JP2004296764A - Stack for flat semiconductor element and power converter using it - Google Patents

Stack for flat semiconductor element and power converter using it Download PDF

Info

Publication number
JP2004296764A
JP2004296764A JP2003086803A JP2003086803A JP2004296764A JP 2004296764 A JP2004296764 A JP 2004296764A JP 2003086803 A JP2003086803 A JP 2003086803A JP 2003086803 A JP2003086803 A JP 2003086803A JP 2004296764 A JP2004296764 A JP 2004296764A
Authority
JP
Japan
Prior art keywords
flat semiconductor
semiconductor element
flat
cooler
semiconductor elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003086803A
Other languages
Japanese (ja)
Inventor
Toshiyuki Yano
利行 矢野
Takashi Hashimoto
隆 橋本
Masaki Miyairi
正樹 宮入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003086803A priority Critical patent/JP2004296764A/en
Publication of JP2004296764A publication Critical patent/JP2004296764A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stack for a flat semiconductor element capable of decreasing a thermal distortion caused by a power loss in the flat semiconductor element. <P>SOLUTION: The stack for the flat semiconductor element has two flat semiconductor elements, two coolers for cooling the flat semiconductor elements provided to each of the two flat semiconductor elements, and two metal blocks arranged to the opposite side of the cooler of the two flat semiconductor elements. The stack further has an insulating base engaged with an opposite side of the semiconductor element of the two coolers; an elastic body engaged with at least one insulating base to pressurize a laminated body comprising two flat semiconductor elements, two coolers, two metal blocks, and an insulator; a pressure supporting plate engaged with the elastic body; and a pressurizing means provided to the pressure power supporting body consisting of the elastic body and a pressure supporting plate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は平型半導体素子用スタックに関する。
【0002】
【従来の技術】
従来より鉄道車両に使用される半導体変換装置は大きな電流を流すため、平型半導体素子内部での電力損失による熱が発生する。そのため、平型半導体素子を冷却するための冷却器としてヒートパイプ、又は沸騰冷却、又は水冷ヒートシンクを積層し、弾性的な押圧力を負荷する平型半導体素子用スタック(以下単にスタックと言う)を半導体変換装置の回路構成要素として多数使用している。
従来の平型半導体素子用スタックについて、図を参照して詳細に説明する。図7は、従来の平型半導体素子用スタックの構成図である。尚、説明のためにそれぞれの部品を区別する必要がある場合には、a,b等のローマ字を使用する。
従来の平型半導体素子用スタック1は、金属ロッド2、加圧支持板3、冷却器4、導体5、平型半導体素子6、中間圧接部材7、絶縁座8、板ばね9、ナット10、加圧体11から構成されている。
従来の平型半導体素子用スタック1は、2本または4本の金属ロッド2と加圧支持板3でスタッキングのためのフレームを構成している。フレームの内側に冷却器4a、導体5a、導体5aとエミッタ側が接するように配置された平型半導体素子6a、金属製の中間圧接部材7、中間圧接部材7とエミッタ側が接するように配置された平型半導体素子6b、導体5b、冷却器4bの順に積層される(積層体)。積層体の両端部に球面座を具備した絶縁座8と、板ばね9を取り付け、金属ロッド2を貫通して板ばね9を取り付け、ナット10を締めこむことで加圧体11を介し積層体を加圧し加圧力を保持する。
【0003】
このように構成された平型半導体素子用スタックは、IGBTやIEGT等の平型半導体素子を内蔵し冷却のための冷却器や通電のための導体と共に数十kNという高荷重で加圧して使用することができる。
【0004】
【特許文献1】
特開平10−229842号公報
【発明が解決しようとする課題】
しかし、このように構成された平潟半導体素子用スタックにおいて、平型半導体素子内部での電力損失による発熱が、平型半導体素子の耐熱温度よりも低くなるようにに冷却して用いるが、一般に耐熱温度を越えない温度であっても熱サイクルの繰り返しによって半導体チップの接合面が熱ひずみによって疲労し絶縁不良となる熱疲労特性がある。
そこで本発明の目的は、平型半導体素子内部での電力損失による熱ひずみを低減することの出来る平型半導体素子用スタックを提供することである。
【0005】
【課題を解決するための手段】
上記目的は、複数の平型半導体素子と、前記平型半導体素子と導体を介して接続され、前記平型半導体素子を冷却する冷却器と、前記複数の平型半導体素子の間に配置された絶縁物と、前記複数の平型半導体素子と前記絶縁物の間に配置された金属ブロックと、前記冷却器の反半導体素子側の側面と係合する絶縁座と、前記平型半導体素子及び前記冷却器及び前記金属ブロック及び前記絶縁物からなる積層体の加圧のために少なくとも1つの絶縁座と係合する弾性体と、前記弾性体と係合する加圧支持板と、前記弾性体と前記加圧支持板から成る加圧力支持体に設けられた加圧手段とを有し、前記平型半導体素子のコレクタ電極同士を向かい合わせに配置し、前記平型半導体素子のエミッタ電極側に前記冷却器を取り付け、積層し加圧したことを特徴とすることにより達成できる。
上記目的は、複数の平型半導体素子と、前記平型半導体素子と導体を介して接続され、前記平型半導体素子を冷却する冷却器と、前記複数の平型半導体素子の間に配置された絶縁物と、前記複数の平型半導体素子と前記絶縁物の間に配置され導体と一体化した構造とした少なくとも1つの金属ブロックと、前記冷却器の反半導体素子側の側面と係合する絶縁座と、前記平型半導体素子及び前記冷却器及び前記金属ブロック及び前記絶縁物からなる積層体の加圧のために少なくとも1つの絶縁座と係合する弾性体と、前記弾性体と係合する加圧支持板と、前記弾性体と前記加圧支持板から成る加圧力支持体に設けられた加圧手段とを有し、前記平型半導体素子のコレクタ電極同士を向かい合わせに配置し、前記平型半導体素子のエミッタ電極側に前記冷却器を取り付け、積層し加圧したことにより達成できる。
【0006】
上記目的は、複数の平型半導体素子と、前記平型半導体素子と導体を介して接続され、前記平型半導体素子を冷却する冷却器と、前記複数の平型半導体素子の間に配置された絶縁物と、前記複数の平型半導体素子と前記絶縁物の間に配置され絶縁材料から成る金属ブロックと、前記冷却器の反半導体素子側の側面と係合する絶縁座と、前記平型半導体素子及び前記冷却器及び前記金属ブロック及び前記絶縁物からなる積層体の加圧のために少なくとも1つの絶縁座と係合する弾性体と、前記弾性体と係合する加圧支持板と、前記弾性体と前記加圧支持板から成る加圧力支持体に設けられた加圧手段とを有し、前記平型半導体素子のコレクタ電極同士を向かい合わせに配置し、前記平型半導体素子のエミッタ電極側に前記冷却器を取り付け、積層し加圧したことにより達成できる。
上記目的は、複数の平型半導体素子と、前記平型半導体素子と導体を介して接続され、前記平型半導体素子を冷却する冷却器と、前記複数の平型半導体素子の間に配置されたステンレス鋼から成る中間圧接部材と、前記冷却器の反半導体素子側の側面と係合する絶縁座と、前記平型半導体素子及び前記冷却器及び前記中間圧接部材からなる積層体の加圧のために少なくとも1つの絶縁座と係合する弾性体と、前記弾性体と係合する加圧支持板と、前記弾性体と前記加圧支持板から成る加圧力支持体に設けられた加圧手段とを有し、前記平型半導体素子のコレクタ電極同士を向かい合わせに配置し、前記平型半導体素子のエミッタ電極側に前記冷却器を取り付け、積層し加圧したことにより達成できる。
【0007】
上記目的は複数の平型半導体素子と、前記平型半導体素子と導体を介して接続され、前記平型半導体素子を冷却する冷却器と、前記複数の平型半導体素子の間に配置され絶縁物から成る中間圧接部材と、前記冷却器の反半導体素子側の側面と係合する絶縁座と、前記平型半導体素子及び前記冷却器及び前記中間圧接部材からなる積層体の加圧のために少なくとも1つの絶縁座と係合する弾性体と、前記弾性体と係合する加圧支持板と、前記弾性体と前記加圧支持板から成る加圧力支持体に設けられた加圧手段とを有し、前記平型半導体素子のコレクタ電極同士を向かい合わせに配置し、前記平型半導体素子のエミッタ電極側に前記冷却器を取り付け、積層し加圧したことにより達成できる。
上記目的は複数の平型半導体素子と、前記平型半導体素子と導体及びセラミック絶縁板を介して接続され、前記平型半導体素子を冷却する冷却器と、前記複数の平型半導体素子の間に配置された中間圧接部材と、前記冷却器の反半導体素子側の側面と係合する絶縁座と、前記平型半導体素子及び前記冷却器及び前記中間圧接部材からなる積層体の加圧のために少なくとも1つの絶縁座と係合する弾性体と、前記弾性体と係合する加圧支持板と、前記弾性体と前記加圧支持板から成る加圧力支持体に設けられた加圧手段とを有し、前記平型半導体素子のコレクタ電極同士を向かい合わせに配置し、前記平型半導体素子のエミッタ電極側に前記冷却器を取り付け、積層し加圧したことにより達成できる。
【0008】
上記目的は、複数の平型半導体素子と、前記平型半導体素子と導体を介して接続され、前記平型半導体素子を冷却する冷却器と、前記複数の平型半導体素子の間に配置された絶縁物と、前記平型半導体素子のコレクタ電極同士を向かい合わせに配置し、前記平型半導体素子のエミッタ電極側に前記冷却器を取り付けたことにより達成できる。
上記目的は、第1の平型半導体素子と、第2の平型半導体素子と、前記第1の平型半導体素子のコレクタ側電極と前記第2の平型半導体素子のエミッタ側電極とを電気的に接続する導体と、前記第1の平型半導体素子及び前記第2の平型半導体素子のエミッタ電極側に配置され前記平型半導体素子を冷却する冷却器と、前記第1の平型半導体素子と前記第2の平型半導体素子の間に配置された絶縁物と、前記第1の平型半導体素子のコレクタ側電極と前記第2の平型半導体素子のコレクタ側電極とを向かい合わせに配置したことにより達成できる。
【0009】
【発明の実施の形態】
(第1の実施の形態)
本発明に基づく第1の実施の形態の平型半導体素子用スタックについて図を参照し詳細に説明する。図1は、本発明に基づく第1の実施の形態の平型半導体素子用スタックの構成図である。図2は、本発明に基づく第1の実施の形態の平型半導体素子の内部構造の概略図である。尚、図6に記載したものと構造上同一のものについては、同符号を付して説明を省略する。
本発明に基づく第1の実施の形態の平型半導体素子用スタック1aは、金属ロッド2、加圧支持板3、冷却器4、導体5、平型半導体素子6、中間圧接部材7a、絶縁座8、板ばね9、ナット10、加圧体11から構成されている。
このように構成された平型半導体素子用スタックにおいて、中間圧接部材7は、絶縁物12の両側に金属ブロック13a及び金属ブロック13bを配置した構造となっている。平型半導体素子6aのコレクタ電極側は、略コの字をした導体5cを介して金属ブロック13aと接続される。平型半導体素子6bのコレクタ側電極は、導体5bを介して金属ブロック13bと接続される。
このように構成された平型半導体素子用スタックにおいて、電流は、導体5bから平型半導体素子6b,導体5c,平型半導体素子6a,導体5aの順に流れる。
【0010】
次に、平型半導体素子6の内部構造の概略について図2を参照し詳細に説明する。平型半導体素子6は、銅のエミッタ電極14とモリブデン板15と半導体チップ16とモリブデン円板17と銅のコレクタ電極18、セラミック製外囲器19とから構成されている。コレクタ電極18側は1枚のモリブデン円板17で構成され、反対側のエミッタ電極14側は半導体チップ16の配置に応じた銅の突起を有しているため、両者の間にある半導体チップ16にはコレクタ側がモリブデン円板17の、またエミッタ側が銅の熱膨張の影響を受け、両者の熱膨張差による伸びの差がひずみとなって作用することになり、この繰り返しによって半導体チップ16が疲労する。モリブデンの線膨張率は4.8ppm/℃で銅は16.6ppm/℃である。このため温度が高くなるに従って熱膨張変位の差が大きくなる。
本発明に基づく第1の実施の形態の平型半導体素子用スタックにおいて、平型半導体素子6のエミッタ電極14は冷却器側であるため冷却されるが、コレクタ電極18は中間圧接部材7a側であるため、コレクタ電極18の冷却は中間圧接部材7aの金属(例えば銅)を介しての自然放熱とエミッタ電極14を伝わって放熱される片面冷却状態となるため、コレクタ電極18はエミッタ電極14より温度が高くなる。
【0011】
