light-emitting device and method for producing light emitting device
US20070290216A1 (en) Semiconductor light emitting element, manufacturing method therefor, and compound semiconductor light emitting diode
EP2400571A1 (en) Light-emitting diode, light-emitting diode lamp, and method for producing light-emitting diode
WO2006082687A1 (ja) GaN系発光ダイオードおよび発光装置
US20100019222A1 (en) Low-temperature led chip metal bonding layer
JP2010098068A (ja) 発光ダイオード及びその製造方法、並びにランプ
JP2010263050A (ja) 発光ダイオード及びその製造方法、並びに発光ダイオードランプ
JP2011165799A (ja) フリップチップ型発光ダイオード及びその製造方法、並びに発光ダイオードランプ
JP2010092965A (ja) 発光装置及びその製造方法
KR100681789B1 (ko) 발광 다이오드 및 그 제조 방법
JP4451683B2 (ja) 半導体発光素子、その製造方法および発光ダイオード
CN101714601B (zh) 发光二极管的制造方法
JP4594708B2 (ja) 発光ダイオードおよびその製造方法、発光ダイオードランプ。
JP4918245B2 (ja) 発光ダイオード及びその製造方法
WO2012005185A1 (ja) 発光ダイオードの製造方法、切断方法及び発光ダイオード
JP2011165800A (ja) 発光ダイオード及びその製造方法、並びに発光ダイオードランプ
JP2013175791A (ja) 半導体発光素子
US20070158665A1 (en) Light emitting diode
JP2010186808A (ja) 発光ダイオード及び発光ダイオードランプ
WO2012005184A1 (ja) 発光ダイオードの製造方法、切断方法及び発光ダイオード

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070308

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160205

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160205

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees