JP2004296700A - Process for growing nitride semiconductor - Google Patents

Process for growing nitride semiconductor Download PDF

Info

Publication number
JP2004296700A
JP2004296700A JP2003085942A JP2003085942A JP2004296700A JP 2004296700 A JP2004296700 A JP 2004296700A JP 2003085942 A JP2003085942 A JP 2003085942A JP 2003085942 A JP2003085942 A JP 2003085942A JP 2004296700 A JP2004296700 A JP 2004296700A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
substrate
single crystal
crystal substrate
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003085942A
Other languages
Japanese (ja)
Other versions
JP4099093B2 (en
Inventor
Isamu Akasaki
勇 赤崎
Hiroshi Amano
浩 天野
Satoshi Kamiyama
智 上山
Toshiya Matsuda
敏哉 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003085942A priority Critical patent/JP4099093B2/en
Priority to US10/810,309 priority patent/US20050006635A1/en
Priority to DE102004014940A priority patent/DE102004014940A1/en
Priority to FR0403121A priority patent/FR2853141A1/en
Publication of JP2004296700A publication Critical patent/JP2004296700A/en
Priority to US11/365,459 priority patent/US7183578B2/en
Application granted granted Critical
Publication of JP4099093B2 publication Critical patent/JP4099093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the characteristics or the yield by growing a nitride semiconductor having a smooth surface thereby fabricating a device, e.g. a light emitting diode, on the smooth surface of a ZrB<SB>2</SB>single crystal substrate. <P>SOLUTION: On the (0001) face of a diboride single crystal substrate represented by a chemical formula XB2 (where, X includes at least one kind of Ti, Zr, Nb and Hf), an AlN layer is grown by vapor phase epitaxial growth such that the deviation angle of a normal to the substrate surface from its (0001) direction falls within 0.55°and then a nitride semiconductor layer containing at least one kind of B, Al, Ga, In, and Tl is grown by vapor phase epitaxial growth. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、B、Al、Ga、In、Tlの少なくとも1種を含む窒化物半導体の成長方法に関し、特に発光ダイオード(LED)、レーザーダイオード(LD)、太陽電池、光センサーなどの発光デバイス、受光デバイスあるいはトランジスタ、パワーデバイス等の電子デバイス等に好適な窒化物半導体の成長方法に関するものである。
【0002】
【従来の技術】
近年、B、Al、Ga、In、Tlの少なくとも1種を含む窒化物半導体の研究開発が活発化し、応用技術が飛躍的に発展した。そして、現在、窒化物半導体を利用して緑、青、紫外の発光ダイオードや青、紫のレーザーダイオード等が実用化されている。
【0003】
特に、バンドギャップが赤から紫までをカバーする(InN)(GaN)1−xによれば、それまで実現されていなかった青緑、青、紫などを発光するデバイスが実現できるという点で、また、紫から紫外をカバーする(AlN)(GaN)1−xNについては、計測、殺菌、励起用の光源としての応用が期待できるという点で、III族窒化物半導体の中でも中心的な材料と位置づけられている。
【0004】
このようなIII族窒化物半導体はMOVPE法という方法により、サファイア、SiC、GaAs、Si等の単結晶基板の上に気相成長される。
【0005】
このIII族窒化物半導体は六方晶であり、InN,GaN,AlNについては、それぞれのa軸格子定数が0.311nm、0.319nm、0.354nmである。また、(InN)(GaN)1−xや(AlN)(GaN)1−xの格子定数については、xに応じた上記格子定数の間の値である。
【0006】
しかしながら、サファイア、SiC、GaAs、SiがIII族窒化物半導体と格子整合すべき原子間の間隔は、それぞれ0.275nm,0.308nm,0.400nm,0.384nmであり、完全に格子整合する基板ではなかった。
【0007】
これに対し、低温バッファ層の技術が提案されている(たとえば、特許文献1および特許文献2参照)。
【0008】
この技術を用いることで、これらの格子不整合基板に良質な結晶を成長することができたが、それでもまだ、10〜1011cm−2程度の貫通転位が存在していた。また、これらの単結晶基板は窒化物半導体との熱膨張係数差が大きく、1000℃程度の高温で結晶成長した後の収縮量の違いに起因して、クラックを発生させていた。
【0009】
参考までに、上記材料の格子定数または格子整合する原子間隔と熱膨張係数を表1に示す。
【0010】
【表1】