このように構成された平型半導体素子用スタックにおいて、平型半導体素子6のコレクタ電極側の温度をエミッタ電極側より高くし、エミッタ電極側の温度をコレクタ電極側の温度を低くすることにより、コレクタ側のモリブデン円板17とエミッタ電極14の銅との熱膨脹差が少なくなる。コレクタ側のモリブデン円板17とエミッタ電極14の銅との熱膨張差が少なくなるため半導体チップ16に生じるひずみを少なくすることができるので平型半導体素子の熱に対する疲労寿命を向上することができる。
このように構成された平型半導体素子用スタックは、1対の平型半導体素子6a及び平型半導体素子6bのコレクタ電極の温度を同じにすることができる。
このように構成された平型半導体素子用スタックを使用すると、大容量の電力変換装置を提供することが出来る。
(第2の実施の形態)
本発明に基づく第2の実施の形態の平型半導体素子用スタックについて図を参照し詳細に説明する。図3は、本発明に基づく第2の実施の形態の平型半導体素子用スタックの構成図である。尚、図1及び図2に記載したものと構造上同一のものについては、同符号を付して説明を省略する。
【0012】
本発明に基づく第2の実施の形態の平型半導体素子用スタックは、金属ロッド2、加圧支持板3、冷却器4、導体5、平型半導体素子6、中間圧接部材7、絶縁座8、板ばね9、ナット10、加圧体11から構成されている。
本発明の第2の実施の形態の平型半導体素子用スタックにおいて、中間圧接部材7は、金属ブロック13と通電用の導体8を一体化した放熱ブロック20a,絶縁物12,金属ブロック13と通電用の導体8を一体化した放熱ブロック20bから構成されている。
このように構成された第2の実施の形態の平型半導体素子用スタックにおいて、中間圧接部材7の金属ブロック13と導体8を一体化した構造とし、絶縁物12を中心に左右対称の厚み形状とした。金属ブロック13と導体8が一体になっているので左右の平型半導体素子6との接触状態が良好となり加圧力や接触熱抵抗をより均等にすることができる。
このように構成された平型半導体素子用スタックを使用すると、大容量の電力変換装置を提供することが出来る。
(第3の実施の形態)
本発明に基づく第3の実施の形態の平型半導体素子用スタックについて図を参照し詳細に説明する。図4は、本発明に基づく第3の実施の形態の平型半導体素子用スタックの構成図である。尚、図1乃至図3に記載したものと構造上同一のものについては、同符号を付して説明を省略する。
【0013】
本発明に基づく第3の実施の形態の平型半導体素子用スタックは、金属ロッド2、加圧支持板3、冷却器4、導体5、平型半導体素子6、中間圧接部材7、絶縁座8、板ばね9、ナット10、加圧体11から構成されている。
本発明の第3の実施の形態の平型半導体素子用スタックにおいて、中間圧設部材7は、絶縁物12のみから構成されている。
本実施に基づく第3の実施の形態の平型半導体素子用スタックによれば、絶縁物12の熱伝導が低いためコレクタ電極18とエミッタ電極14の温度差を大きくすることができる。コレクタ側電極18とエミッタ側電極14の温度差を大きく出来るので、熱膨張差が小さくなり、半導体チップ16に生じるひずみを少なくすることができ疲労寿命も長くなる。
このように構成された平型半導体素子用スタックを使用すると、大容量の電力変換装置を提供することが出来る。
(第4の実施の形態)
本発明に基づく第4の実施の形態の平型半導体素子用スタックについて図を参照し詳細に説明する。図5は、本発明に基づく第4の実施の形態の平型半導体素子用スタックの構成図である。尚、図1乃至図4に記載したものと構造上同一のものについては、同符号を付して説明を省略する。
【0014】
本発明に基づく第4の実施の形態の平型半導体素子用スタックは、金属ブロック13の材料をステンレス鋼としたものである。
本発明に基づく第4の実施の形態の平型半導体素子用スタックにおいて、金属ブロック13aはステンレス鋼により構成されているので、熱伝導率が銅の1/20と小さく冷めにくいのでコレクタ電極18の温度が急激な変化をせず、コレクタ電極18の温度をエミッタ電極14より常に高く設定できる。そのため平型半導体素子6の熱に対する疲労寿命を向上することができる。
このように構成された平型半導体素子用スタックは、金属ブロック13を熱伝導率が低いステンレス鋼により構成しているため、平型半導体素子のエミッタ電極側の温度をコレクタ側より高くすることができ、平型半導体素子6の疲労寿命を向上させることができる。
このように構成された平型半導体素子用スタックを使用すると、大容量の電力変換装置を提供することが出来る。
(第5の実施の形態)
本発明に基づく第5の実施の形態の平型半導体素子用スタックについて図を参照し詳細に説明する。図6は、本発明に基づく第5の実施の形態の平型半導体素子用スタックの構成図である。尚、図1乃至図5に記載したものと構造上同一のものについては、同符号を付して説明を省略する。
【0015】
本発明に基づく第5の実施の形態の平型半導体素子用スタックは、冷却器4と導体5の間に熱伝導性の良い窒化アルミニウム等のセラミックス絶縁板21を挟んだものである。
このように構成された平型半導体素子用スタックにおいて、冷却器4を絶縁できるためにヒートパイプ(図示しない)、沸騰冷却器(図示しない)、水冷ヒートシンク(図示しない)、放熱フィン(図示しない)用に絶縁冷媒を使用しなくてよいため装置の小型化が可能である。また保守点検作業時に作業者が放熱部に触れても安全であるという効果がある。
このように構成された平型半導体素子用スタックを使用すると、大容量の電力変換装置を提供することが出来る。
本発明に基づく平型半導体素子用スタックを構成している平型半導体素子6は、IGBT,IEGTや将来開発されるであろう半導体素子も含まれることは言うまでもない。
【0016】
【発明の効果】
本発明により、平型半導体素子内部での電力損失による熱ひずみを低減することの出来る平型半導体素子用スタックを提供することができる。
【図面の簡単な説明】
【図1】本発明に基づく第1の実施の形態の平型半導体素子用スタックの構成図である。
【図2】本発明に基づく第1の実施の形態の平型半導体素子の概略図である。
【図3】本発明に基づく第2の実施の形態の平型半導体素子用スタックの構成図である。
【図4】本発明に基づく第3の実施の形態の平型半導体素子用スタックの構成図である。
【図5】本発明に基づく第4の実施の形態の平型半導体素子用スタックの構成図である。
【図6】本発明に基づく第5の実施の形態の平型半導体素子用スタックの構成図である。
【図7】従来の平型半導体素子用スタックの構成図である。
【符号の説明】
1・・・スタック
2・・・金属ロッド
3・・・加圧支持板
4・・・冷却器
5・・・導体
6・・・平型半導体素子
7・・・中間圧接部材
8・・・絶縁座
9・・・板ばね
10・・・ナット
11・・・加圧体
12・・・絶縁物
13・・・金属ブロック
14・・・エミッタ電極
15・・・モリブデン板
16・・・半導体チップ
17・・・モリブデン円板
18・・・コレクタ電極
19・・・外囲器
20・・・放熱ブロック
21・・・絶縁板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a stack for a flat type semiconductor device.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, since a large current flows in a semiconductor converter used for a railway vehicle, heat is generated due to power loss inside a flat semiconductor element. For this reason, a flat semiconductor element stack (hereinafter simply referred to as a stack) in which heat pipes or boiling cooling or water cooling heat sinks are stacked as a cooler for cooling the flat semiconductor element and an elastic pressing force is applied thereto. Many are used as circuit components of the semiconductor conversion device.
A conventional flat semiconductor device stack will be described in detail with reference to the drawings. FIG. 7 is a configuration diagram of a conventional stack for a flat semiconductor device. When it is necessary to distinguish each component for the sake of explanation, Roman characters such as a and b are used.
A conventional flat semiconductor element stack 1 includes a metal rod 2, a pressure support plate 3, a cooler 4, a conductor 5, a flat semiconductor element 6, an intermediate pressure contact member 7, an insulating seat 8, a leaf spring 9, a nut 10, It is composed of a pressure body 11.
In the conventional stack 1 for a flat semiconductor device, a frame for stacking is constituted by two or four metal rods 2 and a pressure supporting plate 3. Inside the frame, the cooler 4a, the conductor 5a, the flat semiconductor element 6a arranged so that the conductor 5a is in contact with the emitter side, an intermediate press-contact member 7 made of metal, and a flat semiconductor element arranged such that the intermediate press-contact member 7 is in contact with the emitter side. The die semiconductor element 6b, the conductor 5b, and the cooler 4b are laminated in this order (laminated body). An insulating seat 8 having a spherical seat at both ends of the laminate and a leaf spring 9 are attached, the leaf spring 9 is attached through the metal rod 2, and a nut 10 is tightened, so that the laminate is interposed through the pressing body 11. To maintain the pressure.
[0003]
The stack for a flat type semiconductor device thus configured incorporates a flat type semiconductor device such as an IGBT or IEGT and is used under a high load of several tens of kN together with a cooler for cooling and a conductor for conducting electricity. can do.
[0004]
[Patent Document 1]
JP 10-229842 A [Problems to be Solved by the Invention]
However, in the stack for the Hiragata semiconductor device configured as described above, the stack is cooled and used so that heat generated by power loss inside the flat semiconductor device is lower than the heat resistance temperature of the flat semiconductor device. Even if the temperature does not exceed the temperature, there is a thermal fatigue characteristic in which the bonding surface of the semiconductor chip is fatigued by thermal strain due to the repetition of the thermal cycle, resulting in insulation failure.
SUMMARY OF THE INVENTION It is an object of the present invention to provide a stack for a flat semiconductor device which can reduce thermal distortion due to power loss inside the flat semiconductor device.
[0005]
[Means for Solving the Problems]
The object is to provide a plurality of flat semiconductor elements, a cooler that is connected to the flat semiconductor elements via a conductor and cools the flat semiconductor elements, and is disposed between the plurality of flat semiconductor elements. An insulator, a metal block disposed between the plurality of flat semiconductor elements and the insulator, an insulating seat engaged with a side of the cooler on a side opposite to the semiconductor element, the flat semiconductor element and the insulating seat. An elastic body that engages with at least one insulating seat for pressurizing a laminate including a cooler, the metal block, and the insulator; a pressure support plate that engages with the elastic body; Pressurizing means provided on a pressurizing support made of the pressurizing support plate, wherein the collector electrodes of the flat semiconductor element are arranged to face each other, and the flat semiconductor element is arranged on the emitter electrode side of the flat semiconductor element. Attach a cooler, stack and pressurize It can be achieved by characterized.
The object is to provide a plurality of flat semiconductor elements, a cooler that is connected to the flat semiconductor elements via a conductor and cools the flat semiconductor elements, and is disposed between the plurality of flat semiconductor elements. An insulator, at least one metal block disposed between the plurality of flat semiconductor elements and the insulator and integrated with a conductor, and an insulator engaged with a side of the cooler on a side opposite to the semiconductor element; A seat, an elastic body engaging with at least one insulating seat for pressurizing the stacked body including the flat semiconductor element, the cooler, the metal block, and the insulator; and engaging the elastic body. A pressurizing support plate, and a pressurizing means provided on a pressurizing support comprising the elastic body and the pressurizing support plate, and the collector electrodes of the flat semiconductor element are arranged to face each other; Emitter electrode side of flat type semiconductor device The cooler mounting can be achieved by the pressure it was then pressurized laminating.
[0006]
The object is to provide a plurality of flat semiconductor elements, a cooler that is connected to the flat semiconductor elements via a conductor and cools the flat semiconductor elements, and is disposed between the plurality of flat semiconductor elements. An insulator, a metal block disposed between the plurality of flat semiconductor elements and the insulator, and made of an insulating material; an insulating seat engaged with a side of the cooler on a side opposite to the semiconductor element; An elastic body that engages with at least one insulating seat for pressurizing a laminate including the element, the cooler, the metal block, and the insulator; a pressure support plate that engages with the elastic body; A pressurizing means provided on a pressurizing support comprising the elastic body and the pressurizing support plate, wherein collector electrodes of the flat semiconductor element are arranged to face each other, and an emitter electrode of the flat semiconductor element is disposed. Attach the cooler to the side And it can be achieved by pressurizing.
The object is to provide a plurality of flat semiconductor elements, a cooler that is connected to the flat semiconductor elements via a conductor and cools the flat semiconductor elements, and is disposed between the plurality of flat semiconductor elements. An intermediate pressure welding member made of stainless steel, an insulating seat that engages with a side of the cooler on the side opposite to the semiconductor element, and a pressurizing member for the laminate including the flat semiconductor element, the cooler, and the intermediate pressure welding member. An elastic body engaged with at least one insulating seat, a pressure support plate engaged with the elastic body, and a pressurizing means provided on a pressurizing support body comprising the elastic body and the pressure support plate. This can be achieved by arranging the collector electrodes of the flat semiconductor element to face each other, attaching the cooler to the emitter electrode side of the flat semiconductor element, laminating and pressing.
[0007]
The object is to provide a plurality of flat semiconductor elements, a cooler connected to the flat semiconductor elements via a conductor and cooling the flat semiconductor elements, and an insulator disposed between the plurality of flat semiconductor elements. An intermediate pressure welding member comprising: an insulating seat engaged with a side of the cooler on the side opposite to the semiconductor element; and at least for pressurizing a laminated body including the flat semiconductor element, the cooler, and the intermediate pressure welding member. An elastic body engaged with one insulating seat, a pressurizing support plate engaging with the elastic body, and pressurizing means provided on a pressurizing support composed of the elastic body and the pressurizing support plate; This can be achieved by arranging the collector electrodes of the flat semiconductor element to face each other, attaching the cooler to the emitter electrode side of the flat semiconductor element, laminating and pressing.
The object is to provide a plurality of flat semiconductor elements, a cooler connected to the flat semiconductor elements via a conductor and a ceramic insulating plate to cool the flat semiconductor elements, and between the plurality of flat semiconductor elements. The arranged intermediate pressure-welding member, an insulating seat that engages with the side surface of the cooler on the side opposite to the semiconductor element, and for pressurizing a stacked body including the flat semiconductor element, the cooler, and the intermediate pressure-welding member. An elastic body engaged with at least one insulating seat, a pressure support plate engaged with the elastic body, and a pressing means provided on a pressure support body comprising the elastic body and the pressure support plate. This can be achieved by arranging the collector electrodes of the flat semiconductor element to face each other, attaching the cooler to the emitter electrode side of the flat semiconductor element, laminating and pressing.
[0008]
The object is to provide a plurality of flat semiconductor elements, a cooler that is connected to the flat semiconductor elements via a conductor and cools the flat semiconductor elements, and is disposed between the plurality of flat semiconductor elements. This can be achieved by arranging an insulator and the collector electrodes of the flat semiconductor element so as to face each other, and attaching the cooler to the emitter electrode side of the flat semiconductor element.