Figure 2004296700
【0011】
これらの問題点を解決する方法として、ZrB単結晶基板の(0001)面に窒化物半導体を成長する技術が提案されている(特許文献3参照)。
【0012】
ZrB単結晶基板は六方晶であり、a軸の格子定数は0.317nmであって、(AlN)(GaN)1−xのx=0.26と完全に格子整合する。また、熱膨張係数は5.9×10−6−1であり、GaNの5.6×10−6−1と近い値である。
【0013】
また、ZrB単結晶基板は抵抗率が4.6μΩcmと小さく、導電性である。一方、従来、基板として一般的に使用されているサファイア基板は絶縁性であり、そのために図2に示すごとく、サファイア基板の上に形成された発光ダイオードが2つの電極を同一平面側に設ける構造である。
【0014】
同図に示す構造によれば、サファイア基板10の上に低温バッファ層7、n型コンタクト層6、n型クラッド層5、発光層4、p型クラッド層3、p型コンタクト層2とを順次積層した構造であり、その上にさらにp電極1を形成する。また、n型コンタクト層6の露出面にn電極9を形成している。
【0015】
これに対し、図1に示すごとく、ZrB単結晶基板8を用いた場合には、一方の電極を基板の裏面に設ける構造にできるので、デバイス面積を小さくできる利点がある。なお、図2に示す部材と同一部材には同一符号を付す。
【0016】
以上の通り、ここ1〜2年、ZrB単結晶基板への窒化物半導体成長技術の研究開発が進められている。
【0017】
非特許文献1によれば、MBE法によりZrB単結晶基板(0001)面上にGaNが成長できる技術が提案されている。
【0018】
しかしながら、この技術によれば、MBE法であることで、量産性に劣るという問題点がある。
【0019】
また、MOVPE法によりZrB単結晶基板(0001)面上にAlNバッファ層を用いることによりGaNを成長する技術も提案されている(非特許文献2参照)。
【0020】
しかしながら、そのMOVPE法によりZrB単結晶基板(0001)面に成長したGaN膜は表面形態が図4に示すような凹凸が出来やすいという問題があった。
【0021】
〔特許文献1〕
特公平4−15200号
〔特許文献2〕
特許第3026087号
〔特許文献3〕
特開2002−43223号
〔非特許文献1〕
Abstr.13th Int.Conf.Crystal Growth,Aug.2001,02a−SB2−20
〔非特許文献2〕
Ext.Abstr.(62nd Autumn Meet.2001);Japan Society of Applied Physics,12p−R−14
【0022】
【発明が解決しようとする課題】
上述したごとく、ZrB単結晶基板(0001)面にAlNバッファ層を用いて窒化物半導体を成長させた場合、その表面形態に現れる凹凸を小さくさせることが望まれている。
【0023】
【課題を解決するための手段】
本発明の窒化物半導体の成長方法は、化学式XB(但し、XはTi、Zr、Nb、Hfの少なくとも1種を含む)にて表される二硼化物単結晶基板の[0001]面上に、当該基板表面の法線と、その[0001]方向からのずれ角度が0.55度以下になるようにAlN層を気相成長させ、次いでB、Al、Ga、In、Tlの少なくとも1種を含む窒化物半導体層を気相成長させることを特徴とする。
【0024】
本発明の他の窒化物半導体の成長方法は、前記AlN層の厚みが10〜100nmの範囲内であることを特徴とする。
【0025】
【発明の実施の形態】
以下、本発明の工程を順次述べる。
【0026】
本発明によれば、化学式XB(但し、XはTi、Zr、Nb、Hfの少なくとも1種を含む)にて表される二硼化物単結晶基板を用いる。
【0027】
この基板はZrB基板もしくはTiB基板またはZrTi1−x基板に相当するが、本例においては、ZrB基板にてMOVPE法により気相成長させる方法を説明する。
【0028】
工程1:ZrB基板はアルカリ溶剤で表面を洗浄する。
【0029】
工程2:窒化物半導体を成長する前に、そのZrB基板を水素(H)雰囲気(1気圧)中にて、3分間で昇温し、1150℃の温度にて1分間アニールする。
【0030】
工程3:その後、5分間程度にて降温し、AlN層を堆積する。
【0031】
このとき成長温度Tは800℃以下の温度範囲に設定し、そして、AlN層を気相成長させるとよい。なお、本実施例においては、600℃に設定した。
【0032】
また、AlN層の厚みについては、10〜100nmの範囲内にするとよい。なお、本実施例においては、20nmに設定した。
【0033】
このような気相成長によれば、使用した原料ガスはアンモニア(NH)とトリメチルアルミニウム(TMA)とトリメチルガリウム(TMG)であり、たとえば、供給量はNHを0.07mol/min、TMAを3.5μmol/minとし、キャリアガスとしてHを4slm流した。NHはTMAを供給する1分前から供給した。
【0034】
工程4:次に、たとえば1150℃にまで昇温し、MOVPE法によりGaN層を約3μm成長した。使用した原料ガスはNHとTMGであり、たとえばTMGを44μmol/min、NHを0.07mol/min供給した。キャリアガスとしてHを3slm流した。
【0035】
成長後のGaN膜表面を観察すると図4のような表面に凹凸があるもの(表面状態B)と、図5に示すような、なめらかな状態(表面状態A)のものが観察された。
【0036】
そこで、ZrB単結晶基板のオフ角と成長した膜の表面状態の関係を図6に示す。ここでは基板表面の法線が[0001]結晶軸から[10−10]方向へのずれ角と[11−20]方向へのずれ角とその二乗和をそれぞれ表記している。オフ角の二乗和が0.35度以下では全て表面状態はAであった。オフ角が0.35から0.55度の間では、Aの表面状態とBの表面状態の両方が観察された。これは成長実験での操作や装置状態のばらつきに起因すると考えられ、ばらつきを小さくするとAの表面状態が再現できると考えられる。オフ角の二乗和が0.55度以上では、全て表面状態Bとなった。
【0037】
なお、本発明は上記実施形態例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更や改良等はなんら差し支えない。例えば、二硼化物単結晶基板として、ZrB2基板を用いたが、これに代えて化学式XBであって、そして、XがTi、Nb、Hfが単独にてもしくは組み合わせてなる基板であっても、本発明の作用効果を奏することを実験により確認した。
【0038】
【発明の効果】
以上の通り、本発明によれば、MOVPE法によりB、Al、Ga、In、Tlの少なくとも1種を含む窒化物半導体層を化学式XB(但し、XはTi、Zr、Nb、Hfの少なくとも1種を含む)で表される二硼化物単結晶基板の(0001)面上に成長させる方法として、その二硼化物単結晶基板の(0001)面上に10nmから100nmのAlN層を800℃以下で成長し後にB、Al、Ga、In、Tlの少なくとも1種を含む窒化物半導体層を成長させる方法において、二硼化物単結晶基板表面の法線と二硼化物結晶の[0001]方向からのずれ角が、0.55度以下である基板を用いることにより、なめらかな表面の窒化物半導体を成長することができた。したがって本発明を用いれば、ZrB単結晶基板上に作製する発光ダイオード等のデバイスをなめらかな面の上に作製でき、特性や歩留りが向上した。
【図面の簡単な説明】
【図1】ZrB単結晶基板上に窒化物半導体層した構成の断面概略図である。
【図2】サファイア基板上に窒化物半導体層した構成の断面概略図である。
【図3】基板表面のオフ角と表面状態の関係を示す線図である。
【図4】GaN膜の表面状態(表面状態B)を示す図である。
【図5】本発明に係るGaN膜の表面状態(表面状態A)を示す図である。
【符号の説明】
1 p電極
2 p型コンタクト層
3 p型クラッド層
4 発光層
5 n型クラッド層
6 p型コンタクト層
7 低温バッファ層
8 導電性基板
9 n電極
10 基板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for growing a nitride semiconductor containing at least one of B, Al, Ga, In, and Tl. In particular, the present invention relates to a light emitting device such as a light emitting diode (LED), a laser diode (LD), a solar cell, and a light sensor. The present invention relates to a method for growing a nitride semiconductor suitable for an electronic device such as a light receiving device or a transistor or a power device.