The above object is achieved by electrically connecting a first flat semiconductor element, a second flat semiconductor element, a collector electrode of the first flat semiconductor element, and an emitter electrode of the second flat semiconductor element. A conductor to be electrically connected, a cooler arranged on the emitter electrode side of the first flat semiconductor element and the second flat semiconductor element to cool the flat semiconductor element, and the first flat semiconductor element An insulator disposed between the element and the second flat semiconductor element, and a collector electrode of the first flat semiconductor element and a collector electrode of the second flat semiconductor element facing each other. This can be achieved by arrangement.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
(First Embodiment)
A flat semiconductor device stack according to a first embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram of a stack for a flat semiconductor device according to a first embodiment of the present invention. FIG. 2 is a schematic diagram of the internal structure of the flat semiconductor device according to the first embodiment of the present invention. In addition, about what is structurally the same as what was described in FIG.
The flat semiconductor device stack 1a according to the first embodiment of the present invention includes a metal rod 2, a pressure support plate 3, a cooler 4, a conductor 5, a flat semiconductor device 6, an intermediate pressure contact member 7a, an insulating seat. 8, a leaf spring 9, a nut 10, and a pressing body 11.
In the stack for a flat type semiconductor element thus configured, the intermediate pressure contact member 7 has a structure in which the metal blocks 13a and 13b are arranged on both sides of the insulator 12. The collector electrode side of the flat semiconductor element 6a is connected to the metal block 13a via a conductor 5c having a substantially U-shape. The collector-side electrode of the flat semiconductor element 6b is connected to the metal block 13b via the conductor 5b.
In the flat semiconductor element stack configured as described above, current flows from the conductor 5b to the flat semiconductor element 6b, the conductor 5c, the flat semiconductor element 6a, and the conductor 5a in this order.
[0010]
Next, the outline of the internal structure of the flat semiconductor element 6 will be described in detail with reference to FIG. The flat semiconductor element 6 includes a copper emitter electrode 14, a molybdenum plate 15, a semiconductor chip 16, a molybdenum disk 17, a copper collector electrode 18, and a ceramic envelope 19. The collector electrode 18 side is composed of one molybdenum disk 17, and the opposite emitter electrode 14 side has a copper protrusion corresponding to the arrangement of the semiconductor chip 16, so that the semiconductor chip 16 The collector side is affected by the thermal expansion of the molybdenum disk 17 and the emitter side is affected by the thermal expansion of copper, and the difference in elongation due to the difference in thermal expansion between the two acts as a strain. I do. The coefficient of linear expansion of molybdenum is 4.8 ppm / ° C. and that of copper is 16.6 ppm / ° C. For this reason, the difference in thermal expansion displacement increases as the temperature increases.
In the flat semiconductor element stack according to the first embodiment of the present invention, the emitter electrode 14 of the flat semiconductor element 6 is cooled because it is on the cooler side, but the collector electrode 18 is cooled on the intermediate pressure contact member 7a side. Therefore, the collector electrode 18 is cooled by natural heat radiation through the metal (for example, copper) of the intermediate pressure contact member 7a and in a single-sided cooling state in which heat is transmitted through the emitter electrode 14, so that the collector electrode 18 is cooled by the emitter electrode 14. Temperature rises.
[0011]
In the flat semiconductor element stack configured as described above, the temperature of the flat semiconductor element 6 on the collector electrode side is made higher than that on the emitter electrode side, and the temperature on the emitter electrode side is made lower on the collector electrode side. The difference in thermal expansion between the collector-side molybdenum disk 17 and the copper of the emitter electrode 14 is reduced. Since the difference in thermal expansion between the collector-side molybdenum disc 17 and the copper of the emitter electrode 14 is reduced, the strain generated in the semiconductor chip 16 can be reduced, so that the fatigue life of the flat semiconductor element against heat can be improved. .
In the stack for a flat type semiconductor element configured as described above, the temperatures of the collector electrodes of the pair of flat type semiconductor elements 6a and 6b can be made equal.
The use of the flat semiconductor element stack configured as described above makes it possible to provide a large-capacity power converter.
(Second embodiment)
A flat semiconductor device stack according to a second embodiment of the present invention will be described in detail with reference to the drawings. FIG. 3 is a configuration diagram of a flat semiconductor device stack according to a second embodiment of the present invention. 1 and 2 are denoted by the same reference numerals and description thereof is omitted.
[0012]
The flat semiconductor device stack according to the second embodiment of the present invention comprises a metal rod 2, a pressure support plate 3, a cooler 4, a conductor 5, a flat semiconductor device 6, an intermediate press-contact member 7, and an insulating seat 8. , A leaf spring 9, a nut 10, and a pressure body 11.
In the stack for a flat type semiconductor device according to the second embodiment of the present invention, the intermediate pressure contact member 7 is connected to the heat radiating block 20a in which the metal block 13 and the conductor 8 are integrated, the insulator 12 and the metal block 13 are connected to each other. And a heat radiation block 20b in which the conductor 8 is integrated.
In the flat semiconductor device stack according to the second embodiment having the above-described structure, the metal block 13 of the intermediate pressure-contact member 7 and the conductor 8 are integrated, and the thickness is symmetrical with respect to the insulator 12. And Since the metal block 13 and the conductor 8 are integrated, the contact state between the left and right flat semiconductor elements 6 is good, and the pressing force and the contact thermal resistance can be made more uniform.
The use of the flat semiconductor element stack configured as described above makes it possible to provide a large-capacity power converter.
(Third embodiment)
A flat semiconductor device stack according to a third embodiment of the present invention will be described in detail with reference to the drawings. FIG. 4 is a configuration diagram of a flat semiconductor device stack according to a third embodiment of the present invention. 1 to 3 are denoted by the same reference numerals, and description thereof is omitted.
[0013]
The flat semiconductor element stack according to the third embodiment of the present invention comprises a metal rod 2, a pressure support plate 3, a cooler 4, a conductor 5, a flat semiconductor element 6, an intermediate pressure contact member 7, and an insulating seat 8. , A leaf spring 9, a nut 10, and a pressure body 11.
In the flat semiconductor device stack according to the third embodiment of the present invention, the intermediate press-fitting member 7 is composed of only the insulator 12.
According to the flat semiconductor device stack of the third embodiment based on the present embodiment, since the thermal conductivity of the insulator 12 is low, the temperature difference between the collector electrode 18 and the emitter electrode 14 can be increased. Since the temperature difference between the collector-side electrode 18 and the emitter-side electrode 14 can be increased, the difference in thermal expansion is reduced, the strain generated in the semiconductor chip 16 is reduced, and the fatigue life is extended.
The use of the flat semiconductor element stack configured as described above makes it possible to provide a large-capacity power converter.
(Fourth embodiment)
A flat semiconductor device stack according to a fourth embodiment of the present invention will be described in detail with reference to the drawings. FIG. 5 is a configuration diagram of a flat type semiconductor device stack according to a fourth embodiment of the present invention. 1 to 4 are denoted by the same reference numerals, and description thereof is omitted.
[0014]
In the flat semiconductor device stack according to the fourth embodiment of the present invention, the metal block 13 is made of stainless steel.
In the flat type semiconductor device stack according to the fourth embodiment of the present invention, the metal block 13a is made of stainless steel, and has a heat conductivity of 1/20 that of copper and is difficult to cool. The temperature of the collector electrode 18 can always be set higher than that of the emitter electrode 14 without a sudden change in temperature. Therefore, the fatigue life of the flat semiconductor element 6 against heat can be improved.
In the flat semiconductor device stack thus configured, since the metal block 13 is made of stainless steel having a low thermal conductivity, the temperature of the flat semiconductor device on the emitter electrode side can be higher than that on the collector side. As a result, the fatigue life of the flat semiconductor element 6 can be improved.
The use of the flat semiconductor element stack configured as described above makes it possible to provide a large-capacity power converter.
(Fifth embodiment)
A flat semiconductor device stack according to a fifth embodiment of the present invention will be described in detail with reference to the drawings. FIG. 6 is a configuration diagram of a flat type semiconductor device stack according to a fifth embodiment of the present invention. 1 to 5 are denoted by the same reference numerals, and description thereof is omitted.
[0015]
The flat type semiconductor device stack according to the fifth embodiment of the present invention has a ceramic insulating plate 21 made of aluminum nitride or the like having good heat conductivity between a cooler 4 and a conductor 5.
In the flat semiconductor device stack thus configured, the heat pipe (not shown), the boiling cooler (not shown), the water-cooled heat sink (not shown), and the radiation fin (not shown) can be used to insulate the cooler 4. Since an insulating refrigerant does not need to be used, the size of the apparatus can be reduced. Also, there is an effect that it is safe even if an operator touches the heat radiating part during the maintenance and inspection work.
The use of the flat semiconductor element stack configured as described above makes it possible to provide a large-capacity power converter.
It goes without saying that the flat semiconductor element 6 constituting the stack for the flat semiconductor element according to the present invention includes IGBTs, IEGTs and semiconductor elements to be developed in the future.
[0016]
【The invention's effect】
According to the present invention, it is possible to provide a flat semiconductor device stack that can reduce thermal distortion due to power loss inside the flat semiconductor device.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a stack for a flat type semiconductor device according to a first embodiment of the present invention.
FIG. 2 is a schematic view of a flat semiconductor device according to a first embodiment of the present invention.
FIG. 3 is a configuration diagram of a flat semiconductor device stack according to a second embodiment of the present invention.
FIG. 4 is a configuration diagram of a flat semiconductor device stack according to a third embodiment of the present invention.
FIG. 5 is a configuration diagram of a flat semiconductor device stack according to a fourth embodiment of the present invention.
FIG. 6 is a configuration diagram of a stack for a flat type semiconductor device according to a fifth embodiment of the present invention.
FIG. 7 is a configuration diagram of a conventional stack for a flat semiconductor device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Stack 2 ... Metal rod 3 ... Pressure support plate 4 ... Cooler 5 ... Conductor 6 ... Flat semiconductor element 7 ... Intermediate pressure contact member 8 ... Insulation Seat 9 Plate spring 10 Nut 11 Pressing body 12 Insulator 13 Metal block 14 Emitter electrode 15 Molybdenum plate 16 Semiconductor chip 17 ... Molybdenum disk 18 ... Collector electrode 19 ... Envelope 20 ... Heat radiation block 21 ... Insulating plate