[0002]
[Prior art]
In recent years, research and development of nitride semiconductors containing at least one of B, Al, Ga, In, and Tl have been activated, and applied technologies have been dramatically developed. At present, green, blue, and ultraviolet light-emitting diodes and blue and violet laser diodes, which utilize nitride semiconductors, have been put to practical use.
[0003]
In particular, according to (InN) x (GaN) 1-x whose band gap covers from red to purple, a device that emits blue-green, blue, violet, etc., which has not been realized before, can be realized. In addition, (AlN) x (GaN) 1-x N, which covers the range from purple to ultraviolet, is expected to be applied as a light source for measurement, sterilization, and excitation. Material.
[0004]
Such a group III nitride semiconductor is vapor-phase grown on a single crystal substrate of sapphire, SiC, GaAs, Si or the like by a method called MOVPE.
[0005]
This group III nitride semiconductor is hexagonal, and the a-axis lattice constants of InN, GaN, and AlN are 0.311 nm, 0.319 nm, and 0.354 nm, respectively. The lattice constants of (InN) x (GaN) 1-x and (AlN) x (GaN) 1-x are values between the above-mentioned lattice constants corresponding to x.
[0006]
However, the spacings between sapphire, SiC, GaAs, and Si atoms to be lattice-matched with the group III nitride semiconductor are 0.275 nm, 0.308 nm, 0.400 nm, and 0.384 nm, respectively, and are completely lattice-matched. It was not a substrate.
[0007]
On the other hand, a technique of a low-temperature buffer layer has been proposed (for example, see Patent Documents 1 and 2).
[0008]
By using this technique, high-quality crystals could be grown on these lattice mismatched substrates, but threading dislocations of about 10 8 to 10 11 cm −2 still existed. Further, these single crystal substrates have a large difference in thermal expansion coefficient from the nitride semiconductor, and cracks are generated due to a difference in shrinkage after crystal growth at a high temperature of about 1000 ° C.
[0009]
For reference, Table 1 shows the lattice constant of the above materials or the atomic spacing and the thermal expansion coefficient for lattice matching.
[0010]
[Table 1]
Figure 2004296700
[0011]
As a method for solving these problems, a technique for growing a nitride semiconductor on the (0001) plane of a ZrB 2 single crystal substrate has been proposed (see Patent Document 3).
[0012]
The ZrB 2 single crystal substrate is hexagonal, has a lattice constant of the a-axis of 0.317 nm, and is completely lattice-matched with (AlN) x (GaN) 1-x where x = 0.26. The coefficient of thermal expansion is 5.9 × 10 −6 K −1, which is close to 5.6 × 10 −6 K −1 of GaN.
[0013]
The single crystal substrate of ZrB 2 has a small resistivity of 4.6 μΩcm and is conductive. On the other hand, a sapphire substrate generally used as a conventional substrate is insulative. Therefore, as shown in FIG. 2, a light emitting diode formed on the sapphire substrate has a structure in which two electrodes are provided on the same plane side. It is.
[0014]
According to the structure shown in FIG. 1, a low-temperature buffer layer 7, an n-type contact layer 6, an n-type clad layer 5, a light-emitting layer 4, a p-type clad layer 3, and a p-type contact layer 2 are sequentially formed on a sapphire substrate 10. This is a laminated structure, on which a p-electrode 1 is further formed. Further, an n-electrode 9 is formed on the exposed surface of the n-type contact layer 6.
[0015]
On the other hand, as shown in FIG. 1, when the ZrB 2 single crystal substrate 8 is used, a structure can be provided in which one electrode is provided on the back surface of the substrate, so that there is an advantage that the device area can be reduced. The same members as those shown in FIG. 2 are denoted by the same reference numerals.