Claims (11)

2つの平型半導体素子と、
前記2つの平型半導体素子各々に設けられ、導体を介して前記平型半導体素子と接続され前記平型半導体素子を冷却する2つの冷却器と、
前記2つの平型半導体素子の反前記冷却器側かつ前記2つの平型半導体素子の間に配置された絶縁物と、
前記2つの平型半導体素子と前記絶縁物の間に配置された2つの金属ブロックと、
前記2つの冷却器の反半導体素子側の側面と係合する絶縁座と、
前記2つの平型半導体素子及び前記2つの冷却器及び前記2つの金属ブロック及び前記絶縁物からなる積層体の加圧のために少なくとも1つの絶縁座と係合する弾性体と、
前記弾性体と係合する加圧支持板と、
前記弾性体と前記加圧支持板から成る加圧力支持体に設けられた加圧手段とを有し、
前記2つの平型半導体素子のコレクタ電極同士を向かい合わせに配置し、前記2つの平型半導体素子のエミッタ電極側にそれぞれ2つの前記冷却器を取り付け、積層し加圧したことを、
特徴とする平型半導体素子用スタック。
Two flat semiconductor elements,
Two coolers provided on each of the two flat semiconductor elements and connected to the flat semiconductor element via a conductor to cool the flat semiconductor element;
An insulator disposed between the two flat semiconductor elements and on the side opposite to the cooler and between the two flat semiconductor elements,
Two metal blocks disposed between the two flat semiconductor elements and the insulator;
An insulating seat that engages a side surface of the two coolers opposite to the semiconductor element;
An elastic body engaged with at least one insulating seat for pressurizing the stacked body including the two flat semiconductor elements, the two coolers, the two metal blocks, and the insulator;
A pressure support plate engaged with the elastic body,
A pressurizing means provided on a pressurized support comprising the elastic body and the pressurized support plate,
The collector electrodes of the two flat semiconductor elements are arranged to face each other, and the two coolers are attached to the emitter electrode sides of the two flat semiconductor elements, respectively, and are stacked and pressurized.
Characteristic stacks for flat semiconductor devices.
複数の平型半導体素子と、
前記複数の平型半導体素子各々と導体を介して接続され、前記平型半導体素子を冷却する複数の冷却器と、
前記平型半導体素子の間に配置された絶縁物と、
前記平型半導体素子と前記絶縁物の間に配置され導体と一体化した構造とした少なくとも1つの金属ブロックと、
前記冷却器の反半導体素子側の側面と係合する絶縁座と、
前記平型半導体素子及び前記冷却器及び前記金属ブロック及び前記絶縁物からなる積層体の加圧のために少なくとも1つの絶縁座と係合する弾性体と、
前記弾性体と係合する加圧支持板と、
前記弾性体と前記加圧支持板から成る加圧力支持体に設けられた加圧手段とを有し、
前記平型半導体素子のコレクタ電極同士を向かい合わせに配置し、前記平型半導体素子のエミッタ電極側に前記冷却器を取り付け、積層し加圧したことを、
特徴とする平型半導体素子用スタック。
A plurality of flat semiconductor elements;
A plurality of coolers connected to each of the plurality of flat semiconductor elements via a conductor and cooling the flat semiconductor elements,
An insulator disposed between the flat semiconductor elements,
At least one metal block having a structure integrated with a conductor disposed between the flat semiconductor element and the insulator;
An insulating seat that engages a side surface of the cooler on the side opposite to the semiconductor element;
An elastic body that engages with at least one insulating seat for pressurizing the stacked body including the flat semiconductor element, the cooler, the metal block, and the insulator;
A pressure support plate engaged with the elastic body,
A pressurizing means provided on a pressurized support comprising the elastic body and the pressurized support plate,
The collector electrodes of the flat semiconductor element are arranged to face each other, the cooler is attached to the emitter electrode side of the flat semiconductor element, and the stacked and pressurized,
Characteristic stacks for flat semiconductor devices.
複数の平型半導体素子と、
前記平型半導体素子各々と導体を介して接続され、前記平型半導体素子を冷却する冷却器と、
前記複数の平型半導体素子の間に配置された絶縁物と、
前記複数の平型半導体素子と前記絶縁物の間に配置され絶縁材料から成る金属ブロックと、
前記冷却器の反半導体素子側の側面と係合する絶縁座と、
前記平型半導体素子及び前記冷却器及び前記金属ブロック及び前記絶縁物からなる積層体の加圧のために少なくとも1つの絶縁座と係合する弾性体と、
前記弾性体と係合する加圧支持板と、
前記弾性体と前記加圧支持板から成る加圧力支持体に設けられた加圧手段とを有し、
前記平型半導体素子のコレクタ電極同士を向かい合わせに配置し、前記平型半導体素子のエミッタ電極側に前記冷却器を取り付け、積層し加圧したことを、
特徴とする平型半導体素子用スタック。
A plurality of flat semiconductor elements;
A cooler that is connected to each of the flat semiconductor elements via a conductor and cools the flat semiconductor elements,
An insulator disposed between the plurality of flat semiconductor elements,
A metal block made of an insulating material disposed between the plurality of flat semiconductor elements and the insulator;
An insulating seat that engages a side surface of the cooler on the side opposite to the semiconductor element;
An elastic body that engages with at least one insulating seat for pressurizing the stacked body including the flat semiconductor element, the cooler, the metal block, and the insulator;
A pressure support plate engaged with the elastic body,
A pressurizing means provided on a pressurized support comprising the elastic body and the pressurized support plate,
The collector electrodes of the flat semiconductor element are arranged to face each other, the cooler is attached to the emitter electrode side of the flat semiconductor element, and the stacked and pressurized,
Characteristic stacks for flat semiconductor devices.
複数の平型半導体素子と、
前記平型半導体素子各々と導体を介して接続され、前記平型半導体素子を冷却する冷却器と、
前記複数の平型半導体素子の間に配置されステンレス鋼から成る中間圧接部材と、
前記冷却器の反半導体素子側の側面と係合する絶縁座と、
前記平型半導体素子及び前記冷却器及び前記中間圧接部材からなる積層体の加圧のために少なくとも1つの絶縁座と係合する弾性体と、
前記弾性体と係合する加圧支持板と、
前記弾性体と前記加圧支持板から成る加圧力支持体に設けられた加圧手段とを有し、
前記平型半導体素子のコレクタ電極同士を向かい合わせに配置し、前記平型半導体素子のエミッタ電極側に前記冷却器を取り付け、積層し加圧したことを、
特徴とする平型半導体素子用スタック。
A plurality of flat semiconductor elements;
A cooler that is connected to each of the flat semiconductor elements via a conductor and cools the flat semiconductor elements,
An intermediate pressure-contact member made of stainless steel and disposed between the plurality of flat semiconductor elements,
An insulating seat that engages a side surface of the cooler on the side opposite to the semiconductor element;
An elastic body that engages with at least one insulating seat for pressurizing the stacked body including the flat semiconductor element, the cooler, and the intermediate pressure-contact member;
A pressure support plate engaged with the elastic body,
A pressurizing means provided on a pressurized support comprising the elastic body and the pressurized support plate,
The collector electrodes of the flat semiconductor element are arranged to face each other, the cooler is attached to the emitter electrode side of the flat semiconductor element, and the stacked and pressurized,
Characteristic stacks for flat semiconductor devices.
複数の平型半導体素子と、
前記平型半導体素子各々と導体を介して接続され、前記平型半導体素子を冷却する冷却器と、
前記複数の平型半導体素子の間に配置され絶縁物から成る中間圧接部材と、
前記冷却器の反半導体素子側の側面と係合する絶縁座と、
前記平型半導体素子及び前記冷却器及び前記中間圧接部材からなる積層体の加圧のために少なくとも1つの絶縁座と係合する弾性体と、
前記弾性体と係合する加圧支持板と、
前記弾性体と前記加圧支持板から成る加圧力支持体に設けられた加圧手段とを有し、
前記平型半導体素子のコレクタ電極同士を向かい合わせに配置し、前記平型半導体素子のエミッタ電極側に前記冷却器を取り付け、積層し加圧したことを、
特徴とする平型半導体素子用スタック。
A plurality of flat semiconductor elements;
A cooler that is connected to each of the flat semiconductor elements via a conductor and cools the flat semiconductor elements,
An intermediate pressure-contact member made of an insulator disposed between the plurality of flat semiconductor elements;
An insulating seat that engages a side surface of the cooler on the side opposite to the semiconductor element;
An elastic body that engages with at least one insulating seat for pressurizing the stacked body including the flat semiconductor element, the cooler, and the intermediate pressure-contact member;
A pressure support plate engaged with the elastic body,
A pressurizing means provided on a pressurized support comprising the elastic body and the pressurized support plate,
The collector electrodes of the flat semiconductor element are arranged to face each other, the cooler is attached to the emitter electrode side of the flat semiconductor element, and the stacked and pressurized,
Characteristic stacks for flat semiconductor devices.
複数の平型半導体素子と、
前記平型半導体素子各々と導体及びセラミック絶縁板を介して接続され、前記平型半導体素子を冷却する冷却器と、
前記複数の平型半導体素子の間に配置された中間圧接部材と、
前記冷却器の反半導体素子側の側面と係合する絶縁座と、
前記平型半導体素子及び前記冷却器及び前記中間圧接部材からなる積層体の加圧のために少なくとも1つの絶縁座と係合する弾性体と、
前記弾性体と係合する加圧支持板と、
前記弾性体と前記加圧支持板から成る加圧力支持体に設けられた加圧手段とを有し、
前記平型半導体素子のコレクタ電極同士を向かい合わせに配置し、前記平型半導体素子のエミッタ電極側に前記冷却器を取り付け、積層し加圧したことを、
特徴とする平型半導体素子用スタック。
A plurality of flat semiconductor elements;
A cooler connected to each of the flat semiconductor elements via a conductor and a ceramic insulating plate, and cooling the flat semiconductor elements,
An intermediate pressure welding member disposed between the plurality of flat semiconductor elements,
An insulating seat that engages a side surface of the cooler on the side opposite to the semiconductor element;
An elastic body that engages with at least one insulating seat for pressurizing the stacked body including the flat semiconductor element, the cooler, and the intermediate pressure-contact member;
A pressure support plate engaged with the elastic body,
A pressurizing means provided on a pressurized support comprising the elastic body and the pressurized support plate,
The collector electrodes of the flat semiconductor element are arranged to face each other, the cooler is attached to the emitter electrode side of the flat semiconductor element, and the stacked and pressurized,
Characteristic stacks for flat semiconductor devices.
平型半導体素子と、
前記平型半導体素子を冷却する冷却器と、
前記平型半導体素子の反前記冷却器側に配置された絶縁物と、
前記平型半導体素子のコレクタ電極同士を向かい合わせに配置したことを、
特徴とする平型半導体素子用スタック。
A flat semiconductor element;
A cooler for cooling the flat semiconductor element,
An insulator disposed on the side opposite to the cooler of the flat semiconductor element,
That the collector electrodes of the flat semiconductor element are arranged facing each other,
Characteristic stacks for flat semiconductor devices.
平型半導体素子と、
前記平型半導体素子のエミッタ電極側に配置され、前記平型半導体素子を冷却する冷却器と、
前記平型半導体素子のコレクタ電極側に配置された絶縁物と、
を備えることを特徴とする平型半導体素子用スタック。
A flat semiconductor element;
A cooler that is arranged on the emitter electrode side of the flat semiconductor element and cools the flat semiconductor element;
An insulator disposed on the collector electrode side of the flat semiconductor element,
A stack for a flat type semiconductor device, comprising:
第1の平型半導体素子と、
第2の平型半導体素子と、
前記第1の平型半導体素子のコレクタ側電極と前記第2の平型半導体素子のエミッタ側電極とを電気的に接続する導体と、
前記第1の平型半導体素子及び前記第2の平型半導体素子のエミッタ電極側に配置され前記平型半導体素子を冷却する冷却器と、
前記第1の平型半導体素子と前記第2の平型半導体素子の間に配置された絶縁物と、
前記第1の平型半導体素子のコレクタ側電極と前記第2の平型半導体素子のコレクタ側電極とを向かい合わせに配置したことを、
特徴とする平型半導体素子用スタック。
A first flat semiconductor element;
A second flat semiconductor element;
A conductor that electrically connects the collector electrode of the first flat semiconductor element and the emitter electrode of the second flat semiconductor element;
A cooler arranged on the emitter electrode side of the first flat semiconductor element and the second flat semiconductor element to cool the flat semiconductor element;
An insulator disposed between the first flat semiconductor element and the second flat semiconductor element;
That the collector electrode of the first flat semiconductor element and the collector electrode of the second flat semiconductor element are arranged to face each other;
Characteristic stacks for flat semiconductor devices.
前記請求項1乃至請求項9記載の平型半導体素子用スタックにおいて、前記平型半導体素子用スタックをIGBTおよびIEGTとしたことを特徴とする平型半導体素子用スタック。10. The flat semiconductor device stack according to claim 1, wherein the flat semiconductor device stack is an IGBT or an IEGT. 前記請求項1乃至10記載の平型半導体素子用スタックを用いたことを特徴とする電力変換装置。A power converter using the flat type semiconductor element stack according to any one of claims 1 to 10.
JP2003086803A 2003-03-27 2003-03-27 Stack for flat semiconductor element and power converter using it Pending JP2004296764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003086803A JP2004296764A (en) 2003-03-27 2003-03-27 Stack for flat semiconductor element and power converter using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003086803A JP2004296764A (en) 2003-03-27 2003-03-27 Stack for flat semiconductor element and power converter using it