[0016]
As described above, research and development of a technology for growing a nitride semiconductor on a ZrB 2 single crystal substrate have been progressed in the last one to two years.
[0017]
Non-Patent Document 1 proposes a technique that allows GaN to grow on a ZrB 2 single crystal substrate (0001) surface by MBE.
[0018]
However, according to this technique, there is a problem that the MBE method is inferior in mass productivity.
[0019]
In addition, a technique for growing GaN by using an AlN buffer layer on a ZrB 2 single crystal substrate (0001) surface by MOVPE has been proposed (see Non-Patent Document 2).
[0020]
However, the GaN film grown on the ZrB 2 single crystal substrate (0001) surface by the MOVPE method has a problem that the surface morphology tends to be uneven as shown in FIG.
[0021]
[Patent Document 1]
Japanese Patent Publication No. 4-15200 [Patent Document 2]
Patent No. 3026087 [Patent Document 3]
JP-A-2002-43223 [Non-Patent Document 1]
Abstr. 13th Int. Conf. Crystal Growth, Aug. 2001, 02a-SB2-20
[Non-patent document 2]
Ext. Abstr. (62nd Autumn Meet. 2001); Japan Society of Applied Physics, 12p-R-14.
[0022]
[Problems to be solved by the invention]
As described above, when a nitride semiconductor is grown on a ZrB 2 single crystal substrate (0001) surface using an AlN buffer layer, it is desired to reduce irregularities appearing in the surface morphology.
[0023]
[Means for Solving the Problems]
The method for growing a nitride semiconductor according to the present invention is based on the [0001] plane of the diboride single crystal substrate represented by the chemical formula XB 2 (where X includes at least one of Ti, Zr, Nb, and Hf). Then, an AlN layer is vapor-phase grown so that the angle of deviation from the normal to the substrate surface and the [0001] direction is 0.55 degrees or less, and then at least one of B, Al, Ga, In, and Tl is grown. The method is characterized in that a seed-containing nitride semiconductor layer is grown by vapor phase.
[0024]
According to another nitride semiconductor growth method of the present invention, the thickness of the AlN layer is in the range of 10 to 100 nm.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the steps of the present invention will be sequentially described.
[0026]
According to the present invention, a diboride single crystal substrate represented by the chemical formula XB 2 (where X includes at least one of Ti, Zr, Nb, and Hf) is used.
[0027]
This substrate corresponds to a ZrB 2 substrate, a TiB 2 substrate, or a Zr x Ti 1-x B 2 substrate. In this example, a method of vapor-phase growth on a ZrB 2 substrate by MOVPE will be described.
[0028]
Step 1: The surface of the ZrB 2 substrate is washed with an alkaline solvent.
[0029]
Step 2: Before growing the nitride semiconductor, the ZrB 2 substrate is heated in a hydrogen (H 2 ) atmosphere (1 atm) for 3 minutes and annealed at a temperature of 1150 ° C. for 1 minute.
[0030]
Step 3: Thereafter, the temperature is lowered for about 5 minutes to deposit an AlN layer.
[0031]
At this time, the growth temperature T may be set to a temperature range of 800 ° C. or less, and the AlN layer may be grown by vapor phase. In this example, the temperature was set to 600 ° C.
[0032]
Further, the thickness of the AlN layer is preferably in the range of 10 to 100 nm. In this example, the thickness was set to 20 nm.
[0033]
According to such vapor phase growth, the used source gases are ammonia (NH 3 ), trimethylaluminum (TMA) and trimethylgallium (TMG). For example, the supply amount is 0.07 mol / min of NH 3 and TMA. Was 3.5 μmol / min, and 4 slm of H 2 was flowed as a carrier gas. NH 3 was supplied one minute before TMA was supplied.