Publications (1)

Publication Number Publication Date
JP2004296764A true JP2004296764A (en) 2004-10-21

Family

ID=33401331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003086803A Pending JP2004296764A (en) 2003-03-27 2003-03-27 Stack for flat semiconductor element and power converter using it

Country Status (1)

Country Link
JP (1) JP2004296764A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243904A (en) * 2011-05-18 2012-12-10 Toyo Electric Mfg Co Ltd Flat type element pressure welding structure
JP2015220398A (en) * 2014-05-20 2015-12-07 富士電機株式会社 Power semiconductor module
CN113380879A (en) * 2021-05-25 2021-09-10 西安交通大学 SiC MOSFET sub-module unit and crimping type package thereof
GB2616837A (en) * 2022-03-16 2023-09-27 Zhuzhou Crrc Times Electric Co Ltd Power semiconductor package

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243904A (en) * 2011-05-18 2012-12-10 Toyo Electric Mfg Co Ltd Flat type element pressure welding structure
JP2015220398A (en) * 2014-05-20 2015-12-07 富士電機株式会社 Power semiconductor module
CN113380879A (en) * 2021-05-25 2021-09-10 西安交通大学 SiC MOSFET sub-module unit and crimping type package thereof
CN113380879B (en) * 2021-05-25 2024-03-29 西安交通大学 SiC MOSFET sub-module unit and compression joint type package thereof
GB2616837A (en) * 2022-03-16 2023-09-27 Zhuzhou Crrc Times Electric Co Ltd Power semiconductor package

Similar Documents

Publication Publication Date Title
JP4867793B2 (en) Semiconductor device
JPS6225263B2 (en)
JP6286543B2 (en) Power module device, power conversion device, and method of manufacturing power module device
KR20080031381A (en) Heat dissipation device and power module
JPH08331835A (en) Semiconductor element stack
JP2000124398A (en) Power semiconductor module
CN100385652C (en) Semiconductor device
JP5163160B2 (en) Semiconductor cooling structure
JP2004296764A (en) Stack for flat semiconductor element and power converter using it
JP6056286B2 (en) Semiconductor module and semiconductor module manufacturing method
JP4234614B2 (en) Pressure-contact type semiconductor device and converter using the same
JP3420945B2 (en) Power converter
US20130043579A1 (en) Power semiconductor arrangement, power semiconductor module with multiple power semiconductor arrangements, and module assembly comprising multiple power semiconductor modules
JP2013236035A (en) Semiconductor module and manufacturing method of the same
JP2009117701A (en) Power module
JP2004158489A (en) Pressure contact semiconductor device
JPH09260585A (en) Flat-type semiconductor device
JP5631100B2 (en) Electronic component mounting board cooling structure
JP2003179274A (en) Thermoelectric converting device
JP3394000B2 (en) Modular semiconductor device and power conversion device using the same
CN217719572U (en) Power device heat radiation structure and power module
JP2004128264A (en) Semiconductor module and flat lead
JP5353403B2 (en) Semiconductor device
JP4573467B2 (en) Power semiconductor device
JP2005353621A (en) Thermoelectric conversion system

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606