[0034]
Step 4: Next, the temperature was raised to, for example, 1150 ° C., and a GaN layer was grown to about 3 μm by MOVPE. The source gases used were NH 3 and TMG. For example, TMG was supplied at 44 μmol / min and NH 3 was supplied at 0.07 mol / min. Of H 2 was passed 3slm as a carrier gas.
[0035]
Observation of the surface of the grown GaN film showed that the surface had irregularities as shown in FIG. 4 (surface state B) and that the surface was smooth as shown in FIG. 5 (surface state A).
[0036]
FIG. 6 shows the relationship between the off-angle of the ZrB 2 single crystal substrate and the surface state of the grown film. Here, the normal line of the substrate surface represents the shift angle from the [0001] crystal axis in the [10-10] direction, the shift angle in the [11-20] direction, and the sum of squares thereof. When the sum of the squares of the off angles was 0.35 degrees or less, the surface state was all A. When the off angle was between 0.35 and 0.55 degrees, both the surface state of A and the surface state of B were observed. This is considered to be due to variations in the operation and the device state in the growth experiment, and it is considered that the surface state of A can be reproduced by reducing the variation. When the sum of squares of the off-angles was 0.55 degrees or more, all the surfaces were in the surface state B.
[0037]
It should be noted that the present invention is not limited to the above embodiment, and various changes and improvements may be made without departing from the scope of the present invention. For example, the diboride single crystal substrate was used ZrB2 substrate, a chemical formula XB 2 Alternatively, and, X is Ti, Nb, be a substrate Hf is in combination or, alone The effect of the present invention was confirmed by experiments.
[0038]
【The invention's effect】
As described above, according to the present invention, a nitride semiconductor layer containing at least one of B, Al, Ga, In, and Tl is formed by the MOVPE method using the chemical formula XB 2 (where X is at least one of Ti, Zr, Nb, and Hf). As a method for growing the AlN layer on the (0001) plane of the diboride single crystal substrate represented by the formula (1), a 10 nm to 100 nm AlN layer is formed on the (0001) plane of the diboride single crystal substrate at 800 ° C. In the method of growing a nitride semiconductor layer containing at least one of B, Al, Ga, In, and Tl after growing below, a normal line to the surface of the diboride single crystal substrate and a [0001] direction of the diboride crystal By using a substrate having a deviation angle of not more than 0.55 degrees from the substrate, a nitride semiconductor having a smooth surface could be grown. Therefore, according to the present invention, a device such as a light-emitting diode fabricated on a ZrB 2 single crystal substrate can be fabricated on a smooth surface, and the characteristics and yield have been improved.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a configuration in which a nitride semiconductor layer is formed on a ZrB 2 single crystal substrate.
FIG. 2 is a schematic sectional view of a configuration in which a nitride semiconductor layer is formed on a sapphire substrate.
FIG. 3 is a diagram showing the relationship between the off-angle of the substrate surface and the surface state.
FIG. 4 is a diagram showing a surface state (surface state B) of the GaN film.
FIG. 5 is a diagram showing a surface state (surface state A) of a GaN film according to the present invention.
[Explanation of symbols]
Reference Signs List 1 p electrode 2 p-type contact layer 3 p-type clad layer 4 light-emitting layer 5 n-type clad layer 6 p-type contact layer 7 low-temperature buffer layer 8 conductive substrate 9 n-electrode 10 substrate

Claims (2)

化学式XB(但し、XはTi、Zr、Nb、Hfの少なくとも1種を含む)にて表される二硼化物単結晶基板の[0001]面上に、当該基板表面の法線と、その[0001]方向からのずれ角度が0.55度以下になるようにAlN層を気相成長させ、次いでB、Al、Ga、In、Tlの少なくとも1種を含む窒化物半導体層を気相成長させる窒化物半導体の成長方法。On the [0001] plane of the diboride single crystal substrate represented by the chemical formula XB 2 (where X includes at least one of Ti, Zr, Nb, and Hf), a normal to the substrate surface and a normal line thereof The AlN layer is vapor-phase grown so that the angle of deviation from the [0001] direction is 0.55 degrees or less, and then the nitride semiconductor layer containing at least one of B, Al, Ga, In, and Tl is vapor-phase grown. Method of growing a nitride semiconductor. 前記AlN層の厚みが10〜100nmの範囲内であることを特徴とする請求項1に記載の窒化物半導体の成長方法。2. The method according to claim 1, wherein the thickness of the AlN layer is in a range of 10 to 100 nm.
JP2003085942A 2003-03-26 2003-03-26 Nitride semiconductor growth method Expired - Fee Related JP4099093B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003085942A JP4099093B2 (en) 2003-03-26 2003-03-26 Nitride semiconductor growth method
US10/810,309 US20050006635A1 (en) 2003-03-26 2004-03-26 Semiconductor apparatus, method for growing nitride semiconductor and method for producing semiconductor apparatus
DE102004014940A DE102004014940A1 (en) 2003-03-26 2004-03-26 Semiconductor device, method of growing a nitride semiconductor and method of manufacturing a semiconductor device
FR0403121A FR2853141A1 (en) 2003-03-26 2004-03-26 Semiconductor device comprises monocrystalline diboride substrate, semiconductor stopper layer and nitride semiconductor layer, for light emitting and receiving and other electronic devices
US11/365,459 US7183578B2 (en) 2003-03-26 2006-02-28 Semiconductor apparatus, method for growing nitride semiconductor and method for producing semiconductor apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003085942A JP4099093B2 (en) 2003-03-26 2003-03-26 Nitride semiconductor growth method

Publications (2)

Publication Number Publication Date
JP2004296700A true JP2004296700A (en) 2004-10-21
JP4099093B2 JP4099093B2 (en) 2008-06-11

Family

ID=33400725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003085942A Expired - Fee Related JP4099093B2 (en) 2003-03-26 2003-03-26 Nitride semiconductor growth method

Country Status (1)

Country Link
JP (1) JP4099093B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294877A (en) * 2006-03-31 2007-11-08 Fujifilm Corp Semiconductor device, its film forming method, and semiconductor light emitting element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294877A (en) * 2006-03-31 2007-11-08 Fujifilm Corp Semiconductor device, its film forming method, and semiconductor light emitting element

Also Published As

Publication number Publication date
JP4099093B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
US8679955B2 (en) Method for forming epitaxial wafer and method for fabricating semiconductor device
JP5099763B2 (en) Substrate manufacturing method and group III nitride semiconductor crystal
US5923950A (en) Method of manufacturing a semiconductor light-emitting device
US7183578B2 (en) Semiconductor apparatus, method for growing nitride semiconductor and method for producing semiconductor apparatus
JP5295871B2 (en) Method for manufacturing group III nitride semiconductor substrate
JP2007070154A (en) Group iii-v nitride-based semiconductor substrate and its manufacturing method
US20060175681A1 (en) Method to grow III-nitride materials using no buffer layer
WO2010113423A1 (en) Method for growing crystals of nitride semiconductor, and process for manufacture of semiconductor device
JP2007246331A (en) Group iii-v nitride based semiconductor substrate and method for manufacturing the same
JPH11135882A (en) Compound semiconductor substrate, manufacture thereof, and light-emitting element
US6648966B2 (en) Wafer produced thereby, and associated methods and devices using the wafer
CN102839417A (en) Method for growing self-stripping GaN thin film on sapphire substrate
KR100583163B1 (en) Nitride semiconductor and fabrication method for thereof
JP3100644B2 (en) Semiconductor light emitting device and method of manufacturing the same
WO2003068699A1 (en) Group iii nitride semiconductor crystal, production method thereof and group iii nitride semiconductor epitaxial wafer
KR20100104997A (en) Nitride semiconductor substrate having dislocation blocking layer and manufacturing method thereof
JP2004115305A (en) Gallium nitride single crystal substrate, method of manufacturing the same, gallium nitride-based semiconductor device and light emitting diode
JP2004307253A (en) Method for manufacturing semiconductor substrate
JP2000150388A (en) Iii nitride semiconductor thin film and manufacture thereof
JP2007227803A (en) Gas phase growth method of nitride group semiconductor, nitride group semiconductor expitaxial substrate using the same, self-standing substrate, and semiconductor device
JP2007012705A (en) Growing method of gallium nitride compound semiconductor
US20050066885A1 (en) Group III-nitride semiconductor substrate and its manufacturing method
JP4099107B2 (en) Semiconductor device
JP4099093B2 (en) Nitride semiconductor growth method
JPH1075018A (en) Manufacture of semiconductor and semiconductor light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080314

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees